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Abstract

We study the repeated prisoner’s dilemma with random matching when some players may be

“bad types”who never cooperate. We establish an anti-folk theorem: with anonymous players,

cooperation is impossible in large groups under a smoothness assumption on the distribution of

the number of bad types. Communities may avoid this grim outcome by segregating themselves

into smaller sub-groups, at the cost of forgoing some gains from trade. Making players’identities

observable does not help much: cooperation remains impossible in groups whose size N is large

relative to the discount factor δ, in that (1− δ)
√
N → ∞. However, allowing within-match

cheap talk supports cooperation in much larger groups: those where (1− δ) logN → 0. Thus, in

contrast to the situation where all players are rational, communication is essential for supporting

cooperation in large groups in the presence of a few bad apples.

Keywords: community enforcement, repeated games, incomplete information, communication

JEL codes: C72, C73, D83
∗For helpful comments, we thank Daron Acemoglu, Glenn Ellison, Drew Fudenberg, Yuval Heller, Matt Jackson,

George Mailath, Stephen Morris, Satoru Takahashi, Omer Tamuz, and seminar particiants at Princeton, Stanford,
and Wharton.



1 Introduction

Economists have long asked whether large, decentralized groups of agents with limited information

about individuals’past behavior can be expected to cooperate. Investigating this question may help

us understand what types of information, communication, enforcement, and patterns of interaction

are required to support trust and pro-social norms of behavior in different kinds of groups.

Early results by Kandori (1992) and Ellison (1994) suggest that groups can often support co-

operation despite minimal information by relying on contagion, a form of collective punishment :

whenever a player sees anyone defect, she starts defecting against everyone. While collective pun-

ishment works in groups where everyone is perfectly rational and forward-looking and no one ever

makes a mistake, it is not clear whether this approach remains effective in more realistic situations.

Kandori writes (p. 71),

Even when cooperation is sustained, [contagion] has the unfortunate feature that

innocent players will necessarily be punished. Also, it is fragile in that a little bit of

noise (“trembling hands”) causes complete breakdown of cooperation in the community.

This may be the main reason why we do not observe such a norm very often. Given

this point, we feel that a norm should be evaluated not only by its equilibrium payoffs,

but also by its (suitably defined) “robustness.”

Ellison challenges this conclusion by showing that a version of contagion strategies are robust

to i.i.d. noise, where each player is forced to defect with probability ε every period. However, he

also notes (p. 578)

What is probably more important practically and harder to overcome is that the

argument above deals only with trembles. If one player were “crazy”and always played

D [defect]. . . the contagious strategies would not support cooperation. In large popula-

tions, the assumption that all players are rational and know their opponents’strategies

may be both very important to the conclusions and fairly implausible.

In this paper, we probe the limits of community enforcement when some players are “bad types”

who always defect. Our first result– Theorem 1– is a stark anti-folk theorem: with anonymous

players, cooperation is impossible in large groups under a smoothness assumption on the distribution

of the number of bad types, no matter what strategies players use or how patient they may be.
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That is, for population size N and discount factor δ, cooperation is impossible when N is large,

even if (1− δ)N is small.

The key assumption behind this result is not that the number of bad types is large, but that

it is uncertain. When players are anonymous, cooperation is a public good: a player’s decision

to cooperate rather than defect in the current period is individually costly and benefits all her

opponents equally. Therefore, a rational player can be deterred from pretending to be bad–

and thus contributing less to the total “amount of cooperation”in society– only if the amount of

cooperation is significantly lower when there is one extra bad type. Since the amount of cooperation

is bounded, when the variance of the number of bad types goes to infinity, the expected amount of

cooperation goes to zero. For example, we show that this is the case when each player is bad with

independent probability ε, for any fixed ε ∈ (0, 1), and N →∞.

Theorem 1 provides a simple rationale for why individuals sometimes choose to interact in small

rather than large groups: the larger the group, the more likely it is to contain bad apples, and bad

apples spoil cooperation. We investigate optimal group size with anonymous agents, taking into

account that restricting interaction to a smaller group reduces the available gains from trade. In

the simple case where each player is bad with independent probability ε and marginal gains from

trade are constant in group size, we find that optimal group size is on the order of 1/ε under both

contagion strategies (where a single bad type completely destroys cooperation with patient players;

see Proposition 1) and optimal ex post equilibrium strategies (where we show that each additional

bad type reduces the amount of cooperation by a constant factor; see Proposition 2).1

We then move from the benchmark case of anonymous agents to the more realistic setting

where players’identities are observable. In this environment, it is obvious that the presence of bad

types does not destroy cooperation when players are suffi ciently patient, as players can simply forgo

community enforcement altogether and treat the repeated random matching game as a collection

of asynchronous two-player games, in which case the fact that one partner may turn out to be bad

has no bearing on interactions with different partners. However, this approach works only if players

are very patient– in that (1− δ)N is small– while a central promise of community enforcement is

to support cooperation for much lower, more realistic discount factors: for example, without bad

types, contagion strategies form a Nash equilibrium whenever (1− δ) logN is small. Our second

main result– Theorem 2– shows that in the presence of bad types, even non-anonymous players

1Here we consider an upper bound on ex post equilibrium payoffs: we conjecture the bound is attainable, but we
have not proved this.
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cannot support any cooperation when (1− δ)
√
N is large. Thus, community enforcement can be

effective only for the limited range of discount factors where (1− δ) ∈
(

1
cN ,

c√
N

)
for some constant

c.2

We also establish a version of Theorem 2 in the case where each player is forced to defect with

probability ε every period, independently across players and periods (rather than each player being

a bad type with probability ε, in which case she always defects). Here we show that cooperation is

impossible when (1− δ)N1/4 is large. This implies that Ellison’s result that contagion strategies

are robust to i.i.d. noise requires a qualitatively higher discount factor than is needed without

noise.

The intuition for Theorem 2 is that, to avoid the negative conclusion of Theorem 1, players

must be able to identify and punish defectors individually. However, in the absence of explicit

communication, it takes a long time for information about defectors’identities to percolate through

the community. For instance, since a player observes one bit of information each period (i.e.,

whether her partner cooperated or defected), it is impossible for her to perfectly learn whether

each of the other N − 1 players is a bad type in fewer than N − 1 periods. While a player can get

a noisy signal of whether each of her opponents is a bad type with fewer than N − 1 bits/periods,

we show that at least
√
N bits/periods are needed to provide enough information to incentivize

cooperation. Hence, cooperation is possible only if δ
√
N is not too small, and hence if (1− δ)

√
N

is not too large.

The obvious way out of this impossibility result is to allow pre-play cheap talk communication

between matched players. Our final main results– Theorems 3 and 4– show that this lets the group

support cooperation whenever (1− δ) logN is small. In this setting, cooperation can be achieved

as an approximate Nash equilibrium using simple strategies where each player keeps track of a

“blacklist” of opponents whom she believes have ever defected against a rational player, players

share their blacklists with each other prior to taking actions, and each player defects against the

opponents on her blacklist. Cooperation can be achieved as an exact sequential equilibrium using

a more complicated, “block belief-free”construction.

Taken together, our results show that the possibility that some players may be “bad types”

who never cooperate dramatically undermines cooperation both when players are anonymous (and

2 In interpreting these results, it may be helpful to suppose that players match once every ∆ units of real time
with fixed discount rate r > 0, so δ = e−r∆, and hence (1− δ)N ≈ r∆N . Since each pair of players interacts
1/ (∆× (N − 1)) times per unit of real time on average, (1− δ)N small means that each pair of players interact
frequently, while (1− δ)N large means that each of pair of players rarely interact.
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can be arbitrarily patient) and when their identities are observable (but they are only “moderately

patient”). However, this obstacle to cooperation can be mitigated by restricting cooperation to

occur only within smaller sub-groups, and it can be eliminated entirely if players communicate

actively, sharing information about defectors’identities.

Our paper relates to several branches of the literature. Most directly, we contribute to the

literature on community enforcement in repeated games, originating with the work of Kandori

(1992), Ellison (1994), Harrington (1995), and Okuno-Fujiwara and Postlewaite (1995). A few

papers in this literature consider incomplete information, focusing like us on the case where players

are either rational or are bad types who are committed to always defecting.3 Ghosh and Ray (1996)

show that the presence of bad types can help support cooperation in the prisoner’s dilemma (PD)

with voluntary separation, by making players reluctant to cheat their current partners and return to

the matching pool. Dilmé (2016) and Heller and Mohlin (2018) show that the presence of bad types

can make cooperative equilibria more robust in the PD with random matching and information

about one’s partner’s past actions, by making the observation that the partner defected in the past

informative of his being a bad type. Among the many differences with our work, perhaps the most

fundamental is that these papers study ways in which the presence of bad types helps support

cooperation (in more intricate models with voluntary separation or information about past play),

while we ask when bad types undermine cooperation (in the canonical random-matching PD).4

We also contribute to the question of when the folk theorem holds in repeated games. Deb,

Sugaya, and Wolitzky (2019) generalize Kandori and Ellison’s positive results to establish the folk

theorem for repeated games with anonymous random matching, when all players are rational. In

contrast, Theorem 1 is an anti-folk theorem, which applies whenever each player has an arbitrarily

small probability of being a bad type. Introducing a small amount of incomplete information in

repeated games also leads to anti-folk theorems in “reputation”models (Mailath and Samuelson,

2006). Among other differences, reputation models typically feature a single patient player, and

the folk theorem usually holds with multiple, equally patient players (Cripps and Thomas, 1997;

Chan, 2000; Cripps, Dekel, and Pesendorfer, 2005).

Another related theoretical literature asks when introducing explicit communication opportu-

nities expands the set of attainable payoffs, relative to what could be achieved with only “implicit

3However, as we discuss below, our Theorem 1 extends to much more general type spaces.
4One result closer in spirit to ours is Heller and Mohlin’s Theorem 1, which shows that cooperation is impossible

in the “offensive” (submodular) PD with bad types, while Takahashi (2010) showed that cooperative “belief-free”
equilibria exist in this setting without bad types.
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communication”via players’actions. When the discount factor δ is bounded away from 1, com-

munication helps support cooperation by spreading the news that a player defected throughout

the population more quickly (Ahn and Suominen, 2001; Dixit, 2003; Lippert and Spagnolo, 2011;

Wolitzky, 2013; Ali and Miller, 2016; Balmaceda and Escobar, 2017). This effect may capture an

important role of gossip in supporting cooperation (e.g., Sommerfeld, Krambeck, Semmann and

Milinski, 2007). A more subtle question concerns the role of communication when δ is high. Here,

Awaya and Krishna (2016, 2019) show that introducing explicit communication can expand the

equilibrium payoff set by exploiting correlation between players’signals. Our Theorems 2 and 4

identify a novel role for communication: in large groups, when δ is high but less than 1 − 1/N ,

communication supports cooperation by letting the group identify defectors in roughly logN rather

than N periods, thus facilitating individual rather than collective punishment.

Our analysis also relates to the broader issue of whether the benefits from cooperation are

greater in larger or smaller groups. Several authors have identified wide or generalized trust as an

important factor of economic growth, while noting that many societies nonetheless feature narrower

circles of trust within smaller, more cohesive groups (Coleman, 1988; Putnam, 1994; Fukuyama,

1995; Knack and Keefer, 1997). The standard model of “local trust” is that enforcement is too

weak to support global cooperation: δ is too low to support cooperation between players who meet

infrequently, so players cooperate only with local contacts (e.g., Kranton, 1996; Dixit, 2003). In

contrast, our results (Propositions 1 and 2) show that, even if δ ≈ 1, players can benefit from

restricting interaction to small groups, because larger groups are more likely to contain a few bad

types, whose presence undermines cooperation. This alternative account of local trust generates

new comparative statics: while the standard model predicts that the size of cooperative groups

increases as δ increases, reaching global cooperation when δ ≈ 1, we predict that the size of

cooperative groups increases as ε (the probability each player is bad) decreases, and that global

cooperation requires not only δ ≈ 1 but also ε ≈ 0.

2 Model

A set I = {1, . . . , N} of N players interact in discrete time, t = 1, 2, . . ., with N even. Each period,

the players randomly match in pairs to play the prisoner’s dilemma (PD):
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C D

C 1, 1 −L, 1 +G

D 1 +G,−L 0, 0

where G,L > 0 and G < 1 + L, so (C,C) maximizes the sum of stage-game payoffs.

Each player is either rational or bad. Rational players maximize expected discounted payoffs

with discount factor δ ∈ (0, 1). Bad players always play D. Bad players can thus be viewed as

types for whom D is a dominant strategy in the repeated game, or as “commitment types”as in

the literature on reputation in repeated games (Mailath and Samuelson, 2006).

For each set of players S ⊂ I, there is a commonly known prior probability p (S) that the set

of bad players is precisely S. Thus, p is a probability distribution on subsets of I. We assume

that p symmetric, in that for any two sets S, S′ ⊂ I containing the same number of players, we

have p (S) = p (S′). In particular, conditional on the event that there are exactly n bad players,

the probability that any given player is bad equals n/N . We denote the probability that there are

n bad players by pn, and denote the probability that a given player i is bad by ε =
∑

S3i p (S).

Assume ε < 1, so rational types exist with positive probability.

Thus, for fixed payoff parameters G and L, the repeated game is parameterized by the triple

(N, δ, p). We consider sequences (N, δ, p)l indexed by l ∈ N.

A leading special case of the model involves independent types, where each player is bad with

independent probability ε. In this case we parameterize the game by (N, δ, ε).

We consider two information structures. In the anonymous PD, players take actions without

observing their opponent’s identity, and observe only their opponent’s actions at the end of each

period. That is, letting µt (i) ∈ I\ {i} denote player i’s period-t partner, and letting ωi,t = aµt(i),t,

player i’s history at the beginning of period t is hti = (ai,τ , ωi,τ )t−1
τ=1, with h

1
i = ∅.

In the non-anonymous PD, players additionally observe their opponent’s identity before taking

actions. Thus, player i’s history at the beginning of period t is hti =
(

(µτ (i) , ai,τ , ωi,τ )t−1
τ=1 , µt (i)

)
,

with h1
i = µ1 (i).

A strategy σi for player i maps histories hti to ∆ ({C,D}), for each t. The interpretation is that

player i plays σi
(
hti
)
at history hti when rational; when bad, she always plays D. Given a strategy

profile σ = (σi)i, denote player i’s expected discounted per-period payoff conditional on the event

that the set of bad players is S 63 i by Ui (S), and denote player i’s expected discounted per-period
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payoff when rational by

Ui =
1

1− ε
∑
S 63i

p (S)Ui (S) .

Our measure of average payoffs is

U =
1

N

∑
i

Ui =
1

(1− ε)N
∑
S⊂I

p (S)
∑
i/∈S

Ui (S) .

Thus, U equals the average over players of their expected payoffs when rational, or equivalently

the expectation over sets of bad players S of the total payoff of the rational players i /∈ S, divided

by the expected number of rational players. With independent types, expected average payoffs ex

ante (before players learn their types) are at most U , since a player’s expected payoffwhen rational

must exceed her expected payoff when bad (as a rational player has the option of always playing

D). Also, since a player’s minmax payoff is 0 and the maximum sum of stage-game payoffs is 2, in

any Nash equilibrium we have U ∈ [0, 1] (even if types are correlated).

In Section 5.3, we augment the game by allowing pre-play cheap talk communication. Until

then, no explicit communication is allowed. Players do of course draw inferences from observing

their opponents’ actions, so in this sense “implicit communication” through actions is possible.

Deb, Sugaya, and Wolitzky (2019) showed that such implicit communication is very powerful in

complete-information random matching games with patient players. One of the themes of the

current paper is that implicit communication is much less powerful in the presence of bad types.

3 No Cooperation in Large Anonymous Groups without Commu-

nication

Our benchmark result says that cooperation is impossible in a large anonymous population without

pre-play communication, regardless of how patient players are (in particular, even if (1− δ)N is

small). This result requires a smoothness assumption on the distribution of the number of bad

types. To formulate this assumption, given (N, p), denote the conditional probability that n out of

the first N − 1 players are bad, given that player N is rational, by

qn =
Pr (player N is rational|n players are bad)× pn

Pr (player N is rational)
=
N − n
N

pn
1− ε for n ∈ {0, . . . , N − 1} ,
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with qN = 0 by convention. Similarly, denote the conditional probability that n− 1 out of the first

N − 1 players are bad, given that player N is rational, by

q−n = qn−1 for n ∈ {1, . . . , N} ,

with q−0 = 0 by convention. Note that q = (qn)Nn=0 and q− = (q−n )
N
n=0 are both probability

distributions on {0, . . . , N}. Denote the total variation distance between q and q− by

∆q,q− = max
N⊂{0,...,N}

∣∣∣∣∣∑
n∈N

(
qn − q−n

)∣∣∣∣∣ . (1)

We say that a sequence (N, p)l has an unpredictable number of bad types if

lim
l→∞

∆q,q− = 0.

Similarly, a sequence (N, δ, p)l has an unpredictable number of bad types if this true of (N, p)l.

Theorem 1 In the anonymous PD, for any parameters (N, δ, p) and any corresponding Nash equi-

librium average payoff U , we have

U ≤ 1 +G

min {G,L}∆q,q− . (2)

Hence, for any sequence (N, δ, p)l with an unpredictable number of bad types and any corresponding

sequence of Nash equilibrium average payoffs (U)l, we have liml→∞ Ul = 0.

To see the intuition, recall that when players are anonymous, cooperation is a public good: a

player’s decision to take C rather than D in the current period benefits all her opponents equally.

We can therefore view each rational player as deciding whether to “contribute”to the public good

by following her equilibrium strategy, or to “shirk”by playing D at every history (thus “mimicking”

a bad type). We show that, for any given number of shirkers in the population, a shirker gets at

least 1+G
1+(G−L)+

times the payoff of a contributor. A rational player is therefore willing to contribute

only if the overall level of cooperation decreases substantially when the number of shirkers increases

by 1. When there is enough variance in the number of shirkers (i.e., when the number of bad types

is unpredictable), this implies that the expected level of cooperation is low.5

5For example, in the independent types case with fixed ε ∈ (0, 1), the variance of the fraction of bad types in the
population goes to 0 as N →∞, by the law of large numbers. What matters for this argument though is the variance
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Before proving the theorem, we give some examples of sequences (N, p)l with unpredictable

numbers of bad types.

Suppose p is log-concave: pn
pn−1

≥ pn+1

pn
for all n ∈ {1, . . . , N − 1}. Then the maximum in

(1) is attained by a set N that takes a “threshold” form N = {n∗, . . . , N} for some threshold

n∗ ∈ {0, . . . , N}. This yields

∆q,q− = qn∗−1 =
N − n∗ + 1

N

pn∗−1

1− ε .

Therefore, when p is log-concave, the sequence (N, δ, p)l has an unpredictable number of bad types

if and only if maxn≤N−1
N−n
N pn → 0.

This is a mild condition. For example, with independent types, p is log-concave,6 andmaxn≤N−1
N−n
N pn →

0 whenever ε remains bounded away from 0 and 1 as N →∞.

For an example of a sequence of distributions where the number of bad types is not unpre-

dictable, consider independent types with εN held constant at some n̄ ∈ N as N → ∞, so the

distribution of the number of bad types converges to a Poisson distribution with parameter n̄.

