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How do societies learn and maintain social norms? Here we use
multi-agent reinforcement learning to investigate the learning dynam-
ics of enforcement and compliance behaviors. Artificial agents pop-
ulate a foraging environment and need to learn to avoid a poisonous
berry. Agents learn to avoid eating poisonous berries better when do-
ing so is taboo, meaning the behavior is punished by other agents.
The taboo helps overcome a credit-assignment problem in discov-
ering delayed health effects. By probing what individual agents
have learned, we demonstrate that normative behavior relies on a
sequence of learned skills. Learning rule compliance builds upon
prior learning of rule enforcement by other agents. Critically, intro-
ducing an additional taboo, which results in punishment for eating
a harmless berry, further improves overall returns. This “silly rule”
counterintuitively has a positive effect because it gives agents more
practice in learning rule enforcement. Our results highlight the ben-
efit of employing a computational model focused on learning to im-
plement complex actions.
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One of the central attributes that differentiates human from1

other animal societies and accounts for the enormous2

gains of human ultra-sociality (1) is the presence of third-3

party enforced norms (2–4). Many of these norms generate4

direct benefits for individual and group well-being: norms5

that prescribe reciprocity, fair sharing of rewards, or non-6

interference with property properly claimed by another, for7

example, can coordinate behavior and sustain incentives for8

cooperation and investment. These are the norms that are the9

primary focus of most research into the properties and origins10

of human normativity (see (3) for a review.)11

The normative landscape is also, however, populated by12

many norms that appear essentially arbitrary: norms about13

how and what we eat, how we greet each other, what clothes14

and body decorations we wear, and what rituals we observe15

(5, 6). People treat compliance with these norms as impor-16

tant and punish violations, but, except for effects generated17

by this socially-constructed salience, they have no direct or18

first-order impact on welfare. Fessler et al. (5) call the process19

by which patterns of behavior are imbued with moral senti-20

ments that motivate sanctioning of violations of the pattern21

normative moralization. They use as an example the norma-22

tive moralization of handedness. Most people are naturally23

right-handed but, particularly in societies with few special-24

ized tools, whether someone is right- or left-handed generally25

has no material consequences for others. Nonetheless, many26

cultures treat using one’s right hand as a morally approved27

category–denoting purity or politeness–and one’s left hand as28

cause for opprobrium–revealing weakness or evil (7). Following29

Hadfield-Menell et al. (8) we call such social norms silly rules.30

The ubiquity of silly rules provides a puzzle for functionalist 31

accounts of norms (9); several explanations have been explored 32

so far. One kind of explanation posits that silly rules may exist 33

to serve as cheap signals of group membership and thus facili- 34

tate cooperation within the group (10). Another account holds 35

that silly rules are stable because, in any society, the survival 36

of each generation depends on the transmission from prior gen- 37

erations of a large amount of culture-specific and, importantly, 38

causally opaque knowledge (11). This includes everything 39

from which local plants produce edible versus poisonous fruit, 40

to how best to organize to resolve disputes between family 41

members. Most of the time individuals have no way of know- 42

ing which of the many rules they follow are critical for their 43

well-being. Thus silly rules may remain stable by virtue of 44

their incorporation into larger normative systems that also in- 45

clude important rules (1). Further support for this hypothesis 46

is found in the tendency of human children to over-imitate 47

adults, copying—and moralizing—even apparently irrelevant 48

aspects of adult behavior (12). The sheer abundance of silly 49

rules seems to require an account that grants the normative 50

moralization of seemingly irrelevant actions a more significant 51

role. It would seem that a society would do better to minimize 52

costly efforts to punish and conform with norms that produce 53

no material benefits, and so to economize on the number of 54

silly rules used as markers or retained as a by-product of the 55

cultural transmission of knowledge. 56

In this paper, we describe a new kind of functional ex- 57

planation for silly rules based on the dynamics of learning 58

in a society that lacks a priori knowledge of which of their 59

rules are truly important (causal opacity). Our explanation 60

relies on an essential asymmetry between the enforcement and 61

compliance aspects of normative behavior. In short, the skills 62

involved in third party norm enforcement readily transfer from 63

norm to norm, while the skills involved in compliance are 64

norm-specific. Thus adding a silly rule to a normative system 65

that already contains some number of deeply important rules 66

can be beneficial because the silly rule may provide greater op- 67

portunity to practice third party norm enforcement, a generic 68

skill. Improved norm enforcement by the group then makes 69

it easier for individuals to learn from experience the skills 70

necessary for norm compliance, such as how to prospectively 71

recognize and avoid specific taboos. Therefore, introducing a 72

silly rule may positively impact the learnability of compliance 73

behavior for all of a society’s rules, including those that truly 74

are important. The benefit of learning important rules faster 75
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can easily outweigh the dead-weight loss created by the silly76

