Public procurement in collusive institutional settings: evidence from Russian gasoline market

Atmaca¹, Camboni², Podkolzina³, Schoors⁴ and Valbonesi⁵

PRELIMINARY DRAFT - May 2020

1/23

ACPSV

¹Ghent University and Higher School of Economics

²University of Padova - corresponding author, riccardo.camboni@unipd.it

³Higher School of Economics

⁴Ghent University and Higher School of Economics

⁵University of Padova and Higher School of Economics $\Box \mapsto \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$

• Public procurement framework, reverse auctions

- Each procurer has discretion in setting the reserve price, *R*, i.e., the maximum price he/she is willing to pay
- Model: reserve price manipulation (underpricing, R_u) to set/ maintain a *(tacit) collusive agreement* between the procurer and a favored seller

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Empirical Analysis: Russian procurement data (gasoline)
- Very preliminary results!!!

Corrupt reserve price

Manipulated reserve prices: higher *R* leading to i) higher winning price;
 ii) private benefit for procurer (*Atmaca, Schoors and Podkolzina, 2020*).

② Dectection of corruption (and collusion)

- Tunneling around elections in exchange for procurement contracts (*Mironov Zhuravskaya, AEJep, 2016*).
- Comparing value of public infrastructure with procurement costs (Golden Picci, Economics and Politics, 2005).
- Statistical test to detect coordinated entry and bidding choice (*Conley Decarolis, AEJmicro, 2015*).
- Collusion from competition, when collusion not directly observed (*Bajari Ye, REStat, 2003, Aryal Gabrielli, IJIO, 2013*).
- **③** Manipulations of the awarding mechanism.
 - ex-ante manipulation, in SRAs (Camboni, Valbonesi, Padova Wp 2018)
 - ex-post manipulation (*Prabal Goswami and Wettstein, IJIO, 2016;* Burguet, AEJmicro2017; Huang - Xia, EER, 2019).

- A local public procurer *P* adopts auctions for repeated (and regular) purchases of an item (i.e. sugar, gasoline, etc.)
- Market structure, in each local market:
 - *n* local small suppliers, *s*₁...*s*_n
 - (at least) one efficient supplier I, i.e. the incumbent
- On average, I is more efficient (i.e. lower marginal costs) than $s_1...s_n$
- Having observed previous tenders, by $s_1...s_n$, *P* has a precise information about each local supplier's marginal costs, *I* has not, or not so precise

- Underpricing of reserve price \rightarrow P's manipulation, i.e. P sets a R_u which is lower than the average local price.
- Ratio:
 - P sets a reserve price R_u to signal I the marginal cost of the local most efficient small supplier s_e .
 - So Then, I will bid m, with $m < \min \{b^{I}, R_{u}\}$, and where $b^{I} = b(C(I))$ is the "spontaneous" optimal bid by the incumbent
- in presence of R_u , the *I*'s probability of victory is higher than the case without manipulation;
- such procurer-seller interaction could be repeated in the auctions which will follow, leading to a flow of collusive gains for both parts.

Supply market

1 θ is each bidder's private cost (private information)

(2) incumbent: type $\theta' \sim F'(\theta')$ s.t. $\theta' \in \left[\underline{\theta}', \overline{\theta}'\right]$.

n "smaller" and local bidders of type \$\theta_i \$\sim F(\theta)\$ s.t. \$\theta_i \$\in [\beta, \beta]\$]
\$\beta_i' < \beta < \beta^i < \beta\$

(日) (四) (코) (코) (코) (코)

The model - Supply side

Figure: the cost assumptions of type θ^{I} and type θ_{i}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

P receives a signal about the local suppliers' costs, s.t. $\tilde{\theta}_i^B = \theta_i + \varepsilon$, with $\varepsilon \sim N(0, \sigma)$

P adopts a FPA auction, and sets a reserve price (R or R_u).

Underpricing. Suppose $\sigma = 0$. Then, *P* sets $R_u = \min \left\{ \widetilde{\theta}_i^B \right\} = \min \left\{ \theta_i \right\}$. Thus, either:

- If $\theta^{I} > R_{u}$, a small bidder *i* wins, and buyer extracts all the surplus;
- If $\theta^{I} < R_{u}$, then I bids $m < R_{u}$, I wins and gets a weakly positive profit $\pi^{I}(m) = m \theta^{I}$

RQ: In the underpricing setting, is m an equilibrium of an infinite horizon game?

Standard FPA with asymmetric auction solved for a setting with two bidders, (Kaplan and Zamir, 2012), i.e. outside option.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• *I*'s profits:
$$E[\pi^{I}] = (b(\theta^{I}) - \theta^{I}) \cdot \Pr(\theta^{I} < \min\{\theta_{i}\})$$

• P's utility:

1
$$V - b(\theta')$$
, if $\theta' < min \{\theta_i\}$
2 $V - min \{\theta_i\}$, if $\theta' > min \{\theta_i\}$

Equilibrium, underpricing setting

- Is the Buyer better off?
 - YES, if $m < b(\theta^I)$
- Is the winner (i.e. Incumbent) better off?
 - YES, conditional on bid m.
 - In equilibrium: $m < b\left(heta^I
 ight)$, and $\Pr\left(heta^I < \min\left\{ heta_i
 ight\}
 ight) = 1$
 - Intuitively: *I* has a richer information set and therefore a higher likelihood of winning the auction (even getting lower profit in each auction, but collusive agreement sustains repeated winnings).
- Incentive compatibility constraint
 - In a single shot game, *I*'s best response in underpricing is to place a bid equal to R_u .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• In a repeated game, assume δ is bidder's discount rate of the future. Then, ICC is: $(m - \theta') \frac{\delta}{1 - \delta} > (R_u - \theta') + \frac{\delta^2}{1 - \delta} \cdot E[\pi']$ to highlight if evidence in our dataset can be explained with the above underpricing strategy:

Stable pair:
 R_u is a strategy employed by a stable (P, I) pair.

