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Abstract

When partnerships come to an end, partners must find a way to efficiently reallocate
the commonly owned assets to those who value them the most. This requires that the
aforementioned members possess enough financial resources to buy out the others’ shares. I
investigate ex post efficient partnership dissolution when agents are ex post cash constrained.
I derive necessary and sufficient conditions for ex post efficient partnership dissolution
with Bayesian (resp. dominant strategy) incentive compatible, interim individually rational,
ex post (resp. ex ante) budget balanced and ex post cash-constrained mechanisms. Ex post
efficient dissolution is more likely to be feasible when agents with low (resp. large) cash
resources own more (resp. less) initial ownership rights. Furthermore, I propose a simple
auction to implement the optimal mechanism. Finally, I investigate second-best mechanisms
when cash constraints are such that ex post efficient dissolution is not attainable.
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1. INTRODUCTION

The Coase theorem stipulates that when transaction costs are sufficiently low, negotiations

will always lead to an efficient outcome regardless of the initial allocation of ownership rights.

Unfortunately, however, assuming something as simple as asymmetric information means that

those transaction costs are no longer negligible. This is illustrated by the major contribution of

Myerson and Satterthwaite (1983) who consider trade between a seller (the owner) and a buyer

with bilateral asymmetric information. Their striking result is that no mechanism can achieve

ex post efficient trade. Cramton, Gibbons and Klemperer (1987, henceforth CGK) show that

the Myerson and Satterthwaite (1983) impossibility result becomes a possibility result if agents
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initially own equal (or close to equal) shares. The economic insight is that ownership rights

give agents bargaining power in negotiations. When this bargaining power is excessive - the

seller has “monopoly” power over the good in Myerson and Satterthwaite (1983) – negotiations

fail. Equal-share ownership, on the contrary, is enough to curb the bargaining power of each

agent and restore trade efficiency.

However, allocating ownership rights not only allocates bargaining power but it also

determines the volume of trade. If efficiency requires one agent to buyout the shares of (n− 1)

other agents, equal-share ownership will require the transfer of a fraction (n− 1)/n of all shares.

It therefore means that the buyer will have to assume large cash payments to compensate the

sellers. If some agents are financially constrained, such payments may be unfeasible when

traded volumes are excessive and equal-share ownership might not be desirable anymore.

In this paper, I consider limited cash resources as another source of inefficiency in those

trading problems. I investigate how trading mechanisms should be constructed and which

ownership structures allow for efficient trade when agents are cash constrained. Formally, I

build on the partnership dissolution model, first initiated by CGK, in which I consider agents

with (possibly asymmetric) cash resources. In this framework, each partner initially owns

shares of common assets. Dissolution simply means that following some event (disagreement,

natural termination, bankruptcy), the commonly owned assets must be reallocated, that is,

each partner will buy or sell their share to others. The framework therefore applies to various

economic problems such as divorce, inheritance, termination of joint-ventures, privatizations.

Examples of applications are covered in more detail below.

Although the presence of cash – or budget – constraints seems to be a reasonable claim,

little is still known about the design of trading mechanisms with cash-constrained agents.

In auction design, earlier contributions of Laffont and Robert (1996), Che and Gale (1998,

2006) and Maskin (2000) have investigated cash constraints in standard auction settings. More

recently, several authors have recognized limited cash resources as one of the gaps that limits

the implementation of theory into practice.1 In partnership problems, limited cash resources are

directly linked to the initial distribution of ownership. Buying out a partner with large initial

entitlements requires the ability to raise enough money to compensate them. In privatization

of public-private partnerships or in spectrum allocations, cash constraints matter as the value

of traded assets is often worth millions.2 In divorce, inheritance or joint-venture problems, it

is likely that agents have limited access to credit markets. Cash resources also create some

kind of bargaining power: Partners with large cash resources could take advantage of very

cash-constrained partners.

1See, among others, Dobzinsky, Lavi and Nisan (2012), Bichler and Goeree (2017), Carbajal and Mu’Alem (2018)
and Baisa (2018). Two other important recent contributions to auction design with cash constraints are Pai and
Vohra (2014) and Boulatov and Severinov (2019).

2Cramton (1995) thinks that cash constraints have played a major role in the Nationwide Narrowband PCS
Auction in 1994. Some bidders had likely dropped out from the auction because of limited resources although they
had large valuations for the good.
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Applications. I now present some applications that can be addressed within the partnership

dissolution framework.

(i) Divorce, inheritance: Marriage or civil union represent, among other aspects, the joint

ownership of some assets and the pursuance of a common goal. If dissolution occurs, i.e.

divorce, the partners ought to agree on the reallocation of the family home, cars, and other

possessions. Limited financial resources, especially compared to the market value of the family

home, may complicate the process of finding an agreement on who should be the final owner.

Alternatively, the assets to be traded may have more sentimental value than market value (e.g.

the inherited childhood home) so that it may be difficult to use it as a collateral to borrow from

a bank. Along the same lines, heirs of the deceased’s property (real estate, business, debts) may

want to reallocate the inheritance differently to what they had initially been entitled by the

testament.

(ii) Joint ventures: Business associates, joint ventures or venture capital firms are often governed

by partnership law. For instance, in biotechnology and high-technology sectors, it is common

that strong-potential young firms with low financial resources decide to rely on alliances with

larger firms to compensate for the lack of complementary assets and liquidity (see Aghion

and Tirole (1994) ; Lerner and Merges (1998) ; Aghion, Bolton and Tirole (2004)). Interestingly,

Aghion, Bolton and Tirole (2004) point out that not only can dissolution be triggered by dispute

or unsuccessful results but it may also be due to the very nature of this form of partnership.

Indeed, Aghion, Bolton and Tirole (2004) report that those partnerships are generally temporary

by nature and the young firms eventually seek other sources of funding requiring an exit from

the partnership. As recognized by both Aghion and Tirole (1994) and Lerner and Merges

(1998), the presence of cash constraints for the young firm generates inefficiencies in investment

decisions as well as in allocation of ownership.

(iii) Bankruptcy procedures: Wolfstetter (2002) mentions that some bankruptcy procedures can be

seen as a partnership dissolution problem. One example of a bankruptcy procedure, a cash

auction, is given by Aghion, Hart and Moore (1994): All remaining assets of the bankrupt firm

are simply sold in an auction to the highest bidder. Some bidders may be former owners (with

positive ownership rights in the firm) and other may be outsiders (with null ownership rights).

Aghion, Hart and Moore (1994) believe that a cash auction would be the “ideal bankruptcy

procedure” (p. 855) in the absence of the difficulty to raise enough cash to buy the firm at

its true value. They argue that cash constraints will likely result in a lack of competition in

the auction and the firm would then be sold at a low price. This stresses the importance of

designing mechanisms that directly take cash constraints into consideration.

(iv) Land reallocation: Land reallocation problems may also be challenged by the partnership

framework. Che and Cho (2011) report the inefficiencies of the initial land allocation in the

Oklahoma Land Rush in the late 19th century. Therefore, reallocation of those lands required
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to take into consideration the initial ownership structure induced by the first allocation. More

recently, Loertscher and Wasser (2019) mention that land reallocation will be a major challenge

in China. Starting in 1978, several reforms occurred in China to give household land use rights

to farmers and then secure household land transfer rights (2002, 2007, 2008) while the land is

still collectively owned by villages.3 Participation by farmers in reallocating their land must

then be voluntary and compensated by monetary transfers. The State Council of China believes

that agricultural modernization in China will occur through the reallocation of the use of land

from traditional farmers to a new generation of farmers (professional farmers or dragonhead

enterprises; see Zhang (2018)). Traditional farmlands are considered too small and inefficient

and reallocating them to larger and more skilled producers would help the modernization of

agriculture in China.

