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Abstract
We consider a setting where groups of agents interact, any group member’s
action inducing an externality in the same group, and aggregate action in
one group induces an externality in other groups. The interplay between
in-group and out-group interactions is shown to affect the comparison be-
tween the decentralized and the cooperative outcomes, and also the effect
of the fundamentals on individual decisions and welfare, compared to the
case where there is no in-group or out-group interaction. Moreover, group
characteristics greatly influence the capacity of group-level cooperation to
alleviate the inefficiency problems driven by decentralization. Finally, we
identify cases where inter-group relocation policies result in efficiency gains,
and highlight how this crucially depends on the existence and nature of
in-group and out-group interactions. All results stress the importance to
acknowledge interactions between potential collective action problems.
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group relocation policies.
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1 Introduction
Many economic and socially-related situations involve groups of agents instead of
individuals. Illustrative examples are problems faced by communities providing
public goods available to members only and potentially detrimental to those out-
side, teams or departments interacting within an organization, groups of owners
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managing natural resources via neighbouring concessions, or groups of firms pro-
ducing differentiated goods that may be substitutable. By contrast, most of the
economic literature tends to consider that there is no interplay between in-group
and out-group collective actions.

This contribution aims to reconcile these two dimensions. We consider a model
where groups of agents face simultaneous in-group and out-group problems: any
given group member’s action induces an externality in the same group (in-group
problem), and aggregate action in one group induces an externality on other groups
(out-group problem). We analyze whether (and if so, how) the interplay between
both types of problem affects the comparison between the decentralized and co-
operative outcomes, and the effects of the fundamentals on individual actions and
welfare, compared to classical models where such an interplay does not exist. Then
we analyze the effect of two initiatives, group-level cooperation and inter-group re-
location schemes, in order to understand how group characteristics influence their
capacity to alleviate the inefficiency problems driven by decentralization.

The framework can account for (i) strategic substitutability both within and be-
tween groups (ii) in-group complementarity and out-group substitutability and (iii)
asymmetric externalities between groups. The case where strategic substitutabil-
ity exists both within and between groups might seem a little bit surprising, but
it relates to important cases. For instance, it is consistent with oligopoly competi-
tions where groups of firms produce differentiated goods (each group producing one
good) that are substitutable at the aggregate level. Another consistent situation
corresponds to the case where a common-pool resource is managed by different
groups.1 An agent might suffer both from an increase in her group members’
extractions and from an increase in aggregate extraction in a neighbouring conces-
sion.2 and a large literature suggests economic instruments as solutions.The case
where there is in-group strategic complementarity and out-group strategic substi-
tutability corresponds to situations where peer effects can have positive spillovers
to members of the same group and negative spillovers to other groups. This is the
case for social activities exhibiting forms of limited morality behavior (see Tabellini

1As is relevant for CPRs such as fisheries, forests, groundwater, when groups manage neigh-
bouring CPR concessions, the resource is often used jointly within a given area, and each local
area is managed by a different group. The case of oil concessions is also relevant, as a given
concession may be managed by a joint venture involving several companies, and neighbouring
concessions may exhibit different property rights structures.

2Seminal contributions about the management problems resulting from the existence of cost-
externality include Gordon (5), Hardin (7), or Ostrom (16). The reader is referred to Stavins (19)
for empirical evidence. These studies mostly abstract from group-decision making considerations
(Gillet et al. (4) or Kotchen and Segerson (10) focus on the case of a unique group.).

2



(21)) applying to an agent’s own group, or when an action benefiting an agent’s
own group negatively affects the performance (and the benefits) of other groups
(see Markussen et al. (11) for a discussion of relevant examples).

This paper theoretically analyzes how the interaction of in-group and out-group
collective action problems affects behaviors. The main research questions are:
Does this interaction between collective action problems matter? If such interac-
tion does matter, how does in-group collective action affect out-group collective
action (and vice versa)? Finally, does this in turn impact the effect of cooperation
and the emergence of inter-group relocation schemes?

Within this framework, the analysis shows that the conclusions drawn from classi-
cal models ignoring the interaction between in-group and out-group problems must
be qualified. For instance, in case of in-group substitutability, non-cooperative
individual action level may be inefficiently low compared to the cooperative out-
come. In the context of CPR problems, this means that the classical tragedy of
the commons conclusion can be reversed, even though the nature of spillover ef-
fects remains the same both within and between groups. Other qualifications are
obtained under certain conditions: for instance, an agent’s action or payoff level
may actually increase with the size of his own group: this provides a different
perspective on the existing discussion about the group size paradox (see Olson
(15) or Esteban and Ray (2)). Second, the effect of potential solutions to the
inefficiency problem may differ significantly.3 Specifically, it is proved that the
effect of group-level cooperation, where there is cooperation within one group and
non cooperation both between groups and within the other group4, is not always
positive overall and strongly depends on the nature of strategic interactions.5 Un-
der in-group complementarity, group-level cooperation cannot result in a Pareto
improvement, as non-cooperating group members are negatively impacted. By
contrast, under in-group substitutability, a Pareto improvement can emerge pro-
vided the strength of the externality imposed by the cooperating group on others
lies below a threshold value. Furthermore, accounting for the interplay between
in-group and out-group collective action problems opens up avenues for the design

3Other ways to solve collective action problems have been analyzed in the literature, for
instance the use of communication (see Ostrom et al. (17)), dynamic concerns (Heitzig et al.
(9)), or explicit incentive mechanisms (for instance Gerber and Wichardt (3), Harstad (8) or
Chen and Zeckhauser (1)). All these studies focus on the case of a unique group.

4This type of cooperation is considered as, among other reasons, experiments reporting high
levels of cooperation are often related to group membership (McAdams (12)).

5The main point is to assess whether the emergence of cooperation may correspond to an
overall improvement of the situation. This differs from situations where cooperation is equivalent
to such an improvement, as in empirical works by Rustagi et al. (18) and Stoop et al. (20).
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of innovative group-based solutions, such as inter-group relocation schemes. Un-
der in-group complementarity, the relative size of the relocated sub-population and
the magnitude of the in-group problem have first-order importance. By contrast,
under in-group substitutability the comparison between the intensities of in-group
and out-group problems is the main driving factor.

Providing the intuition about the effect of an increase in the size of one group
on individual action levels may help to understand the persistent trade-off that
will be one of the driving factors. The effect of an increase in the size of group A
on individual action levels results from two effects. The first one is a direct effect
that depends on the nature of in-group interactions. For instance, under in-group
substitutability, an increase in the size of group A tends to increase in-group com-
petition, which tends to decrease individual action levels within this group. The
second effect is indirect and follows from the induced effect on individual action
levels in the other groups. It results in this case in lower individual action levels in
group B, which in turn tends to increase individual action levels in group A. There
is thus a trade-off that depends on in-group and out-group characteristics, unlike
the case where there is no interplay between in-group and out-group problems.

Before concluding this section, we briefly discuss the relationship with the lit-
erature on contests, which is not the focus of the present study for several reasons.
First, most of the related contributions are not consistent with the assumptions
of the present study.6 Second, it mostly considers conflicts between individuals,
and not between groups.7 Third, this literature is not consistent with the research
questions addressed here. Since rent-seeking efforts are by nature inefficient, it is
impossible to obtain a qualified comparison between the decentralized equilibrium
and the cooperative outcome, as in this contribution. Moreover, this literature
abstracts from questions such as the overall effect of group-level cooperation, or
the potential effectiveness of inter-group policies.

The remainder of the paper is organized as follows. The model is presented in
Section 2, together with the characterizations of the decentralized and cooperative
outcomes. The effects of fundamentals on agents’ actions and payoffs are provided
in section 3, together with the comparison between the decentralized and coopera-
tive outcomes. Section 4 presents results on the potential solutions to the collective
action problems. Section 5 concludes. The proofs of all results are provided in an

6We here consider situations where there is either in-group substitutability or in-group com-
plementarity, and out-group substitutability.

7Few contributions focus on inter-group conflicts, most of them assume non-cooperation both
between and within groups (Nitzan (13), Esteban and Ray (2)), even though agents may choose
an intra-group sharing rule in a pre-contest stage (Nitzan and Ueda (14)).
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Appendix at the end of the paper.

2 Model & benchmarks

2.1 The model
Because we want to highlight the important qualitative differences that emerge
when considering that interactions may involve groups and not individuals, we
focus on the simplest possible setting consistent with this assumption and allowing
for heterogeneities between groups. So we consider two groups, A and B (of size NA

and NB), which are subject to interacting collective action problems. Specifically,
there is an in-group problem: for a given group i, each member’s action imposes an
externality on all members in the same group (modeled by parameter δii). There
is simultaneously an out-group problem: aggregate action in group i imposes an
externality on each member in group j (modeled by parameter δij). For a given
group (say, A) the payoff of a given agent i ∈ {1, ..., NA} is thus specified as follows:

ΠA
i = axiA −

biA
2 (xiA)2 − δAAxiAX−iA − δBAxiAXB, (1)

where xiA ≥ 0 denotes this agent’s action, X−iA = ∑
j∈A,j 6=i xjA (respectively, XB)

the aggregate decision of other group A members (respectively, the aggregate de-
cision in group B), and a and biA are positive parameters (measuring the private
payoff function absent external effects). Parameter δAA captures the external ef-
fects of individual in-group actions on agent i’s payoff, while δBA captures the
degree of linkage between the two groups. The case of in-group substitutability
corresponds to δii > 0 for any i = A,B while the case of in-group complementarity
is such that δii < 0 is satisfied for any i = A,B.