Then

∆q,q− = qn̄ =
N − n̄
N

(
N

n̄

)
εn̄ (1− ε)N−n̄−1 .

For instance, if n̄ = 1– on average, there is exactly one bad player in the population– then

∆q,q− = (N − 1) ε (1− ε)N−2 ∼ 1

e
.7

Thus, if 1+G
min{G,L} is close to 1 then (2) bounds U significantly below 1 even if on average there is

only a single bad player.8 If instead n̄ is suffi ciently large, then Stirling’s approximation gives

∆q,q− =
N − n̄
N

(
N

n̄

)
εn̄ (1− ε)N−n̄−1 ∼ 1√

2πn̄
.

Distributions for which ∆q,q− > 1/e for large N exist, but seem rather artificial. For example,

if the number of bad types is known in advance to be even, then ∆q,q− = 1.

of the number of bad types, which goes to ∞ as N →∞.
6Here pn =

(
N
n

)
εn (1− ε)N−n, and hence pn

pn−1
= N−n+1

n
ε

1−ε , which is decreasing in n.
7Throughout, ∼ denotes asymptotic equality.
8The bound is tight in this case: when n̄ = 1, under contagion strategies (discussed in Section 4) expected payoffs

converge to 1/e as δ → 1, since 1/e is the probability that there are no bad types. This coincides with (2) when
1+G

min{G,L} ≈ 1.
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Proof. We allow players to access a public randomization device. This only expands the set of

equilibrium payoffs.

Consider any equilibrium σ = (σ1, . . . , σN ). At the beginning of the game, use public ran-

domization to draw a random permutation φ of I, and then let the players follow strategy profile

σ̃ =
(
σφ(1), . . . , σφ(N)

)
. This gives another equilibrium with the same average payoffs as σ, and

viewed from the perspective of the beginning of the game (before φ is drawn), it is symmetric. It

is thus without loss of generality to consider symmetric equilibria.

Fix a symmetric equilibrium, and let un be the expected payoff of a rational player when there

are n bad players in the population, with the convention that uN = 0. We claim that, for any

n ∈ {0, . . . , N}, the expected payoff of a bad player when there are n bad players is at least

1 +G

1 + (G− L)+

(un)+ .
9 (3)

To see this, let αt be the ex ante probability with which each rational player plays C in period

t (when there are n bad players). Since matching is uniformly random, αt is also the ex ante

probability with which a rational player plays C in period t, conditional on matching with another

rational player (and, also, conditional on matching with a bad player). Hence, the average period-t

payoff a rational player receives when matched with another rational player is upper-bounded by

the value of the linear program

max
αCC ,αCD,αDC ,αDD∈[0,1]

αCC (1) + αCD (−L) + αDC (1 +G) + αDD (0)

subject to αCC + αCD = αCC + αDC = αt, α
CC + αCD + αDC + αDD = 1.

Substituting αCD = αDC = αt − αCC into the objective, this program is equivalent to

max
αCC∈[0,αt]

αCC (L−G) + αt (1 +G− L) .

The solution is αCC = αt if L ≥ G and αCC = 0 if L < G, which yields value αt
(
1 + (G− L)+

)
.

Thus, the average period-t payoff a rational player receives when matched with another rational

player is at most αt
(
1 + (G− L)+

)
, while rational players always receive non-positive payoffs when

matched with bad players. In contrast, the average period-t payoff a bad player receives when

matched with a rational player equals αt (1 +G), while bad players receive payoff 0 when matched

9For x ∈ R, (x)+ = max {x, 0}.
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with each other. Thus, since there are (N − n) rational players, the average period-t payoff of

a rational player is at most αt
(
1 + (G− L)+

)
(N − n) /N , while that of a bad player is at least

αt (1 +G) (N − n) /N . Moreover, the average per-period payoff of a bad player is always non-

negative. This comparison holds for every t, establishing (3).

Note that, if the true number of bad players is n ≤ N − 1, a rational player who plays Always

Defect (the strategy that plays D at every history) receives the same payoff as that obtained by

a bad player when the true number of such players is n+ 1, which by (3) is at least

1 +G

1 + (G− L)+

(un+1)+ ,

Since in any equilibrium each player must prefer her equilibrium strategy to playing Always Defect,

we have
N−1∑
n=0

qn (un)+ ≥
1 +G

1 + (G− L)+

N−1∑
n=0

qn (un+1)+ .

Note that
N−1∑
n=0

qn (un+1)+ =

N∑
n=1

qn−1 (un)+ =

N∑
n=1

q−n (un)+ =

N−1∑
n=0

q−n (un)+ ,

where the last line uses q−0 = uN = 0. Hence, we have

N−1∑
n=0

qn (un)+ ≥
1 +G

1 + (G− L)+

N−1∑
n=0

q−n (un)+ . (4)

Subtracting
∑N−1

n=0 q
−
n (un)+ from both sides and noting that (un)+ ∈ [0, 1] for each n, we obtain

min {G,L}
1 + (G− L)+

N−1∑
n=0

q−n (un)+ ≤
N−1∑
n=0

(
qn − q−n

)
(un)+ ≤ max

N⊂{0,...,N−1}

∑
n∈N

(
qn − q−n

)
≤ ∆q,q− .

Hence, since U =
∑N−1

n=0 qnun, we have

U ≤
N−1∑
n=0

qn (un)+ =
N−1∑
n=0

q−n (un)++
N−1∑
n=0

(
qn − q−n

)
(un)+ ≤

1 + (G− L)+

min {G,L} ∆q,q−+∆q,q− =
1 +G

min {G,L}∆q,q− .

Theorem 1 is related to several prior results with the flavor that players behave selfishly in

games where their probability of being pivotal for others’ decisions is small. In static models,

Rob (1989) and Mailath and Postlewaite (1990) show that the probability of effi cient public good
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provision goes to zero in large groups of agents with privately-known valuations for the good. In

complete-information repeated games, Green (1980), Sabourian (1990), Fudenberg, Levine, and

Pesendorfer (1998), Al-Najjar and Smorodinsky (2001), and Pai, Roth, and Ullmann (2017) show

that only approximate stage-game Nash equilibria can be played when each player’s action has

only a small impact on other players’signals; however, in these papers “approximate”and “small”

depend on δ, so they do not yield anti-folk theorems in the sense of Theorem 1 (i.e., ineffi ciency

for all δ). In addition, the key step in the proof of Theorem 1– that when there are n bad types

each of them receives payoff at least 1+G
1+(G−L)+

(un)+, and hence (4) holds since a rational player

can pretend to be bad– does not seem especially similar to the proofs of any of these results.

Suppose that, in addition to possibly being committed to Always Defect, players could be

committed to various other strategies with arbitrary probabilities. Continue to define Ui as the

expected payoff of the rational type of player i, with U = 1
N

∑
i Ui, continue to define pn as the

probability that there are n Always Defect types, and similarly leave the definitions of qn and

q+
n unchanged. Then Theorem 1 and its proof remain valid– in reading the proof for this more

general model, one must only interpret un as the expected payoff of a rational player conditional

on the event that there are n Always Defect types, without conditioning on whether the remaining

N−n−1 players are rational or are committed to some other strategy. Our finding that cooperation

is impossible in large anonymous games with incomplete information thus holds for very general

type spaces, so long as Always Defect types are present with non-vanishing probability, and the

distribution of the number of such types is smooth.

If instead the number of Always Defect types can be predicted with suffi cient accuracy then

we expect a folk theorem to hold, even if the predicted number of Always Defect types is large.

For example, we anticipate that if it is known in advance that exactly n out of a fixed number of

players N are bad (even if it is not known in advance which players are the bad ones), then for

suffi ciently high δ there is an equilibrium where all rational players receive payoffs approximately

1− n
N−1 (1 + L) (which is the payoff of a rational player when rational players always cooperate and

bad players always defect), provided this payoff is non-negative. The intuition is that if a rational

player pretended to be bad, this deviation would eventually be detected by her opponents (as now

n+ 1 players would be defecting, rather than n) and could be punished.10

Theorem 1 generalizes beyond uniform random matching. Suppose that, given history profile

ht =
(
hti
)
i
, players i and j meet with probability ψij

(
ht
)
. Thus, the matching process can be non-

10We believe this result could be proved by extending the proof of Deb, Sugaya, and Wolitzky (2019).
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stationary and history-dependent. We do assume that the matching process is ex ante symmetric

across players: for any permutation f on I, we have ψij
((
hti
)
i

)
= ψf(i)f(j)

((
htf(i)

)
i

)
for all(

i, j, t, ht
)
. The game is now parameterized by (N, δ, p, ψ). We also assume that the meeting

probabilities between any two players cannot be too unequal: letting

R :=
supi,j,t,ht ψij

(
ht
)

infi,j,t,ht ψij (ht)
,

we assume that

R2 <
1 +G

1 + (G− L)+

.

Theorem 1 can be extended to show that, for any Nash equilibrium average payoff U , we have

U ≤ 1 +G

1 +G−R2
(
1 + (G− L)+

)∆q,q+ .

We prove this in Appendix A.1. Note that uniform random matching corresponds to R = 1, which

recovers Theorem 1.

We have established that, under a smoothness assumption on the distribution of the number of

bad types (e.g., if each player is bad with independent probability bounded away from 0 and 1),

cooperation is impossible under the following three conditions:

1. The group is large.

2. Players are anonymous.

3. Players cannot communicate.

The rest of the paper relaxes these assumptions in turn.

4 The Optimal Size of Groups of Anonymous, Patient Players

Assume independent types with fixed ε ∈ (0, 1). Theorem 1 implies that cooperation is impossible

when N → ∞. Hence, a natural way to support cooperation is to segregate the population into

smaller groups.11 This has the benefit of reducing the prevalence of bad types in each group;

however, there is also a cost in terms of foregone gains from trade with individuals excluded from

11The question of what determines whether individuals cooperate in larger or smaller groups is a fundamental one.
See, e.g., Seabright (2010) or Bowles and Gintis (2011) for broad perspectives on this issue.
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the group. We model this cost in a very simple way: we assume that, in a group of N players,

the players match to play the prisoner’s dilemma f (N) times per unit of real time, where f is an

increasing and weakly concave function. Here, concavity of f reflects diminishing marginal gains

from trade from increasing the size of the group– in the simple case where marginal gains from

trade are constant, f is linear.

In this section, we derive some simple results on the effi cient size of a group of anonymous,

patient players, where “patient”here means that we consider the limit δ → 1 for fixed N .

A challenge is specifying which equilibrium we expect to be played among a population of N

agents. We will consider two diametrically opposed approaches and show that they yield very

similar results. Our results in this section are thus quite suggestive; still, they are intended more

to point out some implications of our model for the questions of optimal group size and local vs.

generalized trust, rather than providing a completely definitive solution.

The first approach is to consider the contagion strategies of Kandori (1992): each player takes C

until she observes a single play of D, and subsequently takes D forever. Contagion strategies are the

simplest and best-understood strategies for supporting cooperation in a population of anonymous

players. For any fixed N , ε ∈
(

0, 1
1+L

)
, and η > 0, contagion strategies form an η-Nash equilibrium

for suffi ciently high δ.12 Moreover, as δ → 1, per-period payoffs under contagion strategies converge

to

(1− ε)N f (N) .

This follows because if all players are rational, cooperation endures forever and each player receives

a per-period payoff of f (N); if instead even one player is bad, almost surely defection eventually

spreads throughout the population, and players’per-period payoffs converge to 0 as δ → 1. Treating

N as a continuous variable for convenience, the optimal group size is given by the solution to the

first-order condition
f ′ (N)

f (N)
= − log (1− ε) .13

Since − log (1− ε) = ε+O (ε), in the case of constant marginal gains from trade (i.e., f linear),

we obtain the following simple result:

12Whether they form a sequential (hence, exact Nash) equilibrium depends on parameters. A partial characteriza-
tion is provided by equations (1) and (2) of Kandori (1992). In the iterated limit where first δ → 1 and then N →∞,
the right-hand side of Kandori’s equation (2) can be shown to converge to a constant c∗ < 1. A suffi cient condition
for contagion strategies to form a sequential equilibrium in this iterated limit is then min{G,L}

1+G
≥ c∗; a suffi cient

condition for them not to form a sequential equilibrium is max{G,L}
1+G

< c∗.
13The solution is unique since f is increasing and concave.
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Proposition 1 Under contagion strategies, with independent types and constant marginal gains

from trade, the optimal size of a group of anonymous, patient players is approximately equal to 1
ε .

Furthermore, writing f (N) = αN for some α > 0, when ε is small per-period payoffs in a group

of optimal size 1
ε can be approximated as

(1− ε)
1
ε
α

ε
∼ α

eε
.

The above analysis under contagion strategies is unsatisfactory insofar as contagion strategies

do not deliver the best possible equilibrium payoffs. An upper bound on the best payoffs that can

be attained in an ex post Nash equilibrium (i.e., an equilibrium in which players’ strategies are

optimal regardless of the number of commitment types) in a population of N players is given by

N∑
n=0

(
N

n

)
εn (1− ε)N−n

(
1 + (G− L)+

1 +G

)n
f (N) . (5)

To see this, note that, as in the proof of Theorem 1, in every equilibrium in which rational players

obtain payoffs un when there are n bad types, bad types obtain payoffs at least 1+G
1+(G−L)+

un when

there are n bad types. Since in an ex post equilibrium a rational player must not benefit from

pretending to be bad no matter how many bad types are present, we have

un ≥
1 +G

1 + (G− L)+

un+1 for all n ∈ {0, . . . , N − 1} . (6)

Since u0 ≤ f (N), this implies that un ≤
(

1+(G−L)+

1+G

)n
f (N) for each n. Since U =

∑N
n=0 pnun and

pn =
(
N
n

)
εn (1− ε)N−n, we obtain (5).

We believe (6) is an important robustness criterion: if this condition is violated, a rational

player who somehow learns her opponents’types before the game begins will sometimes have an

incentive to deviate. Moreover, we conjecture that, for any η > 0, payoffs arbitrarily close to the

upper bound (5) can be attained in an η-Nash equilibrium in the iterated limit where first δ → 1

and then N →∞.14 This motivates the problem of choosing N to maximize (5). We will see that

doing so gives the same qualitative result as for contagion strategies.

14We believe this can be proved by combining the arguments of Deb, Sugaya, and Wolitzky (2019) and Sugaya and
Yamamoto (2019).

15



Note that, by the binomial theorem,

N∑
n=0

(
N

n

)
εn (1− ε)N−n

(
1 + (G− L)+

1 +G

)n
f (N) =

(
1− ε+ ε

1 + (G− L)+

1 +G

)N
f (N) .

Hence, the optimal group size is given by the solution to the first-order condition

f ′ (N)

f (N)
= − log

(
1− ε+ ε

1 + (G− L)+

1 +G

)
=

min {G,L}
1 +G

ε+O (ε) .

In the case of constant marginal gains from trade, we obtain

Proposition 2 In the conjectured optimal ex post η-Nash equilibrium, with independent types and

constant marginal gains from trade, the optimal size of a group of anonymous, patient players is

approximately equal to 1+G
min{G,L}

1
ε .

Furthermore, writing f (N) = αN for some α > 0, when ε is small per-period payoffs in a group

of optimal size 1+G
min{G,L}

1
ε can be approximated as

(
1− min {G,L}

1 +G
ε

) 1+G
min{G,L}

1
ε 1 +G

min {G,L}
α

ε
∼ 1 +G

min {G,L}
α

eε
.

Thus, whether we consider contagion strategies or optimal ex post equilibrium strategies, both

the optimal group size and expected per-period payoffs in an optimally sized group are on the order

of 1/ε. This gives a simple account of both the benefits of restricting interaction to smaller groups

(reducing the prevalence of bad types), and the comparative statics of optimal group size (the more

fear of bad types, ε, the smaller the optimal group size).

We end this section by noting an important contrast with Theorem 1. Suppose that, rather

than considering contagion strategies or optimal ex post equilibrium strategies, we had assumed

that the group could attain the upper bound for Nash equilibrium payoffs from Theorem 1. In the

constant marginal gains from trade case where f (N) = αN , the optimal group size N would then

be chosen to maximize

1 +G

min {G,L}∆q,q+αN =
1 +G

min {G,L}

(
N

εN

)
εεN (1− ε)(1−ε)N αN

∼ 1 +G

min {G,L}
1√

2πεN
αN,

which yields N =∞. However, we do not know if this upper bound is attainable (even for η-Nash
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equilibrium); even if it is attainable, such an equilibrium would necessarily violate ex post incentive

compatibility, (5).

5 Communication is Essential with Moderately Patient Players

We now return to large-population games (N → ∞), but relax the assumptions that players

are anonymous and cannot communicate. We consider in turn the case where players are non-

anonymous but still cannot communicate, and the case where players are non-anonymous and

can communicate. We do not treat the case where players can communicate while retaining

anonymity– the reason is that communication can typically be used as a “work-around”for anonymity,

for example by having players establish “passwords” the first time they meet, and subsequently

using these passwords to identify themselves before taking actions. See Deb (2019) for an analysis

involving such cryptographic issues, which we wish to set aside in the current paper.

The main result of this section is that communication is essential for supporting cooperation

when players are moderately patient. When players are not anonymous, cooperation is possible

when players are very patient– in that (1− δ)N → 0– even in the absence of explicit communica-

tion. However, without communication this high degree of patience is “almost necessary”: we show

that cooperation is impossible if (1− δ)
√
N →∞. In stark contrast, when pre-play communication

is allowed, cooperation is possible whenever (1− δ) logN → 0. Communication thus exponentially

increases the maximum discount rate at which cooperation can be supported.

5.1 Cooperation with Very Patient, Non-Anonymous Players

We start with a simple folk theorem for non-anonymous players. Consider the overall repeated

game as consisting of N (N − 1) /2 bilateral relationships, one for each pair of distinct players. The

result states that, if (1− δ)N → 0, then any profile of feasible and strictly individually rational

payoffs among these bilateral relationships can be supported in equilibrium. The intuition is that

such payoffs can be supported by grim trigger strategies within each bilateral relationship.

Let F = co {(0, 0) , (1, 1) , (1 +G,−L) , (−L, 1 +G)} denote the convex hull of the feasible payoff

set in the two-player PD. Let F η = {(v1, v2) ∈ F : v1, v2 ≥ η} denote the set of feasible payoffs where

each player receives payoff at least η > 0. Given a sequence of games (N, δ, p)l, let El denote the

corresponding sequence of rational-player sequential equilibrium payoff vectors: that is, (ui)i ∈ E

indicates that there exists a sequential equilibrium in which each player i’s expected payoff when
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rational equals ui. Let εl =
∑

S3i pl (S) denote the probability that a given player i is bad.

Proposition 3 In the non-anonymous PD, fix η > 0 and a sequence (N, δ, p)l satisfying liml→∞ (1− δl)Nl =

0 and lim supl→∞ εl < 1. For each l ∈ N and each i, j ∈ Il with i 6= j, fix (vi,j , vj,i) ∈ F η. There

exists l̄ > 0 such that, for all l > l̄, there exists a payoff vector v ∈ El satisfying∣∣∣∣∣∣
 1

Nl − 1

∑
j∈Il:j 6=i

(1− εl) vi,j

− vi
∣∣∣∣∣∣ < εlη for all i ∈ Il.

Proof. See Appendix A.2.

