Productivity Gains from Labor Outsourcing: The

Role of Trade Secrets

Gorkem Bostanci

University of Pennsylvania

April 21, 2021

Job Market Paper
Click For the Latest Version

Abstract: How quickly producers can adjust their workforce with changing demand is
important for aggregate productivity. Labor outsourcing allows quick adjustments but
potentially exposes sensitive information to outsiders, which may deter producers from
outsourcing if the legal system does not adequately protect secret information. I quantify
the impact of trade secret protection on labor outsourcing, and consequently, on aggre-
gate productivity. First, using event studies and difference-in-differences around the stag-
gered adoption of the Uniform Trade Secrets Act, I show that better trade secret protection
leads to increased outsourcing. Second, to quantify the resulting gains in productivity, I
build a structural model of outsourcing and multi-industry dynamics and estimate it with
data from the U.S. manufacturing sector. I decompose the cross-state differences in labor
outsourcing into differences in firing cost, industry composition, demand volatility, and
trade secret protection. Strengthening trade secret protection for all states to match the
state with the strictest protection would increase outsourcing employment by 29% and
aggregate output by 0.8%.
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1 Introduction

Producers” demand for workers changes over time due to fluctuating demand for goods
and the presence of tasks that are not performed frequently. Labor outsourcing allows
producers to make quick adjustments to their workforce, bypassing hiring and firing
costs. However, many jobs, which could be outsourced, also provide access to sensitive
information. For example, accountants might see financial documents, machine opera-
tors might see product designs, and security guards might see visitor lists. Sharing such
information with outsiders can be problematic if the legal environment does not provide
adequate protection for intellectual property. In such cases, producers will be reluctant
to use outsourced workers, leading to an inefficiently small outsourcing sector, slower

reallocation of workers, and reduced aggregate productivity.'

In this paper, I quantify the impact that trade secret protection has on aggregate pro-
ductivity by affecting the extent of outsourcing in the economy. To show that the legal
environment impacts labor outsourcing, I first use the staggered adoption of the Uniform
Trade Secrets Act (UTSA) among states of the U.S. Next, I develop and estimate a struc-
tural model of industry dynamics in which firms choose whether to use outsourced work-
ers in each task. I use the estimated model to measure the impact of distorted outsourcing
decisions on aggregate productivity. I find that if all states of the U.S. could protect trade
secrets as well as the state with the strictest protection, the fraction of outsourced workers

would increase by 29%, and aggregate output would increase by 0.8%.

The U.S. provides a good laboratory to study this question because it features consid-
erable variation in both trade secret protection and the extent of outsourcing. First, for
reasons that were exogenous to outsourcing, the switch to statutory law via the UTSA
happened in different years for different states, creating the heterogeneity in protection.
Second, the extent of outsourcing varies substantially, both over time and across states.
The firms that provide labor-intensive services, which were historically done in-house,
employed 11% of the U.S. labor force in 2018, yet this share was just over 3% in 1971. In
2018, these firms had an employment share of 14.3% in California (90th percentile) but
only 7.6% in Wisconsin (10th percentile).

I start by documenting three main stylized facts on the patterns of labor outsourcing

1See Decker et al. (2020) for an exercise and an overview of the literature on the relation between input
reallocation and aggregate productivity.



in the U.S. First, I show that the growth in outsourcing was not an artifact of growth in
industries that demand outsourcing more than others. Second, the growth in labor out-
sourcing is not accompanied by a similar growth in the outsourcing of physical goods.
Third, the cross-state heterogeneity in demand for outsourced workers does not diminish
once I compare the demand from more disaggregated industry groups. These facts mo-
tivate a state- and time-specific factor that determines the extent of labor outsourcing for

all industries.

To understand the role of trade secret protection, I use the staggered adoption of the
UTSA across U.S. states. First, using historical anecdotes and event studies, I argue that
timing of the adoptions was exogenous to outsourcing patterns. Second, using difference-
in-differences, I show that stronger trade secret protection has a positive and significant
impact on the size of the labor outsourcing sector. Quantitatively, improvements in trade
secret law explain 14% of the outsourcing share growth from 1971 to 1997, translating to
0.7 million new jobs in the outsourcing sector. Third, I supplement the relevance of shared
information by showing that the impact was not significant for tasks that are (1) unlikely
to involve sensitive information or (2) already subject to auxiliary enforcement through

professional organizations.

To quantify the aggregate productivity gains, I develop and estimate a structural model
of industry dynamics that is based on Hopenhayn (1992). I augment the model in two di-
mensions. First, I incorporate a task-based production framework in which firms decide
whether to use their employees or outsourced workers for each task. Unlike employees,
the number of outsourced workers can be adjusted freely, but their productivity is limited
by how much sensitive information is shared. The extent of trade secret protection deter-
mines which information can be shared without risking leaks and, thus, the tasks that can
be feasibly outsourced. Second, I extend the model to accommodate multiple industries
that use different technologies, including different tastes for outsourced labor. In total,
the extent of outsourcing can differ across states due to differences in four components: (1)
strength of employment protection; (2) within-industry firm characteristics; (3) industry
compositions; and (4) strength of trade secret protection.

I estimate the model using state-industry-level data from the U.S. manufacturing sec-
tor in 2007. I use establishment size distributions and job flows among others to identify
the magnitude of firing costs and the parameters of the production technologies (compo-
nents (1) and (2)). The fundamental identifying assumption for distinguishing (3) and (4)
is that the comparative advantage of outsourced workers (e.g., specialized knowledge)
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depends on the industry but not on the state. In contrast, the extent of trade secret protec-
tion depends on the state, but not on the industry. My identification relies on parameters
that are constant across states; hence, it requires estimating all state-industry pairs simul-
taneously. To make the estimation feasible, I continue in two stages. In the first stage,
I use the method of moments to estimate the full model separately for each state under
assumptions where the task-based production function simplifies to a CES aggregate of
employees and outsourced workers. In the second stage, I treat the estimated CES factor
shares as data and estimate the trade secret protection and outsourcing efficiency pa-
rameters separately using non-linear least squares. The estimated trade secret protection
parameters are highly correlated with the UTSA adoption dates. I find the impact of dif-
ferences in trade secret protection to be considerable. If all states had the same (average)
level of trade secret protection, the cross-state dispersion of outsourcing would decline
by 19%.

Using the model estimates, I ask how the extent of outsourcing and aggregate produc-
tivity would change if all states enforced trade secret protection as well as the state with
the strictest protection. I find that the ratio of purchased outsourcing to payroll expenses
would increase by 4.5 pp (from 13.6% to 18.1%), while the aggregate output would go
up by 0.8% ($165B in 2018). A large portion of the output growth would come through
the entry of new firms, while the size-productivity correlation in the economy would also
improve. Since the only productive input in the economy, labor, is fixed, all productivity
gains essentially stem from the improved allocation of workers between producers. The
wage levels would increase more than the increase in output, implying an increase in the
labor share. There would also be modest gains in business dynamism through increased
job reallocation and entry rates in the steady-state.

My paper is closely related to others that use estimated distortions in firm decisions
to analyze the importance of contract enforcement and trust for aggregate productivity.
Bloom, Sadun and Van Reenen (2012) find that the regions that have lower trust mea-
sures have firms with more centralized structures, slower worker reallocation, and lower
productivity. Akcigit, Alp and Peters (2021), who quantify the impact of lack of enforce-
ment and the resulting lack of delegation, find that the differences in enforcement can
explain 11% of the productivity difference between India and the U.S. Grobovsek (2020)
finds similar quantitative effects from lack of enforcement using data from France. The
closest paper to mine is Boehm and Oberfield (2020). They study the impact of weak
contract enforcement on aggregate productivity through distortions in the choice of in-



termediate inputs. In particular, in Indian states where courts are more congested, firms
substitute away from specialized intermediate inputs towards generic ones to avoid hold-
up problems. My empirical strategy is similar to theirs in that I use cross-state variation
in wedges to structurally identify distortions. However, there are methodological differ-
ences beyond the differences in our questions. Boehm and Oberfield (2020) use firm-level
data on intermediate input use, which allows them to control for a larger set of differences
across states than mine. At the same time, their model is static, which does not permit
analysis of the dynamic flexibility gains from labor outsourcing. While their measure of
court congestion is constant over time, I can use state-level changes in laws to control for

many state-specific covariates through state fixed effects.

My paper also contributes to the literature on the cost of employment protection.
The patterns and implications of labor flows have been studied extensively,” but espe-
cially more recently after Restuccia and Rogerson (2008) and Hsieh and Klenow (2009)
who showed that input misallocation can explain a large part of cross-country differences
in aggregate TFP. Hopenhayn and Rogerson (1993), using a general equilibrium setting,
found that a firing cost equal to 1 year of wages can decrease employment by as much as
2.5%.% Focusing largely on the fixed-term contracts commonly used in Europe, a branch
of the literature asked whether alternative forms of employment can help (Bentolila and
Saint-Paul (1992), Cahuc and Postel-Vinay (2002), Caggese and Cufiat (2008), Katz and
Krueger (2019)). My contribution here is two-fold. First, I study the importance of a
wide range of labor outsourcing practices instead of the fixed-term workers that tend to
work in lower-skilled occupations. Second, I allow outsourced workers to be imperfect

substitutes to permanent workers and evaluate distortions that limit their utilization.

My paper is also related to the literature that examines the determinants and conse-
quences of labor outsourcing. The large growth in labor outsourcing practices brought
nationwide surveys, as in Harrison and Kelley (1993), Abraham and Taylor (1996) and
Houseman (2001). The three biggest reasons managers list for outsourcing are higher flex-
ibility, access to specialized labor, and cost savings. Autor (2001), Houseman, Kalleberg
and Erickcek (2003) and Autor and Houseman (2010) analyze how outsourcing allows
employers to screen potential hires. Bidwell (2012), using data on outsourcing projects

2See Davis and Haltiwanger (1992), Caballero and Hammour (1994), Bartelsman and Doms (2000), Fos-
ter, Haltiwanger and Krizan (2001), Autor, Kerr and Kugler (2007).

3Bento and Restuccia (2017) and Da-Rocha, Restuccia and Tavares (2019) have found the impact of firing
costs on employment and productivity becomes even larger once the life-cycle productivity growth of firms
is endogenized. The impact of employment protection laws on labor allocation had been an active area,
following the early contributions by Lazear (1990) and Bentolila and Bertola (1990).
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within a single firm, suggests that personal interests of managers play a role in outsourc-
ing decisions. More recently, Goldschmidt and Schmieder (2017) and Drenik et al. (2020)
use microdata on both the employer and client of outsourced workers to confirm the cost
saved by outsourcing instead of hiring.* Adding to the literature, I propose and quan-
tify the trade secret protection as a concern in labor outsourcing decisions. My model
incorporates an examination of how outsourcing impacts flexibility, access to specialized
talent, and cost savings in a simplified way. However, it does not incorporate the poten-
tial benefits through screening or an organizational conflict within the firm. Lastly, Bloom
et al. (2013) and Bruhn, Karlan and Schoar (2018), using RCTs, document large sustained
gains from receiving free management consulting services. I confirm their findings in a

macroeconomic setting.

Last, my paper is related to studies of firm boundaries. Following Coase (1937),
Williamson (1975), and Grossman and Hart (1986), the literature analyzes how imperfect
contract enforcement impacts the organization of production. The empirical literature
has broadly focused on either the make-or-buy decisions for physical inputs by multi-
nationals or the competitive effects of vertical integration.” I contribute by showing that
intellectual property protection is specifically important for the make-or-buy decision for

services.’

The rest of the paper is structured as follows. Section 2 summarizes trade secret pro-
tection in the U.S. and how it matters for labor outsourcing in particular. Section 3 docu-
ments new facts on outsourcing as well as a causal link from trade secret protection that
motivates the structural model. Section 4 presents the structural model, while Section 5
presents the estimation strategy and results. Section 6 presents the counterfactual exercise
and Section 7 concludes.

“For papers that analyze the macroeconomic implications of growing labor outsourcing, see Berlingieri
(2013) for the structural transformation in the U.S., Giannoni and Mertens (2019) for the trends in labor
share, and Bilal and Lhuillier (2020) and Bergeaud et al. (2020) for wage inequality.

See Antras (2003), Nunn (2007), Corcos et al. (2013), Antras, Fort and Tintelnot (2017), and Boehm
(Forthcoming) for discussion on multinational organizations. See Alfaro et al. (2016), Crawford et al. (2018),
Hansman et al. (2020) for research on competitive effects and Lafontaine and Slade (2007) for a broad review
of this literature.

The idea that firms provide a structure that protects secrets has been proposed as early as Alchian and
Demsetz (1972) and Liebeskind (1996). See Rajan and Zingales (2001) and Henry and Ruiz-Aliseda (20164)
for theoretical analyses and Ethier and Markusen (1996), Fosfuri, Motta and Rende (2001), Bolatto et al.
(2020), and Kukharskyy (2020) for the make or buy decision of multinationals in countries with weak IP
protection.



2 Background

I start this section by defining trade secrets and discussing their significance for busi-
nesses. Second, I discuss the historical development of the trade secret law in the U.S,,
emphasizing the Uniform Trade Secrets Act (UTSA). Third, I discuss how trade secret law
impacts employees and outsourced workers differently.

2.1 Trade Secrets

The USPTO defines trade secrets as “information that has either actual or potential inde-
pendent economic value by virtue of not being generally known, has value to others who
cannot legitimately obtain the information, and is subject to reasonable efforts to main-
tain its secrecy”. Business information such as customer lists and pricing strategy as well
as R&D related information such as manufacturing techniques and designs can be trade

secrets.

Trade secrets are arguably the most important form of IP for most businesses. Protect-
ing information on clients and suppliers, pricing strategies, and long-term growth plans
have historically been essential for firms. On the other hand, only a fraction of firms en-
gage in formal R&D, and among those that do, a small fraction holds patents. Moreover,
trade secrets are still a fundamental part of R&D, even when the ultimate goal is to get a

patent.

Trade secrets are understudied compared to other forms of IP, as assigning a dollar
value to secrets is hard with the absence of an explicit market.” The lack of legal unifor-
mity has also limited statistical research on trade secret protection, even though they are
the most litigated form of intellectual property (Lerner, 2006).

"The 2017 report by the Commission on the Theft of American Intellectual Property estimates the total
cost of trade secret theft to the U.S. economy to be between 1% to 3% of GDP, which is somewhere between
the yearly outlays to the Dept. of Education and Dept. of Defense.



2.2 Trade Secret Protection in the U.S.

Before 1979, trade secrets were protected exclusively under common law.® This created
two main problems. First, as no two cases are the same, there was uncertainty regarding
the law’s extent.” Second, three standard requirements -to declare the act as a trade secret
violation- were unfit for outsourcing practices: (1) information had to be illegally appro-
priated, (2) the accused party had to be in direct competition with the plaintiff, and (3)
those who have paid an amount in good faith to purchase the information from the ac-
cused were not prevented from further use (Lao (1998)). Because the outsourced worker
would usually receive the information legally and act only as an intermediary between
the client and its competitor, the law did not provide adequate protection for outsourcing
relationships.

The Uniform Law Commission has drafted the Uniform Trade Secrets Act (UTSA) in
1979. The UTSA statutes defined which information constitutes a trade secret, which acts
constitute misappropriation, and which are the associated remedies. It also broadened
the law’s scope, e.g., by making misappropriation itself a crime, without the information
being used or disclosed. Most importantly, it made third parties liable if they receive this
information with a reasonable expectation that it is misappropriated. Each state had to
opt-in for the UTSA to be effective in its courts. Minnesota, Idaho, Arkansas, Kansas, and
Louisiana were the first states to adopt it in 1980. By 1988, 26 states had already adopted
it, and by 2019, all states did."’

2.3 Trade Secret Protection and Labor Outsourcing

There are two main reasons why trade secret law is crucial for labor outsourcing. First,

although its extent varies, all outsourced workers are exposed to some trade secrets. Sec-

8Common law, as opposed to statutory law, does not rely on a codified set of rules. Instead, it uses
previous court decisions to reach new ones.

9”_.. even in states in which there has been significant litigation, there is undue uncertainty concerning
the parameters of trade secret protection, and the appropriate remedies for misappropriation of a trade
secret.”, UTSA Prefatory Note (1985). See Appendix E for details on the legal environment under common
law.

"There have been two other main developments in trade secrets protection. Economic Espionage Act
of 1996 made trade secrets misappropriation that is either interstate or benefits a foreign power” a federal
crime. The Defend Trade Secrets Act of 2016 (DTSA) allowed any trade secret misappropriation case to be
seen in federal courts. Although both are significant developments, they happened at the national level,
making it harder to measure their impact.



ond, it is harder to prevent outsourced workers from disclosing secrets to third parties
compared to employees.

High-skill outsourcing generally provides a personalized solution to the client’s prob-
lem; hence it is straightforward how an outsourced R&D expert or an accountant would
be exposed to secret information. Albeit to a lesser degree, trade secrets are also relevant
for the low-skilled. An outsourced machine operator would be exposed to product de-
signs and daily production volumes. An outsourced personal assistant would have access
to manager’s daily activities, including meetings with other branches and business part-
ners. Furthermore, having access to facilities may enable overhearing the managers’ dis-
cussions and the rumors circulating among other workers''. In short, outsourced work-
ers’ regular activities inherently create exposure to firm secrets unless the firm explicitly

limits their access, which would reasonably reduce their value.

The data from trade secret litigation confirm the intuition. First, limiting access to
certain ‘labs” does not protect the business from trade secret misappropriation. Almel-
ing, Snyder and Sapoznikow (2009) shows, in their sample of U.S. federal district court
cases in 2008, only 35% involved any technical information or know-how. 31% involved
customer lists, and 35% involved non-technical business information. Second, the misap-
propriator is almost always someone who has physical access to the secret: an employee
or a business partner in 90% and 93% of the cases for the cases in federal and state ap-
pellate courts, respectively (Almeling et al. (2010)). Similarly, the defendant was either a
former, current, or an outsourced worker in 76% of the cases tried under the Economic
Espionage Act (Searle (2012)).

Employees are less susceptible to these concerns than outsourced workers for two
main reasons. First, voluntary disclosure of secrets is less likely for employees. Because
the employment relationship is generally of longer-term'?, it allows the design of bet-
ter incentives for the employee to work in the best interest of the employer (Liebeskind
(1996), Gibbons, Roberts et al. (2013)). Second, inevitable disclosure is less likely for em-

HIn SEC v. Steffes, No. 01 Civ. 06266 (N.D. Il1. Sept. 30, 2010), the SEC alleged railroad workers “traded
and tipped on observations made on the job, including seeing people in suits tour the rail yards, hearing
coworkers discuss the possible sale of their company, and being asked to prepare asset valuations.”Cohen
and Dunning (2010)

2There is no legal constraint on how long an outsourcing relationship lasts. However, longer relation-
ships make it more likely that the courts will interpret it as a de facto employment relationship in case of a
dispute, especially upon termination. See Amarnare v. Merrill Lynch, Pierce, Fenner & Smith Inc., (611 F.
Supp. 344 S.D.N.Y. 1984).



ployees. While covenant not to compete (CNC) agreements'” are ubiquitous among em-
ployees that work with sensitive data (Jeffers (2018), Shi (2020)), they are not common
in outsourcing agreements, being directly at odds with the business model of most out-
sourcing firms.'* Lastly, signing a non-disclosure agreement helps, but how it is enforced
is largely determined by the trade secret law (See Appendix E.2).