Contribution. The main feature of a partnership model is that participation constraints in the

dissolution mechanism depend on the initial allocation of ownership rights among partners.

Partners with relatively more initial shares have a higher claim and their participation in the

mechanism is harder to ensure, making the initial ownership structure a determinant condition

for optimal dissolution. In their seminal paper, CGK answer this problem by designing ex

post efficient, Bayesian incentive compatible, interim individually rational and ex post budget

balanced mechanisms. Their main finding consists in characterizing the initial allocations of

property rights among partners that allow for ex post efficient dissolution. They show that

equal-share partnerships can always be ex post efficiently dissolved whereas partnerships with

excessive concentration of ownership are less likely to be dissolved efficiently. In particular, in

a two-agent partnership with extreme ownership – one agent owns the whole asset –, their

model collapses to the one of Myerson and Satterthwaite (1983) which proves the impossibility

of ex post efficient dissolution in extreme ownership partnerships.

One of the main simplifying assumptions in CGK, however, is that all partners are always

endowed with enough money so that they are able to pay for the monetary transfers proposed

by the dissolution mechanism. While this assumption may seem innocuous in many contexts, I

argue that it is not the case in the partnership dissolution problem. First, one of the purposes

of a partnership generally consists in sharing the burden of acquiring costly assets such as firm

premises, industrial equipment, computer hardware and software for businesses, or real estate,

cars and household appliances for a couple. In some business partnerships, one agent provides

the physical capital while the other one provides the human capital.4 It is also possible that

dissolution occurs precisely when partners face financial difficulties. That is, some partnerships

may be, by essence, constituted by cash-constrained agents.5 Second, from both the theoretical

3See Ma et al. (2013) for a detailed chronology of land reforms in China.
4For instance, Landeo and Spier (2014) cite the Haley v. Talcott case. In, 2001, the two of them started a restaurant

in Delaware, Talcott provided the capital while Haley was supposed to manage the restaurant without salary for
the first year.

5Some companies are specialized in providing short-term financial resources to partners facing a dissolution, see
the Shotgun fund, for instance.
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and practical point of view, introducing cash constraints in the partnership dissolution model

of CGK requires nontrivial changes in the design of monetary transfers. For instance, ex post

monetary transfers in cash-constrained mechanisms must be bounded and must also satisfy

the exact same conditions as in CGK at the interim level; namely incentive compatibility and

individual rationality. Constructing those transfers therefore requires to find ex post transfers

with a lower range but with the exact same marginals when projected at the interim level. In

CGK, and in many other works on partnership dissolution, the absence of cash constraints is

implicitly used and greatly simplifies the construction of dissolution mechanisms but they may

also induce unreasonably high transfers for some states of the world.

In this paper, I first investigate the possibility of ex post efficient partnership dissolution

when partners are ex post cash constrained, that is, when they have an upper bound on

the payments they can make to other partners to buy out their shares. I derive necessary

and sufficient conditions for ex post efficient partnership dissolution with Bayesian (resp.

dominant strategy) incentive compatible, interim individually rational, ex post (resp. ex ante)

budget balanced and ex post cash-constrained mechanisms. While the necessary and sufficient

conditions for ex post efficient dissolution end up being quite a natural generalization of the

results of CGK, the construction of the mechanism transfer function requires some extra work.

I fully characterize these conditions and I show that the equal-share partnership is no longer

the initial ownership structure that ensures feasibility of ex post efficient dissolution. Instead,

partners who are initially relatively more (resp. less) cash-constrained than others must receive

relatively more (resp. less) initial ownership rights. Intuitively, the more cash-constrained a

partner is, the higher the utility they would receive in the mechanism (as they cannot be asked

to pay much but they could still receive the asset) relatively to less cash-constrained partners.

Thus, a very cash-constrained partner with few initial ownership rights will always be willing

to participate (low maximal monetary transfers and low utility if they refuse the mechanism).

It follows that giving more initial ownership rights to these cash-constrained partners does

not change their participation decision but it implies that other less cash-constrained partners

receive less initial ownership rights, which reduces their claim. This result sheds light on a new

link between liquid and illiquid assets in partnership regardless of prior investment decisions.

It is worth noting that the asymmetry in cash constraints among partners drives the result that

optimal initial ownership rights must also be asymmetric. If partners all have the same exact

cash resources, the equal-share partnership is still optimal as in CGK.

Focusing on equal-share and equal-cash-resources partnerships, I characterize the minimal

amount of cash each partner must hold so that ex post efficient dissolution is achievable.

Interestingly, the minimal amount of cash resources each partner must possess is increasing

in the number of partners and converges to the maximal possible value of the asset when the

number of partners becomes large. For instance, if a four-agent partnership with equal-share

owns an asset worth 1 million and valuations are uniformly distributed on the unit interval,

each agent must possess 0.8 million for ex post efficient dissolution to be possible. This result
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stresses the importance of taking cash constraints into account as they appear to be quite

restrictive.

Interestingly, the standard equivalence theorem between Bayesian and dominant strategy

implementation is robust to the addition of cash constraints. That is, any ex post efficient,

interim individually rational and ex post cash-constrained mechanism can be implemented

in dominant strategies with ex ante budget balance or with bayesian incentive compatibility

with ex post budget balance. Moreover, transfers in both cases can be interim equivalent for all

agents, that is, one can ensure the same interim utilities for all agents.6 It also appears that

there is an equivalence between ex post cash constraints and interim cash constraints. More

precisely, I show that relaxing cash constraints from the ex post level to the interim level does

not weaken the conditions for ex post efficient dissolution.

As the general mechanism design formulation is often difficult to apply, I propose a

simple bidding game that implements the ex post efficient dissolution mechanisms. In this

bidding game, partners receive/pay an upfront transfer and then simply submit bids in an

all-pay auction. It is constructed such that the bidding strategy of a partner is increasing in

their valuation so that the highest bidder (the winner) is also the partner with the highest

valuation. The upfront payment ensures interim individual rationality, budget balance and

cash constraints. This bidding game can replace the one proposed by CGK, which fails to

satisfy cash constraints when some or all partners have low cash resources.

Finally, I investigate second-best mechanisms to characterize the optimal allocation of final

ownership rights when cash constraints are such that the first-best allocation is not attainable.

First, I characterize all incentive compatible, interim individually rational and cash-constrained

mechanisms for any possible allocation rule. Second, building on Lu and Robert (2001),

Loertscher and Wasser (2019) and Boulatov and Severinov (2018), I show that solving the

problem of maximizing a weighted sum of ex ante gains from trade and the revenue collected

on agents requires allocating the asset to the agent(s) with the highest ironed virtual valuation.

As in Lu and Robert (2001), Loertscher and Wasser (2019), the solution of maximizing ex

ante gains from trade subject to incentive compatibility, interim individually rationality, cash

constraints and budget balance is simply a particular solution to the previous problem for a

specific weight.

Literature Review. Several contributions related to cash constraints can be found in the

auction literature. Laffont and Robert (1996) characterize optimal auctions under independent

valuations and symmetric cash-constrained agents. Maskin (2000) also examines constrained

efficiency in auctions with symmetrical cash constraints. Malakhov and Vohra (2008) restrict the

analysis to two-agent problems but assume only one agent is cash-constrained. More recently,

6This equivalence has first been studied by Mookherjee and Reichelstein (1992) and Makowski and Mezzetti
(1994) for the same classes of mechanisms but without cash constraints. Kosmopoulou (1999) proves the equivalence
when replacing interim individual rationality constraints by ex post ones.
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Boulatov and Severinov (2018) propose a complete characterization of optimal auctions with

asymmetrically cash-constrained bidders. However, adding cash constraints in a partnership

problem is different than in the auction settings, namely, the budget balance requirement in

partnership problems ties all partners monetary transfers together which makes the construction

of those monetary transfers a challenge in itself.