We conjecture that an even larger set of payoffs can be supported in equilibrium using more

complex strategies. For example, player 1 is willing to accept a negative present value payoff in

her relationship with player 2, so long as she is compensated for this by a positive payoff in her

relationship with player 3. In principle, such payoffs vectors can be supported by having players

occasionally communicate implicitly via actions.15 We do not pursue such a result here, since

Proposition 3 suffi ces to make the point that cooperation is easily sustained in random matching

games with non-anonymous players when (1− δ)N → 0.

Proposition 3 is a useful baseline result, but it does not provide much reassurance about the

scope for cooperation in large groups at realistic discount factors. Moreover, the strategies used

to prove the result do not rely on “community enforcement” at all– the community interacts as

a collection of pairs of agents, where player i’s behavior towards player j has no effect on her

treatment by any third party k. This is not an accurate model of large-group cooperation, and it

does not really address whether community enforcement is possible with non-anonymous players.

We formalize the question of whether community enforcement is possible by asking if cooperation

can be supported with less patient players: in particular, when (1− δ) goes to 0 at a rate more like

1/ logN than 1/N . Our remaining results show that this is possible when players can communicate,

but not otherwise.

5.2 No Cooperation with Moderately Patient Players who Cannot Communi-

cate

Assume independent types with fixed ε ∈ (0, 1). The game is thus parameterized by the pair (N, δ).

15Of course, such communication would have to be incentivized.
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Theorem 2 In the non-anonymous PD with independent types, for any sequence of parameters

(N, δ)l satisfying liml→∞ (1− δl)
√
Nl = ∞ and any corresponding sequence of Nash equilibrium

average payoffs (U)l, we have liml→∞ Ul = 0.

For an intuition, recall that Theorem 1 shows that cooperation is impossible when the only avail-

able punishments are collective– everyone’s continuation payoff is reduced when a player switches

from the rational equilibrium strategy to Always Defect. Non-anonymity introduces the possibility

of individual punishments– where only defecting players are punished– if players are able to com-

municate the defectors’ identities quickly enough. Without explicit communication, each player

can transmit only a single bit of information every period. We show that it takes at least
√
N

periods for such information to reflect the defectors’identities with suffi cient accuracy to provide

incentives for cooperation. Hence, cooperation is impossible if (1− δ)
√
N →∞.

Proof. We show that U → 0 along any sequence of equilibria even when players observe not only

their own partners’identities but the entire match realization, and even when the Nash equilibrium

condition is relaxed to require only that players weakly prefer their equilibrium strategies to Always

Defect. This implies the theorem, as in any equilibrium of the game where players observe only

their own partners’identities, players prefer their equilibrium strategies to Always Defect, and we

show that U → 0 under all strategy profiles that satisfy this condition even for the more permissive

notion of strategy that allows actions to depends on the entire match realization.

Let µt denote the first t periods of the match realization, and let hti = (ai,τ , ωi,τ )t−1
τ=1 denote

the history of player i’s own actions and opponent’s actions at the beginning of period t. Slightly

abusing notation, let σi denote a strategy for player i in the game where she observes the match

realization, where σi
(
hti, µ

t
)
is the (possibly mixed) action taken by player i in period t at history(

hti, µ
t
)
. (Note that µt includes the identity of i’s period-t partner.) Let 0i (resp., 1i) denote

the event that player i is rational (resp., bad). Finally, for xi ∈ {0i, 1i} and xj ∈ {0j , 1j}, let

Pr
(
hti, h

t
j |xi, xj , µt

)
denote the probability that, under strategy profile σ, hti and h

t
j are the period-

t histories of player i and player j, conditional on the event (xi, xj) and the event that the match

realization is µt.

When i’s opponents play σ−i, the outcome distribution when xi = 0i but i deviates to Always

Defect is the same as that when xi = 1i. Since in any equilibrium each player prefers her equilibrium
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strategy to Always Defect, we have

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

 (1− ε) Pr
(
hti, h

t
j |0i, 0j , µt

)
u
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)

+εPr
(
hti, h

t
j |0i, 1j , µt

)
u
(
σi(h

t
i, µ

t), D
)


≥ (1− δ)

∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

 (1− ε) Pr
(
hti, h

t
j |1i, 0j , µt

)
u
(
D,σj(h

t
j , µ

t)
)

+εPr
(
hti, h

t
j |1i, 1j , µt

)
u (D,D)

 , (7)

where u (·, ·) is the stage-game payoff function, extended to mixed actions in the usual manner.

The first step of the proof puts this “incentive compatibility”constraint in a more convenient

form and sums it over players i ∈ I. (Proofs of lemmas are deferred to the appendix.)

Lemma 1 If (7) holds for all i ∈ I then

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑

i

1

N

∑
hti

Pr
(
hti|0i, µt

)
Pr
(
σi(h

t
i, µ

t) = C
)

min {G,L}

≤ (1− ε) (1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
) ∑
i,j 6=i

1

N (N − 1)

∑
htj

 Pr
(
htj |0i, 0j , µt

)
−Pr

(
htj |1i, 0j , µt

)


+

(1 +G) .(8)

The heart of the proof of Theorem 2 consists of showing that the right-hand side of (8) goes to

0 as l →∞. Intuitively, this amounts to showing that the (expected, discounted, average) impact

of player i’s type on the signals of players j 6= i is small.

Lemma 2 If (1− δ)
√
N →∞, then the right-hand side of (8) goes to 0.

To see that Lemmas 1 and 2 imply the theorem, note that

U ≤ 2 (1− ε) (1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑

i

1

N

∑
hti

Pr
(
hti|0i, µt

)
Pr
(
σi(h

t
i, µ

t) = C
)
,

as this bound would result if total within-match payoffs equalled 2 whenever either partner coop-

erated and equalled 0 otherwise, which gives an upper bound on total payoffs since 1 +G−L < 2.

Since Lemmas 1 and 2 imply that

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑

i

1

N

∑
hti

Pr
(
hti|0i, µt

)
Pr
(
σi(h

t
i, µ

t) = C
)
→ 0,

we have U → 0 as well.

20



The proof of Lemma 2 relies on two further lemmas, which are pure probability theory results.16

Lemma 3 Let X1, X2, . . . , XN be i.i.d. binary random variables with Pr (Xi = 1) = ε, and let S

be a binary random variable defined on the same probability space. Then

N∑
i=1

∑
s∈{0,1}

(Pr (s|0i)− Pr (s|1i))+ ≤ Np (N) ,

where

p (N) = max
n≤N−1

 N − 1

n

 εn (1− ε)N−1−n .

Moreover,

p (N) ∼
√

1

2Nπε (1− ε) . (9)

Lemma 4 Let X1, X2, . . . , XN be i.i.d. binary random variables with Pr (Xi = 1) = ε, and let S

be a k-dimensional binary random variable defined on the same probability space. Then

N∑
i=1

∑
s∈{0,1}k

(Pr (s|0i)− Pr (s|1i))+ ≤ kNp (N) .

We show how these lemmas imply Lemma 2. Since htj is a 2 (t− 1)-dimensional binary random

variable whose distribution, conditional on xj = 0j and µt, depends on the N − 1 binary random

variables (Xi)i 6=j , we have

(1− δ)
∞∑
t=1

δt−1
∑
µt

Pr
(
µt
) ∑
i,j 6=i

1

N (N − 1)

∑
htj

(
Pr
(
htj |0i, 0j , µt

)
− Pr

(
htj |1i, 0j , µt

))
+

≤ (1− δ)
∞∑
t=1

δt−1 1

N (N − 1)
2 (t− 1)N (N − 1) p (N − 1) (by Lemma 4)

= 2
δ

1− δ p (N − 1)

∼ 2
δ

1− δ

√
1

2 (N − 1)πε (1− ε) (by (9)).

Hence, if (1− δ)
√
N →∞, then (8) goes to 0.

16We are not aware of a reference for these results. Similar results include Theorems 1 and 2 of Al-Najjar and
Smorodinsky (2000) and Lemma 1 of Mossel et al. (2019).
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Theorem 2 assumes each player is bad with probability ε, in which case she takes D in every

period. We can establish a similar result in the related model with i.i.d. noise, where each player

is forced to play D with independent probability ε in every period.

Theorem 2’ In the non-anonymous PD with i.i.d. noise, for any sequence of parameters (N, δ)l

satisfying liml→∞ (1− δl) (Nl)
1/4 = ∞ and any corresponding sequence of Nash equilibrium

average payoffs (U)l, we have liml→∞ Ul = 0.

Proof. See Appendix A.6.

Comparing Theorems 2 and 2’, we see that (1− δ)
√
N → ∞ is enough to guarantee that

cooperation is impossible with perfectly persistent noise, while (for our proof approach) the stronger

condition (1− δ)N1/4 →∞ is required to rule out cooperation with i.i.d. noise.

To see the rough intuition, recall that Theorem 2 comes from considering the period 1 incentive

constraint that a player prefers her equilibrium strategy to deviating to Always Defect. When

noise is not perfectly persistent, we must consider not only the period 1 incentive constraint, but

incentive constraints in every period. At a key step in the proof of Theorem 2’, we take a discounted

sum over incentive constraints, weighting the period t constraint by δt. This introduces an extra

(1− δ) term in the denominator of the resulting aggregated constraint so that, where we have a

(1− δ)
√
N term in the proof of Theorem 2, we now have a (1− δ)2

√
N term.

Theorem 2’suggests that the early community enforcement literature was too optimistic about

the possibility of enforcing cooperation through the threat of collective punishment. Ellison (1994)

emphasizes that contagion strategies can support cooperation for relatively low discount factors in

the absence of noise: implicitly, the required discount factor is approximately 1−1/ logN . In stark

contrast, Theorem 2 shows that, for arbitrarily small positive noise, the discount factor required to

support cooperation is at least 1− 1/N1/4. The presence of noise thus exponentially decreases the

maximum discount rate at which cooperation can be supported.17

5.3 Cooperation with Moderately Patient Players who Can Communicate

Our final result shows that, if players can send cheap talk messages to their partners before taking

actions, cooperation is possible whenever (1− δ) logN → 0. We assume that all players (both

17However, the quantitative implications of this theoretical result may emerge only for very large groups. For
example, Ellison computes the minimum discount factor required for cooperation for N = 2, 4, 10, 100, and 1000.
Since log 1000 > 10001/4, Theorem 2’does not directly imply that Ellison’s calculations would be greatly affected by
introducing noise. One could of course try to sharpen Theorem 2’to give more bite for smaller values of N . Here we
have chosen to set aside small-N considerations and instead present the simplest and cleanest versions of our results.
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rational types and bad types) communicate strategically to maximize their expected utility,18 and

we assume that the set of possible messages is an arbitrarily large finite set. Throughout this

subsection, we fix a sequence (N, δ, p)l and assume there exists ᾱ ∈ (0, 1) such that

lim
l→∞

∑
S⊂I:|S|<(1−ᾱ)N

p (S) = 1. (10)

That is, asymptotically almost surely, at least fraction ᾱ of the population is rational. For example,

with independent types and fixed ε ∈ (0, 1), (10) holds for any ᾱ < 1 − ε. (In general, we do not

assume independent types in this subsection.)

We prove two versions of our result. First, we show that for any η > 0 there exists an η-Nash

equilibrium in which rational types always cooperate with each other on path.

Theorem 3 Fix a sequence (N, δ, p)l satisfying (10) and liml→∞ (1− δ) logN = 0. In the non-

anonymous PD with cheap talk, for every η > 0, there exists l̄ > 0 such that, for each l ≥ l̄, there

exists an η-Nash equilibrium in which rational players always cooperate with each other along the

equilibrium path of play.

This is a simple result, and its proof (in Appendix A.7) involves strategies that seem quite real-

istic. Each player keeps track of a “blacklist”of players whom she believes have previously played

D against a rational opponent at some point in the past. Every period, all players communicate

their blacklists to their partners before taking actions. Players take C against opponents who are

not on their blacklists, and take D against opponents on their blacklists.

To see that these strategies form an η-Nash whenever (10) is satisfied and (1− δ) logN → 0,

first note that, if a player defects against a rational opponent, she is added to his blacklist, and her

blacklisted status then spreads through the population “exponentially quickly,” regardless of her

own future behavior. Formally, we rely on the following lemma.

Lemma 5 Consider uniform random matching among N agents. Suppose that agent 1 knows a

“rumor” in period 1, and in every period all agents other than agent 2 who know the rumor share

it with their partners; agent 2, meanwhile, never shares the rumor. Then, letting T = Z log2N ,

18Here we interpret bad types as having the same preferences as rational types, while being constrained to take D
in every period. Our results would be easier to prove if we could instead freely specify the communication strategy
of bad types. On the other hand, our results would be harder to prove if bad types were assumed to choose their
communication strategies “adversarially.”
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there exist constants c > 0 and Z̄ > 0 (independent of N) such that, for all Z > Z̄, the probability

that everyone knows the rumor at time T is at least 1− exp (−cZ).

Moreover, suppose there are N different rumors, where initially agent i knows rumor i, and

agent i + 1 shares all rumors except rumor i. Then, letting T = Z log2N , there exist constants

c > 0 and Z̄ > 0 (independent of N) such that, for all Z > Z̄, the probability that everyone knows

all N rumors at time T is at least 1− exp (−cZ).

Proof. Frieze and Grimmett (1985) prove a similar result in the related model where, every

period, each informed player shares the rumor with a receiver selected uniformly at random from

the population– rather than having players meet in pairs, as in the current model.19 Since pairwise

matching yields a different stochastic process for the number of informed players, we provide a

complete proof in Online Appendix B.1.

The basic idea, though, is the same as in Frieze and Grimmett. So long as most players are

uninformed, informed players are unlikely to meet each other, so the number of informed players

grows exponentially. Then, once most players are informed, uninformed players are unlikely to

meet each other, so the number of uninformed players shrinks exponentially.

By Lemma 5, a player who takes D against a rational opponent is very likely to find herself com-

pletely excluded from cooperation within O (logN) periods. Hence, if (1− δ) logN ≈ 0, deviating

to D against a rational opponent is unprofitable.

However, other deviations from this strategy profile may be (slightly) profitable– this is why it

is only an η-Nash equilibrium. First, a standard problem is that a player who punishes a deviant

rational opponent gets blacklisted herself, so (off path) players do not have incentives to punish

deviators. This problem, though, is easily addressed by modifying the criterion for getting on the

blacklist. One simple fix here would be specifying that a player gets blacklisted only if she plays D

against an opponent who simultaneously plays C against her.

A much more serious problem arises in the low-probability event that a player learns that

the fraction of rational players in the population is actually much smaller than ᾱ. In the extreme,

suppose player 1 witnesses (and/or is told about) a large number of defecting players, and eventually

comes to believe that player 2 is the only other rational player in the population. Then, when player

1 meets player 2, if (1− δ)N ≈ ∞ she should play D against him even if he is not on her blacklist–

this follows because players 1 and 2 now effectively find themselves in a two-player repeated game
19Frieze and Grimmett also do not consider the possibility that a single agent refuses to spread the rumor. While

we need to take this feature into account (since we cannot rely on a deviant player to “self-incriminate”), it has little
effect on the proof of Lemma 5.
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with discount factor δ/ (N − 1) (since they meet on average once every N − 1 periods). Moreover,

this problem cannot easily be avoided by specifying that players take D if they learn that there

are few other rational players: when facing such strategies a player should rely on her higher-order

beliefs about the event that there are few rational players, and the equilibrium could easily unravel.

We therefore need a more sophisticated approach to construct an exact Nash equilibrium (in-

deed, a sequential equilibrium). The basic idea is to concede the impossibility of cooperation in

the rare event that there are few rational types, while preventing unraveling by adjusting players’

continuation payoffs to make them indifferent to cooperating when the number of rational types is

close to the cutoff. Not only does this proof approach let us construct an exact sequential equi-

librium, it also lets us also support a wider range of payoffs. On the other hand, not surprisingly,

the strategies used in the proof (in Online Appendix B.2) are considerably more complicated than

those used to prove Theorem 3.

To state this more general theorem, first fix (N, δ, p), and denote the (random) set of rational

players by θ∗ ⊂ I. For each θ∗, let F (θ∗) denote the set of feasible payoff profiles where players

outside θ∗ always play D. That is, letting ai : {−i} → {C,D} specify an action for player i as a

function of her opponent’s identity, player i’s expected payoff as a function of a = (aj)j∈I equals

ûi (a) = 1
N−1

∑
j ui (ai(j),aj(i)). We define F (θ∗) = co({û(a)}a∈A(θ∗)) ⊂ RN , where A (θ∗) =

{a : aj (k) = D ∀j /∈ θ∗, k 6= j}. Let F ∗ (θ∗) = F (θ∗)∩RN+ denote the set of feasible and individually

rational payoffs. Note that F ∗ (θ∗) implicitly depends on N (but not on δ or p).

Now fix a sequence (N, δ, p)l satisfying (10). For any α ∈ (0, ᾱ) and η ∈ (0, 1), we define

Fα,η ⊂ RN+ as the set of payoff profiles v ∈ RN+ such that there exists v ∈ RN |Θ|+ satisfying the

following three conditions:

1. Letting vθ
∗ ∈ RN+ denote the θ∗-component of v, we have v =

∑
θ∗ p (I\θ∗) vθ∗ .

2. For each θ∗ satisfying |θ∗| ≥ αN , we have Bη
(
vθ
∗) ⊂ F ∗ (θ∗), where Bη denotes the ball of

radius η.

In contrast, for each θ∗ satisfying |θ∗| < αN , we have vθ
∗

= 0.

3. For each i ∈ I and each θ∗, θ∗′ satisfying (i) |θ∗| ,
∣∣θ∗′∣∣ ≥ αN , (ii) θ∗ 3 i, and (iii) θ∗′ 63 i, we

have vθ
∗
i − vθ

∗′
i ≥ η.

Intuitively, Fα,η is the set of feasible and strictly individually rational expected payoffs such

that no cooperation occurs when |θ∗| < αN and each player’s expected payoff is strictly greater
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when she is rational than when she is bad, where all strict constraints hold with η slack.20 Note

that Fα,η implicitly depends on N and p (but not δ). In addition, if α = 0 then Fα,η ⊃ F η, where

F η is the payoff set obtained in Proposition 3. Together with continuity in α, this implies that

Fα,η is non-empty for all suffi ciently small α and all η ∈ (0, 1). Let E∗ denote the set of sequential

equilibrium payoff profiles, which implicitly depends on N , δ, and p.21

Theorem 4 Fix a sequence (N, δ, p)l satisfying (10), and fix any α ∈ (0, ᾱ) and η ∈ (0, 1). In the

non-anonymous PD with cheap talk, if liml (1− δl) logNl = 0 then Fα,η ⊆ E∗ for suffi ciently large

l.

The (1− δ) logN → 0 suffi cient condition in Theorem 4 is nearly the best possible: The maxi-

mum number of players who could learn about a deviation by player i within t periods is 2t. Thus,

for each η ∈ (0, 1), the “cost”to player i from deviating is at most

∞∑
t=1

δt min

{
2t

N
, 1

}
(1 +G+ L) ≤

(
η logN∑
t=1

2t

N
+ δη logN

)
(1 +G+ L)

≤
(
η logN ×Nη

N
+ exp (−η (1− δ) logN)

)
(1 +G+ L) ,

which goes to 0 as l → ∞ whenever (1− δ) logN → ∞. Thus, if (1− δ) logN → ∞ then for

suffi ciently large l the unique Nash equilibrium is Always Defect.