rule.77

Silly rules can support the emergence and stability of a ben-78

eficial normative social order (13). In a normative social order,79

group behavior is patterned on a classification scheme (called80

a norm) that divides behaviors into approved and disapproved81

(taboo) categories. Here, we employ a computational approach82

to investigate the effects of silly rules on how well a normative83

social order is learned. Our model consists of a multi-agent84

reinforcement learning (RL) environment with eight artificial85

agents, all simultaneously learning and interacting with one86

another. Agents in our environment (Fig. 2) are faced with87

learning a foraging task: learning to find and consume food88

(“berries”). We assume that berries are relatively abundant89

so there is no competition between agents and no common90

pool resource problem. What makes the environment chal-91

lenging is the presence of a poisonous berry which if eaten92

will then reduce the value of an agent’s future consumption.93

But importantly, the deleterious effect only triggers after a94

significant delay. The delay introduces a credit-assignment95

problem, meaning it is difficult for our agents to learn which96

particular berry caused the negative effect and thus to learn97

to avoid it. In this setting, a taboo on the poisonous berry–98

however it may evolve–raises individual welfare. As Boyd et99

al. (11) emphasize, this is a critical pathway by which culture100

raises human well-being: through the transmission of cultural101

practices, such as the avoidance of harmful foods, even when102

agents lack direct causal awareness of why their practices are103

beneficial (11, 14). The mechanisms behind such social learn-104

ing in humans may be multiple: a psychological propensity105

to conformity (15, 16), deliberate teaching practices (17), and106

third-party punishment of failures to follow norms (18). Our107

work focuses on the last of these. We show that agents are108

able to sustain the transmission of a valuable taboo in order to109

avoid a poisonous berry. For this, agents need to have learned110

to recognize when another agent has violated a taboo and to111

deliver a costly punishment to the violator.112

Because our model allows us to separate the learning of113

enforcement and compliance behaviors from the learning of114

norm content itself, we designed an experiment in which norm115

content was fixed in advance by the experimenter (which color116

berries were taboo). By varying the content of the norms, we117

can study the downstream effects on how the normative social118

order (enforcement and compliance behavior) is learned. If a119

player breaks a taboo they change color and become ‘marked’.120

We assumed all agents have a form of mutual knowledge of121

the rule in the sense that they may perceive violations of other122

players via the marking. Note that players cannot directly123

perceive their own marking, otherwise the self-marking would124

trivially solve the credit assignment problem. If a player is125

marked, other players can collect a reward for punishing them.126

This creates an incentive for players to learn to punish rule127

violations, and for players to not violate any rules. This reflects128

situations in which there is a centralized scheme that labels129

transgressive behavior, but the enforcement is decentralized.130

For example, in medieval iceland the ‘law speaker’ would label131

acts as unlawful. Individuals would be declared ‘outlaws’, and132

others could take their property without repercussions (19).133

Our environment is intended to capture the evolutionary134

challenge humans faced in developing the behavioral and cog-135

nitive repertoires of normativity and third-party punishment,136

attributes that distinguish humans from other primates and 137

account for the gains humans enjoy from ultrasociality and 138

extraordinary gains from cooperation (2, 3, 20, 21). It is 139

the challenge of discovering and learning these behaviors–to 140

punish violators and to avoid punishment through behavior 141

modification—that animates our study. We demonstrate that 142

simple RL agents that lack any “mental” models of rules, vio- 143

lations, or punishment, will nonetheless learn to enforce the 144

rules. The enforcement subsequently enables agents to learn 145

to comply with a taboo against eating the poisonous berry. 146

As a precondition to our main analysis, we show that 147

individuals achieve higher overall welfare in a world where 148

eating the poisonous berry is taboo, relative to a world in 149

which there are no taboos so avoidance of the poisonous berry 150

must be learned only through individual experience. We show 151

that even with the cost of enforcement, overall group welfare is 152

higher with a norm than without. Thus, the normative social 153

order is valuable. We then show our main result: that the 154

value of a normative order is higher if the norms in this regime 155

include not only important rules—such as the rule against 156

eating poisonous berries—but also silly rules which make the 157

eating of a harmless berry taboo and bring about the same 158

third-party punishment. In our environment, agents learn 159

to enforce, and comply with, norms more quickly if the rule 160

system includes two taboos—one against eating the poisonous 161

berry, and one against eating a harmless berry. 162

Our results demonstrate a new account of the ubiquity 163

of rules that have no first-order impact on well-being. They 164

also provide a formalization of normativity in a computational 165

setting that we think will expand the tools available both 166

for understanding how human normativity operates, and how 167

artificial agents that are capable of participating in human 168

normative social orders might be built. In this sense, this 169

work is part of a research program that ultimately aims to 170

develop models capable of capturing distinctive features of 171

human intelligence such as the origin of institutions (22). 172

Fig. 1. Schematic overview of the experimental conditions. In the no rules condition,
agents collect berries for reward. One berry-color is poisonous and after a time delay
reduces reward obtained from consumed berries. Being poisoned is invisible to all
players and a hard credit-assignment problem. In the important rule condition, eating
the poisonous berry is a social taboo. When eaten, the player who ate the berry
immediately gets marked, which is only visible to other agents. Other agents can
collect a reward by punishing a marked agent. In the important+silly rule condition,
the same taboo against the poisonous berry is in place, but additionally there an
identical taboo on a berry that is not poisonous. Therefore, there are two taboos for
which agents can experience punishment by others. Our experiment sets out to study
the effects of these different normative schemes.