In short, firms have reason to avoid labor outsourcing to limit the risks of losing trade
secrets. The next section tests and confirms this hypothesis using the cross-state legal
variation across the U.S. The modeling choices in Section 4 are based on the frictions

discussed here.

3 Empirical Analysis

In the first half of this section, I document two broad facts on domestic'® labor outsourcing
in the U.S, focusing on its growth and cross-state heterogeneity. In the second half, I argue
the trade secret laws in the U.S. help explain the two facts.

I define labor outsourcing as the purchase of labor-intensive services that can other-
wise be done in-house. My definition is far from being arbitrary. The businesses that pro-
vide outsourcing as I define it are conveniently classified into two 2-digit NAICS sectors.'°
NAICS 54 (The Professional, Scientific, and Technical Services) principally employs high-
skill occupations such as consultants, accountants, and data analysts. NAICS 56 (The
Administrative and Support and Waste Management and Remediation Services) princi-
pally employs lower-skilled occupations such as machine operators, security guards, and
janitors. The output of both sectors is mainly used as an intermediate input by other
sectors. The set of industries in this definition is similar to Berlingieri (2013), but more
extensive than Autor (2003) and Katz and Krueger (2019) who prioritize temp agencies.

I3CNC agreements designate a period for which the employee cannot work in the same industry with
the previous employer upon termination of the employment contract.

14“Firms regularly hire consultants to advise on sensitive business problems, and one of the important
qualifications of the consultants seems to be that they know the industry well-they have offered similar
consulting services to the competitors.” Kitch (1980)

15T abstract from foreign outsourcing (e.g., call centers abroad) because it constitutes a relatively small
fraction (3.5% in 2004) of total labor outsourcing practices (Amiti et al., 2005). See Appendix C for the cross-
country evidence on the relationship between outsourcing and trade secret protection. The cross-country
evidence broadly supports the analysis within the U.S.

16See Appendix B for the few exceptions, the details of the selection of industries, and how I map different
classifications to one another.



Throughout the paper, I refer to the firms and the industries that supply labor out-

sourcing services as the outsourcing firms and the outsourcing sector for brevity.

3.1 Facts on Domestic Labor Outsourcing

Here, I present two sets of facts that shows a large heterogeneity in labor outsourcing
across states and over time in the U.S. Furthermore, the heterogeneity is not explained by

differences in skill levels, industries, and occupations.

Fact 1: The outsourcing sector’s employment share has tripled since the 70s.

The outsourcing sector’s employment share increased from 3% in 1971 to 11% in 2019.
The left-hand side panel in Figure 1 depicts the normalized non-farm employment, ser-
vice employment, and employment in the outsourcing sector. The average growth in the
outsourcing sector far exceeds the US non-farm and services employment. The right-hand
side panel shows the large growth was evident for both skill groups. So, the underlying

reasons cannot be exclusively based on the skill level.

The growth in outsourcing was also not an artifact of (1) the growth in industries that
historically had above-average demand for outsourcing or (2) the growth in demand for
occupations that historically had been outsourced more than others. I use the BEA Inte-
grated Production Account and find the aggregate ratio of purchased services to value-
added has increased from 0.25 in 1963 to 0.44 in 2018. Using the time series for 63 in-
dustries, I compute the counterfactual growth if each industry’s purchased services ratio
remained constant while the output shares changed as they did (between-industry), and
if the output shares remained constant while the purchased services ratios changed as
did (within-industry). I find that 84% of the growth is within-industry, i.e., would still

happen with no structural change.

I further check whether the growth in services outsourcing is part of a broader trend of
shrinking firm boundaries. On the contrary, the ratio of all intermediate inputs to value-
added has decreased from 0.83 to 0.76 during the same period. Although each industry

uses more intermediate inputs on average, the structural shift from manufacturing to
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Figure 1: Employment Trends in Multiple Industry Groups (1971-2019) Notes: See Appendix B
and Table 7 for details on how I pick and classify sectors into low and high skill outsourcing. Service
Employment in the left panel consists of all U.S. Census 1990 3-digit industry groups from 400 to 892.
Sector level employment is from the Annual Social and Economic Supplement (ASEC) of IPUMS-CPS.
Total Non-farm employment is published by the Bureau of Labor Statistics (BLS).

services more than canceled the growth."”

Fact 2: The supply of and demand for outsourcing is heterogeneous across states.

I define a state’s ‘supply” of outsourcing as how much outsourcing services it provides,
and its ‘“demand’ as how much outsourcing services is used there.'"® To measure the sup-
ply of outsourcing, I use the American Community Survey from the IPUMS USA database
to get employment shares for outsourcing providing sectors. Figure 2a presents the shares
across the states of the U.S. First, there is considerable heterogeneity: the state at the 90th
percentile has a share of 14.3% while the 10th has 7.6%. Second, a large part of the hetero-
geneity comes from high-skill outsourcing: the outsourcing employment share and high
skill ratio have a correlation of 0.6.

To measure the demand for outsourcing, I use the 2017 Census of Manufactures in Fig-

7Berlingieri (2013) does a similar test for occupations. He picks occupations that are predominantly
employed in outsourcing sectors and tracks their employment share over time. He finds that this share
shows no trend after 1970, where most of the outsourcing growth happens.

8The two need not equal as outsourcing services provided by a firm in one state can be used by a firm in
another state.
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(b) Ratio of Outsourcing Expenses to Annual Payroll in Manufacturing Sectors
The Cross-state Supply of and Demand for Labor Outsourcing Notes: The details on the
data sources and the state abbreviations are available in Appendix B.

(2017) Notes: The top panel provides estimates for all NAICS manufacturing sectors
(31-33), the bottom left panel for Plastics and Rubber Products Manufacturing (326),

and the bottom right panel for Machinery Manufacturing (333). In each panel, only
the states with complete data on each of the four outsourcing expenses are included.

All panels use data from the 2017 Census of Manufactures.

Figure 2



ure 2b, which provides estimates of expense items for employer establishments. Specif-
ically, it gives expense estimates for Temporary Staff and Employee, Data Processing
Services, Advertising and Promotional Services, and Professional and Technical Services
among others. For each state, I plot the ratio of their sum to the Annual Payroll. First, the
state-level heterogeneity is comparable to the heterogeneity in supply. The state in the
90th percentile has a ratio of 0.18, while the 10th has 0.1. Second, heterogeneity does not
concentrate on one of the four types of outsourcing expenses. Third, it does not disappear
at more disaggregated levels. For example, both the Plastics and Rubber Products Man-
ufacturing and the Machinery Manufacturing exhibit similar degrees of heterogeneity in
outsourcing expenses, although their composition is very different.' Fourth, states with
higher outsourcing ratios are also the ones that have a larger share of their outsourcing in
high-skill tasks, with a correlation of 0.32.

3.2 Evidence on the Effect of Trade Secret Laws

The previous facts presented a considerable heterogeneity in labor outsourcing both across
states and over time that was not explained by differences in skill levels, industries, and
occupations. Here, I test whether the differences in trade secret protection over time and

across states play a role.

Data and the Estimation Method

Testing the impact of trade secret protection is not straightforward for a few reasons. First,
the legal frameworks differ across states in clarity and scope, which are hard to quantify.
I use two measures in this section, namely, adoption of the Uniform Trade Secrets Act
(UTSA) and the trade secret protection index (TSP index henceforth) constructed by Png
(2017a) and Png (2017b). The adoption of the UTSA was essential both for reducing the
uncertainty about the trade secret protection and extending its coverage, particularly for
labor outsourcing relationships. The TSP index evaluates whether states had certain types
of protections in a given year and assigns a score ranging from 0 to 1 (See Appendix B for
details).

YThe degree of heterogeneity also persists at the 6-digit industry level; however, the data is censored
for most state-industry pairs to ensure the confidentiality of firm data. For example, the 10th and the 90th
percentiles are 9% and 18% in the Plastics Pipe and Pipe Fitting Manufacturing (NAICS 326122).
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Second, I need a measure of the extent of outsourcing. Unfortunately, comprehensive
data on demand for labor outsourcing does not exist before 2007. Thus, I use the supply
of labor outsourcing as my measure.”’ 1 use the state-year level employment shares of
the outsourcing sector from the ASEC samples. In total, I have an unbalanced panel of 50
states and the District of Columbia from 1970 to 1997.

Last, to measure the causal link, I need exogenous variation in protection. The UTSA
provides precisely that. After being drafted, each state had to opt-in to start using it. The
adoption times differed significantly (See Figure 16), creating cross-sectional variation in
trade secret protection on top of the time-series variation. After arguing its exogeneity,
I use the staggered adoption of the UTSA as my exogenous variation for trade secret
protection.

The staggered adoption of the UTSA allows aggregating the information from difference-
in-differences (DiD) comparisons across multiple pairs of states over many periods. The
Two-Way Fixed Effects (TWFE) estimator provides an intuitive tool and is widely used in
studies with staggered adoptions. However, the recent work following Goodman-Bacon
(2018) has shown TWFE may fail to give (1) consistent test statistics for pre-trends and
(2) intuitive measures of treatment effects without strong assumptions (Appendix F for
details). In my analysis, I primarily yield to the historical setting to argue for the exo-
geneity of the UTSA adoptions, together with statistical tests for pre-trends. I then pro-
vide estimates from both the TWFE estimator and the estimator proposed by Callaway
and Sant’Anna (2020), which remains consistent under multiple dimensions of treatment

heterogeneity and selection into treatment based on covariates.

Exogeneity of the UTSA Adoption

I start by confirming that the adoption of the UTSA did not coincide with the adoption of
other major state-level laws. The adoption time of the UTSA has a weak correlation with
the adoption of other commercial uniform laws (<0.13) and employment protection laws
(<0.04) across states.

20 Although there was no definitive procedure, the governing law was of the state where the misappro-
priation happened in a large majority of cases (See Appendix E.3). This state would generally be the one
where the client operates, especially in the 80s and 90s. As long as outsourcing firms are more likely to
serve clients in their states, my mechanism predicts a positive relationship between the strength of trade
secret protection and the employment share of the outsourcing sector in that state.
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The adoptions” history suggests the timing choices of states were less about economic
concerns and more about differences in legal structures and opinions. First, Ribstein and
Kobayashi (1996) show the basic economic characteristics like size, population density,
and state expenditures were irrelevant in explaining the adoption of any uniform law.
The structure of the state legislatures (e.g., size of chambers), on the other hand, had
predictive power on the adoption dates. Second, Sandeen (2010) documents, many states
postponed their adoption of UTSA to after 1985 due to the opposition organized by a
single attorney who argued certain clauses could be misinterpreted. Last, Png (2017a)
discusses how UTSA was adopted in California only when proposed a second time and
rejected in New York for reasons unrelated to the intended coverage of the UTSA. The
opposition came from farmworkers in California and trial lawyers in New York. They
were concerned that the law can be used to hide information about pesticides and trial
evidence, respectively.”! The convergence also supports the argument for differences in
legal opinions: all states adopted a version of the UTSA eventually.

The quantitative tests do not suggest the presence of pre-trends either.”> First, I run
the classical event study regression with the leads and lags of the treatment in a TWFE
setting

Yit = Z 01 Aint + 04 A j>a + 05 Ait <5 + Bri + oy + Y + € (1)
le{—4,-3,-2,0,1,2,3}

where y;, is the log employment share of outsourcing sectors, A is equal to 1 if for state
i, year t is [ years after the adoption of the UTSA. The coefficient estimates are in Figure
3a. There are no signs of a pre-trend, i.e., the states that are closer to adoption have com-
parable outsourcing shares to others. However, the plot also hints at dynamic treatment
effects: it takes a few years for the treatment to have full effect. Thus, the pre-trend test
likely suffers from the bias suggested by Sun and Abraham (2020). Thus, I supplement
the analysis by using the estimator by Callaway and Sant’Anna (2020) (CS henceforth).

CS starts with the concept of group-time average treatment effects on the treated:

ATT(g,t) = E[Y:(g) — Y2(0)|G = g] (2)

ZSimilarly, during the United Kingdom’s implementation of the Trade Secrets Directive in 2018, the
opposition centered around whether the law would be used against journalists and whistle-blowers (IPO
(2018)).

22Png (20174) and Klasa et al. (2018) provide several tests and conclude variables used in their analysis
including R&D expenditures and capital structures of firms do not predict the adoption of the UTSA.
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0.4

(a) Two-way Fixed Effects (1977-1997) (b) Group-Time ATT (1977-1987)
Figure 3: Event Study Estimates for the UTSA Adoption Notes: The X-axis refers to [ in (1) for the left
panel and ¢ — g in (3) for the right panel. Y-axis provides the corresponding estimates with 95% confidence
intervals constructed from standard errors clustered at the state level. I use the doubly-robust balancing
procedure in the right panel. The outsourcing shares and employment series are from the IPUMS-CPS
database. The controls are population, GDP, manufacturing GDP, manufacturing employment, unioniza-
tion rate, high school and college shares, and adoption of exceptions to at-will employment. Since the CS

estimator relies on propensity score matching, the control group must be sufficiently large for estimation.
Hence, the estimation only runs for adoptions until 1987. See Figure 1 for details on included industries.

where g denotes group index (the adoption time), GG; denotes the group of unit i, Y;(g)
(Y;(0)) denotes the outcome variable at time ¢ conditional on being treated at time g (never
being treated). Thus, ATT(g,t) denotes the effect of being treated at time g that is mea-
sured in time ¢, thus allows heterogeneity across groups and dynamic treatment effects.
Furthermore, by conditioning on being treated, it controls for selection into treatment.”

After identifying AT'T'(g,t), CS aggregates them over ¢ to get average dynamic effects:

.
Ople) =Y {g+e<TIATT(g,g+e)P(G=g|G+e<T) (3)

g=2

where e denotes the exposure time and 0p(e) are the counterparts of the event study
estimates of the classical DiD under homogenous treatment. Lastly, AT7(g,t) can be
aggregated over both g and ¢ to get an overall treatment effect:

09 ==Y 0s(9)P(G =g) 4)

BCS identifies ATT(g,t) under the assumptions of parallel trends (conditional on observables) and ab-
sorbing treatment. In particular, to avoid the bias generated by dynamic treatment effects, CS only uses
units that are not yet treated in the control group and uses propensity score matching to balance the two
groups on relevant observables to take potential selection into treatment into account.
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Figure 3b plots the event study estimates from (3), which confirm the findings with the
TWEE: there are no apparent pre-trends, and the full effect is realized only a few years
after the adoption.

The Impact of Trade Secrets Laws

Having established a case for the exogeneity of the UTSA adoption, I use the variation it
created to estimate the impact on outsourcing employment.

I have so far ignored that trade secret protection may have differed both pre- and
post-adoption across states. I use the TSP index as the regressor in the main specification
below, instrumented by the adoption dummy in a TWFE model. Therefore, I measure
the impact through an index that quantifies this heterogeneity while restricting attention
to changes through the UTSA. To test the results’ robustness, I also use the CS estimator
to take selection into treatment, dynamic treatment effects, and treatment heterogeneity
over time of adoption into account. In the main specification, I estimate a TWFE-IV model
of the form:

Yir = Btspi + B + o + v + € (5)

where y;, is the log employment share of outsourcing sectors, tsp;; is the TSP index, z;; is
the vector of controls, a; and 7, are the state and year fixed-effects. «; helps control for
state-specific factors that remain constant over time, such as persistent differences in state
subsidies and the availability of natural resources. 7; provides a non-parametric time
trend, controlling for broad trends in the economy, such as the growth in information
technology and changes in the federal subsidies. I instrument the TSP index with the
adoption dummy for the UTSA and use White standard errors clustered at the state level.

Table 1 presents the regression results. Trade secret protection has a positive and statis-
tically significant effect at 5% level, in line with my hypothesis. Moreover, the quantitative
estimates are similar across specifications without controls or instrumentation. Using the
estimates, I find the outsourcing sector would be 14% smaller in 1997 had all the controls
changed as they did, but the TSP indices remained the same as the 1971 levels, translating
to 0.7M jobs.

I also use the CS estimator’s overall treatment effect in Equation (4), which gives com-
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Table 1: Two-way Fixed Effects Estimation

Adoption  Index 1Y Adoption  Index v
1) (2) 3) 4) @) (6)
TS Protection 0.05* 0.12* 0.12* 0.06** 0.13** 0.13**
(0.03) (0.06) (0.06) (0.03) (0.05) (0.06)
Demographics Yes Yes Yes
Ind Composition Yes Yes Yes
Union Yes Yes Yes
WDL Yes Yes Yes
State & Year FE Yes Yes Yes Yes Yes Yes
Range ’70-'97 ’70-97  ’70-'97 ’70-"97 ’70-'97  '70-'97
Observations 1,180 1,180 1,180 1,180 1,180 1,180

Notes: The dep. variable is the log outsourcing sector share of employment. The em-
ployment series are from IPUMS-CPS. See Figure 1 for details on included industries.
The main variable of interest is the UTSA adoption dummy in columns (1) and (4), and
the TSP index in others. Columns (2) and (4) present OLS estimates while (3) and (6)
present IV estimates. Columns (4)-(6) controls for unionization rate, the share of college
and high school graduates, the exceptions (good faith, implied contract, public policy)
to the at-will employment as well as logged population, GDP, manufacturing GDP, and
manufacturing employment. See Appendix B for details on how each variable is con-
structed. I cluster the standard errors at the state level. *p<0.1; **p<0.05; ***p<0.01

parable results.”* The CS estimates are qualitatively in line with the TWFE estimates,
although their magnitude is larger. The difference in magnitudes may indicate large dy-

namic treatment effects, as suggested by the event study estimates in Figure 3.