The proof of Theorem 4 proceeds by constructing a block belief-free equilibrium. Block belief-free

equilibria were introduced by Hörner and Olszewski (2006) in the context of repeated games with

almost-perfect monitoring, and were extended to community enforcement games by Deb, Sugaya,

and Wolitzky (2019), and to ex post equilibria in games with incomplete information by Sugaya

and Yamamoto (2019). The current proof combines elements from these three papers. The main

novelty is that, since cooperation is impossible in the rare event that there are very few normal

types, we must keep track of players’beliefs about the number of normal types. In particular, the

equilibrium cannot be ex post with respect to the set of normal types. On the other hand, the

availability of cheap talk makes it much easier to provide incentives for truthful communication,

relative to the case where communication can be implemented only through payoff-relevant actions.
20Strict individual rationality implies that for each θ∗ all players receive strictly positive expected payoffs, including

bad players. One might instead want to require bad players to receive payoff 0. In this case, the definition of F (θ∗)
can be modified by assuming that rational players always take D when matched with committed players. The proof
of Theorem 4 then goes through as written, except that equation (26) in Online Appendix B.2 is imposed only for
players i ∈ θ.
21The set E∗ differs from the set E defined in Section 5.1, in that the latter set contains vectors of players’expected

payoffs conditional on being rational, while E∗ contains vectors of unconditional expected payoffs.
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We end this section by clarifying that the divergent conclusions of Theorems 2 and 4 depend on

the assumption in Theorem 4 that the set of possible cheap talk messages is arbitrarily large, and

in particular is large enough to include all subsets of I (the set of the players’“names”). Suppose

the set of possible messages each player can send to her partner is required to be a finite setM with

cardinality |M | = κ. Assume independent types with ε ∈ (0, 1), so the game is now parameterized

by (N, δ, κ).

Theorem 2” In the non-anonymous PD with independent types and cheap talk from message sets

of cardinality κ, for any sequence of parameters (N, δ, κ)l satisfying liml→∞ (1− δl)
√
Nl/ log κ =

∞ and any corresponding sequence of Nash equilibrium average payoffs (U)l, we have liml→∞ Ul =

0.

Thus, for cheap talk to support cooperation for “much” lower discount factors in the sense of

Theorem 4, the cardinality of the message set must increase exponentially in N .

Proof. The proof is the same as that of Theorem 2, except for two steps. First, instead of

considering a deviation from the equilibrium strategy to Always Defect, we must consider a deviation

to playing Always Defect together with sending cheap talk messages as if one were truly a bad

type. This yields equation (7). Second, player j’s history htj may now be viewed as a vector of

(2 + dlog2 κe) (t− 1) binary random variables, rather than 2 (t− 1) as in the model without cheap

talk. Replacing 2 (t− 1) with (2 + dlog2 κe) (t− 1) in the last step of the proof of Theorem 2 implies

that a suffi cient condition for U → 0 is

(2 + dlog2 κe)
δ

1− δ

√
1

2 (N − 1)πε (1− ε) → 0.

This holds whenever (1− δ)
√
N/ log κ→∞

6 Conclusion

This paper has analyzed community enforcement in the presence of “bad types”who never coop-

erate. We established three main results. First, when players are anonymous, cooperation cannot

occur in large groups under a smoothness condition on the distribution of the number of bad types,

no matter how patient players might be. This anti-folk theorem stands in sharp contrast to the

case where all players are known to be rational. Second, making players’ identities observable

does not allow cooperation to arise, unless players are patient relative to the size of the group, in
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that (1− δ)
√
N is not too large. Third, if communication is introduced in the model with ob-

servable identities, cooperation becomes possible for much more plausible discount factors: here,

(1− δ) logN → 0 suffi ces to support cooperation. We also consider the optimal size of a group of

anonymous players, showing that it is approximately equal to 1/ε under both contagion strategies

and optimal ex post equilibrium strategies.

Introducing incomplete information into repeated games with random matching raises several

interesting questions. For instance, what happens in games other than the prisoner’s dilemma,

or for type spaces that do not include “bad” (i.e., Always Defect) types? What is the role of

voluntary separation, assortative matching, or other “homophilic” interaction structures in such

models? (Our analysis of optimal group size in Section 4 is a simple first step in this direction.)

Finally, our analysis has emphasized the necessity of individual rather than collective punishment

for supporting cooperation. This issue seems understudied in the repeated games literature relative

to its importance in narrative accounts of group cooperation, such as Ostrom (1990).

A Appendix: Omitted Proofs

A.1 Non-Uniform Matching in Theorem 1

Since the matching process is assumed symmetric across players, as in the proof of Theorem 1 it

is without loss to restrict attention to symmetric equilibria. Fix n ∈ {0, . . . , N − 1}, and let αt be

the ex ante probability with which each rational player plays C in period t, when there are n bad

players: for each i ∈ I,

αt = Pr (ai,t = C|i /∈ S, |S| = n) ,

where S is the set of bad players. Note that, for any set of players S ⊂ I and any ht-measurable

events E and E ′, we have

1/R ≤ Pr (µi (t) ∈ S|E)

Pr (µi (t) ∈ S|E ′) ≤ R.

Hence, by Bayes’rule,

Pr (ai,t = C|i /∈ S, |S| = n, µi (t) /∈ S) =
Pr (ai,t = C|i /∈ S, |S| = n) Pr (µi (t) /∈ S|ai,t = C, i /∈ S, |S| = n)

Pr (µi (t) /∈ S|i /∈ S, |S| = n)

≤ Rαt,
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and similarly

Pr (ai,t = C|i /∈ S, |S| = n, µi (t) ∈ S) ≥ αt/R.

Now, as in the proof of Theorem 1, the average period-t payoff a rational player receives when

matched with another rational player is at most Rαt
(
1 + (G− L)+

)
, while the average period-t

payoff a bad player receives when matched with a rational player is at least αt (1 +G) /R. Hence,

letting un be the expected payoff of a rational player when there are n bad players, the expected

payoff of a bad player is at least
1

R2

1 +G

1 + (G− L)+

(un)+ . (11)

Following the rest of the proof of Theorem 1 with (3) replaced by (11), we obtain

N−1∑
n=0

qn (un)+ ≥
1

R2

1 +G

1 + (G− L)+

N−1∑
n=0

q+
n (un)+ ,

and hence

1 +G−R2
(
1 + (G− L)+

)
R2
(
1 + (G− L)+

) N−1∑
n=0

q+
n (un)+ ≤

N−1∑
n=0

(
qn − q+

n

)
(un)+ ≤ ∆q,q+

and

U ≤
N−1∑
n=0

q+
n (un)+ +

N−1∑
n=0

(
qn − q+

n

)
(un)+ ≤

R2
(
1 + (G− L)+

)
1 +G−R2

(
1 + (G− L)+

)∆q,q+ + ∆q,q+

=
1 +G

1 +G−R2
(
1 + (G− L)+

)∆q,q+ .

A.2 Proof of Proposition 3

By Lemma 2 of Fudenberg and Maskin (1991), there exists δ̄ < 1 such that, for all (vi,j , vj,i) ∈ F η,

there exists a sequence of pure action profiles whose discounted average payoffs equal (vi,j , vj,i) and

whose continuation payoffs starting from any time t are within η/2 of (vi,j , vj,i). Call this action

path
(
ai,jt

)
i 6=j,t∈N

.

Suppose each player i conditions her behavior against j on the history of outcomes in past

(i, j) matches, and in particular follows
(
ai,jt

)
t∈N

if this path has been followed so far in the (i, j)

matches, and otherwise reverts to D in these matches forever. By construction, this strategy profile
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is a sequential equilibrium if, for all i 6= j, we have

(1− δ) max {G,L} ≤ δ

N − 1
(1− εl)

(
vi,j −

η

2

)
.

Since vi,j− η
2 ≥

η
2 for all i 6= j by hypothesis, a suffi cient condition for this profile to be a sequential

equilibrium is δ ≥ 1
2 and

(1− δ)N ≤ η (1− εl)
4 max {G,L} .

If liml (1− δ)N = 0 and lim supl εl < 1, there exists l̄ > 0 such that this inequality is satisfied for

all l > l̄.

In the resulting sequential equilibrium, player i (when rational) obtains payoff vi,j against

player j when player j is rational. When player j is bad, i obtains the payoff from action path(
ai,jt

)
t∈N

until j deviates from this path, and then obtains payoff 0 forever. Suppose the first

deviation by j from action path
(
ai,jt

)
t∈N

occurs in period t. Then i’s payoff against j is at least(
1− δt

)
u<ti,j + δt (1− δ) (−L), where u<ti,j is i’s average payoff from the first t− 1 periods of action

path
(
ai,jt

)
t∈N
. Note that u<ti,j satisfies

(
1− δt

)
u<ti,j + δtu≥ti,j = vi,j ,

where u≥ti,j is i’s average payoff starting from period t under action path
(
ai,jt

)
t∈N
, and u≥ti,j ≤

vi,j + η/2. Hence, (
1− δt

)
u<ti,j ≥

(
1− δt

)
vi,j − δt

η

2
≥ −η

2
.

Therefore, for δ suffi ciently high that (1− δ)L ≤ η/2, i’s payoff against j is at least

(
1− δt

)
u<ti,j + δt (1− δ) (−L) ≥ −η

2
− η

2
= −η.

Moreover, i’s payoff against j is non-positive, since j always defects. Hence, i’s ex ante expected

payoff w̃li,j satisfies

vi ∈

 1

Nl − 1

∑
j∈Il,j 6=i

((1− εl) vi,j − εlη) ,
1

Nl − 1

∑
j∈Il,j 6=i

(1− εl) vi,j

 ,
as desired.
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A.3 Proof of Lemma 1

Since u (D,D) = 0 and u (C,D) = −L, (7) is equivalent to

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

 Pr
(
hti, h

t
j |0i, 0j , µt

)
u
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)

− ε
1−ε Pr

(
hti|0i, 1j , µt

)
Pr
(
σi(h

t
i, µ

t) = C
)
L


≥ (1− δ)

∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

Pr
(
hti, h

t
j |1i, 0j , µt

)
u
(
D,σj(h

t
j , µ

t)
)
.

Subtracting a like term from both sides, this necessary condition may be rewritten as

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

 Pr
(
hti, h

t
j |0i, 0j , µt

) u
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)

−u
(
D,σj(h

t
j , µ

t)
)


− ε

1−ε Pr
(
hti|0i, 1j , µt

)
Pr
(
σi(h

t
i, µ

t) = C
)
L


≥ (1− δ)

∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

(
Pr
(
hti, h

t
j |1i, 0j , µt

)
− Pr

(
hti, h

t
j |0i, 0j , µt

))
u
(
D,σj(h

t
j , µ

t)
)
.

Since u (C, a) − u (D, a) ≤ −min {G,L} and u (D, a) ∈ {0, 1 +G} for each a ∈ {C,D}, a weaker

necessary condition is

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

 Pr
(
hti, h

t
j |0i, 0j , µt

)
Pr
(
σi(h

t
i, µ

t) = C
)

+ ε
1−ε Pr

(
hti|0i, 1j , µt

)
Pr
(
σi(h

t
i, µ

t) = C
)
min {G,L}

≤ (1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

(
Pr
(
hti, h

t
j |0i, 0j , µt

)
− Pr

(
hti, h

t
j |1i, 0j , µt

))
+

(1 +G) ,

or equivalently

(1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
hti

Pr
(
hti|0i, µt

)
Pr
(
σi(h

t
i, µ

t) = C
)

min {G,L}

≤ (1− ε) (1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
htj

(
Pr
(
htj |0i, 0j , µt

)
− Pr

(
htj |1i, 0j , µt

))
+

(1 +G) .

Summing this necessary condition over i and dividing by N yields (8).
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A.4 Proof of Lemma 3

Let us first suppose that S takes a threshold form, where s = 1 if
∑

i ζixi ≥ C for some constants

ζi ∈ {−1,+1} for each i ∈ I and some threshold C ∈ Z, and s = 0 otherwise. Then

∑
i

∑
s∈{0,1}

(Pr (s|0i)− Pr (s|1i))+ =
∑
i

Pr

∑
j 6=i

ζjxj = C − 1

2
(1− ζi)

 .

For each i,

Pr

∑
j 6=i

ζjxj = C − 1

2
(1− ζi)

 ≤ max
n≤N−1

 N − 1

n

 εn (1− ε)N−1−n = p (N) .

Hence, ∑
i

Pr

∑
j 6=i

ζjxj = C − 1

2
(1− ζi)

 ≤ Np (N) .

Moreover, Stirling’s approximation gives (9).

Thus, to prove the lemma, it suffi ces to show that
∑

i

∑
s∈{0,1} (Pr (s|0i)− Pr (s|1i))+ is maxi-

mized over all binary random variables S by an S with a threshold form.

Note that, for each s ∈ {0, 1} and each i,

Pr (s|0i)− Pr (s|1i) =
Pr (s, 0i)

Pr (0i)
− Pr (s)− Pr (s, 0i)

Pr (1i)

=
1

ε (1− ε) (Pr (s, 0i) Pr (1i)− Pr (s) Pr (0i) + Pr (s, 0i) Pr (0i))

=
1

ε (1− ε) (Pr (s, 0i)− Pr (s) Pr (0i)) .

Moreover,

Pr (1, 0i)− Pr (1) Pr (0i) = Pr (0i)− Pr (0, 0i)− (1− Pr (0)) Pr (0i) = − (Pr (0, 0i)− Pr (0) Pr (0i)) .

Hence, letting ζi ∈ {−1,+1} denote the sign of Pr (1, 0i)− Pr (1) Pr (0i), we have

∑
i

∑
s∈{0,1}

(Pr (s|0i)− Pr (s|1i))+ =
1

ε (1− ε)
∑
i

ζi (Pr (1, 0i)− Pr (1) Pr (0i)) .
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Denoting the underlying state space by Ω, we have

∑
i

ζi (Pr (1, 0i)− Pr (1) Pr (0i)) =
∑
ω∈Ω

Pr (ω)S (ω)

(∑
i

ζi (1−Xi (ω)− ε)
)
.

Clearly, this expression is maximized over signals S : Ω→ {0, 1} by setting S (ω) = 1 if
∑

i ζiXi (ω) ≤

b
∑

i ζi (1− ε)c and S (ω) = 0 otherwise. Thus,
∑

i

∑
s∈{0,1} (Pr (s|0i)− Pr (s|1i))+ is maximized

by a threshold signal.

A.5 Proof of Lemma 4

We argue by induction on k. The k = 1 case is Lemma 3.

Suppose the lemma holds for k − 1. Let s = (s1, . . . , sk) ∈ {0, 1}k. Then,

∑
i

∑
s=(sk−1,sk)

(Pr (s|0i)− Pr (s|1i))+

=
∑
i

∑
(sk−1,sk)

(
Pr
(
sk−1|0i

)
Pr
(
sk|0i, sk−1

)
− Pr

(
sk−1|1i

)
Pr
(
sk|1i, sk−1

))
+

=
∑
i

∑
(sk−1,sk)


Pr
(
sk|0i, sk−1

) (
Pr
(
sk−1|0i

)
− Pr

(
sk−1

))
+ Pr

(
sk−1

) (
Pr
(
sk|0i, sk−1

)
− Pr

(
sk|1i, sk−1

))
+ Pr

(
sk|1i, sk−1

) (
Pr
(
sk−1

)
− Pr

(
sk−1|1i

))


+

≤

∑
i

∑
sk−1

(
Pr
(
sk−1|0i

)
− Pr

(
sk−1

))
+

+
∑

sk−1 Pr
(
sk−1

)∑
i

∑
sk

(
Pr
(
sk|0i, sk−1

)
− Pr

(
sk|1i, sk−1

))
+

+
∑

i

∑
sk−1

(
Pr
(
sk−1

)
− Pr

(
sk−1|1i

))
+

. (12)

For the first term of (12), we have

∑
i

∑
sk−1

(
Pr
(
sk−1|0i

)
− Pr

(
sk−1

))
+

=
∑
i

∑
sk−1

(
Pr
(
sk−1|0i

)
− (1− ε) Pr

(
sk−1|0i

)
− εPr

(
sk−1|1i

))
+

= ε
∑
i

∑
sk−1

(
Pr
(
sk−1|0i

)
− Pr

(
sk−1|1i

))
+
≤ ε (k − 1)Np (N)
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by the inductive hypothesis. Similarly, for the last term, we have

∑
i

∑
sk−1

(
Pr
(
sk−1

)
− Pr

(
sk−1|1i

))
+

= (1− ε)
∑
i

∑
sk−1

(
Pr
(
sk−1|0i

)
− Pr

(
sk−1|1i

))
+

≤ (1− ε) (k − 1)Np (N) .

Finally, for the second term, since conditional on each sk−1, sk is a binary signal that depends on

X1, . . . , XN , we have

∑
sk−1

Pr
(
sk−1

)∑
i

∑
sk

(
Pr
(
sk|0i, sk−1

)
− Pr

(
sk|1i, sk−1

))
+
≤
∑
sk−1

Pr
(
sk−1

)
Np (N) = Np (N) ,

by Lemma 3. In total, (12) is bounded by kNp (N), as desired.

A.6 Proof of Theorem 2’

Let 1i,t denote the event that player i is hit by noise (i.e., forced to play D) in period t, and let Xi,t

denote the indicator for this event. We assume that Pr (1i,t) = ε for each i and t, independently

across i and t. Thus, the difference between the current theorem and Theorem 2 is that there the

variables (Xi,t)
∞
t=1 were assumed to be perfectly correlated, while here we assume independence.

As in the proof of Theorem 2, we consider the relaxed environment where players can ob-

serve the entire match realization. That is, player i can condition her period-t action on hti =(
(ai,τ , ωi,τ , xi,τ )t−1

τ=1 , xi,t

)
as well as µt. For each t0, the ex ante expectation of player i’s equilib-

rium continuation payoff starting from period t0 equals

∞∑
t=t0

δt−t0
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

Pr
(
hti, h

t
j |µt

)
ui
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)
.

Suppose player i deviates to the strategy that follows the equilibrium strategy up to period t0,

always plays D in period t0, and subsequently follows the equilibrium strategy. This strategy yields

the same payoff up to period t0, and yields expected continuation payoff starting from period t0
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equal to

∑
µt0

Pr
(
µt0
)∑
j 6=i

1

N − 1

∑
h
t0
i ,h

t0
j

Pr
(
ht0i , h

t0
j |µ

t0
)
ui

(
D,σj(h

t0
j , µ

t0)
)

+
∞∑
t=t0

δt−t0
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

Pr
(
hti, h

t
j |1i,t0 , µt

)
ui
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)
.