Another strand of the literature considers agents whose valuations and cash resources are

private information. Che and Gale (1998, 2006) compare the performances of standard auctions

in that case. Che and Gale (2000) study the optimal pricing of a seller facing a cash-constrained

buyer who has private information over their valuation and “budget”. Pai and Vohra (2001)

derive optimal auctions when both valuations and budget are private information. Assuming

that cash resources are private information is an interesting feature, however, as it creates

a multidimensional incentive compatibility problem, I will consider only commonly known

budget in the present paper.

Finally, it is worth noting that ex post cash constraints are quite different from the ex post

individual rationality requirement that has been extensively studied in the literature with

Gresik (1991), Makowski and Mezzeti (1994), Kosmopolou (1999) and Galavotti, Muto and

Oyama (2011) among others. The ex post individual rationality constraints, sometimes called

“budget constraints“ or ”ex post regret-free“, require that agents do not have negative net utility

ex post. On the contrary, pure ex post cash constraints ignore the utility a partner derives from

the share of ownership they receive in the dissolution mechanism. In a mechanism where a

good is traded among several agents, the ex post participation constraints are generally harder

to satisfy for the agents who receive nothing as they do not enjoy utility from consumption.

As for the ex post cash constraints, they are generally harder to satisfy for the agent who

receives the highest quantity of the good, as they must pay higher prices (due the monotonicity

of the allocation rule under incentive compatibility) and that the utility generated from the

consumption is ignored. In other words, ex post cash constraints assume that the ability to pay

of an agent in a mechanism cannot be contingent on what they receive in the mechanism.

Organization of the paper. In Section 2, I present the theoretical framework for studying

partnership dissolution mechanisms. Section 3 gives necessary and sufficient conditions to

achieve ex post efficiency with cash-constrained agents. Section 4 provides characterization

results of these conditions. Section 5 proposes a bidding game that replicates the mechanism

through an all-pay auction. Section 6 second-best mechanisms. Finally, Section 7 proposes

some extensions.
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2. THEORETICAL FRAMEWORK

Consider a finite number of risk-neutral agents n > 2 indexed by i ∈ N := {1, . . . ,n}. Each

agent i ∈ N initially owns a share ri ∈ [0, 1] of a perfectly divisible asset, where
∑
i∈N ri = 1.7

Each agent i ∈ N has private information over their valuation vi for the asset. Valuations are

independently distributed according to a commonly known cumulative distribution function

F with support V := [v, v] ⊆ R+ and density function f.8 Further assume that F is absolutely

continuous. Let v := (v1, . . . , vn) ∈ Vn and r := (r1, . . . , rn) ∈ ∆n−1 denote the vectors of

valuations and initial shares, respectively. This defines the standard partnership framework as

first studied by CGK.

The additional assumption I require concerns agents’ cash resources. Each agent i ∈ N
is endowed with some amount of cash li ∈ R+. This amount represents the upper bound

on payments that agent i can be requested to make in the mechanism. The source of these

cash constraints is not explicitly modeled here and each li is considered to be exogenously

determined and publicly known at the beginning of the game.9 Let l = (l1, . . . , ln) ∈ Rn+

denote the vector of agents’ cash resources.

Dissolving the partnership consists in reallocating the commonly owned asset to the agents

who value it the most. As valuations for the asset are private information to the agents,

dissolution requires to make them reveal their valuations. By the Revelation Principle, the

analysis can be restricted to the search of direct revealing mechanisms in which each agent’s

optimal strategy consists in truthfully revealing their valuation. Such mechanisms will be refer

to as dissolution mechanisms.

In a dissolution mechanism, each agent reports their valuation vi and then receives an

allocation of the asset si(v) and a monetary transfer ti(v), both depending on the vector of all

reports v ∈ Vn. Let s(v) := (s1(v), . . . , sn(v)) denote the allocation rule, where si : Vn → [0, 1]

such that
∑
i∈N si(v) = 1 for all v ∈ Vn, and t(v) := (t1(v), . . . , tn(v)) denote the transfer rule

where ti : Vn → R. By convention, the couple (s, t) represents a dissolution mechanism

implementing allocation rule s with transfers t.

Illustrating Example. To illustrate the theoretical framework, consider the following exam-

ple.10 A pharmaceutical firm, say partner 1, and a R&D firm, say partner 2, decide to form

a partnership to develop a new pharmaceutical drug. Initial ownership, r1 and r2, represent

claims on final output, that is, shares that each firm has the right to retain on the final value of

7The requirement that
∑
i∈N ri = 1 is not necessary to derive the condition under which ex post efficient

dissolution is feasible. I chose to impose it to fit the partnership dissolution story of CGK. In Section 7, I provide an
extension and examples in which property rights can take many other forms.

8In Section 7, I show that the main results can easily be extended to asymmetric distributions of independent
valuations.

9Those limited cash resources can be the result of different financial situations of the agent after considering
their personal wealth, borrowing capacities, debts or limited liability.

10The example is inspired by Minehart and Neeman (1999).
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the partnership. It is common that pharmaceutical firms own shares of small R&D firms to

whom they provide capital and liquidity. Valuations, v1 and v2, represent perceived potential

cash flows from exploiting the drug. Finally, l1 and l2 corresponds to each firm’s financial

resources (cash holdings, borrowing capacities). Once the drug has been developed, the two

firms negotiate the rights to exploit it. Either the pharmaceutical buys out the R&D firm and

sell the drug on the market, or the R&D firm obtains full ownership and try to sell it to another

pharmaceutical company. The dissolution mechanism will (i) make each firm truthfully report

their valuation so that it is possible to allocate the drug to the one with the highest valuation;

(ii) determine associated monetary transfers to compensate the partner who relinquishes their

claim on the product.

Utility. The utility function of agent i is assumed to be linear in ownership shares and

separable in money. Hence, agent i has utility viαi +βi when they own a share of the asset αi
and has an amount of money of βi. Therefore, participation in a dissolution mechanism (s, t)

gives agent i utility (net of initial ownership rights):

ui(v) := vi(si(v) − ri) + ti(v).

By convention, when a function is evaluated at a vector (vi, v−i) it is implicitly assumed that

the argument are still ordered by the agents’ indices, where v−i ∈ Vn−1 is the vector of all

agents’ valuations except the one of agent i. For instance, si(vi, v−i) = si(v1, v2, . . . , vn).

As valuations are private information, each agent considers their interim utility, i.e. their

utility averaging over all other agents’ valuations (given that they all report truthfully). Let

Ui(vi) be agent i’s interim utility, that is,

Ui(vi) := vi(Si(vi) − ri) + Ti(vi),

where Si(vi) := E−isi(v), Ti(vi) := E−iti(v) and where E−i is the expectation operator over

all valuations except vi.

Incentive Compatibility. The first property required on a dissolution mechanism is that it

induces information revelation, thereafter called incentive compatibility. Two standard notions of

incentive compatibility will be considered separately: (i) interim incentive compatibility (IIC),

and (ii) ex post incentive compatibility (EPIC). Formally, IIC and EPIC are defined as follows.

Definition 1 A dissolution mechanism (s, t) is interim incentive compatible (IIC) if for all i ∈ N,

vi ∈ V and ṽi ∈ V ,

Ui(vi) > vi(Si(ṽi) − ri) + Ti(ṽi).