Two additional concerns bias the estimates towards 0 and cannot be resolved without
additional data. First, the treatment also impacts the control group. Once a state adopts
the UTSA, its subsequent decisions may affect others that are yet to adopt. As the extent
of cross-state citations increases, my estimates’ bias would be greater. Second, the data
available for this period is on the supply side, while the adoption reasonably impacts

the demand. As the extent of cross-state trade of outsourcing services increases, my esti-

2Since CS takes potential selection into treatment based on observable covariates into account, it requires
a large enough control group for balancing the treatment and the control groups. A larger estimation period
allows using more pairwise DiD estimates to incorporate in the estimation. However, as the estimation
horizon grows, the control group’s size gets smaller, and the balancing becomes less precise and eventually
infeasible. Lastly, the CS estimator requires a balanced panel; hence the longest estimation period I can use
is from 1977 to 1987. I also present results from smaller horizons where the balancing is more precise.
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Table 2: Overall Treatment Effect via Group-Time ATT Estimates

1) &) ®) ) ©) (6)
UTSA Adoption 0.20 0.13 0.16 0.16 0.11 0.16
(0.077) ~ (0.076)  (0.065)  (0.057)  (0.047)  (0.051)

Range '77-'82  '77-'83  '77-'84  '77-'85 7786  '77-'87
Number of Adopted States 6 9 11 11 13 19

Notes: The estimates correspond to Callaway and Sant’Anna (2020) group-time att esti-
mates integrated over time of adoption and the length of exposure to treatment using (4).
The dependent variable is the log outsourcing sector share of employment, and the treat-
ment is the adoption of the UTSA. The control group consists of states that are not-yet-
treated, and the balancing is done via the doubly-robust estimation method by Sant’Anna
and Zhao (2020). See the notes for Table 1 for a list of control variables included and details
on the variables.

mates’ bias would be greater. The structural model in Section 4 uses demand-side data to
circumvent the second problem, while the first problem requires measuring the extent of

cross-state legal influence.

Placebo Regressions

If trade secret protection is indeed important, the effect of laws should be greater for high-
skill outsourcing, where the exposure to trade secrets is arguably higher. In columns 2 and
3 of Table 1, I estimate Equation (5) for high-skill and low-skill outsourcing sectors sepa-
rately. In line with the theory, the impact on high skill outsourcing is greater. In column
4, I address 3-digit sectors 841 and 890, which mainly employ lawyers and accountants
subject to client privilege codes: her association would disbar an accountant or lawyer
that discloses her client’s information to 3rd parties.”” Hence, these two sectors should be
affected to a lesser extent. The estimate confirms this, where the estimate is both quanti-
tatively smaller and not different from 0 at a 10% significance level. Lastly, in column (5),
I re-run column (1) excluding subsector 732 (Computer and data processing services) and
confirm that the concurrent growth of the role of computers in businesses does not drive
the results.

25Gee the American Institute of Certified Public Accountants’ Trust Services Criteria and the American
Bar Association’s Model Rules of Professional Conduct.
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Table 3: Placebo Regressions

Outsourcing Share  High-Skill ~ Low-Skill =~ Leg-Acct  Except Comp
(1) (2) 3) (4) ©)

TSP Index 0.13** 0.18** 0.12 0.13 0.13*
(0.06) (0.09) (0.08) (0.11) (0.07)

Range '70-'97 '70-'97 '70-'97 "70-'97 ' 70-'97

Observations 1,180 1,174 1,175 1,177 1,180

Notes: The outsourcing shares and employment series are from the IPUMS-CPS database. See
Figure 1 for details on included industries and their assignment into skill bins. The fourth col-
umn is the total employment in 3-digit 1990 U.S. Census sectors 841 (Legal services) and 890
(Accounting, auditing, and bookkeeping services). The fifth column is all 3-digit high skill out-
sourcing sectors except for 732 (Computer and data processing services). Standard errors are
clustered at the state level. See Table 1 for details on the controls. *p<0.1; **p<0.05; ***p<0.01

4 A Model of Outsourcing and Trade Secret Protection

In this section, I construct a multi-industry firm dynamics model based on Hopenhayn
(1992), where firms decide whether to use in-house or outsourced workers for various
tasks. Outsourced workers are more productive in certain tasks and are easier to adjust,
but need firm-specific information to perform. The effective trade secret protection deter-

mines what amount is safe to share, i.e., the size of the enforcement friction.

The model provides three main inputs that allow quantifying the output cost of en-
forcement frictions using the observed cross-state heterogeneity in outsourcing use. First,
it provides a mapping between observables such as firm size distribution and job destruc-
tion rates and structural parameters such as demand persistence and labor adjustment
costs. Second, it incorporates an intuitive restriction: the productivity advantage of out-
sourced workers depends on the industry but not on the state. In contrast, the strength
of trade secret protection depends on the state but not on the industry. Third, it maps
estimated firm-level distortions to aggregate productivity by taking general equilibrium

effects through product and labor markets into account, providing the final piece.
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4.1 Environment
4.1.1 Agents and Preferences

The economy consists of (1) a decreasing returns-to-scale (DRS) intermediate goods sector
with K industries, (2) a constant returns-to-scale (CRS) final good sector, (3) a CRS out-
sourcing sector, and (4) a unit measure of workers. Each K industries in the intermediate
sector have a continuum of firms and a large pool of potential entrants. All firms max-
imize expected discounted profits. Each worker inelastically supplies one unit of labor

and is indifferent between being a permanent or outsourced worker.

4.1.2 Technology

The Final Good and Outsourcing Sectors

All the action in the model is in the intermediate goods sector, so I quickly discuss the
other two sectors here. The final goods sector produces the final good by aggregating the
intermediate goods, solving:

K 1 K
mas p(zykw) ~3 ©)
iehi k=1 k=1

where 1/(1 — w) is the elasticity of substitution across intermediate goods.”® The out-
sourcing sector transforms each worker into an outsourced worker. Since both sectors

make 0 profits, firms” ownership and size are irrelevant.
The Intermediate Goods Sector

The intermediate goods sector consists of K industries. To simplify the notation, I
avoid the industry subscript whenever possible. The structure of the environment is the

same across all industries; only the parameter values potentially differ.

I use a task-based production technology similar to Zeira (1998) and Acemoglu and
Restrepo (2018). The production of each firm is a CES aggregate of production in individ-

26T do not model demand shares for intermediate goods explicitly, since it is not possible to distinguish
them from intermediate goods prices without data on quantities.
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ual tasks that are indexed by i € [0, 1]:

y = ( /0 1y<i>ﬁdz‘> )

where 6 < 1 controls returns to scale and 1/1 — ~ is the elasticity of substitution across

2

tasks. Each task i can be done with permanent or outsourced workers:

y(i) = g(i)n(i) + 1zzcayyor(i) (8)

where n(7) and r(i) denote the number of permanent and outsourced workers assigned
to task ¢, g(i) denotes the marginal product of permanent workers in task ¢, § denotes the
marginal product of rented workers, and z denotes the amount of firm-specific knowl-
edge shared with each outsourced worker. ((i) denotes the minimum amount of infor-
mation that must be shared to outsource task i. The relative sizes of g(i) and ¢ determine
gains from outsourcing a task, while ((¢) puts a hard constraint on which tasks are feasible
to be outsourced.”

Iassume g(7) is strictly increasing, i.e. (1) the tasks are ordered by how suitable they are
to outsourcing, and (2) there is a strict ordering of their suitability. The next assumption
is less innocuous.

Assumption 1. ((¢) is strictly increasing.

Assumption 1 implies that the gains from outsourcing (¢(7)) strictly decreases with
the required amount of information for the task to be outsourced. This assumption can
be micro-founded with a model with communication costs. Relaxing it requires a two-
dimensional task space, which is mathematically straightforward but also harder to in-
terpret and complicates the notation. Nevertheless, this assumption is rather conserva-
tive for the impact of strengthening trade secret laws. The tasks that would provide the
highest marginal gain once outsourced are assumed to be the ones that are already out-

sourced.

To make the structure more concrete, imagine SD, a software design firm whose tasks

can be grouped into office security, testing, and design. The left-hand side panel in Figure

7] abstract from capital as an additional input in the production process. Veracierto (2001) has previously
shown that explicitly modeling capital does not impact the quantitative inference on steady-state labor
flows in industry dynamics models.
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Figure 4: The Task Allocation Problem of a Software Design Firm Notes: The dashed line pieces
denote the upper-envelope of the two lines.

4 places the tasks in the x axis, where the increasing and flat lines represent the marginal
product of permanent and outsourced agents respectively in each task i. Design tasks are
the firm’s core functions and require knowing the specifications of clients, how the data is
organized, etc. The extent of information required would make it more efficient to use a
permanent worker. On the other hand, office security requires little firm-specific knowl-
edge; it could be even more productive once outsourced from a security company with
better training material. Testing would be in the middle, requiring some firm-specific
knowledge, such as the designed software’s potential flaws, but not as much as required
by the designers. First, suppose the information-sharing constraint (2 > ((i)) was not
present. Assuming the marginal costs are constant and equal, SD would choose to use
permanent workers for design and some testing functions and outsource the rest as in the
middle panel of 4. However, when the information-sharing constraint is binding, as in
the right-hand side panel, effective marginal product becomes zero for the outsourced in
tasks that do not satisfy the constraint. Hence, SD would be forced to outsource a smaller
set of tasks.

Why does SD not share as much information as possible then, i.e., maximize 2? If SD
shares too much, the outsourced would find it more profitable to steal the knowledge,
risking a potential lawsuit. Instead of explicitly modeling the ‘trade secret theft” and its
aftermath, which is not the focus of the current paper (See Section 4.4), I simplify it into
a hard constraint: the firm only shares an amount that does not induce the outsourced
worker to steal. How much information is ‘too much’ is determined by 7, which I intro-

duce next, which represents the trade secret protection provided by the courts.
The Intermediate Firm’s Static Allocation Problem
Before completing the description of the environment, I first characterize the firm’s
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static task allocation problem with a given number of workers. I then use the solution
to this problem later, which simplifies describing the rest of the environment. The firm
with n permanent and r outsourced workers chooses how many to allocate each task

(n(i),7(7)), and how much information to share with the outsourced (z) to solve:

1 v
F(n,r) = (rgla(x) (/ y(i)“’di)
n(i),r(),z 0

(Task production) y(i) = g(i)n(i) + Li.>c)yor (i) o)

1 1
(Resource Constraints) / r(i)di =r, / n(i)di =n
0 0

(Information-Sharing) =z <7

The last constraint represents the legal friction: with perfect enforcement, 7 would equal
one and the information-sharing constraint would be redundant. Given the assumptions
on ¢(¢) and ((¢), the problem simplifies substantially:

Lemma 1. Let n,r,m > 0, v < 1. For g(4), (i) strictly increasing, 3 a unique 0 < z < (71(2)

s.t. tasks i < z only use outsourced and tasks i > z only use permanent workers.
Proof. See Appendix A for all proofs. O

Thus, the problem of choosing n(i), (i) boils down to choosing the threshold z. The
model does not allow identifying the level of g(i) from §. Although the shape of the g(7)
is still important, it matters mainly for counterfactuals that extrapolate from the range
of data. Since I do not have task-level data that helps me identify its shape, I go ahead
and assume g(i) = 7 and stick to counterfactuals within the range of my data. Lastly,
it is neither possible nor necessary to identify ((.) and = separately. Thus, I normalize
(~Y(m) = 7. These provide a simple characterization of F'(n,r), the maximum production
that can be achieved with n and r:

Proposition 1. The solution to (9) can be written as

0
P = (=)0 =) w4 2o’ a0
an?g,7') ar(n,r)
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where Z is a known function of m,n, and r.

Although (10) looks like a Constant Elasticity of Substitution (CES) function in perma-
nent and outsourced workers, z being a function of n and r complicates things. The next

assumption is not required for solving the model but makes the estimation procedure
feasible.”

Assumption 2. The information-sharing constraint is binding.

Corollary 1. Under Assumption 2, Z = m. Thus, the solution to (9) can be written as

2

F(n,r) = A(m,6)(a(m,8)n” + (1 — a(w,6))r") (11)

where A(m,0) is strictly increasing and o(mw, ) is strictly decreasing in .

To sum up, under certain assumptions, the solution to the task allocation problem
boils down to a CES function, where the factor shares are determined both by the marginal
product of outsourced workers (§) and the strength of trade secret protection (7). Stronger
protection has two effects on F: (1) the factor share of permanent workers «(m,J) go
down, and (2) the productivity multiplier A(r,d) goes up. The first effect derives since
a smaller share of tasks use permanent workers while the second effect follows from a
larger choice set. Lastly, the parameter that determines the substitution elasticity across
tasks () is inherited in the CES form to determine the elasticity of substitution between

permanent and outsourced workers.
Intermediate Goods Sector - Dynamic Elements

The firms are ex-ante identical, but they are subject to idiosyncratic productivity shocks
s that follow an AR(1) process s’ = ps + ¢ where € ~ N(0, 0%) and shocks are independent
across firms.”’ Adjusting the stock of permanent workers has a cost of 7 max{0,n_ — n},
where n_ is the stock of workers that were under contract, n is the new stock of work-

ers, and 7 is a per-worker firing cost. The incumbent firms have to pay a fixed cost of

ZSpecifically, it allows estimating the model for each state of the U.S. separately. Assumption 2 is not on
parameters, but on equilibrium outcomes. After estimation, I confirm that this assumption is satisfied for
the vast majority of the firms under the estimated parameters. I discuss its benefits and caveats in detail in
Section 5.

21 use revenues to discipline the production function; hence s may represent fluctuations in both prices
and quantities. I will call s demand shocks for brevity.
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operating c every period or exit and pay a one-time cost of firing all workers (7n_)." The
entrants have to pay a cost of entry ¢” before drawing a shock from the distribution ¢(.).
Both the fixed cost of operating and the entry cost are paid in the units of final goods.

4.1.3 Timing
The timing of events in a given period is as follows:

1. Entry decisions are made

2. Intermediate firms learn their productivity shocks and decide whether to stay or

exit.
3. Intermediate firms make hiring/firing and outsourcing decisions and produce

4. Final good sector produces

4.2 Intermediate Firm’s Dynamic Problem

I restrict attention to the steady-state, where firms’ distribution across state variables stays
constant for all industries. I denote the steady-state value function of the intermediate
tirm with V:

V(s,n_) = maz{max pgsF(n,r) —n —r —rtmax{0,n_ —n}—
n,r (12)
Pc+ BEV(s',n),—tn_}

where F'(n,r) is given in (11). p, and P refer to the intermediate and final good prices,
and the wage is normalized to 1. There is a single market wage for the hired and out-

sourced since outsourcing is provided competitively, and workers are indifferent.’’ The

39T use the specification here following the empirical evidence in Bottasso, Conti and Sulis (2017) that
countries with higher firing costs also have lower firm exit rates. If I modeled the exit cost as a fixed
number, my model would generate the opposite pattern. I do not model a separate hiring cost, since its
implications are indistinguishable from those of firing costs in this model.

31T only have data on outsourcing expenditures, instead of the number of outsourced workers. Hence,
the differences in input prices and factor shares are not separately identified. The model captures any cost
savings or markups attached to outsourced workers with the factor share («).
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firm compares the exit cost to the expected discounted value of profits to decide whether
to stay in business. The decision to use permanent versus outsourced workers depends
both on the structure of F(n,r), and the firing cost 7 (See Section 4.5). Lastly, poten-
tial entrants compare the cost of entry to the expected future discounted profits to decide
whether to enter or not. Since the product prices are determined in equilibrium, increased
entry moves prices down, depressing the profits firms make, thus feeding back to slow
entry.

4.3 Equilibrium

A steady-state equilibrium consists of the final good producer’s demand for intermedi-
ate goods {Y;} ,, value and policy functions of the intermediate firms {Vj, ng, ri}_;,
the intermediate good prices {p;}X_,, the final good price P, the measure of entrants in
each industry {y }X_,, and the steady-state distribution of intermediate firms {1/, }/_, that

solve
1. Vi(s,n_) solves (12) Vk € K  (Intermediate Problem)
2. EVi(s,0) = P¢f Vk € K (Free Entry)

3. 30, [In(s,no) + ri(s,no)]dyg(s,n_) = L*  (Labor Market Clearing)

4. Pp(s,n_) =T (Yx(s,n_), ;) Yk € K (Stationary Dist)

5. % = (&) Vk,7 € K (Intermediate Good Demand)

w—1

6. P = (Z L pﬁ) “  (Final Good Price)

4.4 Discussion of the Model Elements

The equilibrium defined in 4.3 describes the economy of a single state. The model allows
four possible channels to explain the state-level differences in outsourcing use: differences
in (1) cost of firing, (2) within-industry firm dynamics, (3) industry compositions, and
(4) trade secret protection. In this subsection, I discuss how the model generates and
quantitatively disciplines each channel.
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Since each state recognizes different exceptions to at-will employment, effective firing
costs potentially differ across states. The firing costs only apply to the permanent workers
in the model, thus, incentivize outsourcing. The model allows industries to differ in al-
most all dimensions, including the relative average productivity of outsourcing ¢;. Since
industry compositions are available in the data, the model allows controlling for ‘industry

tixed-effects” that would lead to different outsourcing choices across industries.

When the same industry has different outsourcing levels across states, the model does
not automatically assign the differences to state policies. Instead, it takes into account
that firms that belong to the same industry may be fundamentally different across states
and face different operating costs or productivity fluctuations. Only when firms in the
same industry have different outsourcing behavior across states that cannot be explained
by differences in firm characteristics or the firing costs, the model will assign this to dif-
ferences in the extent of enforcement friction. Thus, there is a natural link from the en-
forcement frictions to labor allocation and aggregate output.

Lastly, I conceptualize trade secret theft only as a threat, which never happens in equi-
librium. Thus, the model assumes a lack of trade secret protection is unequivocally in-
efficient, which does not have to be true. The unregulated transmission of secrets in the
economy can theoretically be welfare improving. On top of reduced incentives to inno-
vate (Samaniego, 2013), there are two additional barriers against this free flow of ideas.
First, when the legal protection is lacking, companies invest in costly physical barriers to

prevent theft™

Second, in business partnerships, the sides become more hesitant to share
information, which is the main idea of this paper.*® I assume these effects dominate the
gains from the chaotic flow of ideas through theft; i.e., the current level of trade secret
protection is below the socially optimal level. The strong correlation between trade secret

protection and GDP per capita across countries is consistent with this idea.**

32Risch (2007) documents how a client boasted about introducing to the workplace “fingerprint scanners,
almost no Internet access, expensive network filtering appliances to scan outgoing email, special locks on
the computers, disabled CD-ROM drives, and portable drives, extensive physical security, and so forth.” to
avoid trade secret theft. See Henry and Ruiz-Aliseda (20160) for a theoretical analysis of deterring access to
secrets.

¥Increasing collaboration in innovative activities was one of the main aims behind the EU legislation
that introduced a uniform trade secret law across the EU in 2016 (Directive on the Protection of Trade Se-
crets). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=SWD:2013:0471:FIN:
EN:PDF

3See Figure 13 in Appendix C. See Ottoz and Cugno (2011) and Acemoglu and Akcigit (2012) for theo-
retical analyses of the optimal scope of trade secret protection.
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4.5 Outsourcing Choice

Characterizing firms’ policy functions is difficult in the full model due to discrete exit
choice and non-convex adjustment cost. Ignoring entry and exit, assuming a differen-
tiable adjustment cost function ®(n_,n), and a binding information-sharing constraint
gives a formula that carries the full model’s intuition and allows a simple characteriza-

tion of the forces at work. The problem of the firm in industry £ would simplify to

0

Vi(s,n_) = max ppsA(m, 8;) (alm, 5™ + (1 — al(m, 6))r7)w

(13)
—n—r—=>(n_,n)+ BEV(s,n)
where the ratio of outsourcing expenditures over payroll expenses would become
r[1—alm, o) , , , (=
ﬁ - |: Oz(?T,(Sk) (1+(I)2(n—7n)+ﬁE¢l<nvn)>:| (14)

where @'; is the first derivative of ®() according to its jth element. The expenditure
share on outsourced workers would increase if adjusting permanent workers is more
costly, i.e., ® has a larger slope. The importance of adjustment costs is further amplified
if the expected future adjustments are larger: o7 is higher or p; is lower. The outsourced
share also goes down as it becomes easier to substitute permanent workers for rented
workers, that is, when +; is higher. Lastly, firms outsource more when the factor share
of outsourcing is larger, i.e., a(m,d;) is lower. a(w,d;) is low when either the relative
marginal product of outsourcing (6) or the strength of trade secret protection (r) is high.