The example of common-pool resources helps to illustrate the case where there
is in-group substitutability. This could model the resource extraction problems
in local areas A and B, which are managed by two separate groups: neighbour-
ing fisheries, groundwater or oil concessions are consistent examples. Here xiA
would denote the extraction level of agent i in group A. Any area owner’s indi-
vidual extraction induces a cost-type externality in the same area, and aggregate
extraction in area i induces a cost-type externality on each agent in group j (inter-
group externality modeled by parameter δij > 0). This specification of the model
generalizes frameworks introduced in Walker et al. (23) and used in many other
contributions, the main differences are that (i) ”players” are groups and not indi-
viduals and (ii) externalities can be asymmetric.8

8See Walker and Gardner (22) for another seminal work. Some contributions introduce het-
erogeneity in CPR settings (Hackett (6)) but focus on a single collective action problem.
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We now proceed with the analysis as follows. In order to keep the exposition
of the results as simple as possible, we present some of them (namely Propositions
4, 9 and 10) assuming that δAA = δBB and δAB = δBA hold. Other findings will be
provided in their most general form, as their exposition remains reasonably simple.

2.2 Decentralized versus cooperative outcome
We first derive the Nash equilibrium and the cooperative outcome. In order to fo-
cus on the most interesting cases, and to allow for meaningful comparative statics
results and other comparisons, we provide the necessary and sufficient conditions
ensuring existence and uniqueness of interior decentralized and cooperative out-
comes. First, regarding the decentralized outcome, for a given agent i in group A,
the corresponding optimality condition is:

a− bAxiA − δAAX−iA − δBAXB + λiA = 0, (2)

where λiA ≥ 0 denotes the corresponding lagrangian parameter, and a similar type
of condition holds for any agent in group B. Solving for the equilibrium outcome,
we obtain the following result:

Proposition 1. Assume that one of the following set of conditions hold:

• In-group substitutability: for any i, j = A,B, i 6= j, we have

bi ≥ δii > 0 and bi + (Ni − 1) δii −Niδij > 0 (3)

• Weak in-group complementarity: for any i, j = A,B, i 6= j, we have

bi + (Ni − 1) δii −Niδij > 0 (4)

• Strong in-group complementarity and out-group strategic substitutability: for
any i, j = A,B, i 6= j, we have

bi + (Ni − 1) δii < 0 and bi + (Ni − 1) δii > −Niδij (5)

Then the unique Nash equilibrium of the game corresponds to vectors of choices(
xN1A, ...., x

N
NAA

)
and

(
xN1B, ...., x

N
NBB

)
characterized as follows:

∀i ∈ A xNiA = xNA = bB + (NB − 1) δBB −NBδBA
[bA + (NA − 1) δAA] [bB + (NB − 1) δBB]−NANBδABδBA

a

(6)
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and

∀i ∈ B xNiB = xNB = bA + (NA − 1) δAA −NAδAB
[bA + (NA − 1) δAA] [bB + (NB − 1) δBB]−NANBδABδBA

a

(7)

The first proposition provides the conditions ensuring existence and uniqueness
of the interior equilibrium. It is easily checked that there is no equilibrium where
agents all choose a zero action level. Moreover, an equilibrium where agents in one
group (say A) choose a positive action level, while the agents choose a zero action
level in the other group, requires that the externality imposed on group B by group
A is very strong, which is ruled out, for instance in the case of in-group and out-
group strategic substitutability, when condition bA + (NA − 1) δAA−NAδAB > 0 is
satisfied. Finally, it is interesting to notice that the existence and uniqueness result
holds in two separate cases when there is in-group complementarity, depending on
whether this effect is weak or strong enough.9 The characterization provided in
Proposition 1 will be used extensively in the analysis. The next result provides
the characterization of the cooperative outcome.

Proposition 2. Assume that one of the following set of conditions hold:

• In-group substitutability: for any i, j = A,B, i 6= j, we have

bi ≥ 2δii > 0 and bi + 2 (Ni − 1) δii −Ni (δAB + δBA) > 0 (8)

• In-group complementarity: for any i, j = A,B, i 6= j, we have

bi + 2 (Ni − 1) δii −Ni (δAB + δBA) > 0 (9)

Then the cooperative outcome corresponds to vectors of choices
(
x∗1A, ...., x

∗
NAA

)
and

(
x∗1B, ...., x

∗
NBB

)
characterized as follows:

∀i ∈ A x∗iA = x∗A = bB + 2 (NB − 1) δBB −NB (δAB + δBA)
[bA + 2 (NA − 1) δAA] [bB + 2 (NB − 1) δBB]−NANB (δAB + δBA)2a

(10)
and

∀i ∈ B x∗iB = x∗B = bA + 2 (NA − 1) δAA −NA (δAB + δBA)
[bA + 2 (NA − 1) δAA] [bB + 2 (NB − 1) δBB]−NANB (δAB + δBA)2a

(11)
9For expositional simplicity, the second part of the set of conditions (5) pro-

vides sufficient conditions: the necessary and sufficient condition would require that
[bA + (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA < 0 be satisfied.
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In the next Section we will rely on these characterizations to compare the full
cooperation outcome with the case of non-cooperation. One can notice that no
characterization is provided in the case of strong in-group complementarity: in-
deed, the aggregate payoff function is not concave (and not convex either) when
the magnitude of complementarity effects lies above a threshold level. Thus, there
is no easy way to characterize the efficient outcome without imposing some fur-
ther assumptions that would not contribute to our understanding of the interplay
between in-group and out-group interactions. Since the decentralized outcome is
well-defined, we will still provide some properties related to this case.

Starting from Section 3, in order to highlight the differences driven by interacting
collective action problems, we will sometimes refer to the polar or classical cases,
which correspond to the models of collective action usually considered in the liter-
ature. The first case corresponds to δAB = δBA = 0 and refers to situations where
there is no out-group collective action problem. The second case corresponds to
either NA = N1 = 1 or δAA = δBB = 0 and refers to situations where there is no
in-group collective action problem.

3 The effect of fundamentals
In this section we will analyze how group characteristics affect the agents’ action
levels and payoffs. First, we will provide results of comparative statics on the
agents’ equilibrium action levels. Second, the effect of parameters on the compar-
ison between non cooperative and cooperative outcomes will be analyzed. Finally,
the same analysis will be performed on the equilibrium payoffs.

3.1 Comparative statics
The first Proposition allows for detailed comparative statics results on the effects
of the various fundamentals (externality parameters, size of the populations) on
the non cooperative equilibrium outcome. Specifically, we have:

Proposition 3. Under the assumptions of Proposition 1, we have the following
comparative statics results: for i, j = A,B, i 6= j

1. The individual action level within group i decreases with an increase in the
intensity of in-group externality in the same group:

∂xNi
∂δii

< 0;
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Moreover, when there is strong in-group complementarity ∂xN
i

δjj
< 0 holds. By

contrast, the effect of δjj on xNi is positive for the other cases.

2. The individual action level within group i decreases with an increase in the
intensity of out-group externality from group j on group i:

∂xNi
∂δji

< 0;

Moreover, when there is strong in-group complementarity ∂xN
i

δij
< 0 holds,

while the effect of δij on xNi is positive for the other cases.

3. The individual action level within group i increases as the number of agents in
group j increases, that is, ∂xN

i

∂Nj
> 0 is satisfied, when there is strong in-group

complementarity. This effect is non-positive for the other cases.

4. When there is weak in-group complementarity ∂xN
i

∂Ni
> 0 is always satisfied.

By contrast, the effect is ambiguous in the other two cases. When there is
in-group substitutability we have

∂xNi
∂Ni

> 0⇐⇒ δii [bj + (Nj − 1) δjj] < Njδijδji

When there is strong in-group complementarity, we have

∂xNi
∂Ni

< 0⇐⇒ δii [bj + (Nj − 1) δjj] < Njδijδji

Points 1, 2 and 3 in Proposition 3 are fairly simple to understand. For instance,
regarding the effects of in-group externality parameters, the main impact of an in-
crease in δii follows quite directly from the optimality condition, and tends to affect
negatively the individual action level. By contrast, the main effect of a larger δjj
is indirect, and follows from the resulting decrease in aggregate action level in area
j: each agent in group i then decreases her own action level when there is strong
in-group complementarity, while each agent increases her own action level in the
other cases.

The most complex effect is related to an increase in the size of an agent’s own
group. Focusing on the case of group A, the optimality condition characterizing
xNA highlights the existing trade-off that relates to the effect of an increase in NA.
Differentiating it with respect to NA, we obtain:

− [bA + (NA − 1) δAA] ∂x
N
A

∂NA

− δAAxNA − δBANB
∂xNB
∂NA

= 0
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The first term corresponds to the direct in-group effect: it depends on the nature
of in-group strategic interactions. The second term corresponds to the indirect
in-group effect: it is positive when there is in-group complementarity, and nega-
tive otherwise. The last term corresponds to the indirect out-group effect, as an
increase in the number of agents results in a change in the external effects imposed
on the other group. Its relative effect depends on the nature of in-group strategic
interactions, the magnitude of out-group externalities, and the size of the other
group. Rearranging, we have:

[bA + (NA − 1) δAA] ∂x
N
A

∂NA

= −δAAxNA − δBANB
∂xNB
∂NA

This highlights that the effect is non-ambiguous when there is in-group comple-
mentarity and this effect is not too strong. Otherwise, the effect depends on the
interplay between the size of the other group and the externality parameters.

We illustrate this interplay by relying on two polar cases. First, when δAB =
δBA = 0 we obtain immediately that ∂xN

i

∂Ni
< 0 when there is in-group substitutabil-

ity and ∂xN
i

∂Ni
> 0 when there is (strong) in-group complementarity. By contrast,

when δAB = δBA = δout is high enough, then the conclusions are reversed.

These polar cases highlight that the interplay between in-group and out-group
effects should be accounted for, as they deeply affect the conclusions. Indeed, the
situation is degenerate when the in-group problem is not accounted for, and when
δAB = δBA = 0 then the indirect effect disappears.