Definition 2 A dissolution mechanism (s, t) is ex post incentive compatible (EPIC) if for all i ∈ N,

vi ∈ V , ṽi ∈ V and v−i ∈ Vn−1,

ui(vi, v−i) > vi(si(ṽi, v−i) − ri) + ti(ṽi, v−i).
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Definitions 1 (resp. 2) simply defines dissolution mechanisms (s, t) such that truth-telling is a

Bayesian Nash (resp. dominant strategy) equilibrium. Notice that if a dissolution mechanism

(s, t) is EPIC then it is also IIC, but the reverse is not necessarily true. Both IIC and EPIC

will be investigated in the first-best analysis whereas I will restrict to IIC for the analysis of

second-best mechanisms.

Individual Rationality. The second property of a dissolution mechanism is that participation

is voluntary. Following CGK, I require that dissolution mechanisms are interim individual

rational (IIR). Given that utilities are defined net of the initial ownership shares, IR is defined

as follows.

Definition 3 A dissolution mechanism (s, t) is interim individually rational (IIR) if for all i ∈ N and

vi ∈ V ,

Ui(vi) > 0.

Notice that IIR depends on ri for each agent i. The higher ri the more difficult it is to satisfy

Ui(vi) = vi(Si(vi) − ri) + Ti(vi) > 0 for a given mechanism (s, t). This is the main feature

of partnership problems: The initial distribution of ownership shares has a direct impact on

the feasibility of dissolution mechanisms through the constraints it imposes on each agent’s

minimal claim.11

Budget Balance. A dissolution mechanism (s, t) is said to be budget balanced when no

subsidy is required to implement the allocation rule s. Two notions of budget balance are

considered: (i) ex post budget balance (EPBB) , and (ii) ex ante budget balance (EABB). Formally,

these two standard notions write:

Definition 4 A dissolution mechanism (s, t) is ex post budget balanced (EPBB) if for all v ∈ VN,

∑
i∈N

ti(v) = 0.

Definition 5 A dissolution mechanism (s, t) is ex ante budget balanced (EABB) if

E

[∑
i∈N

ti(v)

]
= 0.

EPBB implies that for every profile of valuation v ∈ VN, the transfers required to implement

the allocation rule s cancel out between agents. EABB, however, only requires transfers to

cancel out on average. Therefore, EPBB is, of course, a stronger requirement than EABB. As it

will be shown below, the only advantage of relaxing budget balance from the ex post level

11See Section 7 for an extension of more general interim individual rationality constraints. I show that the
framework is not limited to partnership dissolution problems and can be easily extended to study the problem of
optimally allocating a good to agents with type-dependent outside options.
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(EPBB) to the ex ante one (EABB) consists in being able to impose incentive compatibility at

the ex post level (EPIC) rather than at the interim level (IIC).

Cash-Constrained Mechanisms. Finally, I require that dissolution mechanisms satisfy ex

post cash constraints, that is, no agent can be required to pay more than their cash resources.

Definition 6 A dissolution mechanism (s, t) is ex post cash-constrained (EPCC) if for all i ∈ N and

v ∈ Vn,

ti(v) > −li.

The cash-constrained requirement is imposed at the ex post level and therefore assumes the

most extreme form of cash constraints. As it will be shown later, ex post cash constraints are

equivalent to interim cash constraints so that relaxing the ex post requirement to the interim

level has no benefit.

3. EX POST EFFICIENT DISSOLUTION

I start by investigating ex post efficient dissolution mechanisms or, equivalently, first-best dissolution

mechanisms. I provide necessary and sufficient conditions for the existence of such mechanisms

when agents are cash-constrained. Two types of dissolution mechanisms are investigated. First,

I will consider dissolution mechanisms simultaneously satisfying IIC, IIR, EPBB and EPCC,

thereafter referred to as Bayesian mechanisms. Second, I will consider dissolution mechanisms

simultaneously satisfying EPIC, IIR, EABB and EPCC, thereafter referred to as dominant strategy

mechanisms. These two classes of mechanisms have been widely studied and one of the most

important result in the literature is that they are equivalent in various environments.12 Not

surprisingly, the equivalence between Bayesian mechanism and dominant strategy mechanisms

extends to an environment with ex post cash constraints.

Ex Post Efficient Allocation Rule. Ex post efficiency requires that the allocation rule

maximizes the gains from trade for every realization of valuations v ∈ Vn. Let s∗ denote the ex

post efficient allocation rule, it must satisfy for all v ∈ Vn

s∗(v) ∈ arg max
s∈∆n−1

∑
i∈N

visi(v).

The solution to this linear problem simply requires to allocate full ownership rights to the

agent with the highest valuation. In case of tie between two or more agents (i.e., they have

the same valuation) assume, without loss of generality, that the agent with the lowest index

is allocated the whole asset.13 Therefore, the ex post efficient allocation rule for agent i can

12The word equivalent is stressed here as this notion has to be carefully defined and may vary across different
equivalence theorems. See Manelli and Vincent (2010) on that matter.

13As F(·) is assumed to be absolutely continuous, ties occur with probability zero and thus can be ignored in the
design of the ex post efficient mechanism. However, this will no longer be the case in the second-best analysis.



12 g. pommey

simply be written as

s∗i (v) =

1 if ρ(v) = i

0 if ρ(v) 6= i,
(1)

where ρ(v) := min
{
j ∈ N | j ∈ arg maxi vi

}
, so that ties are always broken in favor of the agent

with the lowest index.

3.1. Groves Mechanisms

To derive the main condition for ex post efficient dissolution of partnerships, I rely on the

methodology derived by Makowski and Mezzetti (1994). They show that every mechanism

satisfying both ex post efficiency (EF) and incentive compatibility (either interim or ex post)

must be a Groves mechanism, and can be fully characterized by a specific transfer function

defined up to a constant.

Let g(v) :=
∑
i∈N vis

∗
i (v) denote the maximum gains from trade at v ∈ Vn and let the

transfer function writes

t∗i (v) = g(v) − visi(v) − hi(v), (2)

for some function hi : Vn → R and all i ∈ N. The first two terms of this function, namely

g(v) − visi(v), ensure that the mechanism implements the ex post efficient allocation rule by

inducing revelation. The last term, −hi(v), is an arbitrary function whose purpose is to collect

money back from agent without distorting their incentives to reveal information. The following

proposition details the required properties of the function hi.

Proposition 1 (Makowski and Mezzetti (1994)) The dissolution mechanism (s∗, t∗) is

a. EF and IIC if and only if t∗ satisfies (2) and E−ihi(vi, v−i) = E−ihi(v
′
i, v−i) = Hi for all

vi, v ′i ∈ V and Hi ∈ R is a constant;

b. EF and EPIC if and only if t∗ satisfies (2) and hi(vi, v−i) = hi(v ′i, v−i) for all vi, v ′i ∈ V .

Proof. See Makowski and Mezzetti (1994). �

I now turn to the existence of ex post efficient Bayesian and dominant strategy dissolution

mechanisms.

3.2. The Existence Condition

Proposition 1 ensures that a dissolution mechanism (s∗, t∗) satisfies EF and IIC (resp. EPIC)

if transfers follows (2) and the function hi(·) is independent of vi on average over v−i (resp.

independent of vi). Therefore, investigating ex post efficient Bayesian or dominant strategy
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mechanisms can be done by directly imposing all other requirements (individual rationality,

budget balance and cash constraints) on t∗. I restrict the presentation of the argument to ex

post efficient Bayesian mechanisms. The case of dominant strategy mechanisms is almost

exactly the same and therefore relegated to Appendix A.

Bayesian Mechanisms. Take a dissolution mechanism (s∗, t∗) satisfying EF and IIC (i.e.

t∗ satisfies Proposition 1.a). Imposing EPBB requires
∑
i∈N t

∗
i (v) = 0 for all v ∈ Vn or,

equivalently,

∑
i∈N

hi(v) = (n− 1)g(v), for all v ∈ Vn. (3)

The term (n− 1)g(v) can be interpreted as the ex post deficit generated by an EF-IIC mechanism.