Although this simplified analysis helps tease out some of the model’s central mech-
anisms, I estimate the full model in the next section. The estimation confirms that the

general equilibrium effects have a significant impact on aggregate outsourcing.

4.6 Model Extensions

I solve the model numerically, using grid-search on the value functions and forward iter-
ations to compute firms’ stationary distributions. I make a couple of adjustments before
estimating the model. These do not affect the primary mechanism but simplify the com-
putation and the estimation of the model.
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First, I discretize the idiosyncratic productivity process to 10 grid points using Rouwen-
horst (1995)’s method. Second, I add Type 1 Extreme Value (T1EV) shocks to the exit deci-
sion, ensuring the equilibrium moments change smoothly with parameter values which
simplifies the estimation procedure. Each period, to continue operating, firms need to pay
" + 1y, or they exit and pay 7,1, where vy, 1, are identically distributed TIEV shocks
with shape parameter 7). I assume the 14, 1, are independent over time, across firms, from
productivity shocks, and one another. The difference of two T1EV shocks has a logistic
distribution, which allows the analytical characterization of the probability that a firm
with state (s,n_) chooses to exit. Last, as in Boedo and Mukoyama (2012), incumbents
receive an ‘offer they cannot refuse” after production ends with probability «; and have
to exit. This shock helps generate realistic exit patterns in the model for large establish-

ments.

5 Estimation

In this section, I estimate the model to make quantitative statements. Section 5.1 de-
scribes the data, the estimation procedure and the identification strategy. The estimation
results are in 5.2. Section 5.3 evaluates the ability of the model to match untargeted mo-
ments. Section 5.4 provides the quantitative decomposition of state-level outsourcing
heterogeneity while productivity gains from better trade secret protection are discussed
in Section 6.

5.1 Data and Estimation Method

I use establishment-level moments for each state-industry pair in the manufacturing sec-
tor (NAICS 31-33) from 2007 to estimate the model. I use three primary data sources to
compute the moments. The Census of Manufactures (CMF) provides state-industry level
revenue shares, revenue to payroll ratios, and outsourcing expenditures. The Statistics
of U.S. Businesses (SUSB) provides state-industry level moments on establishment size
distribution. Lastly, the Business Dynamics Statistics (BDS) provides state-level moments

on job flows, which are only available at the manufacturing sector level.

The model has parameters that are global, industry-specific, state-specific, and state-
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industry specific. I use subscript j to denote that the parameter varies across states and k
to denote it varies across industries. The full set of parameters necessary to compute the
extended model is the vector™:

Q= {Ba W, Vi 013, R, Tj, Cﬂ;a CjE]m Pk ejka i, 5k} (15)

I set 3 and w to standard values, and ~; and o} to previous estimates in the literature. I
estimate the rest of the parameters (;, 7, ¢y, ¢it., pji, 01, 75, 0) in two stages. The first
stage assumes the information sharing constraint binds and treats «(r;, ;) in (11) as a
state-industry level parameter ;. This assumption allows the first stage to be estimated
separately for each state. This substantially relieves the computational burden since the
stationary distribution of the firms has to be solved numerically. The second stage treats
aji, as data generated by «(7;, 0x) + €, where €, are zero-mean iid shocks and uses non-
linear least squares to estimate {m;}7_, and {dx };;.

Externally Set Parameters

I set the discount factor 8 = 0.94 and the parameter governing the demand substitution
between intermediate goods to w = —0.5. Two sets of parameters are hard to identify with
the available data. The first is the elasticity of substitution parameter between permanent
and outsourced workers. Identifying it either requires wage data with an exogenous wage
shifter or an establishment-level panel with information on dynamic inputs. Neither data
is available, so I take the estimates of Chan (2017) directly, who uses an establishment
panel from Denmark to do the latter* for four manufacturing industry groups. The sec-
ond is the variance of the productivity process. It is not possible to nonparametrically
identify both the persistence and the variance of an AR(1) process from cross-sectional
data. I take the industry-level estimates from Bloom et al. (2018), who use the Annual
Survey of Manufacturers to estimate an AR(1) process for the log TFP estimates for each

manufacturing industry.”’

3] fix the productivity distribution of entrants (¢) and the shape parameter for the TIEV shocks for now.

3Both the relative size of the outsourcing sector, and its skill composition are remarkably similar between
Denmark and the U.S.

%Unlike this paper, Bloom et al. (2018) estimate value-added production functions and include capital
and materials. However, for a Cobb-Douglas production function between materials, capital, labor services
(CES of permanent and outsourced workers), and competitive input markets, their variance estimates can
be applied to my setting up to a constant multiplier. The multiplier is not identified in my model; hence, its
value is irrelevant for the estimation. See Table 10 for the calibrated values of v, and oy.
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Method of Moments Estimation and Identification Idea

I estimate Qp = {x;, 7;, cﬂ, cﬁ, pjks Ujk, i } via method of moments, minimizing the weighted
distance between the model M (Qp) and data M” moments:

2 = arg min (m7 - M(QE)>/W<MD - M) (16)

where W is a weighting matrix. The estimator is consistent for any choice of IV, but the
efficient estimator has W = V1, i.e., the inverse covariance matrix of the data moments.
Estimating the covariance matrix requires micro-data. I instead use a diagonal matrix
where W,,,, = (M;?)~2, which transforms the objective function into one that minimizes

total squared percent deviations.

The model admits a general equilibrium where common labor and product markets
connect all establishments in a state. The steady-state distribution of firms does not have
a closed-form solution either; thus, I can only provide intuitive arguments on why the
selected moments inform the structural parameters. I suppress the state subscript j as
all the parameters here are state-specific. The only parameter that maps one-to-one to
a moment is the exogenous exit probability x. The model generates essentially no en-
dogenous exit for the largest firms; thus, ~ becomes equal to the exit probability of large
establishments (more than 250 employees).

The aggregate entry rate, average establishment size, and the revenue shares of indus-
tries jointly inform ¢y, the fixed cost of operating, and ¢, the entry cost. Both a small ¢
and a small ¢ incentivize entry and are associated with a large industry. Thus, a decrease
in either cost would increase the revenue share of an industry. On the other hand, the av-
erage establishment size moves in opposite directions when ¢ and ¢f increases. A large
average establishment size is associated with a large c, because establishments would
not find it profitable to pay a high operating cost at a small scale and exit instead. On the
other hand, a small cost of entry cF would result in a large average establishment size, as
the competitive pressure through new entrants would lead small unproductive firms to
exit. Thus the two moments provide a single crossing condition for the two parameters.
Lastly, the economy’s overall scale is not pinned down; therefore, there are only K — 1 lin-
early independent revenue shares. The aggregate entry rate helps pin down the average

level of entry costs across industries.
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While an increase in the returns to scale parameter 0; increases both the average es-
tablishment size and the revenue share of an industry, the ratio of revenues to payroll
expenses allows distinguishing it from ¢; and cf. The two costs have no direct influence
on this ratio, except through the firms’ steady-state distributions. On the other hand, 0,
directly impacts the labor share of revenues by determining the elasticity of revenues to
the labor inputs.

It is relatively easier to distinguish the persistence of the idiosyncratic shocks p;, and
the firing cost 7 from the parameters I discussed so far (¢, £, and 6;): while the latter pa-
rameters have first-order effects only on the first moments of the firm distribution, p;, and
T are crucial for the second moments and the flows.*® On the other hand, it is notoriously
difficult to separately identify adjustment costs and the parameters of the idiosyncratic
shock process (Bloom (2009), Decker et al. (2020)). I use the share of small establishments
(less than 20 employees) and the aggregate job destruction rate. Both a high persistence
and a high firing cost reduce the rate of job destruction. If shocks” persistence is high,
establishments face the need to change their workforce less frequently while under high
tiring costs, establishments choose to operate at a sub-optimal scale instead of having to
fire workers later. The two parameters also impact the share of small establishments in
the same direction. If persistence is high, entrants stay small for a long time until their
productivity increases. High firing costs also discourage establishments from increasing
the number of workers anticipating the possibility of having to fire them later. On the
other hand, for a wide range of reasonable firing costs (0 to 4 years of wages), the im-
pact on the share of small establishments is modest (less than 1%). Thus, a local single
crossing condition is satisfied. The intuition for the modest impact of firing costs relies
on the firm size distribution’s long right tail. Given the high fixed costs of operating and
low returns to scale parameters, the return from hiring workers is very high for small

productive firms.*

Last but not least, the ratio of outsourcing expenses to payroll expenses helps identify
a, the factor share of permanent workers. As discussed in Section 4.5, the parameters
that have a direct effect on the ratio of outsourcing expenses are v, 02, p, 7 and . I

3The only exception to this is the impact on the entry rate, which directly affects the job destruction rate.
In model validation, I specifically check whether the estimated model does a good job matching the fraction
of job flows through exits.

¥One moment that would allow a global identification would be the job destruction’ rate for outsourced
workers, i.e., the average decline in outsourcing expenses for firms that decrease their outsourcing. Because
outsourcing is not subject to firing costs, its flow helps discipline the fluctuations in the idiosyncratic shock
process. Unfortunately, there are no public estimates for this moment.
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externally calibrate v and ¢* with structural estimates from the literature. The share of
small establishments again helps distinguish p from «, as the impact of a is negligible
once the average size of establishments is held constant. Finally, although both a low «
and a high 7 increase the ratio, the large response of job destruction rate and the small
response of the outsourcing ratio to 7 allows distinguishing the two.

Nonlinear Least Squares

In the second stage, I minimize the sum of squared residuals between the model implied
a(mj, 0;) as derived in (11) and &, estimates from the first stage (16):

{7}, on} = arg min} Z(&jk — a(mj, 0k))? (17)
7,k

75,0k

This procedure is similar in spirit to a fixed effects regression; once the factor shares are
estimated, the ‘state fixed effects’ give the 7; and the “industry fixed effects’ give the dj.
Similar to a two-way fixed-effects regression, it is impossible to separately identify the
level of 7; from the level of ;. Therefore, in the counterfactuals, I do a normalization a la
Hsieh and Klenow (2009) and consider the state with the largest 7; as unconstrained and
use it as the baseline for comparisons based on enforcement frictions. Table 4 summarizes
the full calibration/estimation strategy, together with data sources. The first four rows
of parameters are externally calibrated. The ones in the middle are jointly estimated to
match the moments in the first stage. The ones in the last two rows are jointly estimated

to match the o, estimates from the first stage.

5.2 Estimation Results

I have estimated the model for 28 states so far, where I divide the manufacturing sector
into K = 4 industry groups: Food Products (£ = 1), Wood and Paper Products (k = 2),
Heavy Industry and Extraction (k = 3), and Tools, Machinery and Consumer Goods
(k = 4). Figure 5a presents the estimated factor shares for all industry-state groups.*’

7 follow the same grouping as in Chan (2017) to have a one-to-one match with his ~; estimates. The
details of how I match the U.S. NAICS 3-digit sectors with the Danish NACE 2-digit sectors are in Appendix
B. The first-stage in-sample results are in Table 11, where I provide the results for Michigan for brevity.
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Par Role Moment Source

15} Discount Factor External 0.94
w  Int. Good Subst. External -0.5
v Permanent/Outsourced Subst. External Chan 2017
o2  Idio. Shock Variance External Bloom et al. 2018
k;  Exog Exit Prob Exit Rate>250 BDS
7;  Firing Cost Job Destruc. Rate BDS
c; ~ Fixed Cost of Operating Avg. Estb Size SUSB
ki, Entry Cost Ind. Output Shares CMF
pjr  Idio. Shock Persistence Share of Estb Size<20 SUSB
6,  Returns to Scale Receipts/Payroll CMF
aj;  Permanent Factor Share Outsourcing/Payroll CMF
Agg. Entry Rate BDS
m;  Trade Secret Enforcement Qi 1st Stage

0r  Outsourcing Suitability

Table 4: The Main Parameters and the Moments Used in the Estimation Notes: The details of the
data sources and how the moments are calculated can be found in Appendix B.

Figure 5b summarizes how the estimated factor share parameters relate to the ob-
served outsourcing ratios. In a model with no adjustment costs, the outsourcing ratios
would only depend on 7, and «;;, because there would be no flexibility gains from out-
sourcing. The cross-state patterns are as expected within each industry. However, the
estimates suggest the factor share of outsourcing is considerably lower in food manufac-
turing, even though it outsources as much as the other industry groups. Also, the esti-
mates for heavy manufacturing are broadly similar to wood manufacturing, even though

heavy manufacturing has a considerably higher outsourcing to payroll ratio.

Two channels mainly drive these results. First, permanent and outsourced workers
are easier to substitute in food and heavy manufacturing, according to the externally
calibrated ~;, values (Table 10). This implies a larger outsourcing ratio for a fixed o, > 0.5
(see (14)). Second, in the data, food and heavy manufacturing establishments have a
larger revenue to payroll ratio, even though their average size is not significantly different
than the other two groups. Hence, they are estimated to have low 6, and ¢}, and high c;;
(See Figure 15). The low returns to scale together with high fixed costs create a fat-tailed
size distribution, and the low cg ensures the total size of these industries is as large as in
the data. In the model, larger firms outsource a bigger fraction of their workforce, fearing
mass layoffs in the future. The very large firms in the food and heavy manufacturing
hence outsource a large fraction of their workforce, generating the pattern in Figure 5a.

Lastly, these two effects are large enough to offset the lower-variance productivity shocks
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Figure 5: The Estimation Results from the 1st Stage Notes: Each shape refers to a state-industry pair.
See Table 11 for details on the first and second stage estimation results and Appendix B for details on the
outsourcing to payroll ratios.

for food and heavy manufacturing, given the externally calibrated o, values.

Table 12 presents the results from the second stage; hence the main estimation re-
sults. I find, without enforcement frictions, the industry that would benefit the most from
outsourcing is heavy manufacturing, and the one that would benefit the least is food
manufacturing. The average productivity of an outsourced worker (;) is estimated to be
twice as large in the former than the latter (0.36 vs 0.16). Louisiana is the state with the
strongest secret protection, and Missouri is the one with the weakest. Most importantly,
as Figure 6a shows, the results from the structural estimation align with the adoption date
of the UTSA. The states that adopted the UTSA earlier are the ones that have better trade
secret protection on average. Figure 6b further shows that states with better protection
spend a larger fraction of their labor outsourcing budget on high-skilled tasks. The two
figures provide an important first step for validating the model: the estimation results
are consistent with (1) the actual legal environment of the states and (2) laws being more
important for information-sensitive tasks, even though neither pattern was targeted in

the estimation.

5.3 Model Validation

I validate the model through its ability to match the share of job destruction that happens
through establishment exits, establishment shares of industry groups, and the share of
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relation 0.37) relation 0.14, 0.51 without LA)

Figure 6: The Estimation Results from the 2nd Stage Notes: Figures only presents states who adopted
the UTSA by 2007.

employment in small establishments.

Although the estimation targets the rates of exit and job destruction, the share of job
destruction through exits can be anywhere between 0 and 1 depending on the exiting
establishments’ average size. The model does an excellent job of predicting the share
(Figure 7a), hence the average size of exiting establishments. The estimation targets the
revenue share, the revenue payroll ratio, and the average establishment size for each
industry group. If workers” average wages across industries differed significantly, the
model would do a bad job predicting the fraction of establishments that belong to each
industry. Figure 7b suggests the model still does a good job. The only exceptions are the
wages at California’s Light and Heavy industries, where the model undervalues the for-
mer and overvalues the latter. Lastly, the model targets the share of establishments with
less than 20 employees but does not target the size distribution below 20. If the model did
a bad job at matching that distribution, it would make a bad prediction of the expected
size of establishment conditional on less than 20. Figure 7c suggests the model does an
okay job, except for food manufacturing, which is a relatively smaller part of the man-
ufacturing sector. In particular, the model cannot account for the states with small food

manufacturing establishments.

The model does a poor job predicting the size distribution’s right-tail, generating too
few very-large establishments (larger than 250, 500). The model’s inability to match both
tails is partly due to the assumption of normal shocks to the productivity process. A shock
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Figure 7: The Untargeted Moments

distribution that has fatter tails would help the model generate more large establishments.

5.4 Decomposition of the Outsourcing Heterogeneity

In this section, I ask how the cross-state heterogeneity in labor outsourcing would change
if all states had the same (1) firing cost, (2) industry composition, (3) within-industry firm
characteristics, and (4) trade secret protection. According to the model, these four ob-
jects constitute a mutually exclusive and exhaustive list of the differences between states.
However, they might interact with one another and amplify/dampen each other’s ef-
tects. Notably, the industry composition and the within-industry firm characteristics are

equilibrium objects, making the decomposition non-trivial.

To equate the labor protection and the trade secret protection across states, I replace the
values of 7 and 7 with the average estimates. To ‘equate’ the industry compositions, I take
simple weighted averages of industry-level outsourcing shares for each state, weights
being average industry share of employment across states. To find the impact of equating
within-industry firm characteristics, I take the average values of the other three (7, 7,
and industry shares) for each state and compute the remaining dispersion (See Figure
14). Now I can answer one of the main questions I have started with: what generates
the cross-state dispersion in outsourcing use? I use the coefficient of variation (standard
deviation divided by the average) as my measure of dispersion. The cross-state dispersion
would be

e 19% less with average trade secret protection

o 14% less with average industry composition
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e 14% more with average firing cost

® 90% less with average within-industry firm characteristics

The differences in within-industry firm characteristics create the lion’s share of the
observed dispersion across states. While equating industry shares would reduce the het-
erogeneity, equating firing costs would amplify it. The counter-intuitive implication is
that the states with the higher estimated firing costs outsource less than others on aver-
age due to the other three channels’ counteracting force.

Equating the strength of trade secret protection decreases the cross-state dispersion
by 19%. This result, however, is built on considerable heterogeneity across states. In par-
ticular, there are states with weak trade secret protection that still outsource a significant
amount of their workforce. Bringing the strength of trade secret protection up to the aver-
age level increases outsourcing shares for these states, pushing for increased dispersion.
For example, Tennessee is a state with an above-average outsourcing ratio of 0.2, and
improving its trade secret protection up to the average level would bring the ratio up to
0.22.