- Effect on competition: in auctions with R_u, less than average number of bidders, and higher probability of having just one bidder (the Incumbent).
- Effect on auctions' outcome: in auctions with R_u, the winning price is on average lower than the market price.

- Unified procurement system (Federal Law No.94 of 21/07/2005)
- Federal, provincial and municipal levels
- In 2011 e-auctions introduced. Sealed bid auctions can be used only for R < 500,000 RUB
- In 2014 replaced by Federal Law No.44
- *R* : Tender notice/documentation contains information on level and rationale.

- Russian data on gasoline, varying octane rating (a largerly homogeneous good)
- purchases through gas stations
- No outsourcing
- Lowest price as award criterion (FPA)
- 83 Russian regions, for the period 2011 2013
- 81,750 auctions (72% sealed bid and 28% e-auctions)
- Monthly regional market prices of gasoline types (Rosstat)

$$r_{ijt} = X_{ijt}\beta + \gamma_s year_{ijt} + \mu_{ij} + \varepsilon_{ijt}$$
(1)

$$\mu_i = \frac{1}{k} \sum_{j=1}^k \mu_{ij} \tag{2}$$

Underpricing if

$$\mu_{ij} - \mu_i < 0 \tag{3}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 r_{ijt} reserve price per liter of gasoline X_{ijt} market price, volume and govt level of procurer $year_{ijt}$ year effects μ_{ij} procurer-seller fixed effects on reserve price

i procurer, *j* seller, *t* time

Definition

A Procurer *P* and a Seller *I* adopts an underpricing strategy iff reserve price set by *P* in contracts won by *I* is systematically lower than the average reserve price for auctions of similar characteristics. Underpricing = 1 if $\mu_{ij} - \mu_i < 0$, and 0 otherwise.

Underpricing	Observations		Pairs (P, I)	
	N	%	Ν	%
0	44729	78	9419	87.2
1	12613	22	1384	12.8
	57343	100	10803	100

Effect on Competition

	N° bidders		Prob(n = 1)	L)
	(1)	(2)	(3)	(4)
Underpricing pair	-0.0289***	-0.031***	0.103***	0.100***
E-auction	-0.419***	-0.420***	2.402***	2.400***
Underpricing pair * e-auction		0.007		0.009
Log(volume)	0.038***	0.038***	-0.176***	-0.176***
Reserve price	0.004***	0.004***	-0.029***	-0.029***
Sorting	0.017**	0.017**	-0.148***	-0.148***
Voluntary e-auction	0.019**	0.018**	-0.161***	-0.161***
Minimal application period	0.007	0.007	-0.065*	-0.065*
Constant	-0.235***	-0.235***	2.930***	2.930***
Region FE	х	х	х	х
Year FE	х	х	х	х
Obs.	50767	50767	50767	50767

Effect on auction price

Obs.

	(1)	(2)
Underpricing pair	-0.009***	-0.012***
E-auction	0.003***	0.056***
Underpricing pair * E-auction		-0.007**
Log(volume)	0.0001	0.0003
Reserve price	0.016***	0.016***
Sorting to avoid e-auction	0.008***	0.007***
Voluntary e-auction	0.002***	0.001***
N° bidders	-0.021***	-0.014***
Underpricing pair * N $^{\circ}$ bidders		0.003***
E-auction * N $^{\circ}$ bidders		-0.037***
Underpricing pair * N° bidders * E-auction		0.001
Constant	0.455***	0.466***
Region & vear FE	х	х

49836

49836

probability of winning, underpricing pair

	(1)	(2)	(3)	(4)
Underpricing pair	0.275***	0.386***	0.224***	0.452***
E-auction	-0.196***	-0.065	-0.267***	-0.131**
N° bidders	-1.312***	-1.372***	-1.461***	-1.493***
Sorting to avoid e-auction	0.174***	0.109*	0.162***	0.098
Voluntary e-auction	-0.069	0.051	-0.074	0.050
Constant	4.098***		4.298***	
Region FE	х	х	х	Х
Year FE	х		х	
Procurer FE		х		Х
Obs.	68764	52645	52929	40087
n° of different procurers		3220		2647

Sample is restricted to firms that have won at least 1 contract of given procurers. Column 3 is restricted to firms that have won

at least 45 contracts. The last column contains firms that have at least 1 corrupt relation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Suppose *I* pays a bribe to *P* in exchange of the information about marginal cost of the most efficient local supplier
- Then I will play R
- If Underpricing AND $b(\theta^{I}) = R$, then a bribe is required to justify the result of our model/empirical analysis.
- If Underpricing AND b (θ^I) < R, then underpricing may be used to maintain a long term relation.

Table: Winning rebate if underpricing

number of auctions with rebate $=0$ (bribe required)	7,283
number of auctions with rebate >0 (no bribe required)	5,385

Note: Sample restricted to underpricing pairs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- A strategy of R_u can be used to maintain a long-term relation between a procurer and a favored bidder (i.e. Incumbent)
- This strategy leads to the reduction of competition and blocks entry of new/small firms in public procurement
- This form of favoritism may be implicit and does not require a bribe
- Our preliminary empirical analysis suggests that this strategy of exists.
- Neither model, nor data allow to disentangle good and bad relations: relational contract (+) or favoritism (-)?

Comments, questions, doubts, suggestions ...

...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THANK YOU!!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?