EPBB then implies that the hi(·) functions are designed to absorb this deficit while satisfying

the requirement of Proposition 1.a. At the ex ante stage, EPBB requires (taking expectations

over all v on both sides of equation (3))

∑
i∈N

Hi = (n− 1)G, (4)

where Hi := Ehi(v) = E−ihi(v) and G := Eg(v).

At the same time, imposing IIR on (s∗, t∗) requires that Ui(vi) = vi(S∗i (vi)− ri)+ T
∗
i (vi) > 0

for all vi ∈ V and i ∈ N. Replacing T∗i (vi) := E−it
∗
i (v) by its expression (given by taking

expectations E−i of equation (2)) gives E−ig(v) −Hi − viri > 0. Rearranging, IIR requires that

Hi 6 E−ig(v) − viri, for all vi ∈ V , i ∈ N.

Define,

C(ri) := inf
vi

{
E−ig(v) − viri

}
. (5)

Then IIR be can rewritten as

Hi 6 C(ri) for all i ∈ N. (6)

Equation (6) simply defines C(ri) as the maximal amount of money that can be collected on

agent i at the interim stage without violating IIR. Notice that C(ri) is a decreasing function

of ri. This reflects that initial shares provide bargaining power to their owner: Higher initial

shares allows an agent to claim a larger part of the gains from trade.

Finally, imposing EPCC on (s∗, t∗) gives t∗i (v) = g(v) − vis
∗
i (v) − hi(v) > −li for all v ∈ Vn
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and i ∈ N. This implies that at the interim stage (taking expectation over all v−i):

Hi 6 E−i

[
g(v) − vis

∗
i (v)

]
+ li, for all vi ∈ V , i ∈ N.

Straightforward computations give that minvi E−i

[
g(v) − vis

∗
i (v)

]
= 0 at vi = v and thus the

above equation simply rewrites:

Hi 6 li, for all vi ∈ V , i ∈ N. (7)

Equation (7) yields the maximal amount of money that can be collected on agent i at the

interim stage due to the presence of cash constraints.

The Dissolution Condition. It appears that the existence of ex post efficient Bayesian

dissolution mechanisms simply relies on whether it is possible to collect enough money from

agents to cover the ex ante deficit (n− 1)G given the upper bounds C(ri) and li implied by

IIR and EPCC, respectively. I now state the existence condition of ex post efficient Bayesian

dissolution mechanisms.

Theorem 1 An EF, IIC, IIR, EPBB and EPCC dissolution mechanism exists if and only if

∑
i∈N

min{C(ri), li} > (n− 1)G. (8)

Proof. (Necessity) Equations (6) and (7) are both necessary conditions for IIR and EPCC,

respectively. Combining the two equations gives Hi 6 min{C(ri), li} for all i ∈ N. Summing

over i ∈ N gives
∑
i∈NHi 6

∑
i∈Nmin{C(ri), li}. Finally, using equation (4) (implied by EPBB)

yields (n− 1)G 6
∑
i∈Nmin{C(ri), li} which concludes the necessity part.

(Sufficiency) To prove sufficiency, I explicitly construct a transfer function that satisfies all

requirements when (8) holds. Let tCi (v) = g(v) − vis
∗
i (v) − h

C
i (v) where hCi (v) is defined as

follows:

hCi (v) :=
n− 1
n

g(v) + 1
n− 1

∑
j6=i

s∗j (v)ψ(vj) − s
∗
i (v)ψ(vi)

+φi, (9)

where

ψ(vk) :=

∫vk
v F(x)ndx

F(vk)n
, (10)

and φi ∈ R is a constant. I further discuss the choice of the transfer function after the proof.

EF and IIC. The transfer function tCi (v) writes as equation (2). Therefore, if hCi (v) satisfies Propo-

sition 1.a then the mechanism (s∗, tC) is EF and IIC. Standard computations (see Appendix A)
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give

E−ih
C
i (v) =

n− 1
n

G+φi.

Hence, E−ih
C
i (v) does not depend on vi and satisfies Proposition 1.a. Let HCi := E−ih

C
i (v).

The mechanism (s∗, tC) is EF and IIC.

EPBB. The dissolution mechanism (s∗, tC) is EPBB if it satisfies
∑
i∈N t

C
i (v) = 0 for all v ∈ VN.

Notice that,

∑
i∈N

tCi (v) = (n− 1)g(v) −
n− 1
n

[
ng(v) +

1
n− 1

∑
i∈N

∑
j6=i

s∗j (vj)ψ(vj) −
∑
i∈N

s∗i (v)ψ(vi)
]
−
∑
i∈N

φi

= −
∑
i∈N

φi.

EPBB is therefore equivalent to
∑
i∈Nφi = 0.

IIR. Recall from equation (6) that IIR requires HCi 6 C(ri). Hence, (s∗, tC) satisfies IIR if

HCi =
n− 1
n

G+φi 6 C(ri), for all i ∈ N.

EPCC. Finally, EPCC requires that tCi (v) > −li for all i ∈ N, v ∈ Vn, or, equivalently,

minv∈VN tCi (v) > −li for all i ∈ N. Notice that

tCi (v) =

−n−1
n

[vi −ψ(vi)] −φi if ρ(v) = i

1
n

[
vj −ψ(vj)

]
−φi if ρ(v) = j 6= i.

The following lemma is useful to determine the minimum of tCi .

Lemma 1 For all k ∈ N, [vk −ψ(vk)] is nonnegative and increasing in vk ∈ V .

Proof. See Appendix A. �

From Lemma 1 it is clear that the minimum of tCi is attained when ρ(v) = i and vi = v.

Therefore,

min
v∈Vn

tCi (v) = −
n− 1
n

[v−ψ(v)] −φi

= −
n− 1
n

G−φi. (11)

EPCC is then equivalent to −n−1
n G−φi > −li for all i ∈ N.

Combining IIR and EPCC yields the following condition

φi 6 min{C(ri), li}−
n− 1
n

G.
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Then, for each i ∈ N, let the constant be

φi = min{C(ri), li}−
1
n

∑
j∈N

min{C(rj), lj}.

It is straightforward that
∑
i∈Nφi = 0 so that EPBB holds for tCi . Furthermore, if condition (8)

holds, i.e.
∑
j∈Nmin{C(rj), lj} > (n− 1)G, it is immediate that φi 6 min{C(ri), li}− n−1

n G so

that IIR and EPCC also hold for tCi . �

Remark. In the absence of cash constraints, i.e. when the li’s are sufficiently large for each i ∈ N
so that min{C(ri), li} = C(ri) for all i ∈ N and r ∈ ∆n−1, condition (8) simply rewrites

∑
i∈N

C(ri) > (n− 1)G.

It can easily be shown that this condition is simply equation (D) in CGK (Theorem 1, p. 619).

