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Abstract

We derive optimal contests for environments where output takes the form of

breakthroughs and the principal has an informational advantage over the con-

testants. Whether or not the principal is able to provide real-time feedback to

contestants, the optimal prize allocation is egalitarian: all agents who have suc-

ceeded in a pre-specified time interval share the prize equally. When providing

feedback is feasible, the optimal contest takes a stark cyclical form: contestants

are fully apprised of their own success, and at the end of each fixed-length cycle,

they are informed about peer success as well.

1 Introduction

Contests—situations where multiple agents compete for a prize—are a common way

to organize economic activity: innovation races, promotions and other labor-market

tournaments, all-pay auctions, athletic events, and legal battles all fall into this cat-

egory.1 Ever since the seminal work of Lazear and Rosen (1981), Green and Stokey

(1983), and Nalebuff and Stiglitz (1983), researchers in economics, marketing and op-

erations management have sought to understand how to best allocate the prize among

∗We are grateful to Piotr Dworczak, Marina Halac, Michael Powell, Agustiń Rayo, and partici-
pants at various seminars and conferences for helpful comments. Author Jeff Ely acknowledges the
support of NSF grant SES-1851883.
†J. Ely: Northwestern University, jeff@jeffely.com; G. Georgiadis: Northwestern University,

g-georgiadis@kellogg.northwestern.edu; S. Khorasani: University of California–San Diego, skho-
rasani@ucsd.edu; L. Rayo: Northwestern University, luis.rayo@kellogg.northwestern.edu.

1Since 2010 federal agencies have conducted nearly 1,000 prize competitions, with the total
amount of prize money growing from $247,000 in FY2011 to over $37 million in FY2018.
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participants, and more recently, starting with the work of Yildirim (2005), Aoyagi

(2010), Ederer (2010), Goltsman and Mukherjee (2011), and Halac, Kartik and Liu

(2017), how best to disclose real-time information regarding the contestants’ progress.

While there is no one type of contest that is universally efficient, this literature has

offered key general insights together with design ideas for specific environments of

interest.

Here we are interested in scenarios, not formally considered so far, in which the

contest designer (the principal) has an informational advantage over the contestants

in terms of how well they are doing mid-contest. Our goal is to find the optimal

contest—inclusive of prize-allocation and termination rules, as well as an information

feedback policy—out of the full set of feasible designs. The principal’s informational

advantage may reflect, for example, the manager of a firm knowing better than their

employees whether any one of them has met a given standard for promotion, or a

company hosting an innovation race potentially having a clearer idea about the value

of new technologies developed by the contestants.2

In our model, contestants exert binary flow effort, which they can interrupt/resume

at any time, and their success takes the form of a Poisson breakthrough, which until

the contest is over, only the principal can observe. The key challenge when searching

for the optimal contest is the vast range of potential contest designs from which to

choose, especially when the feedback policy is part of the design. We address this

challenge by first providing a sufficient condition for a contest to be optimal—namely,

that it maximizes total surplus while giving zero rents to the contestants—and then

finding a contest that meets these criteria.

We first solve a baseline model where we adopt the common assumption that the

agents’ hazard rate of success depends only on their current effort, rather than on

the full history of efforts. Whether or not the principal is able to provide real-time

feedback, the optimal prize allocation is egalitarian; that is, all contestants who have

succeeded in a pre-specified time interval share the prize equally, regardless of when

they did so. This allocation smoothes incentives over time, which helps the principal

maximally extend the period over which agents are willing to work.

When the principal can also design the feedback policy, the optimal contest keeps

2Take for instance the Netflix Prize, a competition that offered a $1 million prize for a predictive
algorithm for users’ film ratings that managed to improve upon Netflix’ existing algorithm by at
least 10%. Only Netflix was privy to the qualifying dataset needed to evaluate submissions, and
hence to whether any contestant had achieved the goal.
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each agent fully apprised as to whether they have succeeded, but provides them only

periodic feedback on the success of their rivals. This contest takes a stark cyclical

form: The principal first sets a provisional deadline, T ∗. If one or more agents succeed

by then, the contest ends and the prize is shared equally among those who succeeded

so far. Otherwise, the contest resets and the deadline is extended until 2T ∗. The

contest proceeds in this cyclical manner until the end of the first cycle in which

one or more agents manage to succeed. Contestants receive feedback regarding their

peers only at the end of each cycle, when they are either informed that the contest

has ended, or that nobody has succeeded so far and it is time to extend the deadline.

This contest is optimal because it maximally stretches out the time period over which

agents are willing to work while extracting all rents from the contestants.3

Due to its simplicity, this cyclical egalitarian contest should not be difficult to

implement in practice, as the only parameter that the designer needs to calibrate is the

cycle length T ∗, with a longer deadline possible the lower the cost of effort, the larger

the probability of success, and the greater the prize.4 While there is limited empirical

evidence so far on the effectiveness of different contest designs, the field experiment

conducted by Lim, Ahearne and Ham (2009) lends support to the effectiveness of an

egalitarian prize, and the findings of Fershtman and Gneezy (2011) and Gross (2017)

suggest that real-time feedback, with a flavor similar to that suggested by our model,

can be effective at encouraging effort.5

An application that fits our simple setting especially well is the proof-of-work

protocol at the core of digital currencies such as Bitcoin. The contestants (miners)

exert effort in form of “hash submissions” with the goal of solving a cryptographic

3This contest maximizes both total expected effort and the expected number of successes.
4The Netflix Prize competition had a similar flavor, for example. If no team achieved the initial

goal (a greater than 10% improvement in prediction accuracy) after a year, it allocated a smaller
“milestone prize” ($50K) to the best-performing team so far, provided it achieved some improvement
(at least 1%). This process was to be repeated each year until a team achieved >10% improvement.
At that point, a 30-day countdown clock would start ticking, at the end of which a final winner
would be declared. Our predicted contest is closely related, but simpler, as it does not prescribe
smaller “milestone” prizes (as in our setting, success is all or nothing), ties are much more likely,
and following the first success, rather than having a final 30-day period to catch up, contestants
have until the end of the current cycle to do so.

5Gross (2017) analyzes a sample of 4294 winner-takes-all logo design competitions, and finds
that feedback improves the quality of subsequent submissions, and on net increases the number
of high-quality ideas. Moreover, simulations under various feedback policies indicate that private
feedback allows players to improve their submissions without exposing performance differences that
discourage continued participation.
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puzzle, which is followed by a monetary reward. As in our model, success arrives

at a constant Poisson rate—an intentional design characteristic—and marginal costs,

which stem from the cost of electricity, are essentially constant. In addition, the

designer can in principle reveal to each contestant as much or as little information as

she wishes about their rivals’ state of success (and the same goes for a contestant’s own

performance). Because of this close fit, we are able to carry out a calibration exercise

that suggests that Bitcoin’s current contest, which is winner-takes-all, underperforms

the cyclical egalitarian contest suggested by our model by a considerable margin. We

argue that by adopting the cyclical contest, Bitcoin would be able obtain between 83%

and 126% additional effort for the same prize, depending on the price of electricity—

or equivalently, it would be able to reduce the prize by 44%-54% while securing the

same level of total effort.