The equilibrium continuation payoffmust exceed the deviant continuation payoff. This implies that

∑
µt0

Pr
(
µt0
)∑
h
t0
i

Pr
(
ht0i |µ

t0
)

Pr
(
σi(h

t0
i , µ

t0) = Ci
)

min {G,L}

≤
∞∑
t=t0

δt−t0
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
hti,h

t
j

(
Pr
(
hti, h

t
j |µt

)
− Pr

(
hti, h

t
j |1i,t0 , µt

))
ui
(
σi(h

t
i, µ

t), σj(h
t
j , µ

t)
)

≤
∞∑
t=t0

δt−t0
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
htj

∣∣Pr
(
htj |µt

)
− Pr

(
htj |1i,t0 , µt

)∣∣ (1 +G+ L)

= (1− ε)
∞∑
t=t0

δt−t0
∑
µt

Pr
(
µt
)∑
j 6=i

1

N − 1

∑
htj

∣∣Pr
(
htj |0i,t0 , µt

)
− Pr

(
htj |1i,t0 , µt

)∣∣ (1 +G+ L) . (13)

Note that

∑
htj

∣∣Pr
(
htj |0i,t0 , µt

)
− Pr

(
htj |1i,t0 , µt

)∣∣ = 2
∑
htj

(
Pr
(
htj |0i,t0 , µt

)
− Pr

(
htj |1i,t0 , µt

))
+
.

Since htj =
(

(ai,τ , ωi,τ , xi,τ )t−1
τ=1 , xi,t

)
∈ {0, 1}3(t−1)+1 is a binary signal of dimension 3 (t− 1) +

1 < 3t, Lemma 4 implies that

∑
j 6=i

∑
htj

(
Pr
(
htj |0i,t0 , µt

)
− Pr

(
htj |1i,t0 , µt

))
+
≤ 3t (N − 1) p (N − 1) .

Therefore, the last line of (13) is at most

6 (1− ε) (1 +G+ L) p (N − 1)

∞∑
t=t0

δt−t0t = 6 (1− ε) (1 +G+ L) p (N − 1)
(1− δ) t0 + δ

(1− δ)2 .
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Hence, for each t ≥ 1, we have

∑
µt

Pr
(
µt
)∑
hti

Pr
(
hti|µt

)
Pr
(
σi(h

t
i, µ

t) = Ci
)
≤ 6 (1− ε) 1 +G+ L

min {G,L}p (N − 1)
(1− δ) t+ δ

(1− δ)2 . (14)

Now, as in the proof of Theorem 2, we have

U ≤ 2 (1− δ)
∑
t

δt−1
∑
µt

Pr
(
µt
)∑

i

1

N

∑
hti

Pr
(
hti|µt

)
Pr
(
σi(h

t
i, µ

t) = Ci
)
.

Hence, summing (14) over t = 1, ...,∞, with the period t inequality multiplied by (1− δ) δt−1, we

obtain

U ≤ 12 (1− ε) 1 +G+ L

min {G,L}p (N − 1)
∞∑
t=1

δt−1 ((1− δ) t+ δ)

1− δ

= 12 (1− ε) 1 +G+ L

min {G,L}p (N − 1)
1 + δ

(1− δ)2

∼ 12 (1− ε) 1 +G+ L

min {G,L}

√
1

2Nπε (1− ε)
1 + δ

(1− δ)2 (by Lemma 3).

Therefore, if (1− δ)N1/4 →∞, we have U → 0.

A.7 Proof of Theorem 3

Equilibrium strategy. Each player i enters each period t with a “blacklist”IDi,t ⊂ I. Let IDi,1 = ∅

for each i.

In period t, player i truthfully reports Ii,t to her period-t opponent µt (i) (whether or not i is

rational). When rational, i then takes action C if µt (i) /∈ IDi,t, and takes D otherwise. Committed

players take D.

Denote the report of player i’s opponent by ÎDµt(i),t. At the end of period t, i’s blacklist updates

to

IDi,t+1 =

 IDi,t ∪ ÎDµt(i),t if µt (i) played C or i is bad,

IDi,t ∪ ÎDµt(i),t ∪ {µt(i)} if µt (i) played D and i is rational.

We prove that this strategy gives an η-Nash equilibrium by (i) computing lower bounds on

the equilibrium payoffs of rational and bad types, (ii) computing upper bounds on the payoffs of

rational and bad types from any unilateral deviation, and (iii) showing that the latter cannot exceed

the former by more than η.
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Rational type equilibrium payoff. Suppose i is rational, let S be the set of bad players,

and suppose that |S| = n. Fix any T,Z ∈ N. The probability that every bad player meets a

rational player at least once by period T is at least 1 − n
(
n−1
N−1

)T
. Conditional on this event, by

Lemma 5, IDi,T+Z log2 N
= S with probability at least 1 − exp (−cZ). Hence, with probability at

least 1− n
(
N−n
N−1

)T
− exp (−cZ), starting from period T +Z log2N player i obtains payoff 1 when

she meets a rational type and obtains payoff 0 when she meets a bad type, for an expected payoff

of N−1−n
N−1 . For the first T +Z log2N periods, and with probability at most n

(
N−n
N−1

)T
+ exp (−cZ)

for the rest of the game, player i’s payoff is at least −L. In total, rational player i’s equilibrium

expected payoff, conditional on the event |S| = n, is at least

N − 1− n
N − 1

− min
T,Z∈N

{(
1− δT+Z log2 N

)
+ n

(
n− 1

N − 1

)T
+ exp (−cZ)

}
(1 + L) .

Taking the expectation with respect to n, rational player i’s equilibrium unconditional expected

payoff is at least

∑
n

pn
N − 1− n
N − 1

−
∑
n

pn min
T,Z∈N

{(
1− δT+Z log2N

)
+ n

(
n− 1

N − 1

)T
+ exp (−cZ)

}
(1 + L) .

Now fix some α̂ ∈ (0, ᾱ), and let T,Z ∈ N be the smallest integers such that

max
{
N (1− α̂)T , exp (−cZ)

}
≤ η

4 (1 + max {G,L}) .

For all n ≤ (1− ᾱ)N , we have n
(
n−1
N−1

)T
≤ N

(
(1−ᾱ)N−1

N−1

)T
. For suffi ciently large l, we have(

(1−ᾱ)N−1
N−1

)T
≤ (1− α̂)T , and hence n

(
N−n
N−1

)T
≤ N (1− α̂)T ≤ η

4(1+max{G,L}) . Finally, we have

1− δT+Z log2 N ≤ (1− δ) (T + Z log2N) ≤ (1− δ) ĉ log2N for some constant ĉ > 0,

and (1− δ) log2N converges to 0 as l → ∞ by hypothesis. Hence, for suffi ciently large l, for all

n ≤ (1− ᾱ)N we have

min
T,Z∈N

{(
1− δT+Z log2N

)
+ n

(
N − n
N − 1

)T
+ exp (−cZ)

}
(1 + L) ≤ η

4
+
η

4
+

η

12
=

7

12
η .

By (10), Pr (n ≤ (1− ᾱ)N) → 1 as l → ∞. Hence, for suffi ciently large l, player i’s equilibrium
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unconditional expected payoff is at least

∑
n

pn
N − 1− n
N − 1

− 7

12
η − 1

12
η =

∑
n

pn
N − 1− n
N − 1

− 2

3
η. (15)

Bad type equilibrium payoff. Here we take the trivial bound that, when player i is bad,

her equilibrium payoff is non-negative.

Rational type deviation payoff. We derive an upper bound for player i’s payoff under

any unilateral deviation. To this end, suppose that player i can observe whether her opponent

is rational or bad before acting, and always takes D against bad opponents. Moreover, suppose

player i’s opponents blacklist her if they learn that she took D against a rational player through

a path of players that excludes player i herself: that is, if player i played D against a rational

opponent in period τ , then a rational player j takes D against i in period t > τ if there exists a

sequence of players (jτ , jτ+1, . . . , jt−1) such that jτ = µτ (i), j ∈ {jτ , . . . , jt−1}, i /∈ {jτ , . . . , jt−1},

and jt′+1 = µt′+1 (jt′) for each t′ ∈ {τ , . . . , t− 2}. By Lemma 5, if player i takes D against a

rational player in period τ , then with probability 1− exp(−cZ) everyone takes D against player i

starting from period Z + log2N . Hence, player i’s expected payoff at most

N−1∑
n=0

pn
N − 1− n
N − 1

+
((

1− δZ log2 N
)

+ exp (−cZ)
)

(1 +G) .

Since exp (−cZ) ≤ η
4(1+max{G,L}) and (1− δ) log2N → 0, for suffi ciently large l this is at most

N−1∑
n=0

pn
N − 1− n
N − 1

+
1

3
η.

Comparing this upper bound with the lower bound (15), the equilibrium strategy is η-optimal.

Bad type deviation payoff. Since player i always takes D when bad, if she meets a rational

player for the first time in period τ , her continuation payoff starting from period τ + Z log2N

is 0 with probability at least 1 − exp(−cZ). (As in the case where player i is rational, this holds

regardless of player i’s own behavior following period τ .) Since player i’s continuation payoffagainst

bad opponents is non-positive, her payoff under any unilateral deviation is at most

δτ
((

1− δZ log2 N
)

+ exp (−cZ)
)

(1 +G) .
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Again, for suffi ciently large l, this is at most η/3. Hence, the equilibrium strategy is η-optimal.
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B Online Appendix

B.1 Proof of Lemma 5

For each i 6= j, let N−it (j) denote the (random) number of players in the set −i = I\ {i} who, by
period t, have met a player in −i who met a player in −i who. . . met player j. We wish to show
that there exists a constant c > 0 such that Pr

(
N−iT (j) = N − 1 ∀i, j

)
≥ 1− exp (−cZ). The idea

of the proof is to show that, with high probability, mini,j N
−i
t (j) grows exponentially in t until it

reaches a constant fraction of N , and that subsequently N −mini,j N
−i
t (j) shrinks exponentially.

We first show that mini,j N
−i
t (j) grows exponentially until it reaches 2

3N .

Lemma 6 There exists ᾱ ∈
(
0, 1

2

]
such that, for every N and n ≤ 2

3N ,

Pr

(
min
i,j

N−it+1(j) ≤ (1 + ᾱ) min
i,j

N−it (j)|min
i,j

N−it (j) = n

)
≤ N (N − 1)

e

2πᾱ
1
2 (1− ᾱ)

1
2

(
1

2

) ᾱn
2

.

Proof. By monotonicity in the number of informed players and symmetry, it suffi ces to prove that,
for each particular i 6= j,

Pr
(
N−it+1(j) ≤ (1 + ᾱ)N−it (j) |N−it (j) = n

)
≤ e

2πᾱ
1
2 (1− ᾱ)

1
2

(
1

2

) ᾱn
2

.

Fixing i 6= j, and suppressing i and j in the notation, let It be the set of players who received
player j’s message through a path excluding i by period t: thus, |It| = n. Note that, for each
number n′ ≤ N − n with the same parity as n, Pr (Nt+1 = n+ n′|Nt = n) is at most(

n
n′

)
︸ ︷︷ ︸

who in It meets
players in I\(It∪{i})

× n− 1

N − 1︸ ︷︷ ︸
“first”player in It
meets someone in It

× n− 3

N − 3︸ ︷︷ ︸
“second” (remaining) player in It
meets some (remaining) player in It

× · · · × n′ + 1

N − n+ n′ + 1

=

(
n
n′

) n−n′
2∏

k=1

n− 2k + 1

N − 2k + 1
.

(This is an upper bound, as we neglect the probability that the players in It who are selected to
meet someone in I\ (It ∪ {i}) actually do so.) Similarly, for each n′ with the opposite parity as n,
Pr (Nt+1 = n+ n′|Nt = n) is at most

n︸︷︷︸
who in It meets i

× 1

N − 1︸ ︷︷ ︸
prob. of meeting i

×
(
n− 1
n′

)
︸ ︷︷ ︸
who in It meets

players in I\(It∪{i})

× n− 2

N − 3
× . . .× n′ + 1

N − n+ n′︸ ︷︷ ︸
remaining players in It
match with each other

=

(
n− 1
n′

) n−n′+1
2∏

k=1

n− 2k + 2

N − 2k + 1
≤
(

n
n′

) n−n′+1
2∏

k=1

n− 2k + 2

N − 2k + 1
.
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For any α ∈ (0, 1
2 ], if n′ ≤ αn, Stirling’s formula gives(

n
n′

)
≤ enn+ 1

2 e−n

2π (αn)αn+ 1
2 e−αn ((1− α)n)(1−α)n+ 1

2 e−(1−α)n
≤ e

2π (α)αn+ 1
2 (1− α)(1−α)n+ 1

2

.

We also have

n−n′
2∏

k=1

n− 2k + 1

N − 2k + 1
≤

(
n− 1

N − 1

)n−n′
2

≤
(

n

N − 1

) (1−α)n
2

, and

n−n′+1
2∏

k=1

n− 2k + 2

N − 2k + 1
≤

(
n

N − 1

)n−n′+1
2

≤
(

n

N − 1

) (1−α)n
2

.

Therefore, for any α ∈ (0, 1
2 ] and n′ ≤ αn, we have

Pr
(
Nt+1 = n+ n′|Nt = n

)
≤ e

2π (α)αn+ 1
2 (1− α)(1−α)n+ 1

2

(
n

N − 1

) (1−α)n
2

,

and hence

Pr (Nt+1 ≤ n+ αn|Nt = n) ≤ e (αn+ 1)

2π (α)αn+ 1
2 (1− α)(1−α)n+ 1

2

(
n

N − 1

) (1−α)n
2

=
e

2πα
1
2 (1− α)

1
2

(
(αn+ 1)

2
αn

α2 (1− α)2 1−α
α

(
n

N − 1

) 1−α
α

)αn
2

≤ e

2π (α)
1
2 (1− α)

1
2

(
e2

α2 (1− α)2 1−α
α

(
2

3

N

N − 1

) 1−α
α

)αn
2

. (16)

Fix ᾱ ∈
(
0, 1

2

]
such that

e2

ᾱ2 (1− ᾱ)2 1−α
α

(
8

9

) 1−ᾱ
ᾱ

<
1

2
.

Such an ᾱ exists as the left-hand side of this inequality goes to 0 as ᾱ→ 0. Since N ≥ 4, we have
2
3

N
N−1 ≤

8
9 . Hence, substituting α = ᾱ in (16), we have, for every N and n ≤ 2

3N ,

Pr (Nt+1 ≤ n+ ᾱn|Nt = n) ≤ e

2π (ᾱ)
1
2 (1− ᾱ)

1
2

(
1

2

) ᾱn
2

,

as desired.
Fix ᾱ satisfying the conditions of Lemma 6. Let n∗(N) satisfy

N (N − 1)
e

2πᾱ
1
2 (1− ᾱ)

1
2

(
1

2

) ᾱn∗(N)
2

=
1

4
.
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Note that
n∗(N) = ĉ (log2N + log2 (N − 1)) ,

where ĉ > 0 is a constant independent of N . The following lemma is an immediate consequence of
Lemma 6.

Lemma 7 For every n satisfying n∗(N) ≤ n ≤ 2
3N ,

Pr

(
min
i,j

N−it+1(j) ≤ (1 + ᾱ) min
i,j

N−it (j) |min
i,j

N−it (j) = n

)
≤ 1

4
.

We now consider the case where n ≤ n∗ (N), considering first the subcase where n ≥ 12.

Lemma 8 There exists N̄1 such that, for every N ≥ N̄1 and n satisfying 12 ≤ n ≤ n∗(N),

Pr

(
min
i,j

N−it+1(j) ≤ 3

2
min
i,j

N−it (j) |min
i,j

N−it (j) = n

)
≤ 1

4
.

Proof. Taking α = 1
2 in (16), we have

Pr

(
min
i,j

N−it+1(j) ≤ 3

2
min
i,j

N−it+1|min
i,j

N−it (j) = n

)

≤ N (N − 1)
e

2πα
1
2 (1− α)

1
2

(
e2

α2 (1− α)2 1−α
α

(
n

N − 1

) 1−α
α

)αn
2

= N (N − 1)
e

2π
(

1
2

) 1
2
(

1
2

) 1
2

(
e2(

1
2

)2 (1
2

)2 n

N − 1

)n
4

.

Since 12 ≤ n ≤ ĉ (log2N + log2 (N − 1)), this is at most

N (N − 1)
e

π

(
16e2 ĉ (log2N + log2 (N − 1))

N − 1

)3

,

which is less than 1
4 for suffi ciently large N .

The next lemma addresses the subcase with fewer than 12 informed players.

Lemma 9 There exists N̄2 such that, for every N ≥ N̄2,

Pr

(
min
i,j

N−it+6(j) ≤ 12|min
i,j

N−it (j) ≥ 1

)
≤ 1

4
.

Proof. Fix i 6= j, and suppose N−it+6(j) ≤ 12. Since mini,j N
−i
t (j) ≥ 1 and 12 < 24, this is

possible only if N−it′+1(j) = 2N−it′ (j) for at most 3 out of the 6 periods t′ ∈ {t+ 1, . . . , t+ 6}. That
is, in at least 3 out of these 6 periods, some player in I−it′ (j) must meet someone in I−it′ (j) ∪ {i}.
Since by hypothesis N−it′ (j) ≤ 12 for each such period t′, the probability of this event is at most(

6
3

)
× 12×

(
12
N−1

)3
. Hence,

Pr

(
min
i,j

N−it+6(j) ≤ 12|min
i,j

N−it (j) ≥ 1

)
≤ N (N − 1)

20× 124

(N − 1)3 ,
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which is less than 1
4 for suffi ciently large N .

In total, since ᾱ ≤ 1
2 , we have the following lemma:

Lemma 10 For every N ≥ max
{
N̄1, N̄2

}
,

1. For any
(
N−it (j)

)
i,j
such that mini,j N

−i
t (j) ≥ 1, we have

Pr

(
min
i,j

N−it+6(j) ≤ 12|
(
N−it (j)

)
i,j

)
≤ 1

4
.

2. For any
(
N−it (j)

)
i,j
such that mini,j N

−i
t (j) = n satisfies 12 ≤ n ≤ 2

3N , we have

Pr

(
min
i,j

N−it+1(j) ≤ (1 + ᾱ) min
i,j

N−it |
(
N−it (j)

)
i,j

)
≤ 1

4
.

We now provide a symmetric bound for the case where N−it (j) is “large” for each i 6= j. Let
M−it (j) = N−1−N−it (j) be the number of players −i who have not yet received player j’s message
through a path excluding i; and let J−it (j) be the set of such players.

Lemma 11 There exists N̄3 such that, for each N ≥ N̄3,

1. For any
(
M−it (j)

)
i,j
such that maxi,jM

−i
t (j) ≤ 12, we have

Pr

(
max
i,j

M−it+6(j) > 0|
(
M−it (j)

)
i,j

)
≤ 1

4
.

2. For any
(
M−it (j)

)
i,j
such that maxi,jM

−i
t (j) = n satisfies 12 ≤ n ≤ 1

3N , we have

Pr

(
max
i,j

M−it+1(j) ≥ (1− ᾱ) max
i,j

M−it (j) |max
i,j

M−it (j) = n

)
≤ 1

4
.

Proof. Lemmas 6—10 provide an upper bound for the probability that fraction ᾱ of players in
I−it (j) do not meet players outside of I−it (j) ∪ {i}. The current lemma provides an upper bound
for the probability that fraction ᾱ of players in J−it (j) do not meet players outside of J−it (j)∪ {i}.
The argument is symmetric.