On The Transfer Function. The major difficulty in establishing Theorem 1 lies in the

construction of the transfer function tCi to prove the sufficiency of condition (8). Unfortunately,

the transfer function proposed by CGK – that I will denote tCGK
i thereafter – cannot be used to

prove the sufficiency part of Theorem 1. Investigating tCGK
i allows for a better understanding

of the construction of cash-constrained mechanisms. Furthermore, the transfer function tCGK
i is

not peculiar to the work of CGK and it is commonly used in the mechanism design literature.14

Formally, tCGK
i writes

tCGK
i (v) = ci −

∫vi
v

xdF(x)n−1 +
1

n− 1

∑
j6=i

∫vj
v

xdF(x)n−1,

where ci ∈ R is a constant and
∑
i∈N ci = 0 (see CGK, p. 628). Imposing EPCC requires

that tCGK
i (v) > −li for all i ∈ N and v ∈ Vn. It is immediate that minv∈V tCGK

i (v) = ci −∫v
v xdF(x)

n−1, that is when vi = v and vj = v for all j 6= i. Straightforward computations yield

that tCGK
i is EPCC if

ci −
n− 1
n

G−

∫v
v

x[1 − F(x)]dF(x)n−1 > −li. (12)

Applying a similar reasoning to that of the proof of Theorem 1, it is easy to show that a

mechanism (s∗, tCGK
i ) is EF, IIC, IIR, EPBB and EPCC if and only if

∑
i∈N

min
{
C(ri), li −

∫v
v

x[1 − F(x)]dF(x)n−1
}
> (n− 1)G. (13)

14To the best of my knowledge, this function has first been introduced by D’Aspremont and Gérard-Varet (1979,
Theorem 6, p. 38). It can also be found in Robert and Lu (2001), Ledyard and Palfrey (2007) and Segal and Whinston
(2011) among others.
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This condition is undoubtedly more restrictive than condition (8).15 This is due to the fact

that the minimum of the variable part of tCGK
i (i.e. ignoring the constant ci) is lower than the

minimum of the variable part of tCi (i.e. ignoring the constant φi). It is therefore interesting to

notice that what matters for EPCC is the minimum of the variable part of the transfer function.

If the variable part of the transfer function is too low, adding a higher constant to shift the

function up to satisfy EPCC does not help as this would contradict EPBB.

Therefore, it is necessary that tCi has a lower span than tCGK
i to satisfy EPCC. Notice that IIC

requires that both transfer functions must be equal at the interim level (up to a constant), that

is E−it
CGK
i (v) = E−it

C
i (v) + cst for some constant.16 The problem of constructing tCi is then a

problem of constructing multivariate random variables with given marginals (IIC), bounded

support (EPCC) and such that the sum of all is zero (EPBB). In this paper, I have constructed

the function tCi by adapting the one proposed in an unpublished paper of Dudek, Kim and

Ledyard (1995) who study ex post individually rational Bayesian mechanisms with no initial

endowments. In future works, it would be interesting to fully characterize the space of transfer

functions that satisfy EPCC.

Dominant Strategy Mechanisms. As mentioned earlier, the same dissolution condition

applies to dominant strategy mechanisms.

Theorem 2 An EF, EPIC, IIR, EABB and EPCC dissolution mechanism exists if and only if

∑
i∈N

min{C(ri), li} > (n− 1)G. (14)

Proof. See Appendix A. �

Condition (14) is exactly the same as condition (8). This implies that when it is possible to

ex post efficiently dissolve a partnership with a Bayesian mechanism then it is also possible to

do it with a dominant strategy, and reciprocally. The equivalence, however, goes further than

that as discussed below.

3.3. The Equivalence Theorem

From Theorem 1 and Theorem 2 it is then clear that when it is possible to implement ex post

efficient dissolution with a Bayesian mechanism then ex post efficient dissolution can also be

implemented with a dominant strategy mechanism, and vice versa. Yet, the following results

give a much stronger equivalence between the two classes of mechanisms.

Theorem 3 If (s∗, t̃) is an EF, EPIC, IIR, EABB and EPCC dissolution mechanism, then there exists

a t such that
15See Section 5 for an example in which the dissolution mechanism proposed by CGK does not allow for efficient

dissolution whereas it is possible with my mechanism.
16This is a consequence of Proposition 1 and one of the most important features of incentive compatibility. See

Myerson (1981), Makowski and Mezzetti (1994) and Williams (1999).
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1. (s∗, t) is an EF, IIC, IIR, EPBB and EPCC dissolution mechanism;

2. E−iti(vi, v−i) = E−it̃i(vi, v−i) for all i ∈ N, vi ∈ V .

Proof. See Appendix A. �

The converse is also true.

Theorem 4 If (s∗, t) is an EF, IIC, IIR, EPBB and EPCC dissolution mechanism, then there exists a t̃

such that

1. (s∗, t̃) is an EF, EPIC, IIR, EABB and EPCC dissolution mechanism;

2. E−iti(vi, v−i) = E−it̃i(vi, v−i) for all i ∈ N, vi ∈ V .

Proof. See Appendix A. �

The additional feature of the equivalence theorem relies on the equivalence between the

interim transfers. Thus, Theorem 3 and 4 state that one can alternatively choose to implement

ex post efficient dissolution with Bayesian or dominant strategy mechanisms and offer the same

interim transfers and utilities to every agent. It means that any final distribution of welfare

among agents that is attainable in Bayesian mechanisms is also attainable in dominant strategy

mechanisms.

3.4. Interim Cash Constraints

So far, I have assumed the strictest requirement for cash constraints, namely, ex post cash

constraints. An important question is whether relaxing the requirement from the ex post to

the interim level helps relaxing the dissolution condition (8). Formally, the constraints would

become E−iti(v) ≡ Ti(vi) > −li for all vi ∈ V . This constraint therefore requires that each

agent, when privately informed about their type, thinks that they will have enough cash in

expectations. This is a softer budget constraint than ex post cash constraints as it may occur

that agents have to pay more than li at the end of the game. The following result provides an

important insight about interim cash constraints.

Proposition 2 An EF, IIC, IIR, EPBB and EPCC exists (s, t) if and only if there exists an EF, IIC, IIR,

EPBB and interim cash-constrained mechanism (s, t̃) such that E−iti(vi, v−i) = E−it̃i(vi, v−i)

for all i ∈ N and vi ∈ V .

Proof. See Appendix A.

Proposition 2 shows that the existence of dissolution mechanisms with interim cash con-

straints is equivalent to the existence of dissolution mechanisms with ex post cash constraints.

Therefore, relaxing cash constraints to the interim level has no advantages compared to the ex

post level. This result straightforwardly applies to dominant strategy mechanisms.
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4. FIRST-BEST CHARACTERIZATION RESULTS

The condition that must hold to implement ex post efficient dissolution (equation (8)) depends

both on the initial ownership structure r and on the cash resources l. It is then natural to

investigate the set of partnerships that can be efficiently dissolved when r and l vary.

4.1. Optimal Initial Ownership Structures

For a given distribution of cash resources l ∈ Rn+, I first characterize the initial ownership

structures that maximize the contributions that can be collected on agents
∑
i∈Nmin{C(ri), li}.

Initial ownership structures r∗(l) ∈ arg maxr∈∆n−1

∑
i∈Nmin{C(ri), li} are said to be optimal.

It may obviously be the case that even the optimal initial ownership structures do not allow for

ex post efficient dissolution if cash resources are low for some agents.17

Recall that C(ri) = infvi
{

E−ig(v) − viri
}

. Let y = maxj6=i vj, then

E−ig(v) − viri = viE−i1{vi > y}+ E−iy1{vi < y}− viri

= viF(vi)
n−1 +

∫v
vi

ydF(y)n−1 − viri.

Differentiating this expression with respect to vi, the first-order condition gives F(v∗i (ri))
n−1 =

ri, where v∗i (ri) is said to be the worst-off type of agent i.18 Therefore,

C(ri) =

∫v
v∗i (ri)

ydF(y)n−1, (15)

which is continuous and differentiable in ri. The Envelope Theorem directly gives C ′(ri) =

−v∗i (ri) 6 0 and C ′′(ri) = −
∂v∗i
∂ri

(ri) < 0 so that C(ri) is both decreasing and concave in ri.

Notice also that C(0) =
∫v
v ydF(y)

n−1 and C(1) = 0.

It is useful to introduce the following notation. Let r̃i ∈ [0, 1] be such that C(r̃i) = li

when li 6 C(0) and let r̃i = 0 if li > C(0). This threshold is such that cash constraints are

more restrictive than the individual rationality constraint when ri < r̃i and the opposite when

ri > r̃i. As r̃i is decreasing in li, a higher r̃i indicates that cash constraints are more restrictive

for agent i.