6 Productivity Gains from Better Trade Secret Protection

In this section, I answer the question I started with: how large are the productivity gains
from better trade secret protection? Specifically, I calculate the counterfactual outcomes
when every state has the same trade secret protection (m) as the ‘best state,” which is

Louisiana, according to my estimates.

Table 5 presents the main results. The median state increases its outsourcing to payroll
ratio from 0.12 to 0.17. While both the gross and the net output (net of all costs) of the
median state grows by 0.9%, the state that benefits the most has a net output growth
as large as 2%. The growth is mostly through the entry channel: the number of firms
increases by 0.8% in the median state. Lastly, wages also reflect productivity growth,
increasing by as much as 1.4% for the median state. I compute the aggregate gains as the
weighted average of the net output gains in each state, where the weights are equal to
each state’s manufacturing output in 2007. The aggregate output grows by 0.7%. In the
remainder of the section, I quantify individual channels that lead to output gains.

39



Base Best TSP Gross Out NetOut # of Firms Wage

Median 0.12 0.17 1.009 1.009 1.008 1.014
Max 0.20 0.26 1.019 1.020 1.020 1.029
Aggregate 0.14 0.18 1.007 1.008 1.006 1.014

Table 5: The Counterfactual Results After an Improvement in Trade Secret Protection Notes: The
first and second rows give the result for the median and maximum value across states. The third row gives
the aggregate response, which is an output-weighted average of the responses of states. The values for
columns 4 to 7 are relative to a baseline value of 1. Base and Best TSP refer to the outsourcing to payroll
ratio in the baseline estimation and the counterfactual where each state’s 7 is equal to the state with the
highest 7. Gross Output is the aggregate amount of final goods produced, and the net output is gross
output net of all entry, operating, and firing costs. The number of firms is aggregated over industries. See
Table 14 for state-by-state details.

The Role of Labor Adjustment Costs

Improved trade secret protection decreases the job destruction rate, i.e., increased out-
sourcing leads to more job stability for permanent manufacturing employees. Yet, the
aggregate decline is relatively small, from 10.80% to 10.77%. Although the job destruction
rate remains relatively constant, the total amount of job destruction declines substantially
because the fraction of workers under employment goes down. These lead to savings
through avoided firing costs: even though the number of firms increases by 0.6%, the ag-
gregate firing cost paid declines by 2.7%. The magnitude of the savings is small on the
macroeconomic scale (4 basis points of GDP).

On the other hand, the gains from better allocation of workers are significant. The
dispersion of the marginal product of labor across firms (0 at a frictionless equilibrium)
declines by 1.4%. The correlation between size and productivity, a commonly used mea-
sure of labor (mis)allocation between firms (1 at a frictionless equilibrium), would also
have a modest increase for both in-house employees and outsourced workers from 0.822
to 0.824 and from 0.854 to 0.856 respectively. In other words, the reduction in the firms
that have excess and too little employed workers leads to a better allocation of outsourced

workers across firms as well.

Entry and Exit

The entry/exit channel impacts the aggregate gains both through the number of firms
that operate in the steady-state and through the rate of entry/exit as a force that gener-

ates steady creative destruction. Although the aggregate rate of entry/exit goes up, it is
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Figure 8: The State-Industry Level Gains

quantitatively small: the change is 4 basis points relative to a baseline level of 7.54%. On
the other hand, the number of firms in the steady-state increases substantially by 0.6%.
This increase is reflected by the economically significant growth in aggregate entry costs
and operating costs paid by 0.7% and 0.6% (0.1% and 0.2% of GDP).

The increase in the number of firms is accompanied by a 0.4 p.p. increase in small
tirms’ share (less than 20 employees). This increase is not surprising since the total num-
ber of employees employed by the manufacturing firms decreases while the total number
of firms increases, i.e., the average firm size must be decreasing. A decrease in the fraction
of very large firms accompanies the increase in small firms’ fraction. While small firms
tind it easier to grow in size with the added flexibility provided by outsourcing, they also
face more intense competition for workers due to the increased number of firms. For the
large firms, flexibility and competition work in the same direction: they find it easier to
decrease their size after bad shocks. Hence, firms hoard labor to a lesser extent when the

outsourcing sector is larger.

The Role of Industries

The industries differ in J; therefore, the importance of trade secret protection is poten-
tially different across industries, which helps explain why some states enjoy more signif-
icant gains from improved protection than the others.

Figure 8 shows the industry that changes its workforce composition the most is heavy
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manufacturing, followed by light manufacturing. Both industries heavily rely on se-
crecy for comparative advantage. The secret formulas and processes are integral parts
of light and chemical manufacturing. The negative information on R&D, which cannot
be patented, is critical for pharmaceuticals. Similarly, the information on the location of

raw materials and manufacturing processes is essential for oil and metals industries.

On the other hand, the industry-level output growth rates are much more similar to
one another than the outsourcing growth. This similarity is largely driven by the value of
the parameter that controls the demand elasticity of the final good producer (w = —0.5)."
Since intermediate goods are gross complements, an increase in one intermediate indus-
try’s productivity increases the demand for other intermediate industries. This comple-
mentarity aligns the output of different industries together; hence all industries benefit
from a productivity gain in one industry.

7 Conclusion

I study the impact of trade secret protection on producers” willingness to use outsourced
workers, and consequently, aggregate output. Through an analysis of this channel in
the U.S. I make two main points. First, better legal protection for trade secrets can induce
managers to use outsourced workers for a larger number of tasks. Second, the consequent
expansion in outsourcing use generates a better allocation of workers across firms and a

quantitatively significant increase in aggregate output.

To make the first point, I rely on the Uniform Trade Secrets Act and utilize the vari-
ation in adoption times across states. My analysis shows that adopters enjoyed a higher
pace of subsequent growth in outsourcing employment relative to non-adopters. Also,
the effect was more pronounced for tasks that provide greater access to sensitive infor-
mation. Quantitatively, the improvements in trade secret law explain 13% of the growth
in outsourcing employment in the U.S. from 1977 to 1997.

I build and estimate a structural model of industry dynamics to make the second
point. The model teases out the part of cross-state heterogeneity in outsourcing that is

41T choose an elasticity that implies gross complementarity between intermediate goods because I esti-
mate the model using a revenue (instead of value-added) production function. Since I do not model an
explicit production network between manufacturing industries, I introduce a reduced-form supply chain
through complementarity in final good production.
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attributable to variation in trade secret protection and maps it to aggregate productiv-
ity measures. Estimating it with data from the U.S. manufacturing sector shows that the
gains from better trade secret protection are sizeable. If all states could protect trade se-

crets as adequately as the 'best state,” the aggregate output would increase by 0.8%.

These findings suggest large gains for the U.S., a country that is at the forefront of trade
secret protection (See Figure 13). The gains might be even larger for countries where the
statutory law is still missing, common law is underdeveloped, or the enforcement of ex-
isting laws is lacking. Improving legal protection requires trained judges, lawyers, expert
witnesses, and functioning audit and appeals systems that supervise the legal system.
None of these come easy or cheap, but neither do tax breaks or R&D subsidies.
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A Proofs

Proof of Lemma 1. I will first show that if a unique Zz exists, it has to satisfy 0 < z <
¢"!(2). Second, I show the task-level production y() is increasing in i. Last, I will show
that a unique z exists s.t. tasks i < z only use outsourced and tasks ¢ > z only use hired

labor in the optimal solution.

First, the manager would not assign any outsourced workers to tasks i > (~!(z) be-
cause (1) outsourced workers assigned to tasks above (~!(z) do not generate any output
while their output would be strictly positive in tasks i < (7!(z) and (2) the marginal con-
tribution of each task’s output approaches infinity as the output in that task approaches
0.** Hence, the manager would assign a positive measure of permanent workers and no

outsourced workers to all tasks i > (7*(z2).

Second, y(i) should be weakly be increasing in i. Assume towards a contradiction
that y(i;) > y(i2) for io > ;. Let the total number of permanent and outsourced workers
assigned to these tasks be n(i;), (i) and n(i2),r(i2). Then, the marginal product of an

outsourced worker in these tasks would be

MP,(i) = Y = y(i)~'6

For y(i1) > y(i2), the manager could increase Y by reassigning an infinitesimal mea-
sure of outsourced workers from task 7; to i,. Similarly, the marginal product of a perma-

nent worker in these tasks would be

MP, (i) = 6Y = y(ir) g (i)

For y(i1) > y(i2), the manager could increase Y by reassigning an infinitesimal mea-
sure of permanent workers from task i; to i, because g¢(i) is strictly increasing. Hence y(7)

has to be weakly increasing in .

Last, for tasks i < (7'(z), assume towards a contradiction that a permanent worker is

assigned to task i; and an outsourced worker is assigned to task i > i; in the optimal so-

#2Because ((i) is strictly increasing, ( ~!(z) exists, and is strictly increasing.
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lution. Let the total number of permanent and outsourced workers assigned to these tasks
be n(i1),r(i1) and n(iz), r(i2). Then, the manager could increase its output by switching
the permanent and the outsourced worker in these tasks because, the strictly increasing

g(7) and weakly increasing y (i) imply the last inequality

MP,(iy) + MP,(iy) >MP, (i) + MP.(i;) <
OV 5 (y(i2) 7 glin) + y(ia)716) S0V (y(in)glia) + y(in) 1) =
y(i1) " (g(in) — 0) >y(i2) " (g(iz) — 9)

Hence, if a permanent worker is assigned to task i;, no outsourced worker would be
assigned to a task i, > 7; in the optimal solution. This guarantees that a unique z exists
s.t. tasks i < Z only use outsourced and tasks i > Z only use hired labor in the optimal

solution. O]

Proof of Proposition 1. I will first characterize the assignment of workers across tasks for
a given z and then characterize the optimal choice of z. The idea is that, hired (rented)
workers should be allocated across tasks i > z (i < Z) in a way to equalize marginal
products across those tasks. Second, if the threshold task is interior, i.e. 32 < z, then the
tirm should be indifferent between using hired or rented labor for that task. If not, then
the firm should strictly prefer renting to hiring at the threshold task 3z = 2. First, since
the productivity of outsourced workers in tasks does not depend on the identity of the
task i, the CES aggregation of the tasks together with the budget constraint for rented
workers imply

r

r(t) = = 18

() =2 (18)

For permanent workers, the equalization of the marginal product across tasks re-
quires:

vg(i)n(i)! =n

Using g(i) = i gives
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n(i) = (%W) o (19)

which pins down the constant term:

n

(U= "

(19) and (20) allow writing n() as a function of n and z:

P

Denote with Z the threshold task in an unconstrained (by z) allocation of workers
across tasks. At task Z, manager should be indifferent between using permanent or out-

sourced workers:

2=y

l—wn

rd =

1

(1= -27)

This condition does not give an analytical solution for z. The right-hand side is a
continuous and strictly increasing function of Z that is equal to 0 when Z = 0 and is
unbounded above as Z approaches 1. The left hand side is a positive constant. Hence,

there exists a unique Z that satisfies the condition. If Z > z, then z = 2. Otherwise, zZ = Z.

Using the derived formulas for (i) and n(7), I can write down the total firm output as

a function of n, r, and z(n, r):

55



F(n,r) = (/1 ((1_&@'11‘: g%))wd”/oz (T_;Mz)w

O
Proof of Corollary 1. Once the IC constraint binds, i.e., z =
Y(n,r)=s <\((1 — 7)(1; Wﬁ))kirﬂ + r7>
Defining A = «,, + o, and o = «,, /A allows rewriting this in the classical CES form:
A
Y(n,r) = sA(m, 5)(04(7r, NnY + (1 — o, 5))7’7) g
O

B Data Sources

In this section, I describe the data sources and sample construction procedures.

B.1 Measures of Labor Outsourcing

I conduct analyses with data from different time periods and geographical levels, hence
the best available data changes according to the question at hand. Throughout the pa-
per, I use employment data that uses NAICS, SIC, and 1990 Census classifications and
outsourcing expenditures data from Census of Manufactures (CMF). I carefully designate
which industries in NAICS classification provide labor outsourcing services. Then, for
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other classifications, I choose the industries that correspond the best to the designated
NAICS industries.

Definition of Labor Outsourcing

I define labor outsourcing as the purchase of business services that are labor intensive and
can potentially be done in-house. First, I restrict attention to business services, because
the main decision (hire vs outsource) I analyze in this paper is not relevant for households.
I operationalize this criterion by restricting attention to 4-digit NAICS services industries
who earn more than 70% of their revenues from serving businesses and government ac-
cording to the 2017 Services Annual Survey (SAS). Second, I restrict attention to labor
intensive services because the decision to outsource capital-intensive services may rely
on financial concerns that I abstract from in this paper. I operationalize this criterion by
restricting attention to services industries who have less than 5% of their expenditures as
depreciation in the 2017 Services Annual Survey (SAS) conducted by the U.S. Census Bu-
reau. Last, I restrict attention to purchase of services where there is a meaningful make or
buy decision. I use this criterion intuitively, and rule out the information technology (IT)
industry (NAICS 51)*, finance providing industries (NAICS 52, 53) and central offices of
holding companies (NAICS 55).

This definition roughly translates to two 2-digit industries: NAICS 54 (The Profes-
sional, Scientific, and Technical Services) and NAICS 56 (The Administrative and Sup-
port and Waste Management and Remediation Services) with the following exceptions.
I exclude 4-digit subsectors 5419 (Other Professional, Scientific, and Technical Services,
roughly employs 8% of the total employment in NAICS54, consists mainly of veteri-
nary and photographic services) and 5615 (Travel Arrangement and Reservation Services,
roughly employs 3% of the total employment in NAICS56) because 46% and 68% of their
revenues come from households respectively. I also exclude the 3-digit subsector 562
(Waste Management and Remediation Services, roughly employs 5% of the total employ-

ment in NAICS56) because depreciation roughly corresponds to 10% of its expenses.

Table 6 presents the list of 4-digit NAICS industries that fall into my definition of la-
bor outsourcing sectors, ordered according to the share of employment with a Bachelor’s
degree. The total employment in these industries is around 17 million workers, where the

#The portion of the IT sector that provides personalized services to each client firm will still be in my
sample as NAICS 5415 Computer Systems Design and Related Services.
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Industry NAICS Emp. Rev. HHShare Deprec. College

Scientific R&D 5417 710 166 0.05 0.04 0.79
Comput. Sys. Design and Rel. 5415 2,154 304 0.00 0.03 0.73
Manag., Sci., and Tech. Consult. 5416 1,501 210 0.06 0.02 0.72
Advertising and Related 5418 493 72 0.07 0.04 0.70
Legal 5411 1,142 203 0.29 0.01 0.69
Architect., Eng., and Rel. 5413 1,493 253 0.03 0.02 0.67
Specialized Design 5414 142 15 0.30 0.02 0.64
Account., Tax, Book., Payroll 5412 1,009 136 0.15 0.02 0.61
Office Admin. 5611 517 0.38
Facilities Support 5612 160 0.38
Other Support 5619 331 0.38
Employment 5613 3,669 0.31
Business Support 5614 890 0.26
Investigation and Security 5616 951 0.19
Serv. to Buildings 5617 2,158 0.09
Admin. and Support 561 632 0.15 0.03

Table 6: Labor Outsourcing Sector in NAICS Classification Notes: Employment (1000s) figures are
from the 2018 Current Employment Statistics. Total revenues ($B) and the ratio of depreciation expendi-
tures to total expenditures is from are from the 2017 Services Annual Survey (SAS). The share of revenues
from households are from the 2019 Q3 Quarterly Services Survey (QSS). The fraction of employment with
Bachelor’s degree (or more) is from 2019 IPUMS CPS. The SAS and QSS do not have full breakdowns by
4-digit sectors of NAICS 561, the last row provides the aggregate values.

employment shares of NAICS 54 and 56 are almost equal with 8.5 million workers each.

Overview of Data Availability on Labor Outsourcing

I use data on both the demand for outsourcing and the supply of outsourcing. Unfortu-
nately, historical data on demand for outsourcing has may problems. The U.S. Census
first started collecting establishment-level data on outsourcing use in 1977 with Annual
Survey of Manufactures (ASM) and Census of Manufactures (CMF), but restricted atten-
tion to purchase of capital-intensive services: repair and communication services.** Fur-
thermore, the treatment of transactions with the establishments” Central Administrative
Offices (CAO) or other auxiliary establishments of the same firm has changed in 1997.
Within SIC classification, these auxiliary establishments were classified according to the
primary activity of the establishment they are serving. On the other hand, NAICS classi-
fies these establishments according to their own activity, thus these transactions show up
as purchased services for the main establishment after 1997. See the discussions in Siegel
and Griliches (1992), Berlingieri (2013), and Fort, Klimek et al. (2016) for more details.

#SGijegel and Griliches (1992) documents that even for the manufacturing sector, these services constituted
only 28% of total service purchases once compared with Input-Output (I-O) tables for 1977.
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The U.S. Census only started to collect relevant information on purchase of labor out-
sourcing services 1992 through ASM and CMF, while the measurement of expenditures

on temporary workers only started in 2007.

The historical data on the supply of labor outsourcing (employment and value-added)
is available through multiple sources, each with their own issues. The Bureau of Eco-
nomic Analysis (BEA) publishes historical employment and output figures for sone state-
industry pairs based on 1987 SIC classification (SA25, SA25N, SAEMP25), but does not
provide a clear separation of labor outsourcing sector from other sectors. In particular, it
uses two-digit SIC industry 73 Business Services which combines labor outsourcing with
many other capital intensive services such as equipment rental. County Business Patterns
(CBP) collects very detailed industry level employment and number of establishment fig-
ures at the county level from the universe of employer establishments. However, (1)
industry classifications change several times from its start with no clear bridge, and (2) it
uses extensive censoring and imputation on employment values.* The decennial Census
provides a large sample size together with a consistent industry definition provided by
IPUMS USA, but the data frequency does not allow observing the impact of changes in
laws. For historical data analysis, I rely on the March Current Population Survey (CPS)
together with the historically consistent industry definition (1990 Census industry classi-
fication) provided by the IPUMS CPS. The CPS has a smaller sample size than the other
data sources and suffers from small sample size in some state-industry bins, which does

not necessarily create bias in diff-and-diff estimates.

Code Subsector Emp (1000s) College Skill Classification
20 Landscape and horticultural 1,731 0.10 Low-Skill
721  Advertising 672 0.70 High-Skill
722 Services to dwellings and other buildings 1,944 0.09 Low-Skill
731 Personnel supply 1,464 0.31 -
732 Computer and data processing 3,541 0.72 High-Skill
740 Detective and protective 1,051 0.19 Low-Skill
841 Legal 1,903 0.69 High-Skill
882 Engineering, architectural, and surveying 1,855 0.67 High-Skill
890 Accounting, auditing, and bookkeeping 1,397 0.61 High-Skill
891 Research, development, and testing 791 0.79 High-Skill
892 Management and public relations 2,103 0.72 High-Skill

Table 7: Labor Outsourcing Sector in Census 1990 Classification Notes: Employment figures are from
the 2018 American Community Survey through IPUMS USA. The fraction of employment with Bachelor’s
degree (or more) is from 2019 IPUMS CPS and the skill classification is based on how the industry compares
to the U.S. average of 0.34.