We also consider some extensions of the model that suggest a degree of robustness

to our results. When the number of contestants is unknown, the cyclical contest

remains optimal, and when the contestants’ hazard rate of success is increasing in

both current and past effort, the optimal contest has a very similar cyclical structure

as before: it features an egalitarian prize and a feedback policy that keeps agents

fully apprised of their own success, but only periodically informs them of their rivals’

status. The only difference is that the length of each cycle is stochastic, as this allows

the principal to frontload incentives.

Related Literature. Early work by Lazear and Rosen (1981), Green and Stokey

(1983), and Nalebuff and Stiglitz (1983) provides conditions under which it is optimal

to condition each agent’s pay on the ordinal rank of their output, as opposed to its

absolute value. Moldovanu and Sela (2001) show that, given a fixed prize, it is optimal

to award it entirely to the best performer when the agents’ cost functions are weakly

concave, and some prize-sharing may be optimal otherwise. Extensions to stochastic

output, arbitrary risk-preferences and heterogeneous agents are considered by Drugov

and Ryvkin (2019, 2020) and Olszewski and Siegel (2020), among others.6

Fang, Noe and Strack (2018) find that aggregate effort in all-pay contests decreases

in their competitiveness, as measured by the dispersion of prizes, contest crowding,

and the number of contestants. Letina, Liu and Netzer (2020) consider a generalized

version of that framework. They find that for n contestants, a nested Tullock contest

6Siegel (2009, 2010) and Olszewski and Siegel (2016) provide a comprehensive equilibrium analysis
of general all-pay contests with heterogeneous players.
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featuring n − 1 equal prizes is optimal. While our work differs in that these papers

study static environments with no scope for feedback design, the idea that “turning

down the heat” motivates more effort echoes the optimality of an egalitarian contest

in our dynamic framework.

Taylor (1995) considers a dynamic contest where players invest in an innovation

of stochastic quality. After T periods, the player with the highest-quality innovation

wins a prize. The principal chooses the prize and an entry fee, which determines the

number of players, to maximize her profit. In the optimal contest, players invest in a

given period as long as their highest-quality innovation to date is below a threshold,

and the entry fee is chosen to extract all rents. Benkert and Letina (2020) extend

this framework by incorporating interim transfers and an endogenous termination

date. The optimal contest ends as soon as the highest-quality innovation exceeds a

threshold, and agents invest up until the end of the contest.

Lizzeri, Meyer and Persico (2005) and Yildirim (2005) are among the first to study

endogenous feedback in contests using a two-period, two-agent framework. For this

setting, Lizzeri, Meyer and Persico (2005), Aoyagi (2010), Ederer (2010), and Golts-

man and Mukherjee (2011) characterize conditions under which a principal should

(publicly) reveal to contestants the outcome of their first-period efforts. Mihm and

Schlapp (2019) extend this framework by considering private feedback and allowing

agents to voluntarily disclose their own progress. Khorasani (2020) considers two-

stage winner-takes-all contests where time runs continuously and agents know their

own successes. The optimal design features an initial period with no disclosure and

a gradually increasing prize followed by a period of probabilistic disclosure to the

laggard about the intermediate progress of the leader.

Our paper is also related to a growing literature on contests involving experimen-

tation, where the feasibility of success is initially unknown. Halac, Kartik and Liu

(2017) consider an experimentation framework such as the one in Bonatti and Horner

(2011), but with a designer who chooses a prize-sharing scheme and a feedback pol-

icy to maximize the probability of a success. Within the class of rank-monotonic

prize schemes and deterministic and symmetric disclosure policies, a cutoff-disclosure

equal-sharing contest is optimal. This contest provides no interim feedback and ends

as soon as a critical number of agents have succeeded, each winning the prize with

equal probability. In Bimpikis, Ehsani and Mostagir (2019), an agent must succeed

twice to win, with the feasibility of the first success unknown. Under certain con-
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ditions, a contest comprising a “silent period” after which successes are disclosed

immediately dominates contests with a constant probabilistic disclosure (including

those with no or full disclosure). Our work differs in that successes are observed only

by the principal, and that we manage to solve for the fully optimal contest.

2 Model

A principal designs a contest to motivate n ≥ 2 agents to spend effort. The contest

consists of a termination rule, which specifies when the contest will end, a rule for

allocating a prize, whose value we normalize to $1, and a feedback policy, which

specifies the information transmitted to each agent at every moment in time. We

formalize these objects below. The principal’s objective is to maximize the expected

total effort exerted throughout the contest.

At each instant t of continuous time, each player observes any message sent from

the feedback policy and decides whether to spend effort. Effort is costly but poten-

tially produces a “success.” In particular, if player i spends effort for a total duration

ai he incurs cost cai, where c is the constant marginal cost of effort. While the agent

spends effort, success arrives stochastically with constant instantaneous rate λ > c.

That is, a player can succeed at most once and conditional on not having succeeded

by time t, effort for an additional duration dt produces a success during the time

interval (t, t+ dt) with probability λdt. Thus, F (t) = 1− e−λt is the probability that

a player succeeds on or before date t if he spends effort continuously in that time,

and f(t) = F ′(t) = λe−λt is its “density”.7

Each player observes his own effort, but not whether he has succeeded, or others’

efforts and successes. Conversely, the principal observes successes but not efforts.

The principal’s feedback policy specifies a message that she transmits to each agent

at every moment as a function of her past observations. An example of a feedback

policy that will be important for our results is the one we denote byMpronto, according

to which the principal informs each player immediately if and when he succeeds, but

otherwise keeps players uninformed. Alternative policies might inform agents about

their or their rivals’ successes probabilistically, about the feedback conveyed to rivals,

and so forth.

7A constant hazard rate means there is no notion of progress over time. In Section 5, we extend
our model to allow for an increasing hazard rate.
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The principal’s termination rule ends the contest possibly randomly and possibly

as a function of the principal’s past observations. The prize is then awarded according

to the allocation rule, which specifies a share qi of the prize for each player i, with∑
i qi ≤ 1, as a function of the history of successes. For example, a winner-takes-all

contest awards the entire prize (qi = 1) to the first player i to have succeeded, whereas

an egalitarian contest divides the prize equally among all players who have succeeded.

Note that both these types of contest are efficient in the sense that the entire prize is

awarded if and only if at least one player has succeeded.

When the contest ends, if ai is the total effort spent by player i, then his ex-post

payoff is

ui = qi − cai.

There is no discounting and the players’ objective is to maximize their expected

ex-post payoff.

The principal designs the termination rule, prize allocation rule, and feedback

policy with the goal that the expected total effort in a Bayesian Nash equilibrium

of the resulting contest is maximal among Bayesian Nash equilibria of a given set of

contests. We will derive the optimal contest when there is no feedback and the fully

optimal contest when the feedback policy is unconstrained.