We now combine Lemmas 10 and 11 to prove Lemma 5. We first assume N ≥ max{N̄1, N̄2, N̄3}.
We have the following properties. First, if mini,j N

−i
t (j) < 12, then mini,j N

−i
t+6(j) ≥ 12 with

probability at least 3
4 . Second, if 12 ≤ mini,j N

−i
t (j) ≤ 2

3N , thenmini,j N
−i
t+1(j) ≥ (1 + ᾱ) mini,j N

−i
t (j)

with probability at least 3
4 . (And note that log(1+ᾱ)

2
3N “increases” by a factor of (1 + ᾱ) suf-

fice to raise mini,j N
−i
t (j) to 2

3N .) Third, if 2
3N ≤ mini,j N

−i
t (j) ≤ N − 13– or equivalently

12 ≤ maxi,jM
−i
t (j) ≤ 1

3N– then maxi,jM
−i
t+1(j) ≤ (1− ᾱ) maxi,jM

−i
t (j) with probability at

least 3
4 . (Note that log(1−ᾱ) 3 1

N “decreases” suffi ce to reduce maxi,jM
−i
t (j) to 12.) Finally, if

maxi,jM
−i
t (j) ≤ 12, then mini,j N

−i
t+6(j) = N − 1 (equivalently maxi,jM

−i
t (j) = 0) with probabil-

ity at least 3
4 .

Combining these properties, we see that Pr
(
mini,j N

−i
T (j) = N − 1

)
is lower-bounded by the

probability that, out of T/6 Bernoulli random variables with parameter 3
4 , the realizations of at
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least 2 + log(1+ᾱ)
2
3N + log(1−ᾱ) 3 1

N of them equal 1. By Hoeffding’s inequality, this probability is
at least

1− exp

−2

(
3

4
−

2 + log(1+ᾱ)
2
3N + log(1−ᾱ) 3 1

N
T
6

)2
T

6

 .

If T = Z log2N , then

2 + log(1+ᾱ)
2
3N + log(1−ᾱ) 3 1

N
Z log2N

6

<
2 + (log2N)

(
1

log2(1+ᾱ) −
1

log2(1−ᾱ)

)
Z log2 N

6

<
6

Z

(
2 +

1

log2 (1 + ᾱ)
− 1

log2 (1− ᾱ)

)
.

Hence, there exists Z̄1 > 0 such that if Z > Z̄1 then, for all N ≥ max{N̄1, N̄2, N̄3}, we have

2 + log(1+ᾱ)
2
3N + log(1−ᾱ) 3 1

N
Z log2N

6

<
1

4
,

and hence

Pr

(
min
i,j

N−iT (j) = N − 1

)
≥ 1− exp

(
−2

(
1

2

)2 Z log2N

6

)
≥ 1− exp

(
− 1

12
Z

)
.

Finally, for the case N < max{N̄1, N̄2, N̄3}, Hoeffding’s inequality implies

Pr

(
min
i,j

N−iT (j) = N − 1

)
≥ 1−N (N − 1) exp

(
−2

(
1

N − 1

)2

T

)
.

Hence, there exist c1 > 0 and T̄ > 0 such that, for all N < max{N̄1, N̄2, N̄3} and T > T̄ , we have

Pr

(
min
i,j

N−iT (j) = N − 1

)
≥ 1− exp (−c1T ) .

Taking c = min
{

1
12 , c1

}
and Z̄ = max

{
Z̄1, T̄

}
completes the proof.

B.2 Proof of Theorem 4

We first prove the following theorem:

Theorem 5 Fix a sequence (N, δ, p)l satisfying (10), and fix any α ∈ (0, ᾱ) and η ∈ (0, 1). In
the non-anonymous PD with cheap talk, if liml (1− δl) logNl = 0 then for any v ∈ Fα,η, we have
v ∈ E∗ for suffi ciently large l.

In Section B.2.10, we extend this result to show that Fα,η ⊆ E∗ for suffi ciently large l.
To prove Theorem 5, we first describe a protocol for the community to circulate messages. This

protocol has the feature that, with high probability, the number of periods it takes for everyone
to learn the message is on the order of logN ; moreover, no single player can stop the rest of the
community from learning. We then use this protocol as a building block in the construction of a
block belief-free equilibrium.
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B.2.1 Protocol for Players to Circulate Message m

Suppose each player i wishes to disseminate a message mi throughout the community, where each
mi is an element of some finite set Mi. We say that players circulate message m = (mi)i for T
periods if players obey the following protocol for the next T periods:

In each period t ∈ {1, . . . , T}, all players take action D, while sending cheap-talk messages.
Each player j has a “state”(

ζI,−ij,t , ζM,−i
j,t

)
i 6=j
⊂ ×i 6=j (I × (×k 6=iMk)) .

Intuitively, ζI,−ij,t is the set of players k whose message player j has heard (directly or indirectly)

via a path that excludes i, and ζM,−i
j,t |k ⊂ Mk is the set of messages reported to j as having been

sent by k.22 Formally, for each player j and i 6= j,
(
ζI,−ij,1 , ζM,−i

j,1

)
= ({j}, (∅, . . . , ∅,mj , ∅, . . . , ∅)).

In each period t, given
(
ζI,−ij,1 , ζM,−i

j,1

)
i 6=j
, if player j meets player k, player j sends message(

ζI,−ij,1 , ζM,−i
j,1

)
i/∈{j,k}

. That is, player j passes all of his information to player k, except for the “−k”

information being circulated by players −k. Given her opponent’s message
(
ζ̂
I,−i
k,t , ζ̂

M,−i
k,t

)
i/∈{j,k}

,

for each i /∈ {j, k}, player j’s next-period state is given by ζI,−ij,t+1 = ζI,−ij,t ∪ ζ̂
I,−i
k,t and ζM,−i

j,t+1 |n =

ζM,−i
j,t |n∪ ζ̂

M,−i
k,t |n for all n 6= i. For i ∈ {j, k}, let

(
ζI,−ij,t+1, ζ

M,−i
j,t+1

)
=
(
ζI,−ij,t , ζM,−i

j,t

)
. That is, for each

player n 6= i, player j adds ζ̂
M,−i
k,t |n to the set of messages reported to her as having been sent by

n. (Throughout, we use hatted variables to denote messages.)

At the end of period T , for each i 6= j, if ζI,−ij,T = −i and
∣∣∣ζM,−i
j,T |n

∣∣∣ = 1 for each n 6= i, we

say player j infers message m−i (j) ∈ ×k 6=iMk, where m−i (j) |n is equal to the unique element of
ζM,−i
j,T |n, for each n. Otherwise, we say player j infers m−i (j) = error. We also say the match
realization is erroneous if there exists disjoint players i 6= j 6= k 6= i such that, by period T , player
i has not met a player in −k who met a player in −k who. . . met player j. Otherwise, the match
is regular.

Note that, if all players follow the protocol, then at the end of period T either the match is
erroneous or m−i (j) = m−i for all i 6= j. Moreover, if T = Z log2N , by Lemma 5 the probability
that the match is erroneous decreases exponentially in Z. We thus have

Lemma 12 Let T = Z log2N . There exist c > 0 and Z̄ > 0 such that, for all Z > Z̄ and all l, we
have

Pr (m−i(j) = m−i ∀i 6= j) ≥ 1− exp (−cZ) .

Note also that whether or not the event {m−i(j) = m−i} obtains is independent of player i’s
behavior.

B.2.2 Period 1

The very first period of the repeated game plays a special role in our construction. We denote this
period by 1∗ rather than 1, to clarify that this is the first period of the infinitely repeated game,
rather than the first period of a block. In period 1∗, every normal player is supposed to play C.

22For a vector x ∈ XN−1 and k ∈ {1, . . . , N − 1}, we denote the kth coordinate of x by x|k.
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Given the outcome of period 1∗, let θ denote the set of players who took ai,1∗ = C as prescribed.
(Note that θ ⊂ θ∗, as all committed players take D, and some rational players may also take D
as the result of a deviation.) In our construction, only players in θ will cooperate with each other.
The strategies we construct will take θ as a persistent “state variable,” and we denote the set of
possible states θ by Θ = 2I . Note that each player i’s period-1∗ history, hi,1∗ = (µ1∗(i), ai,1∗ , ωi,1∗),
is directly informative of θ; for this reason, players’period-1∗ histories will play a distinguished role
in our construction.23

B.2.3 Block Belief-Free Structure

We now describe the general structure of our construction (following period 1∗) and present the
corresponding equilibrium conditions.

Block Strategies. We view the repeated game from period 2 on as an infinite sequence of T ∗∗-
period blocks, where T ∗∗ is a number to be specified. At the beginning of every block, each player
i selects a “strategy state”xθi ∈ {G,B} for each θ ∈ Θ from a full support probability distribution.
Given the vector xi =

(
xθi
)
θ∈Θ

and player i’s period-1∗ history hi,1∗ , player i plays a behavior
strategy σ∗i (xi, hi,1∗) (her block strategy) within the block. That is, in every period t = 1, . . . , T ∗∗

of the block, σ∗i (xi, hi,1∗) specifies a probability distribution over cheap talk messages and actions
as a function of player i’s block history hti = (

(
µτ (i),mi,τ ,mµτ (i),τ , ai,τ , ωi,τ

)t−1

τ=1
, µt(i)). Denote

player i’s strategy set in the T ∗∗-period game by Σi.
Players are prescribed to play C in period 1∗ and subsequently use the same strategy in each

block. Thus, a player’s entire repeated-game strategy can be summarized by a single block strategy,
together with a policy for selecting the strategy state xi at the start of each block.

Continuation Payoffs. Conditional on the persistent state being equal to θ, player i’s
equilibrium continuation payoff at the end of a block is a function only of player (i− 1)’s state xθi−1

and history hT
∗∗

i−1 in the previous block. (Adopt here the convention that player-names are modN ,
so player (1− 1) is player N .) Denote this continuation payoff by wθi (x

θ
i−1, h

T ∗∗
i−1).

Thus, player (i− 1) is the “arbiter” of player i’s payoff, in that player (i− 1)’s choice of her
strategy state xi−1 determines player i’s equilibrium continuation payoff in each state θ. This
feature is typical of block belief-free constructions, such as those in Hörner and Olszewski (2006),
Deb, Sugaya, and Wolitzky (2019), and Sugaya and Yamamoto (2019).

Beliefs. Players’belief systems (βi)i∈I are specified as a function of the block strategy profile
σ. Intuitively, players believe that trembles in the current block are much less likely than trembles
in previous blocks, but that, within the current block, trembles in later periods are much more
likely than trembles in earlier periods. This has two important implications. First, if a player
reaches a history that can be explained by some past opponents’play that does not involve any
deviations within the current block, she believes with probability 1 that no one deviated within the
current block. Second, if a player reaches a history that cannot be explained without appealing
to deviations within the current block, but can be explained by supposing that the only within-
block deviation was made by her current opponent in the current period, then she believes with
probability 1 that this is indeed what occurred.

To construct the belief system, first note that N and T ∗∗ determine the number of possible
block history profiles

(
hti
)
i∈I,t≤T ∗∗ .

24 Denote this number by c̃. Beliefs are derived from Bayes’rule

along a sequence of completely mixed strategy profiles
(
σl
)
l∈N, in which each player i “trembles”

23We omit messages
(
mi,1∗ ,mµ1∗ (i),1∗

)
in the description of hi,1∗ , as there is no communication in period 1 in our

construction.
24The size of the message sets |Mi,t| used in the construction will be explicitly determined as a function of N and

T ∗∗ in the course of the proof.
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uniformly over all messages and actions with probability (1/l)c̃(T
∗∗b−t) in period t ∈ {1, . . . , T ∗∗} of

block b. As l→∞, the resulting beliefs display the properties discussed above.
Equilibrium Conditions. Fix α ∈ (0, ᾱ), η ∈ (0, 1), and a target payoff ṽ ∈ Fα,η. Let ṽθ∗

be the associated value given θ∗. Let p0 and p1 denote, respectively, the probability that a given
pair of players are both rational, and the probability that exactly one of them is rational. Define(
vθ
∗)
θ∗
such that, for each i,

vθ
∗
i =

{
ṽθ
∗
i − 1−δ

δ

p0+p1( 1+G−L
2 )

Pr(|θ∗|≥αN) if |θ∗| ≥ αN,
0 otherwise,

(17)

and let v =
∑

θ∗ p (I \ θ∗) vθ∗ . In order to show ṽ ∈ E∗, it suffi ces to show that, for suffi ciently
large l, (

(1− δ)
(
p0 + p1

(
1 +G− L

2

))
+ δvi

)
i

∈ E∗. (18)

(Note that the left-hand side of this expression is player i’s expected payoff when rational players
play C in period 1 and receive continuation payoff

(
vθ
∗
i

)
θ∗
starting in period 2.) This follows

because

(1− δ)
(
p0 + p1

(
1 +G− L

2

))
+ δvi

= (1− δ)
(
p0 + p1

(
1 +G− L

2

))

+δ

 ∑
θ∗:|θ∗|≥αN

p (I \ θ∗)
(
ṽθ
∗
i −

1− δ
δ

p0 + p1
(

1+G−L
2

)
Pr (|θ∗| ≥ αN)

)
+ Pr (|θ∗| < αN) (0)


= ṽ.

Suppose that the index l for (N, δ, p)l is large enough so that∣∣∣∣∣1− δδ p0 + p1
(

1+G−L
2

)
Pr (|θ∗| ≥ αN)

∣∣∣∣∣ ≤ η

2
.

(This holds for large l, since δ → 1 and Pr (|θ∗| ≥ αN)→ 1 as l→∞.) Then ṽ ∈ Fα,η implies that
v satisfies the following conditions:

1. For each θ∗ satisfying |θ∗| ≥ αN , we have B
η
2

(
vθ
∗) ⊂ F ∗ (θ∗). In contrast, for each θ∗

satisfying |θ∗| < αN , we have vθ
∗

= 0.

2. For each i ∈ I and each θ∗, θ∗′ satisfying (i) |θ∗| ,
∣∣θ∗′∣∣ ≥ αN , (ii) θ∗ 3 i, and (iii) θ∗′ 63 i, we

have
vθ
∗
i − vθ

∗′
i ≥

η

2
. (19)

We now provide a suffi cient condition to establish (18).
Fix a block length T ∗∗ ∈ N, a block strategy profile

(
σ∗i
(
xi, h

1∗
i

))
i∈I,xi∈{G,B}|Θ|,h1∗

i ∈H1∗
i
, tar-

get payoffs (conditional on both θ and x)
(
vθi (x

θ
i−1)

)
i∈I,θ∈Θ,xθi−1∈{G,B}

, and continuation payoffs(
wθi (x

θ
i−1, h

T ∗∗+1
i−1 )

)
i∈I,θ∈Θ,xθi−1∈{G,B},h

T∗∗+1
i−1 ∈HT∗∗+1

i−1

. We will show that the following set of condi-

tions is suffi cient for
∑

θ∗ p (I \ θ∗) vθ∗ ∈ E∗. In what follows, Eσ [·|·] denotes conditional expectation
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under block strategy profile σ, with the corresponding belief system defined above given σ. We also
write h̃b,ti ∈ H̃

b,t
i for a generic history in period t of block b of the infinitely repeated game, and

write hti ∈ Ht
i for a generic block history in period t of a block. (Thus, h̃

b,t
i records the outcomes

of (b− 1)T ∗∗ + t − 1 periods of play, while hti records the outcomes of t − 1 periods.) Finally,
we write h̃b,0i ∈ H̃

b,0
i for a generic repeated game history at the beginning of block b, before the

determination of the first match in the block.

1. [Sequential Rationality] For each x ∈ {G,B}N |Θ|, each i ∈ I, each h1∗
i ∈ H1∗

i , each t ∈
{1, . . . , T ∗∗}, each b ∈ N, and each h̃b,ti ∈ H̃

b,t
i , σ

∗
i

(
xi, h

1∗
i

)
is a maximizer (over σi ∈ Σi) of

∑
h1∗
−i∈H1∗

−i

βi

(
h1∗
−i|x−i, h̃

b,t
i

)
E
(
σi,σ

∗
−i

(
x−i,h1∗

−i

)) [
(1− δ)

∑T ∗∗

τ=1 δ
τ−1ûi (aτ )

+δT
∗∗
wθi (x

θ
i−1, h

T ∗∗+1
i−1 )

∣∣∣∣x−i, h̃b,ti ] .
(Here, the sum

∑T ∗∗

τ=1 is taken over all periods in the current block b, where the current
period t ∈ {(b− 1)T ∗∗ + 2, . . . bT ∗∗ + 1} is some period in block b. Note also that sequential
rationality is imposed “ex post”over vectors x−i ∈ {G,B}(N−1)|Θ|. This is the defining feature
of a block belief-free construction. However, optimality with respect to h1∗

−i is demanded only
in expectation, not ex post.)

2. [Promise Keeping] For each θ ∈ Θ, i ∈ I, xθi−1 ∈ {G,B}N , b ∈ N, and h̃b,0 ∈ H̃b,0,

vθi (x
θ
i−1) = Eσ

∗
(
x,h1∗

) [
(1− δ)

T ∗∗∑
t=1

δt−1ûi (at) + δT
∗∗
wθi (x

θ
i−1, h

T ∗∗+1
i−1 )|h̃b,0, θ

]
.

(Note that player i’s continuation payoff vθi (x
θ
i−1) is allowed to depend on h̃b only through θ.)

3. [Self-Generation] For each θ ∈ Θ, i ∈ I, we have either (i) wθi (xθi−1, h
T ∗∗+1
i−1 ) ∈ (vθi (B), vθi (G))

for each xθi−1 ∈ {G,B} and hT
∗∗+1

i−1 ∈ HT ∗∗+1
i−1 , or (ii) wθi (x

θ
i−1, h

T ∗∗+1
i−1 ) = vθi (B) = vθi (G) for

each xθi−1 ∈ {G,B} and hT
∗∗+1

i−1 ∈ HT ∗∗+1
i−1 .

4. [Feasibility] For each θ ∈ Θ and i ∈ I, we have either vθi ∈ (vθi (B), vθi (G)) or vθi = vθi (B) =
vθi (G).

(This implies that, by appropriately randomizing her strategy state xθi−1 in the first block,
player (i− 1) can deliver the target payoff vθi to player i. Moreover, this randomization has
full support.)

5. [Incentive to take C in period 1∗] For each i ∈ I,

δ
∑
θ∈Θ

Pr (θ|ai,1∗ = C, i ∈ θ∗) vθi > (1− δ) max {G,L}+ δ
∑
θ∈Θ

Pr (θ|ai,1∗ = D, i ∈ θ∗) vθi .

Defining πθi (x
θ
i−1, h

T ∗∗+1
i−1 ) := δT

∗∗

1−δ

(
wθi (x

θ
i−1, h

T ∗∗+1
i−1 )− vθi (xθi−1)

)
, we can rewrite these condi-

tions as follows:

1. [Sequential Rationality] For each x ∈ {G,B}N |Θ|, i ∈ I, h1∗
i ∈ H1∗

i , t ∈ {1, . . . , T ∗∗}, b ∈ N,
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and h̃b,ti ∈ H̃
b,t
i , σ

∗
i

(
xi, h

1∗
i

)
maximizes

∑
h1∗
−i∈H1∗

−i

βi

(
h1∗
−i|x−i, h̃

b,t
i

)
E
(
σi,σ

∗
−i

(
x−i,h1∗

−i

)) [T ∗∗∑
τ=1

δτ−1ûi (aτ ) + πθi (x
θ
i−1, h

T ∗∗+1
i−1 )|x−i, h̃b,ti

]
.