Studying social norms with deep reinforcement learning. 173

Computational simulations of populations and cultural de- 174

velopment typically use an abstracted or idealized space to 175

encode normative structure (23–26). Agents are usually mod- 176
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Fig. 2. Depiction of the environment. The agents inhabit a grid world. Agents earn
reward for eating berries, which regrow probabilistic after being harvested. One type
of berry is poisonous and if collected by an agent, it diminishes the agent’s ability
to gather rewards from other berries, after a delay period. If an agent eats one of
the poisonous berries in the important rule condition, the agent immediately gets
“marked” and appears in a different color to the other agents. In the important+silly
rule condition, one additional, non-poisonous, berry also triggers an agents’ marking.
Agents are able to punish each other using a “punishing beam”, causing a loss to
themselves and a large loss to the punished agent. If a “marked” agent is punished,
the punishing agent receives a large reward.

eled either as choosing strategies within a game theoretic177

framework in which they are supplied with a set of available178

actions and associated payoffs, or as implementing behavioral179

rules in competition with other similarly-constructed agents.180

In these approaches, agents choose what to do (e.g. cooperate181

or defect), but the models cannot capture phenomena related182

to how they learn to implement their choice.183

Here we apply a more generalized framework, a multi-agent184

RL approach that has been successfully used to study in-185

tertemporal (sequential) social dilemmas (27–37). Agents in186

this framework are artificial neural networks, which learn be-187

havioral policies (associating actions to states) and obtain188

rewards from an environment. State transitions in the envi-189

ronment are generated by the actions of all agents combined.190

Agents inhabit a 2-D world in which they and other objects191

are located at coordinates in space. An agent’s action-space192

consists of moving up, down, left, right, rotating left and right193

and using a “punishing beam” directed at an adjacent agent194

(Fig. 3). Use of the punishing beam costs the punisher 20195

points and inflicts a cost of 35 on the punished agent. A vari-196

ety of ‘berries’ of different colours are distributed randomly197

throughout the world. An agent receives a reward of 4 if it198

navigates to a square with a berry, interpreted as “eating it”.199

Berries grow in sufficient abundance that there is no competi-200

tion between agents. Pink berries are poisonous: 100 timesteps201

after consumption they reduce reward gained by future berries202

to 1 point.203

The environment can include a latent classification scheme204

(13) that designates some berries (colors) as “taboo”. This205

normative classification is implemented by inducing a change206

in the color of an agent (visible only to other agents) who207

consumes a taboo berry and changing the payoff associated208

with use of the punishing beam against such an agent. Pun-209

ishing a marked agent generates a reward for the punisher of210

15 instead of a loss of 20 (note that punishment is always net211

negative for the collective reward of the group). We consider212

the environment in three conditions corresponding to three213

different classification schemes. In the no rules condition, no214

berries are designated as taboo. Agents never become marked215

Fig. 3. Agent architecture and training procedure. Agents learn together in one
population of 12 agents, 8 of which are selected to play in one episode in order to
generate experiences (in multiple parallel environments). Each agent contains an
independent neural network that receives a batch of its own experiences from these
environments to update its neuronal weights. The inputs the agents receive are the
raw pixels from their field of view. The network architecture of each agent consists of a
convolutional neural network that learns to decompose the input into spatial patterns.
This projects to fully connected layers that learn more abstract representations of
game states, followed by a recurrent network that is able to retain and transform
information over multiple timesteps. The output of neural network on each timestep
is a prediction of the value of the current state and an action (movement or zap).
Network weights are gradually adjusted to maximize long term cumulative reward.

and punishing is never profitable. In the important rule condi- 216

tion the poisonous berry is taboo. In the important+silly rule 217

condition, both the poisonous berry and another, harmless, 218

berry are taboo. We manipulate the classification scheme to 219

assess its causal effect on learning dynamics. We hypothesize 220

that overall returns are improved by adding the important 221

rule, and are further improved by adding the silly rule. 222

An agent in our environment has no prior knowledge of 223

game rules or states. It has no model for the classification 224

scheme or the potential rewards for appropriately-directed use 225

of the punishing beam. The agent has to learn how its actions, 226

its observations (raw pixels), and the rewards it receives relate 227

to each other entirely from scratch. It can do this by learning 228

representations that allow it to generalize between similar 229

situations. Given the enormous game-space and the fact that 230

all agents have incomplete information about the workings 231

of the environment, classical game-theoretical analysis is not 232

tractable. Further, this approach allows us to analyze learning 233

dynamics, not just equilibria (31). 234

In this framework, behavior is driven by individuals learn- 235

ing to maximize the expected value of all future rewards they 236

will obtain from their environment (e.g. by collecting berries, 237

avoiding and delivering punishment). This learning over time 238

is accomplished by incremental adjustment of neural network 239

weights (38). It generates distributed neural representations 240

that produce reward-maximizing behavior in response to vi- 241

sual input of the current situation. Agents learn continuously 242

while being exposed to episode after episode, inhabiting the 243

same environment with a population of other agents who are 244

themselves learning simultaneously. In order to do this effec- 245

tively, agents need to correctly assign credit to current stimuli 246

and actions based on subsequent rewards they receive. This 247

creates a rich dynamic in which every part of a behavior has 248
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to be learned, and strategic decisions have to be implemented249