Allowing the principal to be better informed than the agents concerning their

success allows us to capture scenarios such as a manager being better informed about

their employees’ performance than the employees themselves, or the designer of an

innovation contest knowing best what constitutes progress. Our main result would

be unchanged if contestants were also privy to their own success.

3 No-Feedback Contests

In this section, as a benchmark, we characterize the optimal no-feedback contest, that

is, the effort-maximizing contest within the class of contests that provide no feedback,

terminate at a pre-specified deterministic time T , and allocate the $1 prize according
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to some rule {qi}.8 Formally, we solve

max
T, {qi}, {ai}

n∑
i=1

ai (1)

s.t. {ai} is an equilibrium profile.

Reward Functions. Because the agents are risk neutral, without loss of generality

we can, and henceforth will, restrict attention to contests such that an agent wins

a positive share of the prize only if he succeeds. Fixing an equilibrium of a given

contest, we define for each agent i, the reward function

Ri,t = E [qi | agent i succeeds at t] , (2)

which represents agent i’s expected share of the prize conditional on succeeding at t.

This object will allow us to decompose the problem and design optimal incentives for

each agent separately.

To illustrate, consider the egalitarian contest that divides the prize equally among

all players who succeed prior to the terminal date. Conditional on player i succeeding,

his expected share of the prize is Ri,t = E[1/(1+M)] where M is the number of rivals

who eventually succeed. An important observation is that this benefit is independent

of the time at which i succeeds, and is the same for all players. In other words,

the reward functions for the egalitarian contest are constant and symmetric across

players. Any other contest with this property is for all intents and purposes identical

to the egalitarian one, and so we shall treat it as being identical to the egalitarian

design.9

For another example, consider the winner-takes-all contest. Conditional on player

i succeeding at time t, he earns the entire prize if and only if he is the first to

succeed. Thus, assuming all of his rivals have worked throughout the [0, t] interval,

Ri,t = [1 − F (t)]n−1 since this is the conditional probability that he is the first to

8Observe that a contest can provide feedback indirectly via the termination rule. For example, if
the contest ends as soon as the first success occurs, then at every moment the contest is still ongoing,
agents will know that no one has yet succeeded, which can (and will) affect their incentives. To rule
out such indirect feedback, we constrain the principal to choose a deterministic deadline.

9One example is a two-player contest that randomizes equally between awarding the prize to the
first agent to succeed and awarding it to the last one to succeed, while not informing the agents of
the outcome of this draw until after the contest is over.
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succeed. Notice that this reward function is strictly decreasing in t.

Using the reward function, we can express agent i’s expected utility from working

continuously during an interval [0, Ti] as∫ Ti

0

f(s)Ri,s ds− cTi. (3)

When searching for an optimal contest, one can restrict attention to contests where

each agent indeed works continuously over some interval [0, Ti]. This is because

neither the principal nor any agent gains from delays in effort, and hence any contest

can be replaced, without loss, with one that frontloads all effort.

The following result provides a necessary condition for a reward function to in-

centivize continuous effort.

Lemma 1. Consider a no-feedback contest that gives agent i the reward function Ri,t.

Working continuously throughout [0, Ti] is incentive compatible for this agent only if,

for all t ∈ [0, Ti],

f(t)Ri,t +

∫ Ti

t

f ′(s)Ri,sds ≥ c. (IC)

This incentive constraint states that the marginal benefit of effort at time t, which

is captured by the left-hand side, should be no smaller than the marginal cost. To

understand the expression for the marginal benefit, note that the first term is the in-

stantaneous marginal benefit of effort at time t. The second term captures a forward-

looking incentive effect: success today precludes success in the future. In particular,

f ′(s), which is negative, is the amount by which the success probability at some fu-

ture date s is reduced when the agent spends effort at date t. The second term thus

aggregates the reduction in future instantaneous benefits that results from spending

effort in the current date.

Egalitarian Contest. When there is no feedback, the egalitarian contest that di-

vides the prize equally among all successful agents admits a simple symmetric pure-

strategy equilibrium.

Proposition 1. Let TEGA uniquely satisfy

1−
(
1− F (TEGA)

)n
nF (TEGA)

=
c

f(TEGA)
.

9



So long as the deadline is no smaller than TEGA, the egalitarian contest has a sym-

metric pure-strategy equilibrium where each player spends total effort TEGA.

The condition defining TEGA has a simple intuition. As shown in the proof, located

in Appendix A, the left-hand side equals the expected share of the prize earned by

player i were he to succeed. Multiplying by f(TEGA), the incremental probability of

success from working beyond TEGA, gives the marginal benefit from increasing total

effort. The condition equates this marginal benefit to the marginal cost c.

We now use the incentive constraint in Lemma 1 to show that, absent feedback,

the egalitarian contest is optimal.

Proposition 2. The egalitarian contest with deadline TEGA is optimal among no-

feedback contests.

The simple intuition for this result is that non-egalitarian contests, unlike the

egalitarian one, create unequal effort incentives over time, leading to potential gaming

by the agents in how they time their effort. The only way to prevent this gaming is

to spend additional money on the prize, which the principal does not have.

Here is a more detailed heuristic argument that highlights the crucial role of

Lemma 1. For brevity, restrict attention to symmetric contests with symmetric equi-

libria. Normalizing λ = 1, and substituting into (IC) the expressions f(s) = e−s and

f ′(s) = −e−s for the Poisson arrival process, yields the following necessary condition

for the (symmetric) reward functions of such a contest:

e−tRi,t︸ ︷︷ ︸
instantaneous marg. benefit at t

−
∫ T

t

e−sRi,s︸ ︷︷ ︸
impact of effort on future reward

≥ c (4)

for all t in [0, T ]. Recall that the left-hand side is the full marginal benefit of effort

at time t.

The constant reward function Ri,t = eT
EGA

c, which corresponds to the egalitarian

contest, satisfies constraint (4) with equality at all t ≤ TEGA. Figure 1 plots the

corresponding instantaneous marginal benefit schedule eT
EGA−tc, together with the

agent’s marginal cost. Notice that at every t′ ≤ TEGA, the instantaneous marginal

benefit exceeds c by exactly area 1 , which corresponds to the integral in the left-

hand side of (4).

Consider now a non-egalitarian contest (with a non-constant reward schedule) that

attempts to implement the same total effort as the egalitarian one. As illustrated
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in the figure, constraint (4) implies that if there is a time interval [t′, t′′] ≤ TEGA

where this alternative schedule exceeds the egalitarian one, it must also exceed the

egalitarian schedule at all times prior to t′, since the integral in (4) grows from area

1 to area 1 + 2 . In other words, a higher reward at any future date forces a

higher reward today, as otherwise the agent would prefer to pause his effort today and

gain access to this higher future gain. Thus, in order to implement the same effort

as the egalitarian contest, the reward schedule would need to be uniformly higher,

which is only possible with a prize greater than $1.