#See Eckert et al. (2020) for an ongoing project on making CBP available for historical comparisons.
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Data Sources for the Panel Data Analysis

The Current Population Survey: 1 use the CPS mainly for state-industry level employment
tigures for labor outsourcing industries and education controls. I use the Annual So-
cial and Economic Supplement (ASEC) samples of CPS through IPUMS CPS. The IPUMS
database provides an industry classification system ‘ind990” that is based on the classi-
fication system used in 1990 Census and provides comparability over time. See Table 7
for the list of included industries. I also construct state-level manufacturing employment
measures using Census 1990 industries with codes between 100 to 392 and total employ-
ment measures using employment status variable being at work (empstat=10). Lastly,
IPUMS censors state-industry level employment estimates when the data quality is too
low, hence the final sample becomes an unbalanced panel ranging from 1970 to 2019. I
construct the state and industry level educational attainment measures from the ASEC
samples, restricting attention to individuals of age 25 to 65. I use the ‘educ’ variable and
classify values 71 to 100 as high school and above, and 110 and above as 4-year college
and above. When necessary, I classify the industries that have educational attainment
levels significantly above the U.S. average as high-skill labor outsourcing industries and

those with significantly below as low-skill labor outsourcing industries.

The Trade Secret Protection Index: "The index is constructed as a simple average of
scores for three items of substantive law (i to iii), one item of civil procedure (iv), and two
items of remedies (v to vi): (i) Whether a trade secret must be in continuous business use;
(i) Whether the owner must take reasonable efforts to protect the secret; (iii) Whether
mere acquisition of the secret constitutes misappropriation; (iv) The limitation on the
time for the owner to take legal action for misappropriation; (v) Whether an injunction
is limited to eliminating the advantage from misappropriation; and (vi) The multiple of
actual damages available in punitive damages. The index is the sum of the scores for each
of the six items divided by six, so it is scaled between 0 and 1. For each item, a higher score
represents stronger legal protection of trade secrets based on milestones including both
common law (decisions in cases that set legal precedent) and the UTSA taking effect.”
(Png, 2017a). Png (2017b) extends this measure further until 2010.

The Control Variables: 1 use data from the BEA to construct state level employment,
population and gross domestic product (GDP) measures to serve as controls. The popula-
tion measures are from the Table SA30, the employment measures are from SA25, and the
inflation-adjusted GDP measures from SAGDP2S. The BEA/BLS Account covers 1987-
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Figure 9: Employment Protection Laws and the UTSA The Figure has the adoption year for the Uni-
form Trade Secrets Act on the x-axis and for the exceptions to the at-will employment (Good Faith, Implied
Contract, and Public Policy) on the y-axis. For the states that did not adopt the UTSA, the adoption year has
been set to 2016 for the adoption of the DTSA. For the states that did not adopt the exceptions, the adoption
year has been set to 2021.

2018 period while the BEA publishes another table for 1963-1997 period with the same
industry definitions. I merge the two and compare the series in the period they coincide.
The differences are very small compared to the trends I document. The decomposition
results in Section3.1 are broadly similar when I only use 1963-1997 or the 1987-2018 peri-
ods. I use the state-level union membership density estimates from Hirsch, Macpherson
and Vroman (2001) who uses the CPS Outgoing Rotation Group earning files. I use the
data on the state-level Wrongful Discharge Laws (WDL) from Autor (2003) who provides
public access to the data sample through his website. Figure 9 plots how the adoption
dates of the WDL across states compare against the adoption of the UTSA.

I use the adoption data presented in Ribstein and Kobayashi (1996) and Autor (2003)
which document the state-level adoption for 103 uniform laws and the exceptions to the
at-will employment respectively to argue the UTSA adoption dates do not coincide with

other laws. See also Figure 9.

Data Sources for the Cross-Sectional Analysis

The Census of Manufactures: The CMF collects information from the universe of man-
ufacturing establishments as part of the Economic Census. The public data from CMF

provides state and industry level data on revenues and detailed expenses, including ex-
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penses related to purchase of labor outsourcing services. I construct the labor outsourc-
ing expenses by combining expenses on “Temporary staff and leased employee expenses’
(PCHTEMP), ‘Data processing and other purchased computer services’” (PCHADPR)*,
‘Purchased professional and technical services” (PCHPRTE), and “Advertising and pro-
motional services” (PCHADVT). I use the “Annual Payroll’ (PAYANN) as total expenses
on employees on payroll, “Total value of shipments” (RCPTOT) as total revenues, and
‘Value Added’ (VALADD) as value added. I use the 2007 CMF for the structural model
estimation and the 2017 CMF for documenting cross-state heterogeneity in the use of la-

bor outsourcing.

The public tables for 2007 Economic Census have state-industry level estimates for
payroll, revenues, and value added but outsourcing expenses are only tabulated sepa-
rately at the state and industry level. The identification only requires the state and indus-
try level aggregates for identification. However, the two-stage estimation method I use
requires state-industry level estimates for outsourcing, even though the extra information
is not used to identify the parameters. I construct synthetic state-industry estimates that
are consistent with the state and industry level estimates and use these in the first-stage
estimation®’

The Statistics of U.S. Businesses: The SUSB uses data from the universe of employer
establishments and publishes statistics on establishment size distributions. I use it to con-
struct and estimate the fraction of establishments with fewer than 20 employees and the
average establishment size in each state-industry pair. To estimate the average establish-
ment size, I compute a weighted average of average establishment sizes in each bin by
weighting the bins by the listed number of establishments.

The Business Dynamics Statistics: The BDS is created from the Longitudinal Business
Database and provides information on the universe of the U.S. establishments. Unfortu-
nately, the state-level data the BDS provides is only available at the level of major indus-
try sector. Hence, I use the BDS information to discipline state-level parameters only. In

particular, I construct establishment-level job destruction and exit rates for the manufac-

#This expense does not include ‘Expensed computer hardware and other equipment’ and ‘Expensed
purchases of software’, hence only documents the purchase of IT services. See Appendix B for how I define
labor outsourcing.

#The 2017 tables do report estimates for outsourcing expenses at the state-industry level. I use the same
synthetic construction for 2017 as if only the state and industry level estimates are observed. The correlation
between the actual and the synthetic estimates is 0.6. Considering the frequent censoring applied at the
state-industry level, the synthetic data should closely follow the actual data.
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turing sector in each state. I also use the exit rate of establishments with more than 250
employees to discipline the exogenous exit rate parameter.

The job destruction rate is very widely used as an estimator for the total separations
subject to a firing cost (Boedo and Mukoyama (2012), Decker et al. (2020)), due to its
standard definition and widespread availability. Yet, it is subject to two sources of bias,
which act in opposite directions. First, it is subject to a time aggregation bias: because
it is based on measures of establishments at certain points in time, it doesn’t account for
the separations in the middle that were replaced with a hire before the next observation.
Hence it underestimates the number of total separations. The bias becomes larger as the
frequency of observations gets lower. Second, it overestimates the separations that are
subject to a regulatory firing cost, as some job destruction is due to voluntary quits or
retirement instead of layoffs*.

I use the Job Openings and Labor Turnover Survey (JOLTS) by BLS to get a rough
estimate of the direction and the size of the total bias. JOLTS provides estimates for the
total count of separations in a time period, hence it is not subject to the time-aggregation
bias. Furthermore, it distinguishes the separations as quits and layoffs. The (nationwide)
approximate yearly rate of quits equals 14.5% relative to the job destruction rate of 11.4%
for the manufacturing sector in 2007 (JOLTS doesn’t publish state-level estimates). Since
the discrepancy is not very large, I follow the literature and use the job destruction rate

as the primary moment to target.

Data Conversions

The Elasticity of Substitution: I use the estimates from Chan (2017) as elasticity of substi-
tution parameters (between permanent and outsourced workers) in the structural model.
Chan (2017) groups 3-digit manufacturing industries in the second revision of The Statis-
tical Classification of Economic Activities in the European Community (NACE) industry
classification into four broad manufacturing industry groups: Food Products, Wood and
Paper Products, Heavy Industry and Extraction, and Tools, Machinery and Consumer
Goods. I match the NACE 2-digit sectors to 2007 NAICS 3-digit sectors using the official

#See Mukoyama (2014) for a more detailed description of the first bias and Fujita and Nakajima (2016)
for the second bias.
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correspondence table from the Eurostat.”” T leave NAICS industries out of my analysis if
they do not strongly match to one of the 2-digit NACE industries. Table 8 lists both the
NACE and NAICS industries included in this classification.

Food Wood Heavy Machinery Food Wood Heavy Machinery LeftOut

10 2 6 25 311 321 324 332 313
11 16 9 26 312 322 325 333 314
12 17 19 27 326 334 315
20 28 327 335 316
21 29 331 336 323
22 30 337 339
23 31
24 32

Table 8: Manufacturing Industry Groups (Chan, 2017) for 2-digit NACE and 3-digit NAICS Clas-
sifications

The TFP Process: 1 use the estimates from Bloom et al. (2018) to discipline the industry-
level estimates of the variance of the productivity process. It is impossible to reach at the
variance estimates at the group level without the micro-data, so I equate variance of the
group equal to the weighted average of the variances. Since the average level of the
TFP/demand shock is not identified in my model, I only need the relative variances of
different industries. In addition, since I model the TFP/demand as a log-normal process,
errors in the parametrization of the variance process are partially corrected through the
estimation of the persistence parameters. Bloom et al. (2018) provides the estimates with
the 4-digit 1987 SIC classification. Using the conversion table by Eckert et al. (2020), I first
construct weights to compute variance estimates at the NAICS level and take a weighted

average to get group level variance estimates.

Data Sources for the Cross-Country Analysis

The EU KLEMS Accounts: The EU KLEMS Growth and Productivity Accounts aims to
provide data on industry level employment, output, and productivity estimates. The
accounts include several updates that extend the coverage of countries, include more de-

9Gee https://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?TargetUrl=
DSP_NACE_2_US_NAICS_2007.
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tailed industries, and make changes and corrections to the previous releases. I use the
March 2008 release (Timmer et al. (2007)) which has a smaller coverage of countries rela-
tive to more recent releases, but goes back as early as 1970. In particular, I use the ‘Number
of Persons Engaged’ (EMP) variable and use industry code 74 (Other business activities)
as labor outsourcing. Although this industry code is not as precise as the definitions
I have used with the Census and NAICS classifications, the implied labor outsourcing
share is remarkable similar to the one I have derived for the U.S. through the 1990 Census

classification.

The OECD Structural Analysis Database: The STAN collects and estimates data on
industry level input and output from the countries” own national accounts, using a har-
monized industry definition in the process. I use the industry codes M-N (Professional,
scientific and technical activities; administrative and support service activities) as labor
outsourcing, which roughly corresponds to NAICS 54 and 56 but also includes equipment
rental and leasing activities.

The OECD Employment Protection Index: The OECD have information on several
types of employment protection, “...compiled using the Secretariat’s own reading of statu-
tory laws, collective bargaining agreements and case law as well as contributions from
officials from OECD member countries and advice from country experts.” The index has
four versions that improves the method and increases the scope of the previous one. I
restrict attention to the first version because it provides the longest panel of data. I use
the strictness of employment protection (individual and collective dismissals) as a mea-
sure of firing cost consistent with the cross-state analysis I do in the main text. The index
ranges from 0 to 5 from the weakest to strongest protection and is available yearly from
1985 to 2019.

The OECD Trade Secret Protection Index: 1 use two cross-country measures of trade-
secret protection. The first one is an index constructed by Lippoldt and Schultz (2014)
for the OECD, which combines information on whether 26 criteria were satisfied in the
trade secret law of 37 between 1985 and 2010. It ranges from 0 to 5 from the weakest to
strongest protection. The index is only available for years ending in 0 and 5.

The Global IP Trade Secret Protection Index: The second index I use is constructed by
the Global Innovation Policy Center of the U.S. Chamber of Commerce. It ranges from 0
to 3 from the weakest to strongest protection. Its country coverage is much larger than
the OECD index with 50 countries but it only goes back as far as 2012.
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C Cross-Country Evidence

In this section, I analyze the cross-country patterns of labor outsourcing and trade secret
laws and discuss four more facts on (1) the growth of outsourcing, (2) the cross-country
heterogeneity in outsourcing, (3) the cross-country heterogeneity in trade secret protec-
tion and (4) how these patterns relate to the trade secret laws. I restrict attention to the
analysis of the supply of labor outsourcing through employment data, because there is
no available data for the demand side that allows cross-country comparisons. Hence, the
scope of my analysis is determined by the availability of industry level employment data

that allows cross-country comparisons.

Fact 3: The employment share of the labor outsourcing sector has grown globally since
the 1970s.

The large growth in the employment share of the labor outsourcing sector was not specific
to the U.S. I use the EU KLEMS Accounts (2008 Rev.) to construct measures of employ-
ment in labor outsourcing sectors for 14 countries in 1970 and 2005. Figure 10 presents
how the employment share of the labor outsourcing sector has changed from 1970 to 2005.
The sector has grown dramatically across all the countries in my sample and the growth

in the U.S. is not an anomaly.

Fact 4: There is a large cross-country heterogeneity in the intensity of labor outsourc-

ing.

The employment share of the labor outsourcing sector differs significantly across coun-
tries, similar to the heterogeneity present across the states of the U.S. I use the Organisa-
tion for Economic Co-operation and Development (OECD) STAN Accounts to construct
measures of employment in labor outsourcing sectors for 34 countries in 2017. Figure 11
presents how the employment share of the labor outsourcing sector differs across coun-
tries. The employment share for the country in the 90th percentile (France, 15%) is twice
of the country in the 10th percentile (Croatia, 7%) .
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Figure 10: The Employment Share of the Labor Outsourcing Sector in 1970 and 2005 The total
height of the bar denotes the size of the employment share of the labor outsourcing sector in 2005 while
the shaded height denotes the share in 1970. The employment data is from the 2008 Revision of the EU
KLEMS Accounts. I define the labor outsourcing sector as the industry code 74 (Other business activities).
See Appendix B for details.

Fact 5: There is large variation in trade secret protection globally.

There have been many developments in the protection of trade secrets globally since 1970.
The World Trade Organisation proposed the TRIPS Agreement (Agreement on Trade-
Related Aspects of Intellectual Property Rights) in 1994. The Article 39 of the TRIPS
Agreement is specifically dedicated to trade secrets and describes broadly what is pro-
tected under the definition. The member countries promise to enforce the protection of
trade secrets, yet there is substantial heterogeneity in both the form and the enforcement

of the laws across countries.

China has been at the center of trade secret violation discussions for some time (Brad-
sher (2020)). China provides protection for trade secrets under the Anti-Unfair Com-
petition Law (AUCL) which was enacted as early as 1993, and amended in 2017 and
2019. Yet, foreign firms operating in China frequently complain about the lack of enforce-
ment. The U.S. International Trade Commission conducted a survey of firms (USITC,
Commission et al. (2011)) that are in IP-intensive sectors and are “particularly suscepti-
ble to IPR (intellectual property rights) violations in China.” According to their report,
“Firms that provided quantitative responses estimated that improved IPR protection and
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Figure 11: The Employment Share of the Labor Outsourcing Sector in 2017 The total height of the bar
denotes the size of the employment share of the labor outsourcing sector. I depict the share of the high-skill
labor outsourcing sector with the shaded height of the bar for countries where the data is separately avail-
able. The employment data is from the 2017 OECD STAN Accounts. I define the labor outsourcing sector as
the industry codes M-N (Professional, scientific and technical activities; administrative and support service
activities). See Appendix B for details.

enforcement in China could result in as much as a 10-20 percent increase in sales, royal-
ties, and license fees earned in China, and a 2-5 percent increase in employment in their
U.S. operations. These employment gains could translate into approximately 922,588 new
U.S. jobs among IP-intensive firms.” More importantly, even though firms were suffering
from trade secret theft, “Only 0.6 percent of those firms that reported material losses due
to trade secret misappropriation during 2007-09 stated that they had pursued any trade
secret misappropriation proceedings in China.”

Sherwood (1990) reports the results of a survey on 1800 Brazilian firms in 1989. In the
survey, although half of the firms have had ‘trade secret losses’, in 86% of those cases,
there was no attempt for a legal procedure. The firms reported as the main reasons they
did not take legal action were “...]lack of sufficient proof, a gap in the law on which to base
a legal action, or the expectation that litigation would be too expensive or that enforce-

ment would be poor even if the case were won.”.

The European Union has enacted the Directive on the Protection of Trade Secrets
(EUTSD) in 2016 after a lengthy process of drafting and consultations “to harmonise the
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existing diverging national laws [within the EU] on the protection against the misap-
propriation of trade secrets, so that companies can exploit and share their trade secrets
with privileged business partners across the Internal Market, turning their innovative
ideas into growth and jobs”. Before 2016, even the provision that guided the trade se-
cret protection changed across countries. A large majority used their criminal code or an
unfair competition law and the only country that had a specific trade secret law was Swe-
den. Furthermore, the countries differed in which types of damages were granted and
on what conditions injunctive reliefs were issued.”” According to an industry survey on
537 firms in 13 countries ran by Baker and Mckenzie for the EU,“40% of EU companies
would refrain from sharing trade secrets with other parties because of fear of losing the
confidentiality of the information through misuse or release without their authorisation”
and among 110 firms who had at least one case of misappropriation “only 57 (40.7% of
responses) sought remedies in EU courts”.

Fact 6: The strength of trade secret protection and the size of the labor outsourcing

sector are positively correlated across countries.

In this section, I ask whether there is any evidence of a link between the protection of trade
secrets and labor outsourcing decisions across countries. Since there are large unobserved
differences across countries beyond the intellectual property law, I treat the evidence here
more descriptive rather than causal. I use a panel data on the employment shares of la-
bor outsourcing sector through 2008 EU KLEMS and the trade secret protection index
constructed by Lippoldt and Schultz (2014). The final sample has quintennial observa-
tions for 12 countries between 1985 and 2005. The left panel of Figure 12 presents the
patterns of trade secret protection and the extent of labor outsourcing. There is overall a
positive correlation, with countries improving in both dimensions (e.g. Korea) and others
that do not really increase the extent of outsourcing even though the law has improved
(e.g. Lithuania). I do a similar analysis using the OECD employment protection index as
shown in the right panel of Figure 12, and no real pattern emerges having in mind the

little time-series variation present in employment protection laws.

%See Figure 4, Table A9, and Table A2.2 in https://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=SWD:2013:0471:FIN:EN:PDF
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Figure 12: The Labor Outsourcing Sector and Legal Protection The x-axis is the OECD Trade Secret
Protection Index in the left panel and the OECD Employment Protection Index in the right-panel. Each
box refers to one country-year observation where the boxes with darker colors refer to earlier years. The
employment data is from the 2008 Revision of the EU KLEMS Accounts. I define the labor outsourcing
sector as the industry code 74 (Other business activities). Both indices range from 0 to 5 with 5 being the
strongest protection. See Appendix B for details.