via a behavioral policy. Both the cognitive challenge of correct250

credit assignment (determining which actions contribute to251

rewards over time), as well as figuring out how to perform252

complex action sequences are difficult. The dynamics of how253

norms are learned and implemented are endogenous to the254

multi-agent learning model. This leads to a number of impor-255

tant differences from more abstracted simulations like matrix256

games. We argue that, by focusing on learning, this com-257

putational model may be particularly appropriate to model258

anthropological phenomena like the the emergence and impor-259

tance of social norms. In particular the model creates rich260

learning dynamics for individual agents as well as groups that261

could not otherwise be approached:262

1. Complex action sequences Punishing other agents’263

behavior, observing a rule violation or complying with264

a rule are complex sequences of atomic actions that can265

look different each time they are performed or observed.266

2. Skills build on each other As agents have to learn to267

implement complex behaviors, we can expect a temporal268

dependency and sequentiality among these behaviors. For269

example, for agents to learn to avoid a taboo, agents will270

first need to learn how to effectively apply punishing, in271

order to motivate rule compliance.272

3. Opportunity cost As agents are driven by maximizing273

total reward, whether or not an agent engages in social274

punishing depends on the opportunity cost of the action275

sequence, the agent’s skill in implementing it, and the re-276

ward gained by punishing the other agent’s transgression.277

This means there is an intrinsic economy to behavior that278

is bounded by what agents have learned.279

4. Generalization Since the social dynamics are learned in280

neural networks from scratch they afford the opportunity281

for, or even necessitate, a degree of generalization. In282

particular, as punishment is identical for the consequences283

of transgressing against an important or silly rule, there is284

an opportunity for generalization of enforcement behavior285

learned from both rules.286

5. Endogenous errors As social punishing of silly or im-287

portant rules is implemented in the same way, a confusion288

between the two can arise. Similarly, punishing might be289

misdirected at agents that did not break a social taboo.290

These costly false-positive incidents provide an intrin-291

sic counterweight to the development of an indiscrimi-292

nate social punishing dynamic. Importantly, unlike other293

frameworks, multi-agent RL does not require us to model294

mistakes in behavior as random noise (37, 39). Instead,295

mistakes in multi-agent RL are emergent from the learn-296

ing dynamics and the inherent difficulty of implementing297

an effective behavior policy.298

Results299

As displayed in Fig. 4, we examine group-level metrics about300

agent-populations over the trajectory of learning. We plot the301

average trajectory per condition. As visible in Fig. 4A, the first302

thing agent populations learn is to reduce the frequency with303

which unmarked players are punished. Punishing unmarked304

players is costly to both the punished and the punishing305

agent, so it is unsurprising that this behavior does not persist 306

long once actions become less random. As can be seen in 307

Fig. 4F, this rapid initial learning increases the collective 308

return (the sum of rewards gained by all agents). Note that 309

the suppression of misdirected punishing happens fastest in the 310

no rules condition. This is unsurprising, as in this condition 311

there is no direct incentive to punish any other players at all, 312

because there are no taboos that lead to marked players. 313

The second important learning dynamic is that the number 314

of times marked players get successfully punished initially 315

strongly increases before it decreases (Fig. 4B). We interpret 316

the increase as an improvement in the agents’ skill at enforcing 317

the social norm, i.e. being increasingly skilled at effectively 318

punishing marked agents. As displayed in Fig. 4C, the amount 319

of time agents spend marked is steadily declining. However, 320

taken by itself, this metric does not differentiate between 321

whether this decline is driven by agents becoming better at 322

avoiding rule violation, or whether agents get better at pun- 323

ishing rule breakers and thereby removing their mark. As 324

can be seen in Fig. 4E, the decline of successful punishments 325

coincides with a decline in the number of taboo berries eaten. 326

This shows that there is a sequence in the learned behaviors, 327

as first the social punishing system needs to be successfully 328

implemented before it is possible for agents to learn that they 329

should avoid breaking the social norm. 330

In these two measures (successful punishments and taboo 331

berries eaten) we see the role of the silly rule (one additional 332

taboo berry) most clearly. Early in learning, it is unsurprising 333

that doubling the number of taboo berries leads to a higher 334

number of taboo berries eaten and subsequent punishing. But 335

once these quantities start to decline, they decline more rapidly 336

in the condition with two taboos instead of one and in fact 337

reach a lower level. So, it appears that increased exposure 338

to taboo berries and punishing early leads to more robust 339

learning. This is evident in later stages of learning where 340

agents eat fewer taboo berries in the condition in which there 341

are twice as many. 342

As can be seen in Fig. 4D, in terms of avoiding getting 343

poisoned, having two taboos instead of one consistently leads 344

to better results. Additionally, we can see that the credit 345

assignment problem of avoiding the poisonous berry without 346

the help of a social punishing mechanism is prohibitively hard 347

(the no rule condition shows no decrease). However, avoiding 348

poisonous berries is not in itself enough to increase overall 349

returns (Fig. 4F). In this environment, overall returns are 350