Figure 1: Meeting the incentive constraint.

Making use of this heuristic, it is easy to show why other seemingly-appealing

contests are not optimal. In the winner-takes-all contest, for instance, the reward

schedule is strictly decreasing over time. Therefore, per the above argument, in

order to incentivize the same amount of effort it would need to lie strictly above the

egalitarian one (that is, it over-rewards agents early on), which is not feasible given

that the principal only has $1 of prize money.

Consider now the polar opposite “last-takes-all” contest, where it is the last (rather

than the first) to succeed who is guaranteed the prize. This contest in principle seems

appealing because it maximally backloads incentives and therefore might appear to

relax the incentive constraint. However, because the associated reward schedule is

strictly increasing over time (i.e., a later success gives rivals a smaller chance to win),
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agents are tempted to delay their effort. The only way to prevent this is again to

offer higher overall rewards, which is not feasible.

4 Optimal Contest With Feedback

In this section we characterize the optimal contest once feedback is allowed. We begin

by proving a result that will serve as a key stepping stone for our analysis.

Lemma 2. A contest is guaranteed to be optimal if, in equilibrium:

(i) the prize is awarded with probability one, and

(ii) each agent earns zero rents.

Intuitively, a contest that awards the prize with the maximum possible probability

also maximizes the players’ combined surplus, and if the agents keep none of this

surplus, it must all go to the principal.

To establish this result formally, note that for any contest and equilibrium effort

profile we can rewrite the principal’s objective as follows:

E
n∑
i=1

ai =

∑n
i=1 Eqi −

∑n
i=1 ui

c
.

The first term in the numerator represents the total prize awarded; the second term

represents the agents’ rents. The total prize awarded is bounded from above by one,

whereas the agents’ rents are bounded from below by zero. Therefore, if there exists

a contest that attains these bounds (and so the principal’s payoff is 1/c), it must be

optimal. Q.E.D.

The no-feedback contest we derived in Section 3 fails both conditions in this lemma

and hence can in principle be improved upon once feedback is allowed. That it fails

to award the entire prize follows from the fact that there is a chance that no agent has

succeeded by the deadline TEGA. That it leaves rents can be seen from Figure 1: the

overall rents for each agent are equal to the area between the instantaneous marginal

benefit and the marginal cost curves.

Our main result, Proposition 3, characterizes a contest that satisfies both criteria

in the lemma under the assumption that the parameters of the model satisfy n > λ/c.

This assumption means that there are enough competitors for a contest to be desirable
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in the first place. When the assumption fails, the principal could do at least as well by

reserving 1/n-th of the prize for each agent and contracting with each one individually.

The optimal contest has three crucial properties. First, its prize allocation is

egalitarian, just as in the no-feedback case. Second, agents are fully apprised of

their own success, which is achieved via the Mpronto feedback policy. Lastly, it has a

“cyclical” termination rule as follows: the principal sets a provisional deadline T ∗; if at

least one agent has succeeded by that time, the contest ends; otherwise, the principal

restarts the contest, again with a provisional deadline T ∗ (which indirectly informs

all agents that no one has yet succeeded). The contest continues in this manner until

at least one agent has succeeded by the time the next provisional deadline is reached.

This termination rule is formally described by the stopping time

τ ∗ = inf{t : t = kT ∗, k ∈ N, and at least one agent has succeeded},

where T ∗ is the unique solution to
(
1− e−nλT ∗)

/
(
n(1− e−λT ∗

)
)

= c/λ.

Proposition 3. Assume n > λ/c. The contest with egalitarian prize, the cyclical

termination rule τ ∗, and the feedback policyMpronto is optimal. In this contest at least

one agent succeeds, and hence the prize is awarded with probability one. Moreover,

each agent obtains 0 expected utility and the principal’s profit is 1/c.

This cyclical contest is optimal because it meets the requirements of Lemma 2:

it awards the prize with probability 1 because the provisional deadline keeps getting

extended if no agent has succeeded; and it grants agents zero rents owing to the

Mpronto feedback policy combined with a provisional deadline T ∗ just long enough

so that agents who have not yet succeeded are at each moment just barely willing to

work.

To formally establish the proposition, it suffices to show that the contest has an

equilibrium where all agents work until they succeed or the contest ends, and hence

the prize is awarded with probability 1, and where their continuation payoffs are held

at zero. To see why, let pi,t denote agent i’s belief at time t that he has succeeded,

and observe that his flow payoff if he works is (1− pi,t)λRi,t − c, and zero otherwise.

Now suppose that all of agent i’s rivals work until they succeed. Because the

allocation rule is egalitarian and the contest ends at the next provisional deadline if
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any agent has succeeded, agent i’s expected reward conditional on success is

Ri,t = E
[

1

1 +M

]
=

1− e−λnT ∗

n(1− e−λT ∗)
=
c

λ
, (5)

where M ∼ Binom(n− 1, 1− e−λT ∗
) is the number of rivals who succeed by the next

provisional deadline, the second equality is shown in the proof of Proposition 1, and

the third equality follows from the definition of T ∗.

The feedback policy Mpronto ensures that pi,t = 0 until this agent succeeds, at

which moment his belief jumps to one. This implies that each agent’s flow payoff, and

hence his continuation payoff, is always held at zero, and so working until he succeeds

is indeed incentive compatible. Because agents are symmetric, there is indeed an

equilibrium with the desired properties. Q.E.D.

As it turns out, there are other optimal contests as well. All these other contests,

however, have in common with our contest that they keep agents fully apprised of

their own success and they have an egalitarian prize structure, and hence differ only

in the details of the termination rule.10

The reason it is necessary to keep agents fully informed of their own success is

that, otherwise, they would be able to obtain rents from the principal by strategically

withdrawing effort.11 The egalitarian rule is necessary, in turn, because given the

Mpronto feedback policy, for a contest to extract all rents, each agent’s expected

reward conditional on succeeding must be c/λ regardless of when he happens to

succeed. Non-egalitarian contests are unable to offer such time-invariant rewards.

We conclude this section with some remarks:

i. Because the cyclical contest keeps agents apprised of their own success, it would

remain optimal if agents were able to observe this success directly. It is key,

however, that agents do not learn about their rivals’ successes until each cycle

ends. The principal must therefore make sure that when informing a success-

10One example is a modified version of the contest given in Proposition 3 with an arbitrary
provisional deadline T > T ∗ and where agents work only a fraction T ∗/T of the time.