3.2 Comparison between cooperative and decentralized out-
comes

We consider the cases where the cooperative and decentralized equilibrium out-
comes are characterized by conditions (6)-(7) and (10)-(11). Thus, we now consider
that the assumptions of Propositions 1 and 2 are satisfied simultaneously.

As the analysis will highlight it, the comparison between both outcomes is more
complex than in classical models where either the in-group or the out-group di-
mension is not accounted for. Depending on how these dimensions interact, the
comparison requires qualifications as the next result shows. In order to keep
the analysis tractable and the exposition as simple as possible, we assume that
δAA = δBB = δin and δAB = δBA = δout are satisfied. Moreover, in order to isolate
the effect of each fundamental, we will further restrict value of each of them (na-
ture and magnitude of in-group and out-group externalities, size of the groups).
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Specifically, we obtain:

Proposition 4. We have the following comparisons:

1. Let us first assume that NA = NB = N is satisfied.

• When there is in-group substitutability, assuming that conditions (3)-(8)
hold, we have xNA > x∗A.
• When there is in-group complementarity, assuming that conditions (4)-

(9) hold, we have:

xNA ≥ x∗A ⇐⇒ δout ≥ −
N − 1
N

δin (12)

2. Let us now assume that δin = δout = δ is satisfied under in-group substi-
tutability, and that δout = −δin = δ under in-group complementarity, while
both groups differ in size.

• When there is in-group substitutability, assuming that conditions (3)-(8)
hold, we have xNA > x∗A.
• When there is in-group complementarity, assuming that conditions (4)-

(9) hold, then xNA ≥ x∗A when NA ≤ NB and xNA < x∗A otherwise.

3. Let us now assume that NA 6= NB and δin 6= δout is satisfied under in-
group substitutability. When NA > NB there exist δ̄ ∈]0, b2 [ and δout

(
δ̄
)
∈

]0, b+2(NB−1)δ̄
2NB

[ such that the following property holds:

xNA < x∗A ⇐⇒ δin < δ̄ and δout > δout
(
δ̄
)

In all other cases xNA > x∗A is satisfied.

This result highlights the qualitative differences driven by the fundamentals.
When the size of groups is homogeneous, then the case of in-group substitutability
is unambiguous. It is indeed similar to the classical model characterized by inef-
ficiently high action levels under decentralized behaviors. When there is in-group
complementarity, the existing trade-off is reasonably clear to characterize. As long
as the magnitude of the in-group externality is not too large compared to that
of the out-group externality, then decentralization results in inefficiently high ac-
tion levels. By contrast, when the magnitude of the in-group effect becomes large
enough, then decentralization results in inefficiently low action levels.

Things become more complex when the size of the groups are heterogeneous. When
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the magnitude of in-group and out-group problems is homogeneous, then the same
conclusions hold for the case of in-group substitutability. Under in-group comple-
mentarity, the conclusion relies on the relative comparison of the size of both
groups. When group A is smaller than group B, then the dominant effect (on
group A) is related to the out-group effect, which tends to increase individual ac-
tion levels in group A. By contrast, when group A is larger than group B, the
dominant effect is the in-group effect, which tends to decrease individual action
levels. The conclusions follow.

The proposition highlights that, under in-group substitutability, individual ac-
tion levels in group A may be lower under decentralization, but this requires that
both the group sizes and the in-group and out-group effects be heterogeneous.
The group size has first-order importance: for this result to hold, group A must
be larger than group B. Then it requires that the in-group effect, which tends to
negatively impact action levels under decentralization, be small enough while the
out-group effect, which tends to positively impact action levels under decentral-
ization, be simultaneously large enough.

This last result highlights a notable difference that emerges when there is an in-
terplay between in-group and out-group collective action problems. It is easily
checked that the other conclusions also differ here compared to situations where
either the in-group or the out-group problem is unaccounted for.

3.3 How does the size of groups affect welfare?
We will conclude this section by discussing the effect of the number of agents on
the welfare of the different groups. This is done by simple comparative statics
analysis. We have the following conclusion:

Proposition 5. Under the assumptions of Proposition 1, let us denote ΠN
A and

ΠN
B the equilibrium payoffs of any agent in, respectively, groups A and B. Then

we have:

1. Regarding the effect on agents’ payoffs in group A, we have ∂ΠN
A

∂NA
> 0 un-

der weak in-group complementarity. Under strong in-group complementar-
ity, then ∂ΠN

A

∂NA
≥ 0 if and only if bB+(NB−1)δBB

NBδBA
≤ δAB

δAA
holds.

Finally, under in-group substitutability, then ∂ΠN
A

∂NA
≥ 0 if and only if bB+(NB−1)δBB

NBδBA
≤

δAB

δAA
holds.

2. Regarding the effect on agents’ payoffs in group B, we have ∂ΠN
B

∂NA
< 0 under
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weak in-group complementarity. Finally, we have ∂ΠN
B

∂NA
> 0 under in-group

substitutability or strong complementarity.

The effect of changes in the size of the agents’ population in one group is
unambiguous when looking at the agents’ payoffs in the other group. Under in-
group substitutability, a lower number of agents results in higher payoffs (and the
opposite conclusion holds under in-group complementarity). The marginal effect
of a change in the size of the agents’ population in group A can be derived as
follows:

∂ΠN
B

∂NA

= −xNB
[
δBB (NB − 1) ∂x

N
B

∂NA

+ δAB

[
xNA +NA

∂xNA
∂NA

]]
The first part in the bracketed expression on the right-hand side of the equality
reflects the effect due to changes in the aggregate action level in group B. Indi-
vidual action level in group B decreases as NA increases, which implies that the
related effect on agents’ payoffs in this group is positive. The second part in the
bracketed expression characterizes the effect due to changes in the aggregate ac-
tion level in group A. Aggregate action level increases as NA increases, and the
related effect on agents’ payoffs in group B is thus negative. As long as xNA and
xNB are positive, the first effect dominates the second one, and the overall effect on
the agents’ payoffs in group B is positive.

By contrast, the marginal effect on the agents’ payoffs in group A depends on
the interplay between the externality parameters and the size of agents’ popula-
tion in group B. Specifically, we have:

∂ΠN
A

∂NA

= xNA

[
δAA

∂xNA
∂NA

− δAA
∂XN

A

∂NA

− δBANB
∂xNB
∂NA

]

where XN
A = NAx

N
A which, after simplifications, yields:

∂ΠN
A

∂NA

= −xNA
[
δAAx

N
A + δAA (NA − 1) ∂x

N
A

∂NA

+ δBANB
∂xNB
∂NA

]

The first part in the bracketed expression on the right-hand side of the equality
reflects the effect due to changes in the action levels in group A. The second part
in the bracketed expression highlights the effect due to changes in the aggregate
action level in group B. Aggregate action level decreases as NA increases, and the
related effect on agents’ payoffs in group A is thus positive. As long as xNA and
xNB are positive, the effect driven by group A dominates the second one, and the
overall effect on the agents’ payoffs in group A depends on the interplay between
externality parameters and NB.

13



Proposition 5 yields several interesting implications. First, there are cases for
which there is a specific conflict of interest between agents in different groups. This
is so when agents’ payoffs in group A are higher, while agents’ payoffs in group B
are lower, as the number of agents increases in group A. Second, since classical
models in the literature correspond to either NA = NB = 1 or δAB = δBA = 0,
they are incompatible with a positive effect of a larger size of agents’ population
on profits (as depicted in the first case in Proposition 5). As in the fourth case
in Proposition 4, this last conclusion requires a necessary condition on the com-
parison between the magnitude of in-group externalities and that of out-group
externalities. Finally, Proposition 5 suggests a nuanced way to think about the
relationship between group size and collective action (see Olson (15) or Esteban
and Ray (2)). Indeed, following Esteban and Ray (2), if one uses the definition
of group effectiveness that relates group size to per-capita payoffs, then Propo-
sition 5 highlights that group effectiveness can increase as a group gets larger,
and this result first depends on the nature of in-group interactions and also on
other fundamentals of the situation. Specifically, looking at the case of group A,
the payoff to an agent always increases with her group size under weak in-group
complementarity. By contrast, under both in-group substitutability and strong
complementarity, it increases with the agent’s group size provided the following
condition is satisfied:

bB + (NB − 1) δBB
NBδBA

≤ δAB
δAA

Under in-group substitutability, this is more likely to hold as the size of the other
group increases, as the magnitude of external effects imposed by group A on group
B gets larger, or as the in-group effect gets less severe in group A.

4 Potential solutions to the collective action prob-
lems

The main point of this contribution is to show the importance of existing interac-
tions between collective action problems. As highlighted in the previous section,
several results obtained in classical models can be reversed in such a setting.

The next section will highlight the importance of existing interactions by show-
ing how it opens up new research avenues for the design of potential solutions
to collective action problems. Indeed, compared to the classical models in the
literature, certain solutions will be shown to have significantly different effects.
Specifically, we now consider two potential solutions to the problem of collective
action, namely (i) group-level cooperation and (ii) inter-group relocation schemes,
and analyze whether they might be effective and if so, we will characterize the
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conditions under which they alleviate the problem. Case (i) assumes that agents
in a given group are able to solve their internal collective action problem: there is
cooperation within one group, and non cooperation both between the groups and
within the other group. Case (ii) analyzes policies that aim at relocating some
agents from one group (say, group B) to the other one.