The characterization results depend both on the total amount of available cash resources

and on its distribution over agents. Assume, without loss of generality, that l1 > · · · > ln so

that r̃1 6 · · · 6 r̃n. Consider first the case in which cash constraints are not too severe, that is

when
∑
i∈N r̃i 6 1.

17This happens when
∑
i∈Nmin{C(r∗i (l)), li} < (n− 1)G. It is then possible to characterize the minimal subsidy

that would be necessary to satisfy the ex post efficient dissolution condition (8).
18The second-order derivative immediately writes (n− 1)f(vi)F(vi)n−2 > 0 so that the first-order condition

characterizes a minimum.
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Proposition 3 Assume
∑
i∈N r̃i 6 1, then the optimal distribution of property rights r∗ ∈ ∆n−1 is as

follows:

a. If r̃i 6 1
n for all i ∈ N , then r∗ = ( 1

n , . . . , 1
n);

b. If r̃i > 1
n for some i ∈ N, then r∗ = (r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) where r̂ =

1−
∑
j>p r̃j
p−1 for some

p ∈ N such that maxi<p r̃i < r̂ 6 minj>p r̃j.

Proof. See Appendix A. �

Proposition 3.a is simply CGK main result (Proposition 1, p.621). When each agent is

endowed with enough cash, i.e. r̃i 6 1
n , then the equal-share ownership structure is optimal.

However, as soon as at least one agent’s cash resources go below some threshold, i.e. r̃i > 1
n

for some i ∈ N, Proposition 3.b implies that the optimal ownership structure allocates more

initial ownership rights to more cash-constrained agents.

To illustrate Proposition 3.b , consider a two-agent partnership in which agent 1 has large

cash resources so that r̃1 = 0 and agent 2 is heavily cash constrained so that r̃2 ∈ [ 1
2 , 1). It is clear

that starting from any r2 < r̃2, and in particular r2 = 1
2 , it would be possible to strictly increase∑

i=1,2 min{C(ri), li} = C(r1) + l2 by increasing r2 up to r̃2 as C(·) is a decreasing function and

min{C(r2), l2} = l2 in unchanged for all r2 6 r̃2. In other words, it is innocuous to give more

initial ownership rights to heavily cash-constrained agent as they are already limited by their

cash resources but it allows to give less initial ownership rights to less cash-constrained agents

and then collect more from them.

When cash constraints are more severe, for some or all agents, so that
∑
i∈N r̃i > 1, the

structure of the optimal initial ownership structure can be characterized as follows.

Proposition 4 Assume
∑
i∈N r̃i > 1, then the optimal distribution of property rights r∗ ∈ ∆n−1 is

such that r∗i 6 r̃i for all i ∈ N and
∑
i∈Nmin{C(r∗i ), li} =

∑
i∈Nmin{C(0), li}.

Proof. First, notice the following upper bound,
∑
i∈Nmin{C(ri), li} 6

∑
i∈Nmin{C(0), li} for

all r ∈ ∆n−1. For every i ∈ N, let ri 6 r̃i which is always possible as
∑
i∈N ri = 1 6

∑
i∈N r̃i .

Then min{C(ri), li} = min{C(0), li} for all i ∈ N and
∑
i∈Nmin{C(ri), li} =

∑
i∈Nmin{C(0), li}.

To conclude, it is clear that choosing any ri > r̃i would decrease
∑
i∈Nmin{C(ri), li}. �

When
∑
i∈N r̃i > 1, optimal initial ownership structures may or may not have a clear

characterization. Consider for instance the case in which all agents i < p for some p ∈ N \ {1}

have large cash resources so that r̃i = 0 for all i < p and all agents i > p have low cash

resources so that r̃i > 0 and
∑
i∈N r̃i > 1. Then, Proposition 4 gives that all agents i < p must

have r∗i = 0 and for i > p, the r∗i must be such that
∑
i>p r

∗
i = 1. Therefore, initial ownership

goes only to agents with few cash resources and this resembles Proposition 3.b. Consider now

a case in which for instance 1
2 = r̃1 = r̃2 6 r̃3 6 · · · 6 r̃n. Then choosing r∗1 = r∗2 = 1

2 and r∗i = 0

for all i > 3 is optimal. Hence, at some point, cash constraints are so severe that optimal initial

ownership structures have no clear structure other than that of Proposition 4.
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4.2. Minimal Cash Resources To Dissolve Equal-Share Partnerships

One of the main results of CGK states that equal-share partnership can always be ex post

efficiently dissolved. De Frutos and Kittsteiner (2008) report that one-half to two-third of

two-agent partnerships exhibit equal-share ownership. It is then interesting to investigate how

cash constraints mitigate this finding.

Proposition 5 Assume li := l for all i ∈ N. Then, every equal-share partnership is dissolvable for any

absolutely continuous cumulative distribution function F(·) if and only if

l >
n− 1
n

G. (16)

Furthermore, for any F(·), l is increasing in n and converges to v when n goes to infinity.

Proof. From CGK (Proposition 1), an equal-share partnership is always dissolvable in the

absence of cash constraints, that is,
∑
i∈NC(

1
n) > (n− 1)G. Equation (16) immediately follows

from the dissolution condition
∑
i∈Nmin{C( 1

n), l} > (n− 1)G.

Recall that G = E[maxj∈N vj] =
∫v
v ydF(y)

n. Differentiating the right-hand side of (16) with

respect to n gives 1
n2G+ n−1

n
∂G
∂n > 0 as G is increasing in n. Finally, if n→∞ then G→ v and

so does n−1
n G. �

Equation (16) simply states that in equal-share-equal-cash partnerships, each agents must

be endowed with a fraction 1
n of the total ex ante expected deficit generated by a Groves

mechanism. By construction, this ex ante deficit becomes larger as the number of agents

increases as the probability of maxi∈N vi increases (which must be distributed to (n− 1) agents,

see Section 3) and so do the minimal cash resources.

Finally, the result that l→ v when n→ +∞ suggests that cash constraints are likely to be a

major concern as the number of agents becomes large. In many cases, it seems reasonable to

think that one of the main purposes of forming a partnership is precisely to split the burden

of a costly investment between partners because of initial cash constraints. Hence, it seems

unlikely that every agent possesses the maximal value of the asset in cash when dissolution

occurs.

4.3. Some examples

To illustrate Propositions 3, 4 and 5, assume that the asset value is between 0 and 1 million and

valuations are uniformly distributed over support [0, 1].

Example 1. Let n = 3 and assume r̃ = (0, 0.4, 0.5). This happens when cash resources

are approximately (l1, l2, l3) ≈ (0.66, 0.49, 0.43). Assuming equal-share ownership gives∑
i=1,2,3 min{C( 1

3), li} = C(
1
3) + l2 + l3 ≈ 1.47 as C( 1

3) ≈ 0.54 > l2 > l3. Given that (n− 1)G = 3
2 ,
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it follows that the equal-share ownership structure does not allow for ex post efficient dissolu-

tion.

Instead, as
∑
i∈N r̃i = 0.9 and 1

3 < r̃2 < r̃3, Proposition 3.b gives that the optimal ownership

structure writes r̃∗ = (0.1, 0.4, 0.5). As
∑
i=1,2,3 min{C( 1

3), li} ≈ 1.57 > 3
2 , the optimal owner-

ship structures allows for ex post efficient dissolution. Ownership rights are then inversely

proportional to cash resources and the optimal ownership structure is quite asymmetric.