11To see why, consider a contest that is intended to grant zero rents and suppose that there are
times where an agent is expected to exert effort and yet pi,t > 0. Then there must be a time interval
in which the agent is supposed to work and yet his belief pi,t strictly increases. So that he is willing
to work meanwhile earning 0 rents, (1−pi,t)λRi,t must equal c. But then he can pause effort during
the first half of this interval so that his private belief diverges from, and is strictly smaller than, the
equilibrium belief (as he knows that he cannot have possibly succeeded while shirking), which in
turn allows him to extract rents during the second half.
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ful agent, this communication cannot itself be credibly re-transmitted to other

agents in a bid to discourage them. One of various ways to do so is via an anony-

mous message sent to an address specified by the receiver, whose legitimacy can

therefore only be ascertained by that receiver.

ii. The cyclical contest maximizes the total expected number of successes, and not

just total expected effort, as it guarantees that agents work until either they

succeed or the contests ends.

iii. To implement the optimal contest, it suffices that the principal is able to commit

to one cycle at a time, as after a cycle ends it is in her interest to commit to

another identical one if no agent has yet succeeded.

5 Extensions

Here we discuss two extensions that suggest a degree of robustness to our findings.

Unknown number of contestants. In practice, there are contests where par-

ticipants do not know how many rivals they face, and perhaps even the principal

ignores this as well. Fortunately, Proposition 3 immediately generalizes to the case

where n is random and unknown, provided all agents share a common prior over n.

The only thing that changes is that the provisional deadline T ∗ must now satisfy

E
[(

1− e−nλT ∗)
/
(
n(1− e−λT ∗

)
)]

= c/λ, where the expectation is taken with respect

to n. As before, this provisional deadline ensures that agents are just barely willing

to work, thus allowing the principal to extract all rents, and the cyclical structure

ensures that the prize is awarded with probability one.

Increasing hazard rate. In some settings, the agents’ instantaneous probability

of success might grow as they work and make progress on the problem.12 To capture

this possibility, let F (t) denote the probability that an agent succeeds at or before

date t if he works continuously until that time, and suppose the hazard rate λt =

F ′(t)/[1− F (t)] exists and is weakly increasing.13

Under the assumption that λt ∈ (c, nc) for all t and is differentiable almost every-

where, the optimal contest is similar to the one with constant hazard rate character-

12For instance, contestants might be sampling among a finite set of possible solutions, or they
might need to accumulate a number of intermediate Poisson successes before they finally solve the
problem.

13This implies that if an agent has spent s units of effort by some date, his hazard rate at t is λs.
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ized in Proposition 3 except that the length of each provisional deadline is stochastic.

In particular, it comprises the egalitarian prize, the feedback policy Mpronto, and a

cyclical termination rule which operates as follows: At time 0, the principal privately

draws the duration of the first provisional deadline T1 from some commonly-known

distribution G0(·). If at least one agent succeeds by this deadline, the contest ends

and the prize is awarded according to the egalitarian rule. Otherwise, a new provi-

sional deadline T2 is drawn from a distribution GT1(·). The contest proceeds in this

cyclical manner until the first deadline by which at least one agent has succeeded.

Proposition 4, which is presented and proven in Appendix B, shows that this contest

meets the conditions of Lemma 2, and is therefore optimal.

6 Proof of Work

Here we calibrate the parameters of our model in order to match Bitcoin’s proof-of-

work protocol.14 This exercise will allow us to compare within the structure of the

model, the performance of Bitcoin’s current winner-takes-all design against the more

efficient cyclical egalitarian design.

Contestants and effort. We equate a contestant to an ASIC miner (a ma-

chine specialized in competing for cryptocurrency), whose effort entails submitting

candidate solutions to a cryptographic puzzle (i.e., calculating “hashes”). For con-

creteness, we consider the Bitmain Antminer S19 Pro Miner device, with an output

of 110 trillion attempts (hashes) per second.15

Success rate. By design, the likelihood of success is time-invariant (i.e., progress

does not accumulate) and is hence described by a Poisson process. One success

currently takes in expectation 17.597 × 232 trillion attempts, and so for the device

in question, the success rate λ = 110/(19.157 × 232) = 1.337 × 10−9 successes per

second.16

Marginal costs. This cost comes primarily from the use of electricity, which each

of our contestants consumes at a rate of 3.25 kW. We take the price of electricity to

14See Appendix C for a summary of Bitcoin’s institutional details.
15https://www.asicminervalue.com/miners/bitmain/antminer-s19-pro-110th.
16The 19.157 trillion figure (retrieved on Dec. 4, 2020 from https://btc.com/stats/diff) is known

as the “bitcoin difficulty.” This parameter varies over time as the computing power on the network
changes with the intention to maintain the average time between successes at approximately 10
minutes.
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range between 7.71 and 9.56 cents per kWh, which corresponds to the average retail

price of electricity in Louisiana and Illinois.17 Thus, c ranges between $6.96 × 10−5

and $8.63× 10−5 per second.

Prize. The current prize for a success is 6.25 Bitcoins, worth around $18,860 each

(as of Dec. 4, 2020).

Principal’s payoff. In the current winner-takes-all design, where the contest

ends with the first contestant to succeed, total effort across all contestants combined

is 1/λ = 7.48 × 108 seconds per success.18 Under the cyclical egalitarian design, in

contrast, the principal induces total effort 1/c per dollar of prize money, and hence

obtains a payoff Π∗ = 6.25×$18, 860/c, which for our range of electricity prices ranges

between 13.66 × 108 and 16.94 × 108 seconds of activity per success, representing a

83-126% improvement.19 Equivalently, the principal would be able to implement the

same total effort using only 44-54% of the prize.

This large improvement can be traced to the fact that the current design leaves

large rents to the contestants. For example, if we assume n = 1 million, which

matches current estimates, each contestant earns in expectation $7.6 per day.20 The

cyclical egalitarian contest manages to extract any such rents by keeping contestants

going during a cycle even if some of their rivals might have already succeeded.

Our model also suggests that a mining protocol with a constant rather than an

increasing success rate is justified, as the former design induces the same total effort

(i.e., 1/c) and in addition it prevents any single miner from gaining too much power—

which is an additional goal of Bitcoin’s.

7 Conclusion

We have proposed a contest with an egalitarian prize, a cyclical structure involving

a periodic resetting of the contest, and a partial type of feedback: leaders are im-

17Source: https://www.eia.gov/electricity/state. Louisiana prices are the lowest in the U.S.; Illi-
nois prices are close to the median.

18In particular, the first success arrives in expectation after (nλ)−1 units of time, and because
all contestants exert effort until then, total effort is equal to 1/λ. Note also that effort is incentive
compatible as long as λ times the prize is greater than c.

19If for instance n = 1 million, the optimal contest would feature a cycle length between 16 and
24 minutes.

20Because there is free entry of miners, these rents are presumably dissipated in the form of
investments in mining equipment.
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mediately informed of their success and laggards are kept in the dark so as to not

discourage further effort. In our setting, this contest manages to convert 100% of the

prize money into effort (i.e., is maximally efficient) as it manages to extract all rents

from the contestants.

This contest is attractive from an applied perspective because of its relative sim-

plicity. It is also capable of delivering large efficiency gains relative to commonly-used

contests such as the winner-takes-all design. In the proof-of-work application, for in-

stance, our calibration exercise suggests that holding the prize fixed, the cyclical

contest generates roughly twice the effort relative to the design currently in place.