4.1 Group-level cooperation
Again we consider the case where the fully non cooperative outcome is interior, that
is, the situation where it is characterized by Proposition 1. In order to allow for
the simplest comparison that is possible, we will characterize the conditions under
which the group-level cooperation outcome is interior too. The main difference
compared to the decentralized situation is that group A members maximize the
aggregate payoffs within their group. Thus, for a given agent i in group A, the
corresponding optimality condition is:

a− bAxiA − δAAX−iA − δAA
∑
l 6=i

xlA − δBAXB + λiA = 0,

where λiA ≥ 0 denotes the corresponding lagrangian parameter. For any agent in
group B, the optimality condition is similar to that in the decentralized case. We
now obtain the following results:

Proposition 6. Assume that there is group-level cooperation within group A, while
there is non cooperation both within group B and between the two groups. Assume
that one of the following sets of conditions hold:

• In-group substitutability:

bA ≥ 2δAA, bB ≥ δBB, bA+2 (NA − 1) δAA > NAδAB, bB+(NB − 1) δBB > NBδBA
(13)

• In-group complementarity:

bA + 2 (NA − 1) δAA > NAδAB and bB + (NB − 1) δBB > NBδBA (14)

Then the unique group-level cooperation outcome corresponds to vectors of choices(
xgc1A, ...., x

gc
NAA

)
and

(
xgc1B, ...., x

gc
NBB

)
characterized as follows:

∀i ∈ A xgciA = xgcA = bB + (NB − 1) δBB −NBδBA
[bA + 2 (NA − 1) δAA] [bB + (NB − 1) δBB]−NANBδABδBA

a

(15)
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and

∀i ∈ B xgciB = xgcB = bA + 2 (NA − 1) δAA −NAδAB
[bA + 2 (NA − 1) δAA] [bB + (NB − 1) δBB]−NANBδABδBA

a

(16)

The fact that group A members are assumed to be able to cooperate without
extra costs is an important simplification. Indeed, the cooperation process is quite
likely to be costly, and the related costs might depend on certain characteristics
of the group, its size for instance. One way to think about this is to assume that
there is a group leader whose influence is such that he or she is able to implicitly
enforce cooperation. From a general point of view, we decide to ignore specific
costs related to the cooperation process, because we want to focus solely on the
potential effects that will be driven by the existence of interactions between the
collective action problems. This will allow to characterize that the effects resulting
from group-level cooperation depend notably on the nature of interacting collec-
tive action problems, even without cooperation-specific costs.

The main point is now to assess the effects of group-level cooperation on indi-
vidual actions and payoffs. This is done by comparing the outcome of Proposition
1 and that of Proposition 6. Specifically, we obtain:

Proposition 7. Assume that conditions (3)-(13) hold under in-group substitutabil-
ity, and that conditions (4)-(14) hold under in-group complementarity.

Then we obtain the following comparisons:

1. With respect to individual action levels:

• xgcA < xNA and xgcB > xNB under in-group substitutability
• xgcA > xNA and xgcB < xNB under in-group complementarity

2. Regarding the effect on group-level welfare, we have:

• Πgc
B > ΠN

B under strategic substitutability both within and between groups,
while the effect on group-A payoffs is ambiguous:

Πgc
A ≥ ΠN

A ⇐⇒
bA + 2 (NA − 1) δAA

bA
≥
(
xNA
xgcA

)2

Specifically, when the magnitude of in-group substitutability is large
enough (δAA ≥ NA

NA−1δAB) then group-level cooperation always results
in a (strict) Pareto improvement. By contrast, when the magnitude
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of substitutability lies below this threshold level, group-level cooperation
results in a Pareto improvement if and only if the following inequality
holds:

bB + (NB − 1) δBB
NBδBA

≥ NAδAB
(NA − 1) δAA

• Πgc
B < ΠN

B and Πgc
A > ΠN

A under in-group complementarity.

It is again interesting to contrast these results with the classical cases in the
literature. When δAB = δBA = 0 it is easily checked that group-level cooperation
always improves the situation overall, as it results in a strict Pareto improvement
in group A and leaves group B unaffected. Obviously, when NA = NB = 1 group-
level cooperation does not have any meaning.

Proposition 7 provides several interesting insights on the effect of group-level coop-
eration. First, the qualitative effect on individual action levels depends notably on
the nature of in-group interactions. Indeed, while group-level cooperation results
in lower action levels in the cooperating group under in-group substitutability, the
opposite result follows under in-group complementarity. Intuitively, the effect of
cooperation is to internalize part of the externality driven by the nature of in-group
interactions, which is negative under in-group substitutability and positive under
in-group complementarity.

Second, the overall effect on welfare is complex, and it markedly differs in all
cases. Group-level cooperation may result in a Pareto improvement under in-group
substitutability, while it cannot result in such an improvement under in-group com-
plementarity. Under in-group substitutability, the effect of group-level cooperation
induces members of the cooperating group to lower action levels, which tends to
decrease payoffs in group A compared to the fully decentralized case. On the other
side, cooperation allows to reduce in-group externalities, which tends to increase
payoffs in group A compared to the fully decentralized outcome. Furthermore,
due to the decrease in individual action levels in group A, an indirect effect of
out-group interactions is that individual action levels in group B increase. This
tends to lower payoffs in group A. The net effect first depends on the magnitude
of in-group external effects in group A: if it is large enough, so that the effect
of internalizing in-group externality be strong enough, it offsets the decrease in
payoffs resulting from lower individual action levels in group A and higher action
levels in group B. If the magnitude of in-group effects is not high enough, then
there is a trade-off, and a Pareto improvement is more likely as the magnitude of
out-group effects from group B on group A gets smaller.

When looking at the effect on group-level welfare, it is interesting to notice that
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the effect on the non-cooperating group differs markedly in both cases. Since
there is out-group substitutability, this difference is also driven by the qualitative
nature of individual behavioral adjustments in group A. Absent redistribution
instruments, an implication of these results is that the emergence of self-voluntary
group-level cooperation is unlikely under in-group complementarity, while it might
actually be the case under in-group substitutability. Moreover, it is easily checked
that group effectiveness increases as group A gets larger under in-group comple-
mentarity, and also under in-group substitutability provided the magnitude of (at
least) one out-group effect is large enough. This is consistent with our discussion
following Proposition 5 about the relationship between group size and collective
action (see Olson (15) and Esteban and Ray (2)).

One of the conclusions in Proposition 7 has implications regarding the global
efficiency effect of group-level cooperation under in-group substitutability. We
conclude this section by showing that the nature of in-group interactions has first-
order importance on the global effect of group-level cooperation.10 Specifically, we
have:
Proposition 8. Assume that conditions (3)-(13) hold under in-group substitutabil-
ity, and that conditions (4)-(14) hold under in-group complementarity. Moreover,
assume that NA 6= NB while δAB = δBA = δ = |δAA| = |δBB| hold. Then group-level
cooperation always results in a global efficiency gain under in-group substitutability.

By contrast, whether group-level cooperation results in a global efficiency gain
under in-group complementarity depends both on group sizes and the magnitude
of externalities. Specifically, when group A is sufficiently larger than group B,
group-cooperation results in a global efficiency gain. By contrast, when group B
is sufficiently larger than group A, then group-level cooperation results in a global
efficiency loss.

This result highlights that the nature of in-group interactions has first-order
importance on the global efficiency of group-level cooperation. Indeed, under in-
group complementarity, the relative size of the groups has first-order importance
on the global efficiency of group-level cooperation. By contrast, when groups
are heterogeneous in size and homogeneous in terms of in-group and out-group
externalities, group-level cooperation always results in a global efficiency gain.
Under in-group complementarity, an improvement in global efficiency requires that
the cooperating group be sufficiently larger than the non-cooperating one. In
other words, the group characteristics do matter for the effectiveness of group-
level cooperation when in-group interactions exhibit complementarities.

10As we want to focus on the effects of in-group and out-group characteristics, we here assume
that biA = blB = b for any group-A member i and any group-B member l.
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4.2 Inter-group relocation scheme
The second policy that we consider consists in relocating agents from one group
to the other: this might yield efficiency gains because of the existence of in-group
and out-group effects. We thus consider a policy relocating k agents from group
B to group A. The aim of this part of the analysis is to study whether such policy
can achieve efficiency gains, whether efficiency gains occur at the global or group
level, and how such conclusions depend on the features of the problem at hand.

First, Proposition 1 provides us with the conditions under which the post-relocation
situation yields a unique equilibrium outcome, together with its characterization.
Specifically, the decentralized outcome (xR1A, ..., xR(NA+k)A) and (xR1B, ..., xR(NB−k)B)
is characterized as xRiA = xRA for i = 1, ..., NA+k and xRjB = xRB for j = 1, ..., NB−k
where

xRA = bB + (NB − k − 1) δBB − (NB − k) δBA
[bA + (NA + k − 1) δAA] [bB + (NB − k − 1) δBB]− (NA + k) (NB − k) δABδBA

and

xRB = bA + (NA + k − 1) δAA − (NA + k) δAB
[bA + (NA + k − 1) δAA] [bB + (NB − k − 1) δBB]− (NA + k) (NB − k) δABδBA

if and only if the following conditions hold

bA + (NA − 1) δAA −NAδAB > k (δAB − δAA) (17)

and
bB + (NB − 1) δBB −NBδBA > k (δBB − δBA) (18)

together with bi ≥ δii for i = 1, 2 under in-group substitutability.

We now analyze the efficiency effects of this relocation policy. In order to do
so, we compare the pre and post-relocation decentralized outcomes. In order to
isolate the effect of each fundamental on the results, we will consider several cases
where groups are allowed to differ with respect to only one feature at a time. We
first consider the case where groups have different sizes initially:

Proposition 9. Assume that conditions (3)-(17)-(18) hold, that δAA = δBB =
δAB = δBA = δ under in-group substitutability, and that δAA = δBB = −δ while
δAB = δBA = δ under in-group complementarity. When NA 6= NB we obtain the
following conclusions:

1. The relocation policy has no efficiency effect under in-group substitutability.
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2. Under in-group complementarity, the relocation policy results in an efficiency
gain at the global level, but the group-level effects are heterogeneous. It has a
positive effect on the payoffs of agents remaining in group A, and a negative
effect on the payoffs of agents remaining in group B. The effect on relocated
agents depends on the comparison between the pre-relocation group sizes:

• When NB < NA the policy has positive effects on the payoffs of agents
relocated from group B to group A for any 1 ≤ k ≤ NB when NA+NB ≤
b−δ
2δ and for any 1 ≤ k ≤ b−δ

2δ < NB when NA +NB >
b−δ
2δ is satisfied.