positively affected by gathering berries and negatively affected 351

by eating poisonous berries and agents punishing each other 352

(every punishment event creates a net loss for the group). 353

Therefore, in order for the additional silly rule to yield an 354

overall benefit in collective return, it needs to not only help 355

to avoid poisonous berries, but it also needs to not add too 356

much dead-weight loss by either hampering consumption of 357

healthy berries or increasing punishment events. As shown in 358

Fig. 4F, there is an overall benefit on collective return in the 359

intermediate learning stages. We test the difference in collec- 360

tive returns between the important rule and important+silly 361

rule condition in 10 separate timebins. There is a significant 362

benefit of the arbitrary rule condition in the 3rd, 4th and 363

5th timebin (3rd: t(28)=3.94, p=0.0005, 4th: t(28)=3.26, 364

p=0.003, 6th: t(28)=2.43, p=0.022. The 3rd and 4th timebin 365

remain significant after Bonferonni-correction for 10 multiple 366
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Fig. 4. Learning dynamics: We are examining group-level metrics about agent-populations (y-axis) over the trajectory of learning (x-axis in timesteps). We plot the average
trajectory per condition (with 99% confidence interval). A. Number of times unmarked agents are punished (agents that have not broken a taboo). B. Number of times marked
agents are punished (agents that have broken a taboo). C. Time spent marked after breaking a taboo. D. Time agents spent poisoned (timesteps after eating the first poisoned
berry). E. The number of “taboo” berries eaten (poisonous and non-poisonous combined, if available in the condition). F. Total sum of reward gained by group (including costs of
punishing). In total, we observe a benefit of the important+silly rule condition in the intermediate stages of learning, driven by an increased ability to avoid poisonous berries.
We also see a temporal order to learned behaviors, e.g. an increase in social punishment that then declines together with a decrease in number of taboo berries eaten.

comparisons).367

The results in Fig. 4 suggest that more frequent punishment368

early in learning is associated with less time spent poisoned in369

the middle stages of learning. We directly test this hypothesis370

by exploiting the variance across different training runs (i.e.371

separate populations, Fig. 5). In both conditions we find that372

high rates of punishment in the early stages of learning (mean373

over time, timesteps 0 to 2e8) are related to low amounts of374

time spent poisoned in subsequent stages (timesteps 2e8 to375

4e8) (important rule: r = −0.79, p = 0.0004; important+silly376

rule: r = −0.5, p = 0.057, n = 15). Note that the correlation377

is lower in the important+silly rule, but that the magnitudes378

of both measures differ strongly. It is possible the correlation379

is less pronounced because adding the silly rule increases the380

magnitude and restricts range of the rate of punishment (on381

the y-axis).382

Probing what agents have learned. Large-scale observational383

longitudinal studies with multiple actors face the problem384

that all actions taken are entangled and interdependent be-385

cause agents react to other agents. Studying the effects of386

multiple agents’ interactions over time allows us to investigate387

the effects of social norm enforcement on the population at388

large, but does not enable conclusions about what specific389

mechanisms cause an individual agent’s behaviour. For hu-390

mans, psychology experiments address this issue by isolating391

specific mechanisms and testing these in controlled conditions,392

such as testing reactions to particular stimuli in laboratory393

experiments. Our simulation allows us to follow this logic and 394

confront our artificial agents with tightly controlled experimen- 395

tal environments inspired by lab-testing to directly probe what 396

the agents have learned. As shown in Fig. 6A, we implement 397

these quasi-lab experiments by extracting agents at different 398

points in training and recording their actions when placed in a 399

simple empty environment with no other agents, and only one 400

stimulus to interact with. Critically, the agent is not learning 401

in this environment. Running this experiment with multiple 402

copies of the same agent allows us to run multiple trials to 403

probe an agents’ response to a particular game object in isola- 404

tion. This tests what the agent has learned at different stages 405

of training. Even though these tests constitute environments 406

that the agent has not seen during training, the behavioral 407

results align with what the agent is expected to learn in its 408

training environment. This is particularly interesting because 409

it requires a degree of generalization from the agents (’zero 410

shot’, as the agents do not learn during the probe). Their 411

successful transfer of behaviors learned in a large complex 412

environments to an empty testing environment indicates that 413

they learned robust behavioral responses to game objects. 414

Fig. 6 B, C & D displays how many timesteps it takes 415

agents to approach different berries when confronted with 416

the berries in isolation. These approach-behaviors vary over 417

the course of training and by the conditions the agents have 418

learned in. As expected (cf. Fig. 4D), agents learn to avoid the 419

poisonous berry (pink) in important rule and important+silly 420

rule but not in no rule. Additionally, agents learn to avoid 421
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Fig. 5. Higher rates of early punishment is related to less time spent poisoned later in
training. Each marker is an independent population of agents. On the y-axis we plot
how often players are punished early in training (between timesteps 0 and 2e8). On
the x-axis we plot the amount of time players spend poisoned subsequently (mean of
the timesteps 2e8 to 4e8). The results are consistent with the interpretation that a high
peak in punishment early in training is followed by more avoidance of the poisoned
berry later.