Our model has abstracted from features—such as technological asymmetries across

players, decreasing hazard rates of success, and the possibility that success is more

continuous than all or nothing—that may be relevant for specific applications. When

these features are present, the optimal control of information is likely to be more

complex. We leave these possibilities for future work.
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A Proofs

A.1 Proof of Lemma 1.

Faced with a reward function Ri,t defined on [0, T ], agent i chooses his effort by solving

max
ai,t

∫ T

0

Ri,tf

(∫ t

0

ai,sds

)
− cai,t dt.

Suppose that for some Ti ≤ T , this agent finds it optimal to choose ai,t = 1 for all

t ∈ [0, Ti]. Consider a deviation in which he pauses effort between times t and t+ ∆t

for ∆t > 0. He gains

c∆t−
∫ t+∆t

t

Ri,sf(s)ds+

∫ Ti

t+∆t

Ri,s [f(s−∆t)− f(s)] ds.

If working continuously throughout [0, Ti] is incentive compatible, this gain must be

non-positive. Dividing through by ∆t we have

c− 1

∆t

∫ t+∆t

t

Ri,sf(s)ds+

∫ Ti

t+∆t

Ri,s
f(s−∆t)− f(s)

∆t
ds ≤ 0.

In the limit as ∆t→ 0 we have

Ri,tf(t) +

∫ Ti

t

Ri,sf
′(s) ≥ c ,

where the first term is obtained by L’Hôpital’s rule, and the second term is obtained

via bounded convergence.

A.2 Proof of Proposition 1.

Consider any symmetric pure strategy profile in which each player works for a duration

T . Let R denote the expected share of the prize enjoyed by player i should he succeed:

R = E
[

1

1 +M

]
,
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where M∼ Binom(n−1, F (T )) is the random variable equal to the number of players

other than i who also succeed. Letting p = F (T ), we have

E
[

1

1 +M

]
=

n−1∑
k=0

1

1 + k

(
n− 1

k

)
pk(1− p)n−1−k

=
1

np

n−1∑
k=0

n!

(k + 1)!(n− k − 1)!
pk+1(1− p)n−1−k

=
1

np

n∑
j=1

n!

j! (n− j)!
pj(1− p)n−j

=
1− (1− p)n

np
,

where the second line follows by expanding the binomial coefficient and manipulating

the expression, the third line follows by changing variables j = k + 1, and the last

line follows by collecting terms. Therefore,

R =
1− (1− F (T ))n

nF (T )
.

Now, taking as given the strategy profile of the other players, the net expected

payoff of player i from spending effort for duration T is given by

F (T )R− Tc.

Note that because F is concave, this is a concave objective and therefore, the best-

response for player i is the duration T ′ given by

f(T ′)R = c;

in other words
1− (1− F (T ))n

nF (T )
=

c

f(T ′)
.

Finally, in a symmetric equilibrium, all players choose best-responses. Therefore,

they work for a duration TEGA given by

1−
(
1− F (TEGA)

)n
nF (TEGA)

=
c

f(TEGA)
.
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A.3 Proof of Proposition 2.

Towards proving Proposition 2, we first establish a lemma showing that in any contest,

the reward functions must satisfy a certain “budget constraint,” which stems from

the fact that the prize’s value is $1.

Lemma 3. In an equilibrium of a contest in which each player i spends effort contin-

uously through an interval [0, Ti], the reward functions Ri,t must satisfy the following

“budget constraint”

∑
i

∫ Ti

0

f(t)Ri,tdt ≤ 1−
∏
i

(1− F (Ti)). (BC)

Proof of Lemma 3. Note that ∫ Ti

0

f(t)Ri,tdt

is the expected share of the prize earned by agent i. Thus, the left-hand side of (BC)

is the total expected share of the prize promised to the agents. In a feasible contest

in which an agent can earn a share of the prize only if he succeeds, this total expected

share cannot exceed the total probability that at least one player succeeds; i.e., the

expression on the right-hand side of (BC).

Using Lemmas 1 and 3, we consider the following relaxation of (1):

max
{Ti}, {Ri,t}

n∑
i=1

Ti (6)

s.t. (IC) and (BC).

In this problem, the principal chooses for each agent, a time cutoff Ti and a reward

function Ri,t such that the necessary condition for incentive compatibility (IC) and

the budget constraint (BC) is satisfied.

Notice that the egalitarian contest characterized in Proposition 1 has Ti = TEGA

and Ri,t =
[
1−

(
1− F (TEGA)

)n]
/
[
nF (TEGA)

]
= c/f(TEGA) for all i and t, and it

satisfies the constraints in (6) with equality at all times.
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Pick an arbitrary set of time cutoff and reward function pairs {Ti, Ri,t} (one for

each agent) that are feasible for (6). We will show that this solution achieves a

smaller objective than the egalitarian contest characterized in Proposition 1, that is,∑
i Ti < nTEGA. Because the egalitarian contest is feasible for the original problem

(1), it will immediately follow that this contest must be optimal.

Define the function Z1
i for each i as follows

Z1
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Ri,sds

]
.

Because F is concave and hence f ′(s) ≤ 0, we have

0 ≤ Z1
i (t) ≤ Ri,t

for all t ∈ [0, Ti]. The second inequality follows because Ri,t is incentive compatible.

Continuing in this manner, define for all k ≥ 2, the function Zk
i by

Zk
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
.

Since F is concave and Z1
i (s) ≤ Ri,s for all s, we have Z2

i (t) ≤ Z1
i (t). By induction

we have that 0 ≤ Zk
i (t) ≤ Zk−1

i (t) for all t ∈ [0, Ti]. We have thus constructed a

pointwise decreasing sequence of non-negative-valued functions on the domain [0, Ti].

Let Zi be the pointwise limit. For each i we have

Zi(t) = lim
k→∞

Zk
i (t) = lim

k→∞

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
=

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zi(s)ds

]
(7)

by dominated convergence.

Define a new reward function R̃i,t = Zi(t). Then R̃i,t satisfies the incentive con-

straint with equality at all times:

f(t)R̃i,t +

∫ Ti

t

f ′(s)R̃i,sds− c = 0. (8)

Differentiating both sides of (8) reveals that R̃i,t is a constant function R̃i,t ≡ c/f(Ti).
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This reward function satisfies the budget constraint (BC) because 0 ≤ Zi(t) ≤ Ri,t

for all t and Ri,t is feasible by assumption. In particular, since the expected share of

the prize earned by player i equals
∫ Ti

0
f(t)R̃i,tdt = cF (Ti)/f(Ti), we have

c
∑
i

F (Ti)

f(Ti)
−

[
1−

∏
i

(1− F (Ti))

]
≤ 0. (9)

Note for further reference that if any of the Ri,t were non-constant, then the R̃i,t

satisfy the budget constraint with a strict inequality.