• When NB > NA the policy has positive effects on the payoffs of agents
relocated from group B to group A if and only if k > NB − NA when
NA + NB ≤ b−δ

2δ and for any k ∈]NB − NA,
b−δ
2δ [ when NA + NB > b−δ

2δ
is satisfied.

When groups only differ with respect to their size, the effect of a relocation
policy depends heavily on the nature of in-group interactions. Under in-group
substitutability, the policy has basically no effect on individual decisions, and as
such no efficiency effect. By contrast, under in-group complementarity, there is
a globally positive efficiency effect. Looking at the effect on agents remaining
in group A, adding k agents in group A has two effects. First, the size of this
group increases, which tends to increase individual action level compared to the
pre-relocation situation: this has a positive effect on these agents’ payoffs. Sec-
ond, the size of the other group decreases, and this again has a positive effect
on payoffs (see Proposition 2). The case of the agents remaining in group B is
exactly symmetric. The conclusion is more complex for agents relocated in group
A. If group B is initially smaller than group A then the effect on a relocated
agent’s payoff is qualitatively to that affecting an agent remaining in group A. By
contrast, if group B is initially larger than group A, then the size of the relocated
sub-population must be large enough for this conclusion to hold: it should be so
that the post-relocation size of group A be larger than that of group B.

We now move on to the case where groups are homogeneous in size, in-group ex-
ternality parameters, and out-group externality parameters, while these last two
parameters differ. We obtain:

Proposition 10. Assume that conditions (3)-(17)-(18) hold, that NA = NB = N
and that |δAA| = |δBB| = |δin| 6= δout = δAB = δBA, where |.| stands for the absolute
value.
Under in-group complementarity, the relocation policy has a positive effect on the
payoffs of agents remaining in group A and on those of relocated agents, and a
negative effect on the payoffs of agents remaining in group B.
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The global efficiency effect depends on the fundamentals. When k ≥ N
2 the policy

results in an efficiency gain. When k < N
2 there is an efficiency gain when either

|δin| ≤ max{3N+2k
N−2k δout,

2b+Nδout

3N−2 } or the following inequality is satisfied:

N3 (δin + δout)
[
(δout)2 − (δin)2

]
+ 2 (b− δin)3

+N
[
(b− δin)2 (3δin + δout)− k2 (δin + δout)

[
(δout)2 − (δin)2

]]
> 0

The effects of the relocation policy under in-group substitutability depend on how
in-group effects compare to out-group effects. When δout > δin the group effects
are similar than under in-group complementarity. When δout < δin the conclusions
are reversed: the policy positively impacts the welfare of agents remaining in group
B, and it negatively impacts the welfare of agents both remaining in group A and
relocating in this group.

Regarding the global effects, there is an efficiency gain when δout > δin is satis-
fied. By contrast, when δout < δin, there is an efficiency gain if and only if the
following inequality is satisfied:

(b− δin)2 [2 (b− δin) +N (3δin + δout)]+
[
(δout)2 − (δin)2

]
N
(
N2 − k2

)
(δin + δout) < 0

which requires that k lies below a threshold value.

The polar cases allow to understand the effects of each fundamental. One could
be induced to conclude that such a type of policy is unlikely to emerge voluntarily:
in the different cases considered so far, the effectiveness of a relocation scheme
would rely on the use of group transfers to ensure that all sub-groups are at least
as well off ex post. We conclude the analysis by highlighting that there exist cases
where relocation policies would actually result in a (strict) Pareto improvement:

Proposition 11. Assume in-group substitutability and that conditions (3)-(17)-
(18) hold, NA = NB = N and δAA = δBB = δin while δAB 6= δBA is satisfied.
If δin > max{δAB, δBA} then the relocation policy results in a (strict) Pareto im-
provement when k lies above a threshold value.

Here one interesting implication is that more heterogeneous situations open up
the possibility that relocation policies might be both grounded in efficiency and be
acceptable as more heterogeneous situations might result in all sub-groups being
made better off. There is here no need for group transfers to achieve such Pareto
improvements. Acknowledging the existing interactions between the in-group and
the inter-group problems thus opens up new avenues for policy design.
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5 Conclusion
Until recent years, while many economic and socially-related situations involve
groups of agents instead of individuals, most economic analyzes still do not con-
sider the interplay between intra-group and inter-group interaction problems. This
paper precisely analyzes how the interaction of collective action problems affect
individual and group behavior.

We first show that the conclusions of classical models in the literature should
be qualified. We highlight how the comparison between decentralized and coop-
erative outcomes and payoffs depends on the nature of in-group interactions and
the relative magnitude of both types of collective action problems. This also pro-
vides a different perspective on group effectiveness and the group size paradox
introduced by Olson (15). We then highlight how acknowledging the interplay be-
tween collective action problems yields new instruments to address the potential
inefficiencies driven by decentralization. We first analyze the effect of group-level
cooperation, and show how the effectiveness of this instrument relies heavily on
the interplay between in-group and out-group problems. Group-level cooperation
exhibits more potential under in-group substitutability: there are cases where it
results in a Pareto improvement, and generally provides at least a global efficiency
gain. By contrast, group-level cooperation is unlikely to emerge voluntarily as
it never results in a Pareto improvement, and its global efficiency relies on the
relative size of the cooperating group. Finally, we discuss the potential of group-
relocation policies: the positive effect of such policies tends to rely mainly on the
relative group size under in-group complementarity, while the comparison between
the magnitude of in-group and out-group effects does impact the comparison under
in-group substitutability. All together, these results highlight the importance of
accounting for the existing interactions between collective action problems.

The goal of this work was to assess the main differences that emerge when such
interactions are acknowledged. As such, the corresponding model has been kept
relatively simple, and we abstracted from several issues. For instance, allowing for
asymmetric information and introducing dynamic considerations would constitute
interesting and important extensions that deserve future research.
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Appendix
Proof of Proposition 1
The optimality conditions are necessary and sufficient, and given by, for any i ∈ A and j ∈ B:

a− bAxiA − δAAX−iA − δBAXB + λiA = 0

and
a− bBxjB − δBBX−jB − δABXA + λjB = 0,

where λiA ≥ 0 and λjB ≥ 0 are the lagrangian parameters associated to each optimality condi-
tion. First, it is easily checked that there is no equilibrium where no agent in each group chooses
a positive action level. Second, there cannot be an equilibrium outcome for which λiA > 0 and
xlA > 0 simultaneously (and the same holds for group B). Otherwise, we would have:

a− δAAX−iA − δBAXB = a− δAAXA − δBAXB < 0

while
a− δAAX−lA − δBAXB = bAxlA > 0
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The second condition yields

a− δAAXA − δBAXB = (bA − δAA)xlA

which is non-negative when bA ≥ δAA holds. This is a contradiction.
Now, if there is one equilibrium such that xNiA > 0 for any i ∈ A while λjB > 0 for any j ∈ B,

then one has:
a− δABXN

A < 0

while
a− δAAXN

A = (bA − δAA)xNiA = (bA − δAA)xNlA,

which in turn implies that xNiA = xNlA = xNA for any i and l ∈ A. Rewriting, we obtain:

xNA = a

bA + (NA − 1) δAA
> 0

and
a
bA + (NA − 1) δAA −NAδAB

bA + (NA − 1) δAA
< 0

The expression of xNA implies that this case is already ruled out when there is in-group strong
strategic complementarity. Otherwise, since bA + (NA − 1) δAA − NAδAB ≥ 0 by assumption,
this case is also ruled out.

The symmetric case for group B is ruled out in a similar way. All together, this implies
that one must have λiA = 0 = λjB for all i ∈ A and j ∈ B, and more specifically that
xNiA = xNlA = xNA > 0 for any i and l ∈ A, and the same property holds within group B.
Now, coming back to the optimality conditions and solving for xNA and xNB , we obtain the desired
expressions, and the assumptions ensure that xNA and xNB are positive, which concludes the proof.

Proof of Proposition 2
The assumption bi ≥ 2 (Ni − 1) |δii| (i = A,B) ensures that the aggregate payoff function is
strictly concave. The rest of the proof is omitted, as it follows mainly from the same type of
calculations than in the proof of Proposition 1, except that the problem here is to maximize the
sum of all agents’ payoffs over the two groups.

Proof of Proposition 3
We prove the proposition for the case of agents in group A, the conclusions will follow similarly
for the case of agents in group B.
We use the expression of xNA provided in Proposition 1, and we denote

D := [bA + (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA

First, we differentiate xNA with respect to δAA, and we obtain:

∂xNA
∂δAA

= − a

D2 (NA − 1) [bB + (NB − 1) δBB −NBδBA] [bB + (NB − 1) δBB ]

Since bB + (NB − 1) δBB and bB + (NB − 1) δBB −NBδBA are positive when there is either in-
group substitutatibility or in-group weak complementarity, we conclude that the effect of δAA is
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negative in these two cases. We obtain the same conclusion for in-group strong complementarity
since bB + (NB − 1) δBB and bB + (NB − 1) δBB −NBδBA are negative then.