Table 9: Cross-Country Panel Regressions

@ @ ®) ) ®) (6)

TSP 052"  0.68* 022" 024 016"  0.18"*
(0.21) (0.10) 0.08)  (0.09)  (0.06)  (0.06)

log(ManufShare) 0.38 0.35
(0.34) (0.34)
EPL —-0.22 —0.21

0.13)  (0.13)

FE Year Country Both Both Both Both
Range ’85-'05 ’85-"05 ‘85-°05  ’85-05  ’'85-05  ’85-'05
Nobs 49 49 49 49 49 49

Notes: The dependent variable is the log outsourcing sector share of employment.
TSP refers to the OECD Trade Secret Protection index and the EPL refers to the
OECD Strictness of Employment Protection index. There are country and year fixed
effects.Standard errors are clustered at the state level. The employment shares of the
outsourcing sector and the manufacturing sector are computed from the 2008 EU
KLEMS Accounts. See Appendix B for details on sample construction and included
industries.
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Figure 13: Trade Secret Protection and GDP per capita The x-axis is the Global IP Trade Secret Protec-
tion Index and y-axis is the GDP per capita. Each box refers to one country observation. The GDP per capita
data is from the 2008 Revision of the EU KLEMS Accounts. Global IP Trade Secret Protection Index ranges
from 0 to 3 with 3 being the strongest protection. The line is the ordinary least squares estimate together
with a 95% confidence interval. See Appendix B for details.

To dig deeper, I run simple panel regression, controlling for country and year fixed
effects. The country fixed effects allow controlling for important country-specific vari-
ables that are important for outsourcing but does not change much over time, such as the
degree of corruption and trust. The time fixed effects allow controlling for global trends
in outsourcing, for example due to increasing use of information technology. I also use
the share of manufacturing employment in each country to control for country-specific
structural change. Table 9 presents the results of the panel regressions. The trade secret
protection index has a statistically significant correlation with the outsourcing shares, af-

ter controlling for country and year specific variables.

Even though the trade secret protection and the extent of outsourcing tend to evolve
together across countries, my analysis here does not rely on an exogenous variation in
trade secret laws. Hence, it is important not to derive causal implications from this anal-

ysis.

D Estimation Details

The estimation of the structural model requires solving for the distribution of firms across
the number of permanent workers and idiosyncratic shocks. Since I do the estimation for

multiple industries and multiple states of the U.S., even solving for the equilibrium can
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quickly become infeasible. I do several tricks to decrease the computational burden. I de-
scribe these tricks in three levels: the design of the model environment, the assumptions
that allow approximating the equilibrium, and the estimation algorithm.

The Design of the Model Environment

I design the model environment in a way that allows estimating each state separately.
This requires each state to have separate product and labor markets. Since neither the
aggregate size of the workforce nor aggregate output is identified for states in the model,
these restrictions do not play a role in the estimation. In other words, one can do the es-
timation ignoring cross-state interactions, then appropriately weight the states according
to their size to compute nation-level aggregates. However, these restrictions do play a
role in the counterfactual exercises. In particular, I assume the policies do not change the
extent of cross-border activities: when one state improves its trade secret law, increased
productivity does not attract workers or businesses from other states. Although this as-
sumption is restrictive, it is necessary to keep the problem feasible. Another alternative
would be to allow cross-state interactions, but decrease the cross-industry and cross-state
heterogeneity across firms substantially. I anticipate the bias in policy evaluations that
would arise from assigning the heterogeneity from other factors to trade secret protection
would be larger than the bias from ignoring cross-state interactions. I leave the formal

assessment for future projects.

Approximating Assumptions

The main identification assumption, i.e. the benefits to outsourcing varies across indus-
tries but not over time, implies a parameter that is constant across states. This parameter
does not preclude separately computing the equilibria for each state, but requires the es-
timation to be done simultaneously for all states. Estimating all states simultaneously
would necessitate the estimation of 1050 parameters altogether, which is computationally
infeasible. To avoid this issue, I do the estimation under Assumption 2, where the param-
eters for the trade secret protection (7;) and the outsourcing efficiency ¢ reduce to a factor
share in a CES production function. Then, I treat the estimated factor shares (&;;) as the
sum of the model implied factor shares («(7;, 05)) and a symmetric zero-mean error term.

This allows separately estimating each state, collecting the factor shares, and estimating
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the trade secret protection parameters (7;) in the second stage.

At the estimated parameters, the assumption does not impact the vast majority of
firms and does not have a large impact on the model implications.” I do not impose
Assumption 2 when I compute the counterfactuals, i.e., firms are not forced to use more

outsourced workers when the trade secret protection improves.

Estimation Algorithm

Computing the stationary equilibrium requires two computationally intensive steps: (1)
computing the value function of firms for each industry, and (2) computing the equilib-
rium rate of entry in each industry that ensures market clearing under the implied steady
state distribution of firms. I use Value Function Iteration (VFI) for the first step and a
forward iteration with an exact transition function for the second step. It is possible to
compute the equilibrium under a second with 200 grids points for permanent workers
and 10 grid points for the idiosyncratic shock process with the classical algorithm by
Hopenhayn and Rogerson (1993).” My model has two added levels of complexity on top
of the classical version. First, due to the non-convex adjustment cost for permanent work-
ers together with the task-based production function, the choice of outsourced workers
requires the use of a non-linear solver for each choice of the number of permanent work-
ers. Second, my model requires computing K (number of industries) prices, stationary
distributions, and entry rates and the computation time does not scale linearly in K. I es-
timate the model efficiently without adding an extra layer of approximation. The classical
algorithm (for one industry) prescribes

1. Use the free entry condition to determine the price of output

2. Find the mass of entrants that clears the labor market in the stationary distribution

When there are K industries that source from the same labor market, I need additional

conditions to pin down the relative sizes of each industry. The final good industry pro-

S This does not preclude the possibility that it significantly impacts the estimated parameters, i.e., impos-
ing the assumption at the ‘correct’ parameters would impact a significant portion of the firms. A complete
verification requires simulating data from the model under different parameter sets and assessing the abil-
ity of the model to estimate those parameters accurately when the assumption is imposed.

°2] utilize the monotonicity and the concavity of the policy function in the stock of permanent workers,
and the Howard’s improvement algorithm. All three generate significant gains in computation speed.
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vides K intermediate good demand conditions on top of the labor market clearing con-
dition that help pin down the final good price and the K entry masses for each industry.
Normally, for each guess of the parameters, solving the equilibrium requires simultane-
ously finding K prices that satisfy K free entry conditions, where each guess for the price
requires running the VFI again to find the implied value of entry. I use two tricks to ensure
that I only need to run the VFI once for each industry for each guess of the parameters.

First, instead of finding the equilibrium intermediate good price for a given entry cost
parameter, I treat the price as the parameter and the entry cost as the equilibrium object
in the estimation. Hence, I only need to evaluate the VFI once for the given price, and
the associated value of entry gives the ‘equilibrium” entry cost. This uses the fact that
the demand shares for the intermediate goods, intermediate good prices, and the level
of productivity /demand shocks across industries are not separately identified. Hence, I
can assume any K product prices, compute the associated entry cost, and set the demand
shares to equate the relative size of each industry to data.

Second, although I model the entry cost and the fixed cost in the units of the final good,
I measure them in units of the market wage which I normalize to unity. Hence, each firm’s
value function only requires knowing the intermediate good price of its own industry and
not the prices of the other intermediate goods. This allows computing the intermediate
good prices separately. This trick uses the fact that the full equilibrium does not need to be
computed for the estimation. When I compute the counterfactuals, I revert to measuring

these costs in units of the final good price, hence computing the full equilibrium.

To sum up, for each set of (remaining) parameters, I use K — 1 relative industry sizes
from the data, K — 1 conditions that ensure that the industry sizes are consistent with the
equilibrium, K free entry conditions, one labor market condition and one aggregate entry
rate to pin down K entry costs, K masses for entrants, K intermediate good price.” The
gains in speed come from using the parameters to ensure equilibrium conditions while
using the equilibrium objects to match moments. So my algorithm is to do the following
steps for each set of ‘parameters’, where the parameters have the equilibrium price level
but do not have the entry costs.

1. Use the revenue shares of industries from the data to pin down the price ratios™,

53The use of the entry rate to pin down the price level happens over the whole estimation, rather than for
each set of parameters.
%4This step practically puts infinite weight on the revenue share moments, forcing the estimation to match
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hence p;, (since the price level is a parameter)
2. Use the free entry condition to pin down the associated entry costs cF

3. Choose the mass of entrants for each industry m, to ensure the equilibrium distri-
bution of firms in each industry is consistent with the revenue shares of industries
from the data and the labor market clearing conditions

These tricks significantly speed up the computation of the equilibrium moments for
each set of parameters without relying on any approximation. However, they also distort
how the moments respond to changes in parameters. In particular, it reduces the effi-
ciency of gradient based solvers, because once the parameters change, the normalization
also changes. Since my model already has non-convexities due to adjustment costs and
exit decisions, I prefer the gains in the speed of evaluating moments over the lost gains in
efficiently searching the parameter space.

E Trade Secret Protection

In this section, I analyze some of the legal concepts and issues that relate to trade secret
protection in more detail. Section E.1 discusses the problems with trade secret protection
under common law, Section E.2 discusses why non-disclosure agreements are not suffi-
cient to ensure trade secret protection, and Section E.3 discusses how the courts determine

which state’s law should govern a trade secret dispute.

E.1 Trade Secret Protection under Common Law

Before 1979, protection of trade secrets was established exclusively through common law.
In addition, trade secret protection varied substantially across U.S. states. This created
further uncertainty: to understand the legal practice, one had to analyze a separate set of
cases for each state.

This problem was further amplified when the Supreme Court has ruled that state

courts cannot use decisions made by federal courts as common law in Erie Railroad Co.

revenue shares exactly. I can always run my estimation algorithm to get a very good starting point, and let
the usual procedure run without imposing this condition before finalizing the estimation.

75



v. Tompkins 304 U.S. 64 (1938). This landmark decision led to each state relying on the
decisions made by their own courts, removing the only unifying body from the picture.
Edward S. Rogers, who was chairman of the board of executives of Sterling Drug Co. and
a member of Lawyers” Advisory Committee of U.S. Trademark Association would later
say “Soon there was built up by decisions of the Federal Court a great body of Federal
Law dealing with trademarks and unfair competition. It was a great convenience to the
bar because lawyers knew or could easily learn what the decisions were and there were
enough of them to give a comprehensive picture. Then came Erie ... which required Fed-
eral Courts to apply the law of the State in which they sit, and there was chaos. There
were 48 different sovereignties, the decisions of whose courts were the only law. The
body of Federal decision which was 50 years evolving was not binding either on the State
or the Federal Courts. Nobody knew what the law was. It was frequently found that
there were no applicable State decisions or that the decisions in the States comprising
the same circuit were not uniform.” (Rogers, 1964). Justice Joseph Story explained what
creates this uncertainty as early as 1837: “One great advantage, therefore, of a code, an
advantage which in a practical view can scarcely be over-estimated, is that it supersedes
the necessity, in ordinary cases at least, of very elaborate researches into other books; and
indeed, it often supersedes in all cases, but those of rare and extraordinary occurrence,
the necessity of consulting an immense mass of learned collections and digests of 243

antecedent decisions.” (Sandeen, 2010)

To resolve these issues, the American Law Institute has published several ‘Restate-
ments of Torts” before 1979, which summarized the theme of the previous decisions. How-
ever, the statements had no legal binding and were necessarily vague where uncertainty
was the highest.

E.2 Non-Disclosure Agreements

A natural solution to prevent trade secrets from reaching the competitors would be to sign
a non-disclosure agreements (NDA)>, which are common practice today in outsourcing.
However, the majority of cases do not involve a spy with malicious intent who steals obvi-
ous secrets hoping not to get caught. Instead, the issue either arises from a disagreement
between the parties on what is secret and what would constitute a misappropriation, or an
otherwise legitimate actor who sees a loophole in the agreement and tries to make quick

%See Footnote 47 in Martinis, Gaudino and Respess III (2013) for example of a standard NDA.
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profits.” In these scenarios, the NDA is far from being sulfficient to ensure protection.
First, to be enforceable, an NDA should explicitly designate what pieces of information
are secret, which is very hard in practice (Elzankaly (2018)). The agreements that try to
make an exhaustive list tend to fail, hence, the majority define secrets as broad and vague
as possible to leave room for potential litigation. Pooley (1989) prescribes “Overnarrow
definitions of your trade secrets may restrict available protection.” and

As a practical matter, many experienced consultants will require you to define
and describe your trade secrets in some detail. After all, consultants make
their living by hopping from one firm to another in the same industry. They
may justifiably insist on a strict limitation of their obligations not to use what

you consider to be your trade secrets.

A word to consultants: do not sign a general nondisclosure clause if you can
avoid it. Remember more than one person can possess the same trade secret,
discovered independently. If you have to sign, insist on a precise definition
and clarify your other consulting relationships.

Second, an NDA is only enforceable on information that is not readily available else-
where. For example, if the secret is previously presented in a public fair, or if it is not
clear what portion of the secret is already known in the industry, the NDA may not be
enforced. Third, enforcement of the NDA requires taking proper precautions to protect
the information, where the definition of proper is purposefully vague. While verbally
discussing a document which is explicitly classified to be secret, additional information
the firm gives may not be protected (Pooley (2020)). Fourth, the NDA can assign dam-
ages to violations, but cannot prevent further use or the disclosure of the secret once it is
revealed. Fifth, although the NDA may designate a monetary transfer in case of a viola-
tion, it is rarely enforced and the court tends to update the number according to its own
estimate of the actual damages. Last, but not least, small and inexperienced companies
may not be able to draft a functional NDA. The trade secret law still provides protection if
there is an implied confidentiality in the agreement when the NDA is missing or invalid
(Smith v. Dravo Corp., 203 F.2d 369 (7th Cir. 1953)). Since the NDA fail to ensure a com-

% According to the analysis of trade secret cases in federal courts in 2008 by Almeling, Snyder and
Sapoznikow (2009), of cases where plaintiff eventually lost, 61% were because the plaintiff could not vali-
date the information was a trade secret, 30% were because plaintiff could not prove information was misap-
propriated and 30% were because plaintiff could not prove it took reasonable measures to protect the secret.
The percentages do not necessarily add up to 100% due to multiple issue being present in some cases.
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mon understanding in most cases, the details of the trade secret law becomes important

in how well the secrets are protected.

E.3 Governing Law in Trade Secret Disputes

If the governing law is important for trade secret disputes, can the sides benefit from the
non-uniformity of laws across the U.S. by designating their favorite choice-of-law? The

answer is largely no.

In transactions where both sides operate in the same state, the laws of that state govern
the trade secret disputes.”” In multi-state transactions, the U.S. law permits the sides to
put a choice-of-law clause in their contract, designating which state-law should govern
the disputes over it. There is no definitive rule that determines the enforceability of these
clauses, but two legal principles favor the state the client is based.

First, either the disputed action or one of the sides should have an organic connection
to the state that will handle the case. Designating a ‘choice of law’ in a contract (e.g.
a non-disclosure agreement) is neither necessary nor sufficient to ensure the designated
state court will handle the dispute. Either side can file a lawsuit in a state court that is
different from the one designated on the contract and the state court designated on the
contract can reject handling the dispute if it feels there is no organic connection between
the state and the dispute. The organic connection requirement also prevents the sides to
use simple loopholes in the legal system: a firm that operates in Florida cannot request the
laws of Delaware to be applied in disputes just because it is officially established there.
On the contrary, the courts tend to reject attempts to pick a ‘favorite state law” in disputes.

Schaller (2009) summarizes the procedure for trade secret disputes:

The choice of law can be complex in trade secret cases. There is no federal
choice-of-law code that dictates the application of governing law in state law
diversity cases. Instead, in diversity jurisdiction cases, absent an enforceable
contractual choice of law clause, a district court must apply the choice of law
rules of the state in which it sits... For trade secret purposes, the applicable
law might be that of the place where the secrets were stolen, the place where

the secrets were disclosed or used, the place where the economic effects of

’The discussion in this section is largely based on Covey and Morris (1983).
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misappropriation were felt, or possibly the place where products incorporat-
ing the secrets were ultimately sold. The test employed usually focuses upon
which jurisdiction has the greatest “interest” or “governmental interest” in the
litigation, upon which jurisdiction has the most significant relationship to the
dispute, or some combination of these rules. Other jurisdictions follow the
lex loci delecti rule, meaning they apply the law of the place where the mis-
appropriation actually took place. At times, however, courts seem to follow
no specific standard at all...This costly, confusing and uncertain inquiry can be
bypassed in some jurisdictions if an enforceable choice-of-law clause exists in
anondisclosure or similar contract between the parties. The chosen law will be
honored if the contract bears some reasonable relationship to the designated
jurisdiction and does not offend any public policy of the state in which the
court is sitting. Thus, designating the law of plaintiff’s state of incorporation
will not carry the day if plaintiff and defendant have their relationship cen-
tered elsewhere...See e.g. Curtis 1000, Inc. v Suess, 24 E.3d 941, 943-44 (7th Cir.
1994) (holding that the designated law of Delaware lacked sufficient connec-
tion to trade secret and non-compete dispute between plaintiff headquartered

in Georgia and defendant working in Illinois.

Second, when the outsourcing firm signs multiple contracts with multiple clients with
the same choice of law clause, the courts may interpret these non-disclosure agreements
as one of adhesion. In other words, the choice-of-law clause could be perceived as one
dictated by the outsourcing firm to the client, resulting from inequality of bargaining
power. In the case where the choice of law favors the outsourcing firm over the client, the

court may not enforce the choice-of-law clause.

There is another fundamental force that steers the choice of law towards the client’s
state: if a dispute ends up in a court, the client will have to be physically present in the
courtroom. Hence, the clients have an intrinsic motive to designate the home state as the

governing law.

This is also supported in Almeling, Snyder and Sapoznikow (2009) and Almeling et al.
(2010) for trade secret disputes. Although their data do not include the location of the
sides or the dispute, they find the applied law differed substantially in cases, indicating

that there was no convergence to the law of a particular state.
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F Generalized Differences-in-Differences Methods

In a setting with two time periods and two groups (treatment and control), the differences-
in-differences (DiD) estimator gives a consistent estimate of the average treatment effect
for the treated (att) under the parallel trends assumption. Furthermore, one can test the

parallel trends assumption using pre-treatment trends under additional assumptions.