the non-poisonous taboo berry (green) in important+silly rule.422

Fig. 6E overlays the poisonous berry lines from panel B and D423

and illustrates that agents learn to avoid the poisonous berry424

more in important+silly rule than important rule. Similarly,425

Fig. 6F illustrates that agents punish marked players more426

during learning in important+silly rule than important rule.427

Again, we set out to test the hypothesis that learning about428

punishment early in training is associated with subsequent429

avoidance of the poisoned berry. Fig. 6G mirrors the results430

Fig. 5, demonstrating that the single-player probes are con-431

sistent with the behavior observed in the multi-agent setting.432

We correlate the degree to which a probed agent punishes433

the marked player during the early stages of training (mean434

of timewindow 0 to 2e8 steps, marked in panel F) with that435

agent’s subsequent tendency to consume the poisonous berry436

(mean of timewindow 2e8 to 4e8 steps, marked in panel E).437

In both conditions we find a negative relationship (important438

rule: r = −0.86, p < 0.0001; important+silly rule: r = −0.46,439

p = 0.085, n = 15). Again, note that the absolute magnitude440

of the values differs across conditions; all datapoints in impor-441

tant+silly rule are restricted to relatively high punishment and442

low rates of approaching the poisonous berry. In sum, these443

results support the conclusions drawn from the full multi-agent444

simulation: the additional taboo leads to more frequent pun-445

ishing events earlier during training, which in turn supports446

agents’ learning to avoid the poisonous berry. Crucially, these447

results were obtained in a controlled experimental setting that448

directly probed what agents have learned by observing their449

reactions to single objects. These results suggest a sequen-450

tial, social acquisition of skills, explaining why silly rules help451

agents learn and behave according to meaningful rules.452

Discussion453

This work contributes a functional account of why human454

normative systems contain so many silly and arbitrary rules455

that is grounded in the mechanics of learning within a single456

group. The presence of silly rules creates the potential for a457

larger number of norm violations. From the perspective of458

an agent learning the skills necessary to effectively enforce 459

their society’s norms the additional violations constitute ad- 460

ditional opportunity for practice, and thus promote a faster 461

rate of improvement in their command of the mechanics of 462

third-party punishment. On the compliance side, the rate at 463

which individuals may learn by trial-and-error to avoid vio- 464

lating taboos depends on the enforcement environment they 465

inhabit. When their groupmates implement highly effective 466

third-party enforcement strategies then exploratory taboo vio- 467

lations are punished both swiftly and surely. Since both speed 468

and certainty of reward (or punishment) are factors known 469

to improve trial and error learning (40, 41), highly “effective” 470

compliance policies (i.e. policies that avoid violating taboos) 471

can be learned rapidly under these conditions. On the other 472

hand, when third-party enforcement is ineffective, then ex- 473

ploratory taboo violations frequently go unpunished or their 474

punishment comes only after a substantial delay. Such condi- 475

tions are known to make trial and error learning very difficult 476

and slow. Enforcement and compliance are asymmetric in the 477

sense that the former is a skill that may be applied without 478

modification to any norm since many of the sub-behaviors 479

involved in third-party punishment are directed toward the 480

violator (e.g. chasing them), not toward the event of the vio- 481

lation itself. Thus they are “transferable skills”, generically 482

applicable to any norm. Compliance, on the other hand, re- 483

quires learning to recognize for oneself what would constitute 484

a violation. Now consider also that every society contains a 485

certain number of deeply important rules for which ensuring 486

compliance is of paramount importance. The interpretation 487

of our key result is that the functional role of silly rules in 488

human normative systems may (in part) be to help train a 489

society’s ability to comply with important rules. Adding silly 490

rules into a normative system that already contains deeply 491

important rules can be expected to improve the learning of 492

enforcement for all rules, thereby improving the learning of 493

compliance for all rules, including the rules that truly matter. 494

While this account is consistent with previous findings 495

on the potential benefits of silly rules (8), the present study 496

demonstrates a novel, mechanistic benefit of silly rules where 497

silly rules improve the scale of enforcement practice, causing 498

a concomitant improvement in the learnability of compliance. 499

We interpret this result as indicating that silly rules enrich the 500

information environment for agents that face a learning chal- 501

lenge. In Hadfield-Menell et al. (8) agents faced a challenge of 502

estimating the likelihood that there are enough agents willing 503

to punish rule violations in a group. In our paper, agents face 504

the more fundamental challenge of learning the relationship be- 505

tween the visual information and actions available to them and 506

the consequences of the two in terms of reward. The silly rule 507

enriches this learning environment with more opportunities 508

to learn about the relationship between punishment behavior 509

and the associated reward for the punisher, as well as the 510

negative consequences for the punished. This account is also 511

independent of, but not necessarily inconsistent with, existing 512

explanations centered around in-group/out-group classification 513

and group cohesion (42). In the real world, adding important 514

rules may be difficult, as they require causal insights into how 515

to avoid undesirable outcomes. Silly rules can be created as 516

needed and, if they are not too costly, the normative order 517

may benefit from the practice that violations against silly rules 518

provide. 519
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Fig. 6. Single target probes or ’zero shot generalization’. A. Depiction of probe. An agent is placed in an empty room with just one other object (berry or agent) and we measure
how many timesteps it takes to eat the berry or zap the player. B, C & D. Berry types across the 3 different conditions. Agents learn to avoid berries that are taboo. Lines depict
the mean across populations of how quickly the agent interacts with the object (y-axis) over learning (x-axis). Error bars represent SEM over different independent populations.
E, F. Difference between ’important rule’ and ’silly rule’ for approaching the poisoned berry (same as in C & D) and punishing the marked player. Agents are faster to learn to
avoid the poisoned berry and punish taboos in the important+silly rule condition. G. Early punishing (mean 0 to 2e8 steps) of the marked player is associated with reduced
consumption of the poisoned berry (mean 2e8 to 4e8 steps) later in training.