Now, differentiating with respect to δBB we obtain:

∂xNA
∂δBB

= a

D2 (NB − 1)NBδBA [bA + (NA − 1) δAA −NAδAB ]

Since bA + (NA − 1) δAA − NAδAB is positive for in-group substitutability or in-group weak
complementarity and negative otherwise, we conclude that the effect of δBB is positive for the first
two cases and negative otherwise. This concludes the proof of the first point in the proposition.
Differentiating with respect to δAB and δBA we obtain, respectively:

∂xNA
∂δAB

= NANBδBAa

D2 [bB + (NB − 1) δBB −NBδBA]

and
∂xNA
∂δBA

= −aNB
D2 [bA + (NA − 1) δAA −NAδAB ] [bB + (NB − 1)]

Arguments similar to those used in the first point imply that ∂xN
A

∂δBA
< 0 is satisfied in all cases,

while ∂xN
A

∂δAB
> 0 for in-group substitutability or in-group weak complementarity and ∂xN

A

∂δAB
< 0 for

in-group strong complementarity. This concludes the proof of the second point in the proposition.
Differentiating with respect to NB we obtain:

∂xNA
∂NB

= − a

D2 (bB − δBB) [bA + (NA − 1) δAA −NAδAB ]

We conclude immediately that the effect of an increase in NB is negative for in-group substi-
tutability or in-group weak complementarity and positive for in-group strong complementarity.
This concludes the proof of the third point in the proposition.
Finally, differentiating with respect to NA we obtain:

∂xNA
∂NA

= − a

D2 [bB + (NB − 1) δBB −NBδBA] [δAA{bB + (NB − 1) δBB} −NBδABδBAδAB ]

The first term between brackets on the right hand side of the equality is positive for in-group
susbstitutability or in-group weak complementarity, and negative for in-group strong comple-
mentarity. The second term between brackets on the right hand side of the equality is negative
for in-group weak complementarity, and this concludes the proof of this case. Now, the sign
of ∂xN

A

∂NA
depends on that of δAA [bB + (NB − 1) δBB ] − NBδABδBAδAB for the other two cases,

which yields the conclusion.

Proof of Proposition 4
We begin by considering the different cases related to the situation where there is strategic
substitutability both within and between groups. When NA = NB we quickly obtain: We have:

xNA − x∗A = (N − 1) δin +Nδout
[b+ (N − 1) δin +Nδout] [b+ 2 (N − 1) δin + 2Nδout]

(19)

Since both terms in the denominator are positive by assumption, and the numerator is also pos-
itive by definition of this case, we conclude immediately.
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Secondly, if NA 6= NB and δin = δout = δ then we can use the expressions of xNA and x∗A
to obtain the following condition:

xNA ≥ x∗A ⇐⇒ φ(δ) ≥ 0

with
φ(δ) = δ [NA +NB − 1] {b2 − 3δb+ 2δ2}

which is always non-negative as b ≥ 2δ holds by assumption.

Finally, when NA 6= NB while δAA = δBB = δin and δAB = δBA = δout are satisfied, we
come back to the expressions of xNA and x∗A and we obtain:

xNA ≥ x∗A ⇐⇒ f(δin) ≥ 0

with

f(δin) = 2 (NA − 1) (NB − 1)2 (δin)3 + (NA − 1) (NB − 1) (δin)2 (3b− 2NBδout)

+δin
[
(NA − 1) b2 − 2NANB (NB − 1) (δout)2

]
+NBδout{b2 − 3NAδoutb+ 2NANB (δout)2}

Differentiating f(δin) twice we obtain:

f ′(δin) = 6 (NA − 1) (NB − 1)2 (δin)2 + 2 (NA − 1) (NB − 1) δin (3b− 2NBδout)

+ (NA − 1) b2 − 2NANB (NB − 1) (δout)2

and
f ′′(δin) = 2 (NA − 1) (NB − 1) {6 (NB − 1) δin + 3b− 2NBδout}

which is positive as the term between brackets on the right hand side of the equality is positive
by assumption. As such, we know that f ′(δin) increases as δin increases. Now, we obtain:

f ′(δin = 0) = (NA − 1) b2 − 2NANB (NB − 1) (δout)2

which is non-negative if and only if b ≥
√

2NANB(NB−1)
NA−1 δout holds, which is the case since

b > 2NBδout is satisfied by assumption and 2NB ≥
√

2NANB(NB−1)
NA−1 always holds. Since f ′(.) is

an increasing function we conclude that f ′(δin) ≥ 0 always holds, and thus f(δin) increases as
δin increases.

We finally obtain:

f(δin = 0) = NBδout[b2 − 3NAδoutb+ 2NANB (δout)2]

The term between brackets is a polynomial expression of δout and thus we deduce that it is
always positive when 9NA − 8NB ≤ 0 or NA ≤ 8

9NB is satisfied. Moreover, when NA > 8
9NB

holds, defining:

δout =
3NA −

√
N(9NA − 8NB)

4NANB
we quickly conclude that f(δin = 0) ≥ 0 when NB ≥ NA > 8

9NB is satisfied, which im-
plies f(δin) ≥ 0 by monotonicity of f . By constrast, when NA > NB holds, we deduce that
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f(δin = 0) ≥ 0 when δout ≤ δout is satisfied, and that f(δin = 0) < 0 when δout ∈]δout, b
2NB

[
holds.

Due to the monotonicity of f the only case that remains is when NA > NB holds. We compute:

f(δin = b

2) = b3
NA − 1

2 [1 + (NB − 1) NB + 2
2 ] +NBδoutb

2 2− (NA − 1) (NB − 1)
2

−NANB (δout)2
b (NB + 2) + 2NA (NB)2 (δout)3

Differentiating with respect to δout we obtain:

6NA (NB)2 (δout)2 − 2NANB (NB + 2) δoutb+NBb
2 2− (NA − 1) (NB − 1)

2

We quickly deduce that this polynomial expression is negative when δout ∈]0, b2 [ holds. As
f(δin = b

2 ) > 0 when δout gets arbitrarily small and f(δin = b
2 ) gets close to zero when δout gets

arbitrarily close to b
2 we conclude that f(δin = b

2 ) remains non-negative for all feasible values of
δout. The monotonicity of f(.) and a continuity arguments allows to conclude.

Moving on to the cases of in-group complementarities, we first conclude quickly that the proof
of the case where NA = NB = N follows directly from expression (19) for both weak and strong
complementarity.

Now, if δout = δ = −δin then computing xNA − x∗A yields the conclusion that:

xNA ≥ x∗A ⇐⇒ f(δ) ≥ 0

with
f(δ) = −2 (NA − 1) (NB − 1)2

δ3 + (NA − 1) (NB − 1) δ2 (3b− 2NBδ)

−δ
[
(NA − 1) b2 − 2NANB (NB − 1) δ2]+NBδ{b2 − 3NAδb+ 2NANBδ2}

Rewriting, we obtain:
xNA ≥ x∗A ⇐⇒ δu(δ) ≥ 0

where

u(δ) = 2 (2NB − 1) (NA +NB − 1) δ2 − 3b (NA +NB − 1) δ + b2 [NB − (NA − 1)]

Function u is a polynomial expression of degree two, so we obtain quickly that u(δ) > 0 when
9 (NA +NB − 1)2 − 8 (NA +NB − 1) (2NB − 1) (NB + 1−NA) ≤ 0 or

NA ≤
16 (NB)2 −NB + 1

16NB + 1

In this case we conclude that xNA > x∗A under weak or strong complementarity. Now, if NA >
16(NB)2−NB+1

16NB+1 holds, we know that u(δ) ≤ 0 if and only δ lies in between δ1 and δ2 with

δ1 =
3 (NA +NB − 1) b− b

√
9 (NA +NB − 1)2 − 8 (NA +NB − 1) (2NB − 1) (NB + 1−NA)

4 (2NB − 1) (NA +NB − 1)
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and

δ2 =
3 (NA +NB − 1) b+ b

√
9 (NA +NB − 1)2 − 8 (NA +NB − 1) (2NB − 1) (NB + 1−NA)

4 (2NB − 1) (NA +NB − 1)

When NB +1 ≤ NA then δ1 < 0 and we deduce that u(δ) ≤ 0 if and only if δ ∈ [0, δ2] is satisfied.
Under weak complementarity, we know that δ < b

2(2NB−1) by assumption. It is easily checked
that b

2(2NB−1) < δ2 and we conclude that u(δ) < 0 is always satisfied: thus xNA < x∗A holds.
Under strong complementarity, we know that δ > b

NB−1 by assumption. It is easily checked that
b

NB−1 > δ2 and we conclude that u(δ) > 0 is always satisfied: thus xNA > x∗A holds.

We finally consider the case where 16(NB)2−NB+1
16NB+1 < NA ≤ NB holds. Under strong comple-

mentarity the inequality b
NB−1 > δ2 still holds and we again conclude that u(δ) > 0 is always

satisfied: thus xNA > x∗A holds. Now, under weak complementarity, it is easily checked that
b

2(2NB−1) ≤ δ1 and we conclude that u(δ) ≥ 0 is always satisfied: thus xNA ≥ x∗A holds.

Proof of Proposition 5
We first differentiate the agents’ payoffs in group A with respect to NA, accounting for the
optimality conditions characterizing xNA :

∂ΠN
A

∂NA
= xNA

[
−δAAxNA − δAA (NA − 1) ∂x

N
A

∂NA
− δBANB

∂xNB
∂NA

]
Differentiating the expressions of xNA and xNB with respect to NA and simplifying, we obtain:

∂ΠN
A

∂NA
= −xNA

bA
D2 [δAA{bB + (NB − 1)δBB} −NBδABδBA] [bB + (NB − 1)δBB −NBδBA]

with D := [bA + (NA − 1)δAA] [bB + (NB − 1)δBB ] − NANBδABδBA and we can now conclude
as follows. By assumption, the second term between brackets on the right hand side of the
equality is positive under in-group substitutability or weak complementarity, and negative un-
der in-group strong complementarity. The sign of the first term between brackets is negative
under weak in-group complementarity, and we conclude that ∂ΠN

A

∂NA
> 0 in this case. Now, if the

first term between brackets is non-negative, then ∂ΠN
A

∂NA
≥ 0 under strong complementarity and

∂ΠN
A

∂NA
≤ 0 under weak complementarity. The first term between brackets is non-negative if and

only if bB+(NB−1)δBB

NBδBA
≤ δAB

δAA
under strong complementarity and bB+(NB−1)δBB

NBδBA
≥ δAB

δAA
under

substitutability.