(20)

2. [Promise Keeping] For each θ ∈ Θ, i ∈ I, xθi−1 ∈ {G,B}N , b ∈ N, and h̃b,0 ∈ H̃b,0,

vθi (x
θ
i−1) = Eσ

∗(x)

[
1− δ

1− δT ∗∗
T ∗∗∑
t=1

δt−1ûi (at) + πθi (x
θ
i−1, h

T ∗∗+1
i−1 )|h̃b,0, θ

]
. (21)

3. [Self-Generation] For each θ ∈ Θ and i ∈ I, either (i)

sign
(
xθi−1

)
πθi (x

θ
i−1, h

T ∗∗+1
i−1 ) > 0 and

∣∣∣∣1− δδT
∗∗ π

θ
i (x

θ
i−1, h

T ∗∗+1
i−1 )

∣∣∣∣ < vθi (G)− vθi (B) (22)

for each xθi−1 ∈ {G,B} and hT
∗∗+1

i−1 ∈ HT ∗∗+1
i−1 , or (ii) πθi (x

θ
i−1, h

T ∗∗+1
i−1 ) = 0 and vθi (G) = vθi (B)

for each xθi−1 ∈ {G,B} and hT
∗∗+1

i−1 ∈ HT ∗∗+1
i−1 , where sign

(
xθi−1

)
:= 1{xθi−1=B} − 1{xθi−1=G}.

4. [Feasibility] For each θ ∈ Θ and i ∈ I,

vθi ∈ (vθi (B), vθi (G)) or vθi = vθi (B) = vθi (G). (23)

5. [Incentive to take C in period 1∗] For each i ∈ I,

δ
∑
θ∈Θ

Pr (θ|ai,1∗ = C, i ∈ θ∗) vθi > (1− δ) max {G,L}+ δ
∑
θ∈Θ

Pr (θ|ai,1∗ = D, i ∈ θ∗) vθi . (24)

Lemma 13 For all v ∈ RN |Θ| and δ ∈ [0, 1), if there exist T ∗∗ ∈ N,
(
σ∗i
(
xi, h

1∗
i

))
i∈I,xi∈{G,B}|Θ|,h1∗

i ∈H1∗
i
,(

vθi (x
θ
i−1)

)
i∈I,θ∈Θ,xi−1∈{G,B}, and

(
πθi (x

θ
i−1, h

T ∗∗+1
i−1 )

)
i∈I,θ∈Θ,xθi−1∈{G,B},h

T∗∗+1
i−1 ∈HT∗∗+1

i−1

such that Con-

ditions (20)—(24) are satisfied, then(
(1− δ)

(
p0 + p1

(
1 +G− L

2

))
+ δ

∑
θ∗

p (I \ θ∗) vθ∗i

)
i

∈ E∗. (25)

Proof. Conditions (21) and (22) imply that payoffs
(
vθi (x

θ
i−1)

)
i∈I,θ∈Θ,xi−1∈{G,B} can be delivered

at the beginning of each block with full support state transition probabilities, and Condition (23)
then implies that, by appropriately randomizing over

(
xθi−1

)
i∈I,θ∈Θ

before the first block (i.e.,
before period 2 of the repeated game), the target expected payoff vector v can be delivered. This
is as in, for example, Hörner and Olszewski (2006). Condition (20) is then a more stringent
version of the resulting sequential rationality constraint, as it imposes sequential rationality for
each realization of x−i, rather than only in expectation. Thus, Conditions (20)—(23) imply that
the strategies

(
σ∗i
(
xi, h

1∗
i

))
i∈I,xi∈{G,B}|Θ|,h1∗

i ∈H1∗
i
are sequentially rational and deliver continuation

payoffs v starting from the second period of the repeated game. Given this, (24) implies that it is
optimal for rational players to take C in period 1∗. Finally, the resulting ex ante expected payoffs
are given by (25).
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To prove Theorem 4, it thus suffi ces to show that, for any ṽ ∈ Fα,η and v defined by (17), for suffi -
ciently large l there exist T ∗∗ ∈ N,

(
σ∗i
(
xi, h

1∗
i

))
i∈I,xi∈{G,B}|Θ|,h1∗

i ∈H1∗
i
,
(
vθi (x

θ
i−1)

)
i∈I,θ∈Θ,xi−1∈{G,B},

and
(
πθi (x

θ
i−1, h

T ∗∗+1
i−1 )

)
i∈I,θ∈Θ,xθi−1∈{G,B},h

T∗∗+1
i−1 ∈HT∗∗+1

i−1

such that Conditions (20)—(24) are satisfied.

Condition (24). It is immediate that Condition (24) is satisfied for suffi ciently large l. For,
taking C gives player i payoff at least

(1− δ)
(
Pr
(
aµ1∗ (i) = C|i ∈ θ∗

)
(1) + Pr

(
aµ1∗ (i) = D|i ∈ θ∗

)
(−L)

)
+δ

(
Pr (|θ| ≥ αN |i ∈ θ) min

θ:|θ|≥αN,θ3i
vθi + (1− Pr (|θ| ≥ αN |i ∈ θ)) (0)

)
,

while taking D gives player i payoff at most

(1− δ)
(
Pr
(
aµ1∗ (i) = C|i ∈ θ∗

)
(1 +G) + Pr

(
aµ1∗ (i) = D|i ∈ θ∗

)
(0)
)

+ δ max
θ:|θ|≥αN,θ 63i

vθi .

Since liml Pr (|θ| ≥ αN |i ∈ θ) = 1, (19) implies (24) for suffi ciently large l.

B.2.4 Target Actions

We now define a target (opponent identity-contingent) action profile ax
θ
for each state θ ⊂ I.

For θ satisfying |θ| < αN , we define ax
θ

i (j) = D for all xθ ∈ {G,B}N and i 6= j. That is, all
players are prescribed defection. In this case, we define vθi (G) = vθi (B) = 0. Note that, to satisfy

(22), this requires πθi
(
xθi−1, h

T ∗∗+1
i−1

)
= 0 for all xθi−1 ∈ {G,B} and hT

∗∗+1
i−1 ∈ HT ∗∗+1

i−1 .

For θ satisfying |θ| ≥ αN , for each xθ ∈ {G,B}N we define ax
θ
such that, for each i ∈ I,

ui

(
ax

θ
)
> vθi if x

θ
i−1 = G, and ui

(
ax

θ
)
< vθi if x

θ
i−1 = B.25 Define vθi (G), vθi (B), and ε̄ > 0 such

that (
max

xθ:xθi−1=B
ui

(
ax

θ
))

+

≤ vθi (B) + 4ε̄ < vθi < vθi (G)− 4ε̄ ≤ min
xθ:xθi−1=G

ui

(
ax

θ
)
. (26)

Note that such ε̄ exists since B
η
2

(
vθ
)
⊂ F ∗ (θ). With these definitions, (23) is satisfied.

B.2.5 Structure of the Block

Each block consists of the following sub-blocks: Let

K :=

⌈
max {G,L}

ε̄

⌉
. (27)

Now fix Z suffi ciently large such that Z ≥ Z̄ (with c and Z̄ given in Lemma 12) and

(K + 3)

(
1

Z
+ 2 exp (−cZ)

)
ū ≤ ε̄, (28)

25As in Hörner and Olszewski (2006) and several subsequent papers, it may actually be necessary for players to

cycle through a sequence of distinct action profiles ax
θ

to achieve average payoffs ui > vθi (resp., ui < vθi ) for i such
that xθi−1 = G (resp., xθi−1 = B). Accommodating this possibility poses no diffi culty for the proof, so we follow
Hörner and Olszewski (and others) in assuming that a single action profile suffi ces.
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where ū = 2 max {L, 1 +G}. Let T = Z log2N . In what follows, recall that players always take
action D while circulating information.

1. 1∗-communication sub-block (the first T periods of the block): Players circulate informa-
tion about h1∗ .

2. x-communication sub-block (the next T periods): Players circulate information about x.

3. Supplemental round 0 (the next T periods): Players circulate information about the first
two sub-blocks.

4. Main sub-block k (there are K main sub-blocks, each lasting for (1 + Z)T periods, and
each divided into the following two rounds):

(a) Main round k (the first ZT periods of the sub-block): Players take the target actions
(and do not send cheap talk messages).

(b) Supplemental round k (the next T periods of the sub-block): Players circulate infor-
mation about the history up to the end of main round k.

Recall that T ∗∗ denotes the length of the block, or equivalently the last period of supplemental
roundK. Let T ∗ denote the last period of main roundK. Note that T ∗∗ = (3 +K (1 + Z))Z log2N .
Since (1− δ) logN → 0, we have

lim inf
l→∞

(1− δ)T ∗ ≤ lim inf
l→∞

(1− δ)T ∗∗ = 0. (29)

B.2.6 Reduction Lemma

We now show that, by communicating their histories during supplemental round K (the last such
round in the block) and adjusting continuation payoffs appropriately, the players can effectively
cancel the effects of discounting while letting continuation payoffs depend on

(
x−i, h1∗ , hT

∗+1
)

rather than
(
xi−1, h

T ∗∗+1
i−1

)
(when |θ| ≥ αN).26

Let ΣT ∗
i denote the set of i’s block strategies up to period T ∗. We show that the following

conditions are suffi cient for (25).

1. [Sequential Rationality] For each x ∈ {G,B}N |Θ|, i ∈ I, h1∗
i ∈ H1∗

i , t ∈ {1, . . . , T ∗}, b ∈ N,
and h̃b,ti ∈ H̃

b,t
i , σ

T ∗
i

(
xi, h

1∗
i

)
maximizes (over σi ∈ ΣT ∗

i )

∑
h1∗
−i∈H1∗

−i

βi

(
h1∗
−i|x−i, h̃

b,t
i

)
E
(
σi,σ

∗
−i

(
x−i,h1∗

−i

))  1{θ:|θ|≥αN}

(∑T ∗

τ=1 ûi (aτ ) + πθi (x
θ
−i, h

1∗ , hT
∗+1)

)
+1{θ:|θ|<αN}

∑T ∗

τ=1 δ
τ−1ûi (aτ )

|x−i, h̃b,ti

 .
(30)

2. [Promise Keeping] For each θ ∈ Θ, x ∈ {G,B}N |Θ|, i ∈ I, b ∈ N, and h̃b,0 ∈ H̃b,0,

vθi (x
θ
i−1) = Eσ

∗
(
x,h1∗

)  1{θ:|θ|≥αN}
1
T ∗

(∑T ∗

τ=1 ûi (aτ ) + πθi (x
θ
−i, h

1∗ , hT
∗+1)

)
+1{θ:|θ|<αN}

1−δ
1−δT∗

∑T ∗

τ=1 δ
τ−1ûi (aτ )

|θ, h̃b,0
 . (31)

26A similar but more complicated argument appears in Deb, Sugaya, and Wolitzky (2019).
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3. [Self-Generation] For each θ ∈ Θ, i ∈ I, xi−1 ∈ {G,B}|Θ|, h1∗ ∈ H1∗ , and hT
∗+1 ∈ HT ∗+1,

sign
(
xθi−1

)
πθi (x

θ
−i, h

1∗ , hT
∗+1)

{
> 0 for θ satisfying |θ| ≥ αN,
= 0 for θ satisfying |θ| < αN.

(32)

and ∣∣∣πθi (xθ−i, h1∗ , hT
∗+1)

∣∣∣ { ≤ 2ūT ∗ for θ satisfying |θ| ≥ αN,
= 0 for θ satisfying |θ| < αN.

(33)

Lemma 14 For any sequence (N, δ, p)l such that (10) holds and (1− δ) logN → 0, suppose there
exists l̄ such that, for each l ≥ l̄ and corresponding (N, δ, p)l, there exist

(
σT
∗

i

(
xi, h

1∗
i

))
i∈I,xi∈{G,B}|Θ|,h1∗

i ∈H1∗
i

and
(
πθi (x

θ
−i, h

1∗ , hT
∗+1)

)
i∈I,xi−1∈{G,B},h1∗ ,hT∗+1 such that Conditions (30)—(33) are satisfied. Then,

for suffi ciently large l, (25) holds.

Proof. We have fixed vθi (x
θ
i−1). Fix σT

∗
i and πθi satisfying (30)—(33). We will construct σ̃

∗
i , π̃

θ
i ,

and ṽθi (x
θ
i−1) that satisfy (20)—(23).

We extend strategy σT
∗

i ∈ ΣT ∗
i to a strategy σ̃∗i ∈ Σi by specifying that players circulate message

m = (mi)i = (xi, h
1∗
i , h

T ∗+1
i )i in supplemental round K.

Given player i − 1’s history in supplemental round K, we define π̃θi (xi−1, h
T ∗∗+1
i−1 ) as follows.

(i) If m−i(i − 1) = error, then π̃θi (xi−1, h
T ∗∗+1
i−1 ) = 0 for each xi−1, h

T ∗∗+1
i−1 . (ii) Otherwise, player

i − 1 infers (h1∗
−i(i − 1), hT

∗+1
−i (i − 1)). Since matching is pairwise, there exists a unique h1∗(i −

1), hT
∗+1(i− 1) that is consistent with (h1∗

−i(i− 1), hT
∗+1
−i (i− 1)). Given hT

∗+1(i− 1), let at(i− 1)
be the action in period t. We define

π̃θi (xi−1, h
T ∗∗+1
i−1 ) =


T ∗
(

1−δT∗
)

sign(xθi−1)ū+
∑T∗
t=1(1−δt−1)ûi(at(i−1))

Pr(m−i(i−1)6=error)

+
πθi (x−i(i−1),h1∗ (i−1),hT

∗+1(i−1))
Pr(m−i(i−1) 6=error)

if |θ| ≥ αN,

0 if |θ| < αN.

Finally, we define

ṽθi (x
θ
i−1) =

{
1−δ

1−δT∗∗ T
∗vθi (x

θ
i−1) + (1− δ)T ∗sign

(
xθi−1

)
ū if |θ| ≥ αN,

vθi (x
θ
i−1) if |θ| < αN.

As l → ∞, since 1−δ
1−δT∗∗ T

∗ → 1 and (1− δ)T ∗ → 0, we have ṽθi (x
θ
i−1) → vθi (x

θ
i−1) uniformly for

each θ. It remains to show that σ̃∗i
(
xi, h

1∗
i

)
, β̃
∗
, π̃θi , and ṽ

θ
i (x

θ
i−1) satisfy (20)—(23).

Note that player i’s payoff depends on the outcome of play in supplemental round K only
through her stage game payoffs (which are maximized by taking D) and m−i(i− 1). Since player i
cannot affect the distribution of m−i(i− 1), following σ∗i

(
xi, h

1∗
i

)
|
hT
∗+1

i
is optimal. Given this, by

the law of iterated expectation, in period t ≤ T ∗, the expected value of

T ∗∑
τ=t

δt−1ûi (aτ ) + π̃θi (xi−1, h
T ∗∗
i−1)

given θ, x, h1∗ , and h̃t is equal to

1{θ:|θ|≥αN}

((
1− δT ∗

)
T ∗sign

(
xθi−1

)
ū+

T ∗∑
τ=t

ûi (aτ ) + πθi (x
θ
−i, h

1∗ , hT
∗+1)

)
+1{θ:|θ|<αN}

T ∗∑
τ=t

δτ−1ûi (aτ ) .
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Ignoring the constant
(

1− δT ∗
)
T ∗sign

(
xθi−1

)
ū, (30) implies (20).

For |θ| < αN , (21)—(23) hold since all the payoffs and rewards are zero regardless of xi−1 and
hT
∗∗+1

i−1 . For |θ| ≥ αN , (21) follows from (31) given the definition of ṽθi (x
θ
i−1). In addition, (32) and

(33) imply (22) for suffi ciently large l since δ → 1 and vθi (G) − vθi (B) ≥ 8ε̄ by (26). Finally, (26)
implies that there is 4ε̄ slack between vθi (x

θ
i−1) and vθi for each θ satisfying |θ| ≥ αN . Hence, (23)

holds with ṽθi (x
θ
i−1) for suffi ciently large l.

B.2.7 Equilibrium Strategies

We now complete the description of the equilibrium strategies.
It will be useful to define the notion of a “detectable deviation”by player i. As we will see,

given player i’s period 1∗ history h1∗
i and her strategy state xi, her block strategy is pure along the

equilibrium path of play. Given h1∗
i and an on-path period t block history hti, we say that a period t

message mi,t is a detectable deviation if there does not exist a strategy state x̂i such that
(
hti,mi,t

)
occurs with positive probability given

(
x̂i, h

1∗
i

)
; similarly, given a pair

(
hti,mi,t

)
, an action ai,t is a

detectable deviation if there does not exist a strategy state x̂i such that
(
hti,mi,t, ai,t

)
occurs with

positive probability given
(
x̂i, h

1∗
i

)
. We say a player detectably deviates if she plays a detectable

deviation.

1∗-Communication Sub-Block Players circulate message m = (mi)i, where mi is the set of
players whom player i knows to have taken C in period 1∗: that is, mi = {i, µ1∗ (i)} ∩ θ.

Let hT+1
i be player i’s history at the end of the sub-block. We define θ

(
hT+1
i

)
= ∅ if, for some

j 6= i, either ζI,−ji,T 6= −j (i.e., i does not receive each player’s message through a path excluding
j) or m−j (i) = error (i.e., i receives inconsistent messages through a path excluding j). We also

define θ
(
hT+1
i

)
= ∅ if there exist j 6= j′ 6= k 6= j such that m−j (i) |k 6= m−j′ (i) |k. Otherwise,

we define θ
(
hT+1
i

)
=
⋃
j 6=i
⋃
k 6=jm−j (i) |k (i.e., θ

(
hT+1
i

)
is the set of players who i has been told

took C in period 1∗).
Lemma 12 immediately implies the following result.

Lemma 15 Suppose all players follow the protocol. There exist c > 0 and Z̄ > 0 such that, for all
Z > Z̄ and all l, we have

Pr
(
θ(hT+1

i ) = θ ∀i
)
≥ 1− exp (−cK) .

We record two key properties of player i’s beliefs about θ. Suppose the current block is block b.
First, for each t ≥ T + 1, h̃b,ti ∈ H̃

b,t
i , and x−i ∈ {G,B}

N−1, player i believes that θ ⊇ θ(hT+1
i ):∑

θ⊇θ(hT+1
i )

βi

(
θ|x−i, h̃b,ti

)
= 1. (34)

This is trivial if θi(hT+1
i ) = ∅. Otherwise, since trembles in earlier blocks are more likely,

βi

(
θ = θ(hT+1

i )|x−i, h̃b,T+1
i

)
= 1 (i.e., player i believes that θ = θ

(
hT+1
i

)
at the end of the 1∗-

communication sub-block). Moreover, since trembles are more likely in later periods within the

block, player i continues to believe that θ = θ
(
hT+1
i

)
for the duration of the block.
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Second, for each t ≥ T +1, h̃b,ti ∈ H̃
b,t
i , and x−i ∈ {G,B}

N−1, player i believes that θ ⊇ θ(hT+1
j )

for each j 6= i: ∑
θ⊇θ(hT+1

j )

βi,t

(
θ|x−i, h̃b,ti

)
= 1. (35)

This holds by similar reasoning. Note that, if player i deviates in the 1∗-communication sub-block,
this can only switch θ(hT+1

j ) from θ to ∅, and hence cannot affect the probability that θ ⊇ θ(hT+1
j ).

x-Communication Sub-Block Players circulate message m = (mi)i = (xi)i. Slightly abusing
notation, let h≤0

i denote player i’s history at the end of the x-communication sub-block.
If player i infers m−j (i) = error for some j 6= i, we define x(i) = B, where B∈{G,B}N |Θ|

denotes the vector with B in every component. If instead i infers some m−j (i) ∈ ×n 6=iMn for each
j 6= i, then:

1. If there exists x̂−i ∈ {G,B}(N−1)|Θ| such that m−j (i) |n = x̂−i|n for all j 6= i 6= n 6= j, we
define x (i) = (xi, x̂−i).