We will conclude the proof by showing that the expression on the left-hand side

of (9) is jointly strictly convex in (T1, . . . , Tn). For this will imply that the following

symmetric reward function profile also satisfies the budget constraint:

Ri,t? =
c

f(T̄ )
,

where T̄ is the average effort duration; i.e., T̄ =
∑

i Ti/n. Indeed the budget constraint

will be satisfied with a strict inequality as long as not all the Ti were equal.

To prove that the left-hand side of (9) is strictly convex, substitute the expressions

F (Ti) = 1− e−λTi and f(Ti) = λe−λTi , and after some simplification and eliminating

constants, the left-hand side equals

c
∑
i

eλTi + λe−λ
∑

i Ti .

Its Hessian, H ∈ Rn×n, has entries

Hii = cλ2eλTi + λ3e−λ
∑

i Ti for each i, and

Hij = λ3e−λ
∑

i Ti for all i 6= j.

For any vector z ∈ Rn
+, we have

zTHz = cλ2
∑
i

eλTiz2
i + λ3e−λ

∑
i Ti

(∑
i

zi

)2

≥ 0 ,

and this inequality is strict if z has at least one strictly positive entry, implying that

the Hessian is positive semidefinite, and hence the left-hand side of (9) is strictly
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convex.

We have shown that the set of time cutoff and reward function pairs {T̄ , Ri,t?} are

feasible for (6) and achieve a bigger objective than {Ti, Ri,t}; i.e., n T̄ ≥
∑

i Ti, where

the inequality is strict if not all the Ti were equal. Therefore, the relaxed problem

given in (6) can be rewritten as

max
T

{
nT s.t. cn

F (T )

f(T )
≤ 1− [1− F (T )]n

}
, (10)

where we have substituted Ri,t = c/f(T ), which satisfies (IC) with equality for all

t ∈ [0, T ]. We will show that T = TEGA solves (10).

First notice that the constraint in (10) binds when T = TEGA. Using the ex-

pressions F (T ) = 1 − e−λT and f(T ) = λe−λT , this constraint can be rewritten as

cn(eλT − 1)/λ ≤ 1 − e−nλT . We claim that this inequality is satisfied if and only if

T ≤ TEGA. To see why, define ϕ(T ) = 1− e−nλT − cn(eλT − 1)/λ and observe that

ϕ(0) = 0, ϕ′(0) = n(λ− c) > 0, and ϕ is strictly concave.

Therefore, ϕ(T ) single-crosses zero from above at T = TEGA, and so TEGA is the

largest deadline for which the constraint in (10) is satisfied. Since the objective is to

maximize T , T = TEGA solves this problem.

We have therefore shown that T = TEGA and Ri,t = c/f(TEGA) for each i solves

(6), and its objective equals nTEGA. Since this is a relaxation of the original prob-

lem, (1), the objective of the original problem is bounded above by nTEGA. By

Proposition 1, the egalitarian contest with deadline T ≥ TEGA has an equilibrium in

which each agent spends total effort TEGA, and so the principal’s objective is equal

to nTEGA, that is, it achieves the upper bound obtained from the solution of (6).

Therefore, this egalitarian contest is an optimal no-feedback contest.

B Increasing Hazard Rate

In this section, we assume that each agent’s hazard rate of success increases in both

past and current efforts. To be specific, let F (t) denote the probability that an agent

succeeds on or before date t if he works continuously until that date, and suppose

that the hazard rate λt = F ′(t)/[1 − F (t)] exists and is weakly increasing. Thus, if
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an agent has expended s units of effort by date t, his hazard rate at t is λs.

The following proposition characterizes the optimal contest under the assumptions

that the hazard rate λt ∈ (c, nc) for all t and is differentiable almost everywhere.21

This contest is similar to the one with constant hazard rate characterized in Propo-

sition 3 except that the length of each cycle is stochastic. In particular, it comprises

the egalitarian prize allocation rule, the feedback policy Mpronto, and a cyclical ter-

mination rule which operates as follows: A cycle which starts at t, ends at a random

date T > t distributed according to the CDF Gt(T ) = 1− e−
∫ T
t γtsds, where

γts :=
cλ̇s
λ2

s

[
1− e−n

∫ s
t λvdv

n
(
1− e−

∫ s
t λvdv

) − c

λs

]−1

. (11)

22 To elaborate, at date 0, the principal privately draws T1 ∼ G0(·). The first cycle

ends at T1 and agents are informed so. During each cycle, agents know only the

distribution of the cycle’s duration and that the current cycle is still ongoing. If at

least one agent has succeeded by that date, the contest ends and the prize is awarded

according to the egalitarian rule. Otherwise, a new cycle begins, which ends at

random date T2 ∼ GT1(·). The contest proceeds in this cyclical manner until the end

of a cycle in which at least one agent has succeeded. Let τ ∗∗ denote the termination

rule defined by this algorithm.

Proposition 4. Assume λt ∈ (c, nc) for all t and its derivative exists almost every-

where. The contest with egalitarian prize, the cyclical termination rule τ ∗∗, and the

feedback policy Mpronto is optimal. In this contest, at least one agent succeeds, and

hence the prize is awarded with probability one. Moreover, in equilibrium, each agent

obtains 0 expected utility and the principal’s profit is 1/c.

To explain the logic of this design, notice first that Lemma 2 remains valid: a con-

test which awards the entire prize and concedes zero rents to the agents is guaranteed

to be optimal. Given that the feedback policy isMpronto, it suffices to show that each

agent’s expected reward conditional on success, Ri,t = c/λt until he succeeds. Then

by the same argument as in Section 4, there exists an equilibrium in which agents

21The first assumption is analogous to the one imposed in Proposition 3, while the second is a
technical one.

22It is shown that γts is non-negative and Gt(·) has finite support, that is, for every t, there is a
finite cutoff date which, as it is approached, γts →∞ and the cycle ends arbitrarily quickly.
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work continuously until they succeed and earn zero rents.23

When the hazard rate is increasing, to extract all rents, incentives must be front-

loaded so that an earlier success is rewarded more dearly than one that occurs later.

Proposition 4 shows that this can be achieved using an egalitarian prize and a stochas-

tic cyclical termination rule. Intuitively, when the length of each cycle is random, an

agent’s expected reward from succeeding early in a cycle is larger than if he succeeds

later, because probabilistically, he will have to share the prize with fewer of his rivals.

By choosing the distribution of each cycle’s length, it is possible to fine-tune Ri,t so

that it is always equal to c/λt as desired.

Proof of Proposition 4.

The proof is organized as follows. First, we show that each agent’s expected

reward conditional on succeeding at date t, Ri,t = c/λt. Then we will argue that

there exists an equilibrium in which all agents work continuously until they succeed

or the contest ends. Finally, we will argue that both conditions of Lemma 2 are met,

and hence this contest is optimal.

For each t, define T t to be the smallest T which solves

1− e−n
∫ T
t λvdv

n
(

1− e−
∫ T
t λvdv

) =
c

λT
. (12)

The left-hand side is strictly decreasing in T , it converges to 1 as T → 0, and to

1/n as T → ∞. Meanwhile, λT ∈ (c, nc) by assumption, and so the right-hand side

takes values strictly between 1/n and 1. Since both sides are continuous in T , by

the intermediate value theorem, there exists a smallest T such that (12) is satisfied.