While the arbitrary taboo provided a consistent benefit in520

avoiding poisonous berries, it is worth noting that the benefit521

of the arbitrary rule on the overall prosperity of the group522

was only present in the intermediate stages of learning. This523

could be associated with the dead-weight cost of maintaining524

a social norm that does not serve a direct material function, or525

imprecise strategies to avoid poison (i.e. moving more slowly526

in general) (43). These costs suggests a strong counterweight527

to the usefulness of silly rules in the real world.528

A clear limitation of this work is that we have not shown529

the emergence of the social norms themselves. We supplied in530

the environment the causal relationship between an action—531

eating a particular berry—and the trigger for social punishing:532

becoming marked in the view of other agents and generating533

a reward for an agent who successfully aimed the punishing534

beam at the transgressor. The next steps in this line of work535

are therefore to study the emergence of particular patterns536

of marking—norms—and the capacity for norms to change 537

in response to changes in the environment or other sources 538

or variation including natural drift. We hypothesize that 539

learning how to follow and maintain social norms can assist 540

agents in adapting to variation in the environment. This social 541

technology of benefiting from norms is closely related to the 542

cultural niche (11) inhabited by humans, and to humanity’s 543

intelligence and success. Understanding how this technology 544

emerges in multi-agent settings may play a critical role in 545

understanding the emergence of human-level intelligence. 546

Materials and Methods 547

548

Multi-Agent Reinforcement Learning. We consider multi-agent re- 549

inforcement learning in partially-observable general-sum Markov 550

games (44, 45). In each game state, agents take actions based on 551

7



a partial observation of the state space and receive an individual552

reward. Agents must learn through experience an appropriate be-553

havior policy while interacting with one another. We formalize554

this as follows: an N-player partially observable Markov game555

M defined on a finite set of states S. The observation function556

O : S × {1, ..., N} → Rd, specifies each player’s d-dimensional view557

on the state space.558

In each state, each player i is allowed to take an action from its559

own set Ai.560

Following their joint action (a1, ..., aN ) ∈ A1×...×AN , the state561

changes obeys the stochastic transition function562

T : S × A1 ×...×AN → ∆(S), where ∆(S) denotes the set of563

discrete probability distributions over S, and every player receives564

an individual reward defined as565

ri : S ×A1 × ...×AN → R for player i. Finally, let566

oi = {O(s, i)}s∈S be the observation space of player i.567

Each agent learns, independently through its own experience568

of the environment, a behavior policy πi : Oi → ∆(Ai) (written569

π(ai|oi)) based on its own observation oi = O(s, i) and extrinsic570

reward ri(s, a1, . . . , aN ). Each agent’s goal is to maximize a long571

term γ-discounted payoff defined as follows:572

V i~π(s0) = E

[
∞∑
t=0

γtri(st,~at)|~at ∼ ~πt, st+1 ∼ T (st,~at)

]
. [1]573

Experiment and conditions. We consider a foraging task imple-574

mented as a partially observable Markov game on a 2D grid (see575

Fig. 2). Agents gain reward by collecting berries that stochasti-576

cally respawn. The respawn probabilities are high, so there is little577

competition for resources. Moving onto the coordinates of a berry,578

agents earn a reward of 4 points. Each berry type is consistently579

mapped to a color (24 different types). One berry type is “poi-580

sonous”. There is no other signal of which berry type is poisonous581

that is observable to an agent at the time of consumption, except582

the color that remains consistent for all episodes. If collected by a583

player, this player is “poisoned” after a delay of a fixed number of584

timesteps (100 timesteps). Poisoning reduces a player’s ability to585

absorb nutrition: after poisoning sets in each subsequent berry the586

player collects yields a reward of 1 instead of 4. Besides moving,587

agents have in their behavioral repertoire the ability to apply a588

“punishing beam”. If successfully targeted at another player, the589

user of the beam loses a reward of 20 (the cost of punishing, in590

addition to the opportunity cost of time spent aiming and firing the591

beam instead of collecting berries) and the punished player loses a592

reward of 35∗.593

Each instance of the training regime is initialized in one of594

3 different conditions. This is a between-subjects design: each595

agent population only experiences one of these 3 conditions. The596

conditions differ in the content of the classification scheme that597

marks agents if they have broken a taboo. We consider three598

conditions: no berry is taboo (no rule), the poisonous berry is599

taboo (important rule), the poisonous berry and one harmless berry600

are taboo (important+silly rule).601

In no rule there are no additional mechanics to the game beyond602

what is described above. Agents have to learn which berry is603

poisonous without any additional information.604

In important rule we introduce a group rule against eating the605

poisonous berry type. In this condition, a player that eats a poison606

berry is “marked”: from the perspective of other agents in the607

environment, the marked player changes color. This color change608

is not visible to the marked player. This color change implements609

the idea that other agents evaluate the consumption behavior of610

the agent that has chosen to eat a “taboo” food. This marking611

then interacts with the punishing capacity of other agents. If612

a marked player is successfully targeted by another player with a613

punishing beam, the punishing player gets a reward of 35—effectively614

transferring reward from the marked player to the punishing player,615

for a net payoff to the punishing player of 15 points (note that when616

considering the sum of rewards of the whole group, a successful617

punishment results net-loss for the group of 20 points because of618

∗Video of example episode: https://youtu.be/Xn2eTSX-4GU. Consumption of taboo berry and sub-
sequent punishment at 23-25 seconds. Note that agents see a lower resolution version of the
environment in which each entity is represented by a single pixel.