2. Otherwise, we define x(i) = B.

Finally, we define x (i) = x(i)θ(h
T+1
i ).

Supplemental Round 0 Players circulate message m = (mi)i =
(
h≤0
i

)
i
. Let h<1

i denote player

i’s history at the end of supplemental round 0.
We define ID

(
h<1
i

)
= 1 if any of the following hold:

1.
∣∣∣(θ(hT+1

i ))
∣∣∣ < αN .

2. Player i detectably deviates in either the x-communication sub-block or supplemental round
0.

3. m−j (i) = error for some j 6= i in either the x-communication sub-block or supplemental
round 0.

Otherwise, for each j 6= i, m−j (i) = ×n6=ih≤0
n for some ×n6=ih≤0

n ∈ ×n6=iH≤0
n . If there exists

a player j 6= i such that, according to history
(
h≤0
i ,m−j (i)

)
, player j detectably deviated in

the 1∗-communication sub-block or the x-communication sub-block, then we define ID
(
h<1
i

)
= 1.

Otherwise, we define ID
(
h<1
i

)
= 0.

Main Sub-Block k, k ∈ {1, . . . ,K} For each k ∈ {1, . . . ,K}, each player i enters sub-block k
with state variables x (i) ∈ {G,B}N and ID

(
h<ki

)
∈ {0, 1}. The state variable x (i) was determined

at the end of the x-communication sub-block, and remains constant throughout the main sub-
blocks. The state variable ID

(
h<1
i

)
was determined at the end of supplemental round 0; the state

variable ID
(
h<ki

)
may switch from 0 to 1 during some main sub-block, in which case it remains

equal to 1 for the duration of the block.
We now define player i’s strategy in main sub-block k as a function of x(i) and ID

(
h<ki

)
, and

then specify how ID
(
h<k+1
i

)
evolves.

56



Main round actions as a function of x(i) and ID
(
h<ki

)
: If ID

(
h<ki

)
= 1, then player i takes

D throughout the round. If ID
(
h<ki

)
= 0, then player i takes ax(i)

i throughout the round, unless

she herself deviates from a
x(i)
i during the round. If such a deviation occurs, she takes D for the

rest of the round. Let h≤ki denote player i’s history at the end of main round k.
Supplemental round communication as a function of h≤ki : Players circulate message m =

(mi)i =
(
h≤ki

)
i
.

Determination of ID
(
h<k+1
i

)
: Set ID

(
h<k+1
i

)
= 1 if any of the following hold:

1. ID
(
h<ki

)
= 1.

2. Player i detectably deviated during main sub-block k.

3. m−j (i) = error for some j 6= i during supplemental round k.

4. For each j 6= i, m−j (i) = ×n6=ih≤kn for some ×n6=ih≤kn ∈ ×n6=iH≤kn , and there exists a player

j 6= i such that, according to history
(
h≤ki ,m−j (i)

)
, player j detectably deviated during

main round k.

Otherwise, set ID
(
h<k+1
i

)
= 0.

B.2.8 Reward Function

Given the above block strategy profile, we now define the reward function πθi (x
θ
−i, h

1∗ , hT
∗+1).

For θ satisfying |θ| < αN , define πθi (x
θ
−i, h

1∗ , hT
∗+1) = 0 for all (xθ−i, h

1∗ , hT
∗+1). This satisfies

Conditions (31)—(33); we verify Condition (30) (sequential rationality) in the next subsection. For
the remainder of this section, assume |θ| ≥ αN .

Given
(
h1∗ , hT

∗+1
)
, we define χi(h

1∗ , hT
∗+1) = 1 if there exists a player j 6= i who detectably

deviated from the prescribed block strategy (according to hT
∗+1) or if the match realization was

erroneous in any round in the current block (again, according to hT
∗+1). We define χi(h

1∗ , hT
∗+1) =

0 otherwise. Lemma 12 immediately implies the following result.

Lemma 16 Suppose player i’s opponents follow the prescribed strategy. For all l and all θ (and
regardless of player i’s own strategy), we have

Pr
(
χi(h

1∗ , hT
∗+1) = 1|θ

)
≤ (3 +K) exp (−cZ) .

Next, define IDi (h1∗ , hT
∗+1) = 1 if player i detectably deviated from the prescribed strategy,

and define IDi (h1∗ , hT
∗+1) = 0 otherwise. Finally, given

(
h1∗ , hT

∗+1
)
satisfying IDi (h1∗ , hT

∗+1) = 0,

define x̂i(h1∗ , hT
∗+1) to be that value of x̂i for which the history

(
h1∗
i , h

T ∗+1
i

)
is consistent with

player i taking strategy σT
∗

i (x̂i, h
1∗
i ). Such x̂i is uniquely determined since player i communicates

x̂i in the x-communication sub-block.
Given a profile of actions and observations for player i’s opponents, (a−i, ω−i), let ai denote the

unique action for player i consistent with these observations, and let a = (ai, a−i).27 Define the

27By carrying the extra notation (µ (j))j 6=i in the vector
(
a−i, ω−i, (µ (j))j 6=i

)
(i.e., information about who matched

with whom), we can simply specify ai = ωj , for j satisfying µ (j) = i. Even without this extra information, ai is
uniquely identified from (a−i, ω−i); see Lemma 2 of Deb, Sugaya, and Wolitzky (2019).
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function πcancel
i (xi−1, a−i, ω−i) : {G,B} × AN−1 × AN−1 → [−ū, ū] such that, for each a ∈AN , we

have {
ûi (a) + πcancel

i (xi−1, a−i, ω−i) = sign (xi−1) 1
2 ū

sign (xi−1)πcancel
i (xi−1, a−i, ω−i) ≥ 0

(36)

Thus, the function πcancel
i (xi−1, a−i,, ω−i) cancels player i’s instantaneous utility and leaves player

i a negative (resp., positive) payoff when xi−1 = G (resp., B)
If χi(h

1∗ , hT
∗+1) = 1, define

π̂θi (x
θ
−i, h

T ∗+1) =
T ∗∑
t=1

πcancel
i

(
xθi−1, a−i,t, ω−i,t

)
. (37)

If χi(h
1∗ , hT

∗+1) = 0, define

π̂θi (x
θ
−i, h

T ∗+1) =

{
1{IDi (h1∗ ,hT∗+1)=0}ε̄T

∗ if xθi−1 = B,

−1{IDi (h1∗ ,hT∗+1)=1}2ūT
∗ if xθi−1 = G.

That is, if xθi−1 = B then player i is rewarded if she follows the prescribed strategy; and if xθi−1 = G
then she is punished if she detectably deviates.

Let

ui

(
xθ, h1∗

)
=

1

T ∗
Eσ(x)

[
T ∗∑
τ=1

ûi (aτ ) + π̂θi (x
θ
−i, h

T ∗+1) + sign
(
xθi−1

)
ε̄T ∗|h1∗ , θ

]
. (38)

Note that∣∣∣ui (xθ, h1∗
)
− ûi

(
ax

θ
)∣∣∣

= Pr
(
χi(h

1∗ , hT
∗+1) = 0|θ

) ∣∣∣∣∣∣ 1

T ∗
Eσ(x)

 ∑T ∗

τ=1 ûi (aτ )

+π̂θi (x
θ
−i, h

T ∗+1)
+sign

(
xθi−1

)
ε̄T ∗

 |h1∗ , θ, χi(h
1∗ , hT

∗+1) = 0

− ûi (axθ)
∣∣∣∣∣∣

+ Pr
(
χi(h

1∗ , hT
∗+1) = 1|θ

) ∣∣∣∣∣∣ 1

T ∗
Eσ(x)

 ∑T ∗

τ=1 ûi (aτ )

+π̂θi (x
θ
−i, h

T ∗+1)
+sign

(
xθi−1

)
ε̄T ∗

 |h1∗ , θ, χi(h
1∗ , hT

∗+1) = 1

− ûi (axθ)
∣∣∣∣∣∣

≤ Pr
(
χi(h

1∗ , hT
∗+1) = 0|θ

)((3 +K)T

T ∗
ū+ 2ε̄

)
+ Pr

(
χi(h

1∗ , hT
∗+1) = 1|θ

)
(2ū+ ε̄)

≤ 2ε̄+

(
3 +K

Z
+ 2 Pr

(
χi(h

1∗ , hT
∗+1) = 1|θ

))
ū

≤ 2ε̄+ (3 +K)

(
1

Z
+ 2 exp (−cZ)

)
ū (by Lemma 16)

≤ 3ε̄ (by (28)). (39)

Here the first inequality follows because (i) when χi(h
1∗ , hT

∗+1) = 0, aτ = ax
θ
in main rounds (i.e.,

in all but (3 +K)T periods), (ii) the magnitude of ûi (aτ ) is bounded by 1
2 ū, and (iii) on-path (i.e.,

when IDi (h1∗ , hT
∗+1) = 0), the magnitude of π̂θi (x

θ
−i, h

T ∗+1) is bounded by ε̄T ∗.
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We now define the reward function

πθi (x
θ
−i, h

1∗ , hT
∗+1)

= 1{IDi (h1∗ ,hT∗+1)=0}
(
vθi (x

θ
i−1)− ui

(
x̂θi (h

T ∗+1), xθ−i, h
1∗
))

T ∗ + π̂θi (x
θ
−i, h

T ∗+1) + sign
(
xθi−1

)
ε̄T ∗.

We verify that, with this reward function, Conditions (30)—(33) are satisfied. This will complete
the proof. We first establish Conditions (31)—(33), deferring Condition (30) (sequential rationality)
to the next subsection.

Since IDi (h1∗ , hT
∗+1) = 0 on path, (38) implies that expected per-period block payoffs given

|θ| ≥ αN equal vθi (x
θ
i−1). Hence, (31) holds.

By (39) and (26), we have

sign
(
xθi−1

)(
vθi (x

θ
i−1)− ui

(
x̂θi (h

T ∗+1), xθ−i, h
1∗
))
≥ 0.

Together with (36) and (37), this implies

sign
(
xθi−1

)
πθi (x

θ
−i, h

1∗ , hT
∗+1) ≥ ε̄T, (40)

and hence (32).
Moreover, if IDi

(
h1∗ , hT

∗+1
)

= 0 then∣∣∣πθi (xθ−i, h1∗ , hT
∗+1)

∣∣∣ ≤ ∣∣∣vθi (xθi−1)− ui
(
x̂θi (h

T ∗+1), xθ−i, h
1∗
)∣∣∣T ∗ + 2ε̄T ∗ ≤ 2ūT ∗;

and if IDi
(
h1∗ , hT

∗+1
)

= 1 then ∣∣∣πθi (xθ−i, h1∗ , hT
∗+1)

∣∣∣ ≤ 2ūT ∗.

Hence, (33) holds.

B.2.9 Verifying Sequential Rationality (Condition (30))

Given (37) and |θ| ≥ αN , if χi(h1∗ , h
T ∗+1) = 1, then any action is optimal for player i. Since

Pr
(
χi(h1∗ , h

T ∗+1) = 1|σi, θ
)
is independent of σi, it is without loss to verify sequential rationality

conditional on the event {χi(h1∗ , hT
∗+1) = 0 ∨ |θ| < αN}. We thus restrict attention to pairs(

x−i, h̃
b,t
i

)
such that Pr

(
{χi(h1∗ , hT

∗+1) = 0 ∨ |θ| < αN}|x−i, h̃b,ti
)
> 0. Note this implies that

(34) and (35) hold conditional on the triple
(
{χi(h1∗ , hT

∗+1) = 0 ∨ |θ| < αN},x−i, h̃b,ti
)
. We con-

sider separately the cases |θ| < αN and
{
χi(h

1∗ , hT
∗+1) = 0 ∧ |θ| ≥ αN

}
.

Conditional on |θ| < αN , by (35), player i believes that
∣∣θ(hT+1

n )
∣∣ < αN for each n 6= i. Hence,

she believes that players −i take D throughout the block and πθi (x
θ
−i, h

1∗ , hT
∗+1) = 0 regardless of

her own strategy. It is therefore optimal for player i to takeD in each period and send any messages.

And this behavior is indeed what is prescribed for player i, since (34) implies that
∣∣∣θ(hT+1

i )
∣∣∣ < αN .

It remains to verify sequential rationality conditional on
{
χi(h

1∗ , hT
∗+1) = 0 ∧ |θ| ≥ αN

}
. We

proceed in three steps.
It is optimal to take D and send any message after player i detectably deviates after the 1∗-

communication sub-block.
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Let τ be the first period in which player i detectably deviated. First, suppose that τ is be-
fore supplemental round 0. Then, regardless of player i’s behavior after period τ , the fact that
χi(h

1∗ , hT
∗+1) = 0 (and hence matching is regular) implies that players −i will become aware of

player i’s deviation at the end of supplemental round 0 and will then take D for the rest of the
block. Moreover, the reward function is constant:

πθi (x
θ
−i, h

1∗ , hT
∗+1) = π̂θi (x

θ
−i, h

T ∗+1) =

{
0 if xθi−1 = B,

−2ūT ∗ if xθi−1 = G.

Hence, taking D and sending any messages is optimal for player i.
Second, suppose τ is in or after supplemental round 0. Then, regardless of player i’s behavior

after period τ , players −i take axθ in the main sub-block and take D in other rounds until next
supplemental round; and subsequently (since matching is regular) they will switch to D for the rest
of the block. Again, the reward is constant. Hence, taking D and sending any messages is optimal.

It is optimal not to detectably deviate from the equilibrium strategy at on-path histories.
We compare the maximum gain in within-block payoffs from a detectable deviation to the

minimum loss in the reward function. Since matching is regular, players −i switch to D starting
in the next main round. Hence, the maximum gain in within-block payoffs is at most Z2 log2N ×
max {G,L}. In contrast, if xθi−1 = B, the loss in the reward function from switching IDi

(
h1∗ , hT

∗+1
)

from 0 to 1 is at least ε̄T ∗; this comes from the π̂θi
(
xθ−i, h

T ∗+1
)
term in the reward function, noting

that the term
1{IDi (h1∗ ,hT∗+1)=0}

(
vθi (x

θ
i−1)− ui

(
x̂θi (h

T ∗+1), xθ−i, h
1∗
))

in the reward πθi (x
θ
−i, h

1∗ , hT
∗+1) is non-negative. By (27), ε̄T ∗ ≥ Z2 log2N × max {G,L}, so

deviating is unprofitable when xθi−1 = B. If instead xθi−1 = G, the loss in the reward function from
switching IDi

(
h1∗ , hT

∗+1
)
from 0 to 1 is at least

2ūT ∗ −
∣∣∣vθi (xθi−1)− ui

(
x̂θi (h

T ∗+1), xθ−i, h
1∗
)∣∣∣T ∗ ≥ ūT ∗ ≥ Z2 log2N ×max {G,L} ,

where the first inequality follows because
∣∣vθi (xθi−1)− ui

(
x̂θi (h

T ∗+1), xθ−i, h
1∗
)∣∣ ≤ ū. In total, for

any xθi−1, the net deviation gain is negative.
It is optimal to send message x̂i = xi in the x-communication sub-block.
We show that, for any x−i, player i is indifferent among the block strategies (σi(xi))xi . Player

i’s expected payoff conditional on |θ| ≥ αN equals

E

[
1

T ∗
Eσ(x)

[
T ∗∑

τ=3T+1

ûi (aτ ) + π̂θi (x
θ
−i, h

T ∗+1) + sign
(
xθi−1

)
ε̄T ∗|h1∗ , θ

]
|x−i

]
= vθi (x

θ
i−1).

Moreover, her payoff conditional on χi(h
1∗ , hT

∗+1) = 1 equals sign
(
xθi−1

) (
1
2 + ε̄T ∗

)
. Since these

payoffs depend on x only through xθi−1, and additionally Pr
(
χi(h

1∗ , hT
∗+1) = 1

)
is independent

of x, it follows that player i’s expected payoff conditional on
{
χi(h

1∗ , hT
∗+1) = 0 ∧ |θ| ≥ αN

}
also

depends on x only through xθi−1. This completes the proof of Theorem 5.

B.2.10 Proof of Theorem 4

Since Fα,η is compact, the following lemma is suffi cient:

Lemma 17 For any ṽ ∈ Fα,η, there exist γ > 0 such that Bγ (ṽ) ⊆ E∗ for suffi ciently large l.

60



Proof. Fix ṽ ∈ Fα,η and the associated state-contingent payoffs
(
ṽθ
)
θ
. Define

(
vθ
)
θ
as in (17),

and then fix
(
vθi
(
xθi−1

))
i∈I,θ∈Θ,xi−1∈{G,B} and ε̄ > 0 to satisfy (26). The proof of Theorem 5 shows

that a convex set V ⊂ RN |Θ| is self-generating for suffi ciently large l if it satisfies

V θ
i ⊆

(
vθi (B) + 4ε̄, vθi (G)− 4ε̄

)
for |θ| ≥ αN,

V θ
i = {0} for |θ| < αN. (41)

Define the set Vγ̂ ⊂ RN |Θ| by

V θ,γ̂
i =

[
vθi − γ̂, vθi + γ̂

]
for |θ| ≥ αN,

V θ
i = {0} for |θ| < αN.

Fix γ̂ > 0 suffi ciently small so that Vγ̂ satisfies (41) and (24); such γ̂ > 0 exists since V θ = {vθ}
satisfies (41) and

(
vθ
)
θ
satisfies (24) with strict inequality. Now fix l̄1 suffi ciently large so that, for

each l ≥ l̄1, the set Vγ̂ is self-generating. Since (24) holds, rational players take C in period 1∗.
Hence, for each

(
v̂θ
)
θ
∈ Vγ̂ , there exists a sequential equilibrium such that, for each θ ∈ Θ, the

resulting payoff when θ∗ = θ equals v̂θ.
Let V̂ γ̂ ⊂ RN be the set of v̂ ∈ RN such that there exists

(
v̂θ
)
θ
∈ Vγ̂ satisfying(

(1− δ)
(
p0 + p1

(
1 +G− L

2

))
+ δ

∑
θ∗

p (I \ θ∗) v̂θ∗i

)
i

= v̂i.

(Note that this set V̂ γ̂ depends on l.) Since any payoff vector in Vγ̂ is implementable, so is any
expected payoff in V̂ γ̂ . Since V θ,γ̂

i =
[
vθi − γ̂, vθi + γ̂

]
for |θ| ≥ αN , by taking γ > 0 suffi ciently small

and l̄2 suffi ciently large, we have Bγ (ṽ) ⊆ V̂ γ̂ for all l ≥ l̄2. For such γ > 0, we have Bγ (ṽ) ⊆ E∗

for all l ≥ max
{
l̄1, l̄2

}
, as desired.
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