Moreover, because the left-hand side of (12) is strictly larger for T ' 0, this is also

true for all T < T t. Therefore, for every t, we have γts ≥ 0 for all s ∈ [0, T t), and

lims→T t
γts =∞; i.e., a cycle which starts at t ends with certainty by T t.

Consider a cycle that started at t. Fix a date s > t, and suppose that agent i

has worked continuously until this date. Then his expected reward conditional on

23A crucial observation for this argument is that if an agent ever shirked prior to date t, then his
hazard rate at t is strictly smaller than λt, and so he strictly prefers to shirk at every subsequent
date. Therefore, agents cannot extract positive rents by strategically withdrawing effort.
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succeeding at s is

Ri,s =

∫ T t

s

(
1− e−n

∫ z
t λvdv

)
n
(
1− e−

∫ z
t λvdv

)γtze− ∫ z
s γ

t
rdrdz +

(
1− e−n

∫ Tt
t λvdv

)
n
(

1− e−
∫ Tt
t λvdv

)e− ∫ Tt
s γtrdr.

To interpret this expression, suppose this agent succeeds at s. During every interval

(z, z + dz) ⊆ (s, T t), the current cycle ends with probability γtze
−

∫ z
s γ

t
rdrdz. In this

case, his expected share of the prize is

E
[

1

1 +Mt,z

]
=

1− e−n
∫ z
t λvdv

n
(
1− e−

∫ z
t λvdv

) ,
where Mt,z ∼ Binom(n−1, 1−e−

∫ z
t λvdv) represents the number of rivals who succeed

between the date that the current cycle started and z, and we have assumed that in

equilibrium, they work continuously until they succeed. Integrating over the interval

(s, T t) yields the first term of Ri,s. With probability e−
∫ Tt
s γtrdr, the cycle survives

until (and ends at) T t, in which case agent i’s expected share of the prize is [1 −
e−n

∫ Tt
t λvdv]/[n(1− e−

∫ Tt
t λvdv)].

We now show that λsRi,s is constant and equal to c. By the definition of T t, we

have λT t
Ri,T t

= c; i.e., the desired equality is satisfied for s = T t. By differentiating

λsRi,s with respect to s, we have

d

ds
λsRi,s = λ̇sRi,s + λsγ

t
s

[
Ri,s −

(
1− e−n

∫ s
t λvdv

)
n
(
1− e−

∫ s
t λvdv

)] = 0

whenever Ri,s = c/λs. The first equality follows from the Leibniz integral rule, and the

second equality follows by substituting γts defined in (11) and Ri,s = c/λs. Therefore,

λsRi,s = c at s = T t, and moving backwards in time, d (λsRi,s) /ds = 0, implying

that λsRi,s = c for all s ∈ [t, T t].

Because the hazard rate of F is increasing, if an agent has worked continuously

until date t, then his hazard rate will be equal to λt; otherwise, it will be smaller.

So an agent who has worked continuously until t without success, taking as given

that his rivals work until they succeed, weakly prefers to work at t. By symmetry, it

follows that there exists an equilibrium in which all agents work continuously until

they succeed, meanwhile earning zero rents.
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Finally, because the contest does not end until at least one agent succeeds, the

prize is awarded with probability one, which implies that this contest satisfies both

conditions of Lemma 2, and is therefore optimal.

C Bitcoin Institutional Details

Here we briefly describe some institutional details surrounding Bitcoin, and in par-

ticular, its proof-of-work protocol. For a more detailed description, see for instance

Nakamoto (2008) and Bohme et al. (2015).

A key challenge faced by digital currencies designed to operate without a trusted

intermediary (such as a central bank), including Bitcoin, is preventing users from

spending the same token more than once. To overcome it, Bitcoin and other cryp-

tocurrencies rely on a timestamp server and a proof-of-work system, which operate

as follows:

i. When a transaction is requested by a Bitcoin holder, a timestamped record is

added to a list of transactions waiting to be included in a public ledger (called

blockchain). This timestamped record includes the entire ownership history of

the specific Bitcoins that the owner intends to use in their current transaction,

thus forming a chain. A subset of this list in waiting is called a block.

ii. Blocks are added to the blockchain by so-called miners, who are parties all

over the world acting on their own accord. Before a miner is allowed to add a

new block to the blockchain, they must first solve a cryptographic puzzle called

“proof of work,” whose intention is to make modifications to the blockchain

sufficiently costly while also making it essentially impossible for the same person

to make back-to-back changes to it.

Proof of work involves finding a string of characters that solves a puzzle. This

occurs when a candidate string, once appended to a string that identifies all

transactions in the block plus a random string, and imputed to a hash function,

leads this function to deliver an output that begins with a predetermined num-

ber of zeros. The only (known) way to solve this puzzle is by trial and error,

and by design, the probability that any one trial succeeds is constant.

iii. Once a miner solves the puzzle, the block is transmitted to all users on the
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network. Provided none of the transactions in the block are double-spent, users

proceed to implicitly accept it by working to add the next block to the chain.

Adding to a given chain makes that chain grow through what is called a leaf (a

branch of the chain). In principle, there can be multiple parallel leafs, but the

longest chain is implicitly considered to be the valid one.

The miner who solved the puzzle is awarded newly issued Bitcoin. This “block

reward,” currently 6.25 Bitcoins, is halved approximately every four years as a

way to limit the inflation of the currency.

How exactly does this decentralized system prevent double spending? By design,

an attacker cannot simply spend or take Bitcoin that never belonged to them. Sup-

pose, however, that they try to spend a given Bitcoin more than once. To do so, they

would need to go back in the chain and take back Bitcoin that they have already

spent, thus undoing that earlier transaction. Specifically, they would need to go back

in the chain to the point just before the block that contains the earlier transaction,

and then add blocks starting from that point onward. In doing so, the attacker would

attempt to create a new chain parallel to the legitimate one.

By convention, however, this new chain would only be accepted by other users on

the network, thus becoming the new legitimate one, if it is the longest one, which

means that the attacker, who starts at least one block behind, would have to outpace

all the other miners in solving new puzzles. Provided the attacker has less than half

of the network’s total computing power, the probability of this event is small, and in

fact becomes vanishingly small as the number of blocks needed to catch up increases.

Thus, by making the proof of work costly, the platform ensures that attacks are

financially untenable.

Observe that the race to add the next block to the ledger is a type of contest where

miners expend effort in the form of attempts at a solution. The first miner to succeed

wins the block reward, and at that moment all contestants are informed and that

specific contest ends. Because the purpose of the contest is to make modifications to

the blockchain costly, and at the same time issuing new Bitcoin is inflationary, the

contest designer arguably seeks to minimize the prize needed for a given total effort

level, or, equivalently, maximize total effort for a given prize.
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