The staggered adoption setting allows aggregating the information from DiD com-
parisons across multiple pairs of units over many periods. One simple counterpart of
the DiD estimator with multiple periods and staggered adoption is the Two-Way Fixed
Effects (TWFE) estimator and it is widely used in empirical studies. This estimator cor-
responds to a regression with both time and unit fixed effects where the main regressor
is a dummy D;, that equals 1 if unit 7 is under the effect of the treatment at time ¢. The
TWEE does not adopt the nice properties of the DiD estimator due to two reasons. First,
Goodman-Bacon (2018) and de Chaisemartin and D’Haultfceuille (2020) have recently
shown TWEFE estimate does not have a clear economic interpretation when the treatment
effect is heterogeneous across units. The estimate can even be outside the convex hull of
the pairwise DiD estimates of individual adoptions. Second, Sun and Abraham (2020)
pointed out that the TWFE estimator estimates the treatment effect by comparing units
whose treatment has changed to those whose treatment remained constant. Thus, the
control group includes units who have recently received treatment. In the presence of
dynamic treatment effects, this introduces a bias in the estimates as well as tainting the

tests for pre-treatment trends.™

My setting is likely subject to both dimensions of heterogeneity. First, the effect of the
UTSA can be smaller or larger for the states who adopted it later. It can be smaller if there
are treatment spillovers to the control states, e.g. through the inter-state provision of these
services. It can also be larger if the UTSA becomes more effective as states that already
adopted it accumulate decisions based on it to be used as a reference for future decisions.
Second, the adoption potentially has dynamic effects, i.e., its effect on outsourcing may
depend on how much time has passed since adoption. It is reasonable to think the effect
may take a few years to fully realize since (1) it takes time for the clients to understand
the law changes and demand more outsourcing and (2) it takes time for the outsourcing
sector to grow to meet the growing demand.

See Roth (2018) for further issues with statistical tests for pre-trends, even in the classical DiD settings.
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G Outsourcing and Trade Secrets

In this section, I provide some direct evidence on how the concerns over protecting trade
secrets indeed impact the outsourcing decisions of the firms. First, I discuss the gov-
ernment regulations that limit the form and extent of outsourcing due to concerns over
loss of trade secrets.”” Second, I provide anecdotes from experts and practitioners that

emphasize the importance of trade secrets in outsourcing relationships.

G.1 Government Regulations

Financial Institutions

The Federal Financial Institutions Examination Council®

publishes the Outsourcing Tech-
nology Services Booklet that regulates whether and how financial institutions can out-
source a variety of IT functions “... to help ensure financial institutions operate in a safe

and sound manner.”.

Health Providers

Health Insurance Portability and Accountability Act (HIPAA) regulates the use of out-
sourcing by health institutions through the Omnibus Rule which requires the ‘business
associates’ of health providers to also comply with the HIPAA Rules (Breach Notification
Rule, HIPAA Security Rule, HIPAA Privacy Rule, etc.) and holds the health provider re-

sponsible for any loss of private information that happens through the business associate.

Governmental Agencies

The Privacy Act of 1974 regulates the extent to which governmental agencies can share

information that pertains to an individual: “No agency shall disclose any record which

1 do not model regulation explicitly, but the information sharing constraint can easily be interpreted as
such.

®The FFIEC consists of five banking regulators—the Federal Reserve Board of Governors (FRB), the
Federal Deposit Insurance Corporation (FDIC), the National Credit Union Administration (NCUA), the
Office of the Comptroller of the Currency (OCC), and the Consumer Financial Protection Bureau (CFPB).

81



is contained in a system of records by any means of communication to any person, or to
another agency, except pursuant to a written request by, or with the prior written con-
sent of, the individual to whom the record pertains [subject to 12 exceptions]” 5U.S.C. §
552a(b). The first of these 12 exceptions, namely “need to know within agency”, makes it
easier to communicate this information within the agency relative to third-party agencies
such as outsourcing firms.®" There are also supplemental clauses through other regula-
tions, such as the Protection of Privacy and Freedom of Information chapter of Federal
Acquisition Regulation. Specific governmental agencies also have additional regulations
restricting the use of contractors. For example, Department of Defense Privacy Program
of 2007, C1.3.1.4. requires that for any contracted job, an internal system of contractor
performance review to be established and special training to be given on the privacy pro-

grams.

G.2 Self-regulation

I restrict attention to either self-reports of firms and managers, first-hand documentation
of these practices by observers, or recommendations from experts. Some of the evidence
here explicitly mention outsourcing decision, while some imply it through emphasizing

the importance of the length of a relationship to build trust.

“Because consultants have many of the privileges of a regular employee, though for a
shorter period of time, they must be subject to nondiclosure obligations as well. Indeed,
it is essential to secure such agreements from consultants: the nature of their work sug-
gests they will work later for a competitor, or may compete with you directly. In fact, the
consultant may be serving other masters at the same time as working for you. The con-
sultant presents all the problems of the ‘peripatetic employee” magnified several times.
Therefore, you must be extremely cautious and clear in establishing and managing your
relationship. ” Pooley (1989)

“Limit the consultant’s access to that portion of your facilities, records, and staff that
is necessary to complete the work. Closely supervise what is done. At termination of
the relationship, get additional reassurances of what the consultant will do to protect the

integrity of your data, including the results of this project.” Pooley (1989)

®In certain instances, the courts allow treating the employees of contractors as the employees of the
agency, e.g. Mount v. USPS, 79 E3d 531, 532-34 (6th Cir. 1996), in some others they do not, e.g. Minshew v.
Donley, 911 E. Supp. 2d 1043, 1072 (D. Nev. 2012).
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“Contracting with a supplier can expose a company to the possibility that confidential
information might leak, perhaps even to competitors. The risk is heightened when the
out-sourced activity involves technology that is novel in some competitively significant
way and when the protection for it (for example, patent laws) is weak or unclear and
the innovation is easy to imitate. Interdependencies are also of concern: Spillover risks
are exacerbated when the interface between the outsourced activity and other internal
functions is complex, requiring a company to reveal proprietary information to ensure a

good fit between the two.

To protect against dependency and spillover risks, a company can rely on detailed le-
gal contracts with vendors. But such documents are time-consuming and expensive to ne-
gotiate, and enforcement is uncertain and costly, thus discouraging outsourcing. Instead,
outsourcing is greatly facilitated by trust between the two parties, particularly when both
organizations are keen on maintaining their reputations as trustworthy partners. How-
ever,given the possibility of divergent business interests, trust between independent firms
is, by nature, conditional. Note too that the trustworthiness of external partners should

be compared with that of internal suppliers, which sometimes rate poorly.” Adler (2003)

“Referred to by Adler (2003) as spillover risk, outsourcing firms are exposed to the
possibility that confidential or critical information might leak to competitors or be used
by the outsourcing firm to eventually take over the client firm’s business.” Schniederjans,
Schniederjans and Schniederjans (2015)

“Much essential company information, including strategic plans, is stored in comput-
ers. Under no circumstances should such information fall into the hands of competitors.
The security risks involved in outsourcing are therefore frequently cited as a reason for
not contracting out one’s information services delivery; these companies prefer to keep
their internal IT departments (Willcocks and Fitzgerald 1994; Klepper and Jones 1998;
Miller and Anderson, 2004). The IT procurement manager of Case III explains:

Our primary processes of producing coatings, fibres, chemicals and pharmaceuticals
are supported by IT, which consequently has very much added value. Contracting out
activities so close to our primary processes is not desirable. The risk of production secrets
falling into the hands of our competitor by way of external suppliers is far too great.”
Beulen and Ribbers (2010)

“Outsourcing the IT function is likely to involve the supplier processing the organisa-
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tion’s data in some form. The organisation remains responsible for compliant handling
of its data even if this is under the control of a supplier. Risks may arise over the con-
fidentiality of the organisation’s data and intellectual property. For instance, there may
be misuse of confidential data relating to the organisation, its employees and customers;
and inadequate security measures implemented by the supplier.” Kendrick (2009)

“It is not unusual, however, for confidentiality orders to require that all experts or con-
sultants, whether testifying or not, be disclosed before they receive access to confidential
documents produced by the other side. Such provisions reflect legitimate concerns that
the disclosure of trade secret information to a consultant who has other clients in the
industry or who may participate in the industry in other capacities, creates the risk of
competitive injury.” Quinto and Singer (2012)

“The principal issue at the start of the Du Pont-Masland litigation was whether Masland
was using Du Pont’s trade secrets in manufacturing artificial leather, or whether he was
using methods that were common knowledge among chemists in that line of business.
The district court initially denied a preliminary injunction because Masland insisted that
he was not using Du Pont trade secrets. During the litigation, Masland proposed to get
expert testimony to establish that the processes that Du Pont claimed as trade secrets were
in fact common knowledge among chemists. Fearing that litigation would reveal their se-
crets to their competitors, Du Pont wanted to prevent Masland from drawing his experts
from the ranks of their competitors, preferring that he serve as his own expert or that he
use experts drawn from the Government or academia.” Fisk (2000)

H Additional Figures and Tables

Industry Group o Vi

Food 0.555 0.417
Wood 0.407 0.653
Heavy 0.516 0.568
Light 0427 0.62

Table 10: Externally Calibrated Industry-level Parameters Notes: The o, values are computed from
Bloom et al. (2018) by taking weighted averages of "Uncert_tfp’ estimates for 4-digit SIC sectors. The v
values are from Table 9 in Chan (2017).
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Parameter Moment Model Data
T 0.2 % Job Dest. Rate 9.24 8.74
ck 176 % Exit Rate 6.15 6.29
c 463 Revenue Share 1 0.314 0.323
¥ 280 Revenue Share 2 0.0424 0.0461
ck 490 Revenue Share 3 0.264  0.287
cf 194 Avg Estb. Size 1 35.5 35

cf 93 Avg Estb. Size 2 44.7 44

cf 172 Avg Estb. Size 3 54 53.5
ek 101 Avg Estb. Size 4 62.6 60.5
th 0.092 Revenue/Payroll 1 12 12

6 0.14 Revenue/Payroll 2 7.62 7.26

0 0.14 Revenue/Payroll 3 8.14 8.07
0, 0.14 Revenue/Payroll 4 8.22 7.81

p1 0.95 Size < 20 Share 1 0.762  0.715
P2 0.97 Size < 20 Share 2 0.505  0.591
03 0.95 Size < 20 Share 3 0.46 0.454
P4 0.98 Size < 20 Share 4 0.538  0.608
ay 0.81 Outsourcing/Payroll1 0.0868 0.0855
Qo 0.73 Outsourcing/Payroll 2 0.0604 0.0596
s 0.72  Outsourcing/Payroll 3 0.115  0.109
ay 0.75 Outsourcing/Payroll 4 0.0836 0.0847

Table 11: First-stage Estimation Results (Michigan)
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State T QFood OWood OHeavy Light

AL 017 019 0.27 028 0.27
Az 021 021 0.28 029  0.30
CA 024 023 030 030 031
CT 020 021 028 028 0.29
FL 024 022 030 031 031
GA 015 016 0.26 029 0.28
IL 023 022 029 030 0.31
IN 018 020 0.28 028 0.28
KS 021 021 029 030  0.30
LA 026 025 028 031 0.32
MA 021 021 0.29 029 030
MI 016 019 0.27 028 0.25
MO 013 017 0.25 025 0.25
NE 014 017 0.26 026 0.26
NJ 021 021 0.28 029 0.29
NY 016 019 0.27 027 027
NC 018 016 0.30 031 0.29
OH 016 019 0.27 027 027
OK 015 019 023 027  0.27
OR 018 019 0.27 028 0.29
PA 0.16 019 0.26 027 027
RI 017 018 0.28 028 0.28
™ 017 019 0.29 031 0.23
X 018 023 0.30 019 031
ur 020 021 0.28 028 0.29
VA 018 018 0.28 029 0.29
WA 022 022 029 030 0.30
WI 017 020 0.26 028 0.27

Table 12: State-Level Estimates for Trade Secret Protection The first-stage estimation results for o,
and the associated second-stage estimation results for 7;
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Figure 14: The Distribution and the Coefficient of Variation for Outsourcing to Payroll Ratios
Under Baseline and the Counterfactual Scenarios Notes: Base refers to the baseline, Avg Ind refers
to the counterfactual with the average composition of industries, Avg 7 (7) refers to counterfactual with
the average level of 7 (). The last two refers to counterfactuals where multiple objects are equal to their
average values across states. See Table 13 for state-by-state details.

87



0.25 ¢ *
N . . 3000 -
. . ]
° . ° * u . A [
0207 LR
* 2 ‘ ¢ *®
o0 o_° ° 20001 @ . om . ° S
oo, ° ° 8 * 3 * o
) * * 2 00ehA °
0.15 8 ¢ 4 L I * ¢ *
@ = ] u A" ¢ © [} $ ‘ ¢ u
R . n? A ] . ° .. e ° ) a0 *
°
A &, 2 A _A " ° A se o om °®
Vu ¢ A n®® u e ° ¢
1
0l0{, A FLEEYY mA ° - 000. A®, °
| L [ u AN [ °
] ] A AN X3 * =
= Em ., ™ [
A A A A
0.05 A A B AmpA_L4A A
A OA‘A.I VT T nl4Tm"m 4ad,
ALAZCACTFLGA IL INKSLAMAMIMONCNENJINYOHOKORPA RI TNTXUTVAWAWI ALAZCACTFLGAIL INKSLAMAMIMONCNENJINYOHOKORPA RI TNTXUTVAWAWI
State State
A 20
Ind2 ] A
6001 ™ Food =
® Wood |
A o AR
ey 2.l = s A
y ¢ Light - A x 15
400 - A ] A g A A ] - - R [} ] =
n ° [
o A . A AAA & Ay A L A
= A A " 2 | Agm A Aa_a" " "
oA A gy ° a" ¥ e =
A c ° *
2001 m ..l A‘. oy | A g |® A’ . .‘.0 "a A .
M, A = A m |2 « 0%, $,2° o0%00
A n eeo oo A (] * .
A ° ° . [ ] ° . ecg °
° *Q ¢ [ 4 He 5 ¢ ® * 4 * *
o % $ o $.%9249 ae °, e o .
09,0008 Lo $eTgetasne ol
0 X - o
ALAZCACTFLGA IL INKSLAMAMIMONCNENINYOHOKORPA RI TNTXUTVAWAWI ALAZCACTFLGAIL IN KSLAMAMIMONCNENJNYOHOKORPA RI TNTXUTVAWAWI

State

State

Figure 15: First Stage Estimates and Revenue Payroll Ratios Notes: The first three panels plot the first

stage estimation results for returns to scale parameters

(0;k), entry costs cﬁ, and fixed operating costs ¢y

respectively. The bottom right panel has the revenue payroll ratios from the CMF for each state-industry

pair. See Appendix B for details on the data sources.
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Figure 16: The Number of States that Adopted the UTSA (1980-2016) Notes: EEA refers to the Eco-
nomic Espionage Act of 1996 and DTSA refers to the Defend Trade Secrets Act of 2016. The figures combines
adoption years in Png (2017b) with public announcements.
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State Base AvgrT Avgm AvgInd Avgrand7m Avglnd, 7rand 7w

AL 0.19 0.17 0.22 0.19 0.17 0.22
AZ 0.16 0.15 0.15 0.16 0.15 0.15
CA 0.22 0.19 0.17 0.22 0.19 0.17
CT 0.15 0.16 0.15 0.15 0.16 0.15
FL 017  0.22 0.19 0.17 0.22 0.19
GA 0.15 0.15 0.16 0.15 0.15 0.16
IL 0.19 0.17 0.22 0.19 0.17 0.22
IN 0.16 0.15 0.15 0.16 0.15 0.15
KS 0.22 0.19 0.17 0.22 0.19 0.17
LA 0.15 0.16 0.15 0.15 0.16 0.15
MA 017 0.22 0.19 0.17 0.22 0.19
MI 0.15 0.15 0.16 0.15 0.15 0.16
MO  0.19 0.17 0.22 0.19 0.17 0.22
NE 0.16 0.15 0.15 0.16 0.15 0.15
NJ 0.22 0.19 0.17 0.22 0.19 0.17
NY 0.15 0.16 0.15 0.15 0.16 0.15
NC 017  0.22 0.19 0.17 0.22 0.19
OH 0.15 0.15 0.16 0.15 0.15 0.16
OK 0.19 0.17 0.22 0.19 0.17 0.22
OR 0.16 0.15 0.15 0.16 0.15 0.15
PA 0.22 0.19 0.17 0.22 0.19 0.17
RI 0.15 0.16 0.15 0.15 0.16 0.15
TN 017  0.22 0.19 0.17 0.22 0.19
X 0.15 0.15 0.16 0.15 0.15 0.16
uUT 0.19 0.17 0.22 0.19 0.17 0.22
VA 0.16 0.15 0.15 0.16 0.15 0.15
WA  0.22 0.19 0.17 0.22 0.19 0.17
WI 0.15 0.16 0.15 0.15 0.16 0.15
CoV 0.19 0.22 0.15 0.16 0.17 0.15

Table 13: The Baseline and the Counterfactual Outsourcing to Payroll Ratios for States of the
U.S.The last row reports the coefficient of variation.
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State Base Best TSP Gross Out NetOut # of Firms Wage

AL 0.11 0.16 1.006 1.006 1.004 1.015
AZ 0.14 0.17 1.007 1.008 1.007 1.010
CA 0.16 0.17 1.000 1.000 0.999 1.004
CT 0.13 0.18 1.010 1.011 1.010 1.014
FL 0.13 0.14 1.003 1.003 1.003 1.002
GA 0.11 0.17 1.010 1.011 1.009 1.020
IL 0.15 0.17 1.001 1.001 1.000 1.005
IN 0.12 0.17 1.009 1.010 1.009 1.014
KS 0.13 0.15 1.004 1.004 1.003 1.008
LA 0.17 0.17 1.000 1.000 1.000 1.000
MA 0.14 0.17 1.006 1.007 1.006 1.009
MI 0.11 0.17 1.012 1.013 1.011 1.020
MO 0.09 0.18 1.017 1.019 1.016 1.029
NE 0.09 0.15 1.008 1.009 1.007 1.017
NJ 0.15 0.18 1.009 1.010 1.009 1.011
NY 0.12 0.19 1.019 1.020 1.020 1.022
NC 0.13 0.17 1.007 1.007 1.006 1.014
OH 0.12 0.18 1.013 1.015 1.013 1.022
OK 0.10 0.17 1.015 1.017 1.015 1.024
OR 0.11 0.15 1.010 1.010 1.010 1.012
PA 0.12 0.20 1.015 1.018 1.016 1.025
RI 0.12 0.19 1.017 1.019 1.017 1.021
TN 0.16 0.22 1.005 1.006 1.002 1.019
X 0.20 0.26 1.007 1.007 1.005 1.023
UT 0.13 0.17 1.010 1.011 1.011 1.012
VA 0.11 0.16 1.008 1.009 1.007 1.014
WA 0.12 0.14 1.005 1.005 1.005 1.005
WI 0.11 0.16 1.010 1.010 1.010 1.013
Median 0.12 0.17 1.009 1.009 1.008 1.014
Max 0.20 0.26 1.019 1.020 1.020 1.029

Table 14: The State-Level Counterfactual Results After an Improvement in Trade Secret Protection
The values for columns 4 to 7 are relative to a baseline value of 1.
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