Similar calculations yield:

∂ΠN
B

∂NA
= xNB

δABbB
D2 [δAA − bA] [bB + (NB − 1) δBB −NBδBA]

Under intra-group substitutability, the first term and the second term between brackets are
positive, and ∂ΠN

B

∂NA
is positive. Under weak intra-group complementarity, the first term between

brackets is negative, the second term between brackets is positive, and ∂ΠN
B

∂NA
is negative. Finally,

under strong intra-group complementarity, the first term between brackets is negative, the second
term between brackets is negative, and ∂ΠN

B

∂NA
is positive.
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Proof of Proposition 6
It is immediately checked that the first order conditions are necessary and sufficient, and given
by:

a− bAxgclA − δAAX
gc
−lA − δAA

∑
k 6=l

xgckA − δBAX
gc
B + λlA = 0

for any agent l ∈ A and

a− bBxgciB − δABX
gc
A − δBBX

gc
−iB + λiB = 0

for any agent i ∈ B. Assume first that λlA > 0 for agent l ∈ A, then

a− δAAXgc
A − δAAX

gc
A − δBAX

gc
B < 0

Let us first assume that xgcjA > 0 for j 6= l then

a− bAxgcjA − δAAX
gc
−jA − δAAX

gc
−jA − δBAX

gc
B = 0

And thus necessarily

a− δAAXgc
A − δAAX

gc
A − δBAX

gc
B = (bA − 2δAA)xgcjA < 0

which is a contradiction by assumption. Thus, if λlA > 0 for agent l then necessarily this must
hold for all agents in group A. This in turn implies that the only case that could be consistent
is that xjB > 0 for at least one agent in group B. Then condition bB ≥ δBB rules out the
possibility that some agents in B choose a positive action level while some others choose a zero
action level. In other words, if agents in group A choose a zero action level then any agent j ∈ B
must necessarily choose xgcjB > 0 and we have

a− δBAXgc
B < 0

and
a− bBxgcjB − δBBX

gc
−jB = 0

Combining these conditions imply that necessarily bB+(NB−1)δBB−NBδBA

bB+(NB−A)δBB
< 0 which contradicts

the set of assumptions corresponding to each case. As such we conclude that xgclA > 0 for any
agent l in group A. A symmetric reasoning allows to conclude that, under the respective set
of conditions, the group-level cooperation outcomes satisfy necessarily that xgciB > 0 for any
agent i in group B. Finally, solving the optimality conditions we obtain the unique group-level
cooperation outcome characterized by expressions (15) and (16). This concludes the proof.

Proof of Proposition 7
Concerning individual action levels, using the expressions provided in Proposition1 and 6 we
deduce that:

xgcA ≥ x
N
A ⇐⇒ − (NA − 1) δAA [bB + (NB − 1) δBB ] [bB + (NB − 1) δBB −NBδBA] ≥ 0

The conclusions then follow from the assumptions. Regarding action levels in group B, we obtain:
and

xgcB ≥ x
N
B ⇐⇒ (NA − 1) δAANAδAB [bB + (NB − 1) δBB −NBδBA] ≥ 0
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and again the conclusions follow from the assumptions.

We compute the difference between agents’ payoffs in group B under the two outcomes. Re-
garding the fully decentralized case, accounting for the first order condition satisfied by xNB and
simplifying, we obtain:

ΠN
B = bB

2
(
xNB
)2
.

Regarding the case of group-level cooperation, accounting for the first order conditions satisfied
by xgcB and simplifying, we obtain:

Πgc
B = bB

2 (xgcB )2
.

As such Πgc
B −ΠN

B = bB

2

[
(xgcB )2 −

(
xNB
)2] and the conclusions follow from the conclusions of the

first part of the proposition.

Finally, we compute the difference between agents’ payoffs in group A under the two outcomes.
Regarding the fully decentralized case, accounting for the first order conditions satisfied by xNA
and simplifying, we obtain:

ΠN
A = bA

2
(
xNA
)2
.

Regarding the case of group-level cooperation, accounting for the first order conditions satisfied
by xgcA and simplifying, we obtain:

Πgc
A =

[
bA
2 + δAA (NA − 1)

]
(xgcA )2

.

We obtain:
Πgc
A −ΠN

A = bA
2

[
(xgcA )2 −

(
xNA
)2]+ δAA (NA − 1) (xgcA )2

Under in-group substitutability, the first term on the right-hand side of the equality is negative,
while the second term is positive as δAA > 0 is satisfied. Under both weak and strong in-
group complementarity, the first term on the righ-hand side of the equality is positive, but the
second term is negative as δAA < 0 is satisfied. Rewriting the expression of Πgc

A −ΠN
A yields the

appropriate condition:

Πgc
A ≥ ΠN

A ⇐⇒
bA + 2 (NA − 1) δAA

bA
≥
(
xNA
xgcA

)2

We now use this condition to obtain the final conclusions in both cases. Using the expressions
of xNA and xgcA we obtain:

xNA
xgcA

= [bA + 2 (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA
[bA + (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA

and thus
xNA
xgcA

= 1 + (NA − 1) δAA [bB + (NB − 1) δBB ]
[bA + (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA

Using this expression, we obtain:

bA + 2 (NA − 1) δAA
bA

≥
(
xNA
xgcA

)2

⇐⇒
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2δAA ≥ bA
(NA − 1)(δAA)2[bB + (NB − 1)δBB ]2 + 2δAA[bB + (NB − 1)δBB ] ([bA + (NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA)

([bA + (NA − 1) δAA] [bB + (NB − 1) δBB ]−NANBδABδBA)2

Simplifying by δAA and rewriting, this is equivalent under in-group complementarity to:

2 ([bA + (NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA)2

≤ bA(NA−1)δAA[bB+(NB−1)δBB ]2+2bA[bB+(NB−1)δBB ]([bA+(NA−1)δAA][bB+(NB−1)δBB ]−NANBδABδBA)

After simplifications, this is equivalent to:

2 ([bA + (NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA) ((NA − 1)δAA[bB + (NB − 1)δBB ]−NANBδABδBA)

≤ bA (NA − 1) δAA[bB + (NB − 1)δBB ]2

Simplifying this condition once again, we finally obtain:

([bA + 2(NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA) [(NA − 1)δAA [bB + (NB − 1)δBB ]−NANBδABδBA] ≤ 0

The first factor on the left-hand side of the inequality is positive by assumption, and the second
factor is negative as δAA < 0 by assumption. Thus, the inequality always holds and this con-
cludes the proof of the corresponding part of the result.

Finally, under in-group substitutability, the right hand-side term in the equivalence can be rewrit-
ten as:

2 ([bA + (NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA)2

≥ bA(NA−1)δAA[bB+(NB−1)δBB ]2+2bA[bB+(NB−1)δBB ]([bA+(NA−1)δAA][bB+(NB−1)δBB ]−NANBδABδBA)

After simplifications we obtain:

[(NA − 1)δAA[bB + (NB − 1)δBB ]−NANBδABδBA]T ≥ 0

where

T = [([bA + (NA − 1)δAA][bB + (NB − 1)δBB ]−NANBδABδBA) + (NA − 1)δAA[bB + (NB − 1)δBB ]]

The factor T is positive, and the sign of Πgc
A − ΠN

A is thus given by that of the first factor in
the inequality. Since bB + (NB − 1)δBB > NBδBA by assumption, then δAA ≥ NA

NA−1δAB is
sufficient to obtain the conclusion. If δAA < NA

NA−1δAB then group-level cooperation results in
higher payoffs in group A if and only if bB+(NB−1)δBB

NBδBA
≥ NAδAB

(NA−1)δAA
and this concludes the proof.

Proof of Proposition 8
Under in-group substitutability, the difference in aggregate payoffs under group-level cooperation
and under decentralization is computed as follows:

E = NA
b

2
(
xgcA − x

N
A

) (
xgcA + xNA

)
+NA (NA − 1) δ (xgcA )2 +NB

b

2
(
xgcB − x

N
B

) (
xgcB + xNB

)
Using the expressions of the equilibrium decisions, we obtain that the sign of E is given by that
of NA (NA − 1) δ (b− δ)H with:

H = − (b− δ)2 b

2{2 [b+ (NA − 1)δ] [b+ (NB − 1)δ]− 2NANBδ2 + (NA − 1)δ [b+ (NB − 1)δ]}
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+ (b− δ) {[b+ (NA − 1)δ] [b+ (NB − 1)δ]−NANBδ2}+NB
b

2(NA−1)δ2{[b+ (NA − 1)δ] [b+ (NB − 1)δ]−NANBδ2}

Rewriting and simplifying the expression of H, we finally obtain:

H = δ (b− δ) {(b− δ)2
[
b
NA − 1 + 2NB

2 + δ(NA +NB − 1)2
]

+ δ2(NA +NB)(NA − 1)NB
b

2}

The term between brackets is positive, and this implies that H is positive, which in turn implies
that E is positive. This concludes the proof of this case.