the cost of using the punishment beam). Aiming punishment at 619

a non-marked player is costly to both as in the no rule condition. 620

Once punished, the marking disappears. 621

In important+silly rule, we augment the important rule with an 622

additional silly rule, or arbitrary taboo. Players become marked not 623

only if they consume the poisonous berry but also if they consume 624

another designated, but harmless, berry. As in the important rule 625

condition, successful punishing of an agent that has violated the silly 626

rule by consuming the designated harmless berry earns the punishing 627

agent a net of 15 points and costs the transgressing agent 35 points. 628

Thus, from the perspective of the agents, the “important” and “silly” 629

rules are isomorphic if they have not integrated knowledge of the 630

actual poisoning dynamic. 631

Note that in these settings classification scheme is implemented 632

by the environment. We have not modeled the emergence of the 633

rules in themselves. Agents are incentivised to learn policies that 634

implement the behaviors of collecting berries, delivering third-party 635

punishment, and avoiding taboo berries that create a risk of pun- 636

ishment. 637

Agent architecture and training method. Each instance of the train- 638

ing regime contained a population of 12 learners. The environment 639

is a gridworld of size 33×12 pixels and agents observe a 15×15 pix- 640

els RGB window, centered on their current location (note that the 641

depictions in this paper are higher resolution for display purposes). 642

On each episode, a subset of learners was drawn without replace- 643

ment to play in the current episode (8 players in each episode). Each 644

episode lasted for 1000 steps. For each timestep s, each learner i in 645

the population produced a policy πi and an estimate of the value 646

V i
~π

(s) with a neural network, implemented on a GPU. This neural 647

network was trained by receiving importance-weighted policy up- 648

dates (46) sampled from a queue of trajectories. These trajectories 649

were created by 64 simultaneous environments on CPUs that play 650

the game (with 8 players, which used policies sampled uniformly 651

from the population of learners without replacement). The learners 652

received truncated sequences of 100 steps of trajectories in batches 653

of 16. 654

The neural network’s architecture consisted of a visual encoder 655

(2D-convolutional neural net with 6 channels, with kernel size and 656

stride size 1) followed by a 2-layer fully connected MLP with 64 657

RELU-neurons in each layer, an LSTM (128 units) and finally linear 658

policy and value heads, outputting the value of the current state and 659

a probability over actions to be chosen. We used a discount-factor 660

of 0.99, the learning rate was 0.0004, and the weight of entropy 661

regularisation of the policy logits was 0.003. We used the RMS-prop 662

optimiser (learning rate=0.0004, epsilon=1e-5, momentum=0.0, 663

decay=0.99). The agent also minimized a CPC loss (47) in the 664

manner of an auxiliary objective (48). 665

Statistical analysis of observational data. In order to assess the dif- 666

ference between conditions, we divide the learning timecourse into 667

10 bins and average the collective returns for each instance of agent 668

populations in each bin. We use a t-test to compare the important 669

rule and important+silly rule conditions in each bin. We correct 670

the results with a Bonferonni-correction for 10 multiple comparisons 671

(10 timebins). 672

For the important rule and important+silly rule conditions we 673

extracted the mean values for each population of early punishment 674

(mean of the timesteps 0 to 2e8) and subsequent (mean of the 675

timesteps 2e8 to 4e8) time spent poisoned. These two measures 676

where then correlated within each condition. 677

Note that all statistics are done with the datapoints correspond- 678

ing to entire populations that each contain 12 agents. This is done 679

because only the data of the entire populations is independent of 680

each other (the agents within one population affect each other, 681

therefore do not produce independent data). 682

Probe methods. For each agent in each population, the agent’s 683

unique neural networks were loaded from 20 evenly spaced time- 684

points spanning the training run. The agent was then placed in a 685

small empty black environment that contained only one sprite placed 686

in front of the agent (the sprite of a berry or agent). Each episodes 687

episode terminates when the agent interacts with the sprite, or after 688

30 timesteps (timeout). Valid interactions with sprites are “eating” 689

(upon contact) when the sprite is a berry, and “zapping” with the 690
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punishment beam when the sprite is an agent. The duration of an691

episode is our metric for measuring the agent’s tendency to interact692

with the sprite, akin to a “revealed preference” for interacting with a693

game object. Shorter episode duration indicates a higher preference694

of the agent to interact with the sprite. Note that the agents do695

not learn in these episodes. In these probe-episodes, agents are696

exposed to the sprite of the pink poisonous berry, a green berry that697

is taboo in the important+silly rule condition, four berries that are698

neither poisonous nor taboo, and the sprite of the “marked” player.699

The 20 samples per agent from different timepoints during training700

are probed individually with each sprite. Each probe is repeated701

20 times and the duration of all episodes is averaged The results702

for each timepoint are then averaged across all 12 agents in the703

population, resulting in 20 datapoints of each population’s probe704

performance over the course of training (15 each for important rule705

and important+silly rule and 5 for no rule).706

Statistical analysis. Mirroring the observational data, we extracted707

the mean values for each population of early punishment (mean of708

the timesteps 0 to 2e8) and subsequent (mean of the timesteps 2e8709

to 4e8) approach of the poisoned berry for the important rule and710

important+silly rule conditions. These two measures where then711

correlated within each condition.712
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