Now, under in-group complementarity, the difference in aggregate payoffs under group-level co-
operation and under decentralization is computed as follows:

E = NA
b

2
(
xgcA − x

N
A

) (
xgcA + xNA

)
−NA (NA − 1) δ (xgcA )2 +NB

b

2
(
xgcB − x

N
B

) (
xgcB + xNB

)
Using the expressions of the equilibrium decisions, we obtain that the sign of E is given by that
of NA (NA − 1) δ (b− δ) [b+ δ − 2NBδ]H with:

H = [b+ δ − 2NBδ] (b+ δ) [b+ δ − (NA +NB)δ] [NAb− [b+ δ − (NA +NB)δ]]

−(NA − 1) b2 [b+ δ −NBδ]2 [b+ δ − 2NBδ]

−NB
b

2 [2(b+ δ) [b+ δ − 2NAδ] [b+ δ − (NA +NB)δ]− (NA − 1)δ [b+ δ − 2NAδ] [b+ δ −NBδ]]

When group A is sufficiently larger than group B, the sign of H is driven by that of the following
expression:

(NA−1)(b+δ) [b+ δ − 2NBδ] (b+δ) [b+ δ − (NA +NB)δ]−(NA−1) b2 [b+ δ −NBδ]2 [b+ δ − 2NBδ]

which is equal to
(NA − 1) [b+ δ − 2NBδ] f (δ)

with
f (δ) = (b+ δ)2

2 [b+ 2δ − 2NAδ]−NB
δ2

2 [2 (b+ δ) +NBb]

It is easily checked that f(.) decreases as δ increases. Moreover, the highest feasible value of δ
is min{ b

2NB−1 ,
b

3NA−2} and it is also easily checked that f
(

min{ b
2NB−1 ,

b
3NA−2}

)
≥ 0 when NA

is sufficiently larger than NB . Thus, we conclude that H is positive in this case. Now, when
group B is sufficiently larger than group A, then the sign of H is driven by that of the following
expression:

−NB
b

2 [2(b+ δ) [b+ δ − 2NAδ] [b+ δ − (NA +NB)δ]− (NA − 1)δ [b+ δ − 2NAδ] [b+ δ −NBδ]]

It is negative, and so H is negative in this case. This concludes the proof.
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Proof of Proposition 9
From the expressions of the equilibrium outcomes, we obtain quickly that xNA = xNB = xRA = xRB
under in-group substitutability, and the conclusion follows.

Now, under in-group complementarity, we obtain:

xRA − xNA = 2kδ
[b− (NA − 1) δ] [b− (NB − 1) δ]−NANBδ2 a > 0

xRB − xNB = − 2kδ
[b− (NA − 1) δ] [b− (NB − 1) δ]−NANBδ2 a < 0

and finally
xRA − xNB = 2 [NA −NB + k] δ

[b− (NA − 1) δ] [b− (NB − 1) δ]−NANBδ2 a

and we conclude that xRA − xNB > 0 if and only if k > NB −NA is satisfied. Finally, computing
the difference in global welfare ∆ between the post-relocation and pre-relocation cases we obtain

∆ = b

2
[
NA

(
xRA − xNA

) (
xRA + xNA

)
+ k

(
xRA − xNB

) (
xRA + xNB

)
+ (NB − k)

(
xRB − xNB

) (
xRB + xNB

)]
We obtain that ∆ > 0 if and only if k satisfies Ak2 + Bk + C > 0 with A = −2δ, B =
2 [b− (NB − 1)δ + b− (NA − 1)δ] and C = 2 (NA −NB) [b− (NB − 1)δ + b− (NA − 1)δ]. Solv-
ing for k we deduce that any feasible value k < b−(2NA−1)δ

2δ satisfies this inequality. Finally
NA + NB ≤ b−δ

2δ is equivalent to b−(2NA−1)δ
2δ ≥ NB and k ≤ NB is then the binding constraint,

while NA +NB > b−δ
2δ is equivalent to b−(2NA−1)δ

2δ < NB and k < b−(2NA−1)δ
2δ is then the binding

constraint. This concludes the proof.

Proof of Proposition 10
From the expressions of the equilibrium outcomes, we obtain quickly that xNA = xNB under both
in-group substitutability and in-group complementarity.

Now we obtain:

xRA−xNA = k (δout − δin) [b+ (N − 1)δin −Nδout] [b+ (N − 1)δin +Nδout − k (δout + δin)]
{[b+ (N − 1) δin]2 −N2 (δout)2}{[b+ (N − 1) δin]2 −N2 (δout)2 + k2

[
(δout)2 − (δin)2

]
}
a

xRB−xNB = − k (δout − δin) [b+ (N − 1)δin −Nδout] [b+ (N − 1)δin +Nδout + k (δout + δin)]
{[b+ (N − 1) δin]2 −N2 (δout)2}{[b+ (N − 1) δin]2 −N2 (δout)2 + k2

[
(δout)2 − (δin)2

]
}
a

and finally

xRA−xNB = k (δout − δin) [b+ (N − 1)δin −Nδout] [b+ (N − 1)δin +Nδout − k (δout + δin)]
{[b+ (N − 1) δin]2 −N2 (δout)2}{[b+ (N − 1) δin]2 −N2 (δout)2 + k2

[
(δout)2 − (δin)2

]
}
a

The denominator is positive in all cases, and so are the second and third terms between brackets
in the numerators. As such the sign of each expression is driven by that of (δout − δin) and this
concludes the first part of the proof.
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Finally, computing the difference in global welfare ∆ between the post-relocation and pre-
relocation cases we obtain

∆ = b

2
[
NA

(
xRA − xN

) (
xRA + xN

)
+ k

(
xRA − xN

) (
xRA + xN

)
+ (NB − k)

(
xRB − xN

) (
xRB + xN

)]
= b

2
[
(NA + k)

(
xRA − xN

) (
xRA + xN

)
+ (NB − k)

(
xRB − xN

) (
xRB + xN

)]
where xN = xNA = xNB as mentioned before. We obtain that ∆ > 0 if and only if

2k2 (δout − δin) [b+ (N − 1) δin −Nδout]2 T > 0 (20)

where

T := (b− δin)2 [2 (b− δin) +N (3δin + δout)] +
[
(δout)2 − (δin)2

]
N
(
N2 − k2) (δin + δout) (21)

Under in-group complementarity the sign of ∆ is that of expression T . Moreover, when δout >
|δin| is satisfied it is easily checked that T is positive. Now, when δout < |δin| is satisfied then the
second term in expression (21) is positive. We know by assumption that 2 [(b− δin) + (N + k) (δin − δout)] >
0 and it is easily checked that

2 (b− δin) +N (3δin + δout) ≥ 2 [(b− δin) + (N + k) (δin − δout)] > 0

if and only if either N ≤ 2k or N > 2k and 3N+2k
N−2k δout ≥ |δin| is satisfied. This also im-

plies that T is positive. Finally, when N > 2k and 3N+2k
N−2k δout < |δin| the first-term in ex-

pression (21) is still non-negative if and only if |δin| ≤ 2b+Nδout

3N−2 is satisfied. Finally, when
|δin| > max{ 3N+2k

N−2k δout,
2b+Nδout

3N−2 } we conclude as ∆ > 0 is satisfied if and only if T > 0 is
satisfied. This concludes the proof for the case of in-group complementarity.

Now, when there is in-group substitutability and δout > δin then the sign of ∆ is that of T
which is positive. When δout < δin we deduce from expression (20) that ∆ > 0 if and only if
T < 0 is satisfied: noticing that the first-term in the expression of T is always positive, and that
the second term is a decreasing function of k (which equals zero if k = N) we conclude the proof.

Proof of Proposition 11
The expressions of xRA and xRB are

xRA = b+ (N − 1) δin −NδBA + k (δBA − δin)
[b+ (N − 1) δin]2 −N2δABδBA + k2

[
δABδBA − (δin)2

]a
and

xRB = b+ (N − 1) δin −NδAB − k (δAB − δin)
[b+ (N − 1) δin]2 −N2δABδBA + k2

[
δABδBA − (δin)2

]a
Using these expressions together with those of xNA and xNB we deduce that xRA − xNA ≥ 0 if and
only if

k
[
(δin)2 − δABδBA

]
> (δin − δBA) [b+ (N − 1) δin]2 −N2δABδBA

b+ (N − 1) δin −NδBA
(22)
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We also obtain that xRB − xNB ≥ 0 if and only if

k
[
(δin)2 − δABδBA

]
> (δAB − δin) [b+ (N − 1) δin]2 −N2δABδBA

b+ (N − 1) δin −NδAB
(23)

Finally, we obtain that xRA − xNB ≥ 0 if and only if

k2
[
(δin)2 − δABδBA

]
[b+ (N − 1) δin −NδAB ] + k (δBA − δin) {[b+ (N − 1) δin]2−N2δABδBA}

+N (δAB − δBA) {[b+ (N − 1) δin]2 −N2δABδBA} ≥ 0 (24)

The last condition ensures that the relocation policy results in higher payoffs for agents relocat-
ing from group B to group A. The numerator and denominator of the term on the right hand
side of conditions (22) and (23) are positive by assumptions.

One can quickly notice that cases where δABδBA ≥ (δin)2 are incompatible with in-group com-
plementarity (as it would require δBA > δin > δAB) and also with in-group substitutability (as
it would also require k > N δBA−δAB

δBA−δin
≥ N). Now, assuming δABδBA < (δin)2 and more specifi-

cally δin > max{δAB , δBA} with δAB > δBA we quickly conclude that condition (23) is satisfied.
Moreover, condition (22) holds if and only if

k >
δin − δBA

(δin)2 − δABδBA
[b+ (N − 1) δin]2 −N2δABδBA

b+ (N − 1) δin −NδBA

The threshold value on the right hand side of this inequality is feasible as it is smaller than
b+(N−1)δin−NδBA

δin−δin
(which is the upper limit of k by assumption). Now it remains to check that

large enough values of k satisfy condition (24) and we check that k = b+(N−1)δin−NδBA

δin−δin
satisfy

the inequality. Plugging the expression of k into inequality (24) and simplifying, we obtain that
condition (24) is satisfied for this value of k if and only if:

δBAN (b− δin)
[
2 (δin)2 − 2δin (δAB + δBA) + 2δABδBA

]
+δBA (b− δin)2 [2δin − (δAB + δBA)] > 0

The two terms between brackets on the left hand side of this inequality are positive as δin ≥
δAB > δBA by assumption. Since b ≥ δin also by assumption, the left hand side is positive as
the sum of two positive terms. As such this inequality is satisfied, and we conclude that it is also
satisfied for values of k lying above a threshold value. Since this is also the case for condition
(22) and that condition (23) is always satisfied, this concludes the proof.
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