Example 2. Let n = 3 and assume r̃ = (0.3, 0.4, 0.45). This corresponds to (l1, l2, l3) ≈
(0.56, 0.50, 0.47). Notice that

∑
i=1,2,3 r̃i = 1.15 > 1 so that Proposition 4 applies and thus

r∗i 6 r̃i for i = 1, 2, 3. As C(0) = 2
3 > l1 > l2 > l3, it follows that

∑
i=1,2,3 min{C(ri), li} =

l1 + l2 + l3 ≈ 1.52 > 3
2 and the partnership can be ex post efficiently dissolved. Notice that

choosing for instance r∗ = (0.3, 0.3, 0.4) or r∗ = (0.3, 0.25, 0.45) both give r∗i 6 r̃i for all i ∈ N
and achieve the same outcome. However, agent 2 receives less initial ownership rights than

agent 1 whereas the former has larger cash resources than the latter. This illustrates that

optimal ownership structures might not always exhibit an inversely proportional relationship

between cash and ownership rights when cash resources are severe, i.e.
∑
i∈N r̃i > 1.

Example 3. Assume equal-share ownership, ri = 1
n for all i ∈ N and symmetric cash resources

li = l̃ for all i ∈ N. According to Proposition 5, ex post efficient dissolution is possible if

and only if l̃ > n−1
n G = n−1

n+1 . Hence, when n = 2, 3, 4, 5 and 6, the minimal cash resources

are respectively 1
3 , 1

2 , 3
5 , 2

3 and 5
7 . A partnership with 5 agents for instance, each partner must

possess two-third of a million to achieve ex post efficient dissolution.

5. IMPLEMENTATION: A SIMPLE AUCTION

The ex post efficient dissolution mechanism presented in Section 3 is appealing for its conve-

nient mathematical properties which greatly simplifies the analysis of such mechanisms. It is,

however, less appealing for the practitioner as it requires the setup of a game in which each

agent reports their valuation and is communicated the transfer function tCi (v).

Ex Post Efficient Bidding Game. I propose a simple auction that replicates the ex post

efficient dissolution mechanism whenever the ex post efficient dissolution condition (8) holds.

Each agent proposes a bid and the highest bidder receives full ownership of the asset. The

auction is designed such that the bidding strategies are increasing in the agents’ valuations so

that the highest bidder coincides with the agent with the highest valuation. Each agent also

receives side payments conditional on their share of ownership rights and cash resources to

ensure IIR, EPBB and EPCC.

Let b := (b1, . . . ,bn) ∈ Rn+ denote the vector of bids. In the ex post efficient bidding game

each agent receives a side payment φi(r, l) and pays a price pi(b1, . . . ,bn).
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Theorem 5 A bidding game with prices

pi(b1, . . . ,bn) :=

(n− 1)
[
bi +

1
nv
]

if bi > maxk bk

−
[
bj +

1
nv
]

if bj > maxk bk,

and side-payments

φi(r, l) :=
1
n

∑
j∈N

min{C(rj), lj}− min{C(ri), li},

efficiently dissolves any dissolvable partnership with cash-constrained agents.

Proof. Let bi be player i’s strategy and b(vj) be the bidding strategy of player j 6= i with

valuation vj. Agent i’s interim expected utility (omitting side payments) when bidding bi
writes

Ui(bi; vi) :=
[
vi − (n− 1)(bi +

1
n
v)

]
E−i1{bi > max

k6=i
b(vk)}

+
∑
j6=i

E−i

[
1{b(vj) > bi}1{b(vj) > max

k6=i,j
b(vk)}

[
b(vj) +

1
n
v

]]
.

Solving for strictly increasing symmetric Bayesian equilibrium, the bidding strategy of the

j 6= i players, b(vj), is strictly increasing and then invertible. Notice that 1{bi>maxk6=i b(vk)} =

1{b−1(bi)>maxk6=i vk} and 1{b(vj)>maxk6=i b(vk)} = 1{vj>maxk6=i vk}. It follows that player i’s interim

expected utility rewrites

Ui(bi; vi) =
[
vi − (n− 1)(bi +

1
n
v)
]
Z(b−1(bi)) +

∫v
b−1(bi)

[
b(vj) +

1
n
v
]
dZ(vj),

where Z := Fn−1. Let z = Z ′, differentiating U(bi; vi) with respect to bi and simplifying using
∂b−1

∂bi
(bi) =

1
b ′(b−1(bi))

gives

∂Ui
∂bi

(bi; vi) = −(n− 1)Z(b−1(bi)) +
z(b−1(bi))

b ′(b−1(bi))

[
vi −nbi − v

]
.

At equilibrium, b(vi) must be such that ∂Ui∂bi
(b(vi); vi) = 0. Therefore, b(vi) must solve

−(n− 1)Z(vi) +
z(vi)

b ′(vi)

[
vi −nb(vi) − v

]
= 0.

It is easy to show that b(vi) :=
∫vi
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt solves this first-order differential equation

and is strictly increasing in vi.19 It follows that at the Bayesian equilibrium, player i pays a

19The first-order condition is also sufficient. Notice that b(vi) =
∫vi
v ψ(t)

f(t)
F(t)dt where ψ(t) is defined by equation

(10). Then b ′(vi) = ψ(vi)
f(vi)
F(vi)

= (vi −nb(vi) − v)
f(vi)
F(vi)

, where the second equality stems from Lemma 1. Hence,
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price

pi(b(v1), . . . ,b(vn)) =


(n− 1)

[∫vi
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ 1
nv

]
if bi > maxk bk

−

[∫vj
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ 1
nv

]
if bj > maxk bk.

(17)

It can easily be proven that pi(b(v1), . . . ,b(vn)) together with φi(r, l) exactly replicates the

transfer rule of Theorem 1, tCi (v), for all v ∈ Vn and all i ∈ N. The bidding game is thus EF (as

b(·) is increasing, the bidder with the highest valuation gets full ownership), IIR, EPBB and

EPCC as it reproduces the transfer rule of Theorem 1. �

Theorem 5 can be interpreted as follows. The agent with the highest bid, bk = maxi∈N bi,

receives full ownership of the asset and gives an amount of money equal to bk to all other

agents j ∈ N \ {k}. Unconditional on bids, each agent receives a transfer φi(r, l).

Furthermore, there is no need for an outside party to advance money before running the

auction. In practice, the auctioneer could simply announce to each agent their side payment

φi(r, l), run the auction and then compute total payment for each agent, φi(r, l)−pi(b1, . . . ,bn)

from the submitted bids. Agents with a φi(r, l) − pi(b1, . . . ,bn) < 0 pay the auctioneer who

then redistribute this amount of money to the agents with φi(r, l) − pi(b1, . . . ,bn) > 0. As the

auction is budget balanced, this can always be done without outside funding.

Comparison With CGK: Uniform and Symmetric Example. It is interesting to investigate

the properties of the bidding game proposed in Theorem 5 with the one proposed by CGK

(Theorem 2, p. 620). In CGK, the bidding game has prices pCGK
i (b) = bi −

1
n−1
∑
j6=i bj and

side payments cCGK
i (r) =

∫v∗i
v xdF(x)

n−1 − 1
n

∑
j∈N
∫v∗j
v xdF(x)

n−1 where v∗i is defined as in

Section 4.1. The equilibrium bidding strategy in CGK is given by bCGK(vi) =
∫vi
v udF(u)

n−1.

For simplicity, assume that valuations are uniformly distributed over support [0, 1], and

consider an equal-share-equal-cash partnership, i.e. ri = 1
n and li = l̃ for all i ∈ N. It

immediately follows that φi(r, l) = cCGKi (r) = 0 for all i ∈ N, that is, side payments are zero

for all agents in both bidding games. In the cash-constrained auction, the maximal price is

obtained by maximizing equation (17), which is the same as minimizing tCi (ignoring the

constant term) as the auction replicates the dissolution mechanism. Therefore, from equation

(11), maxv∈Vn pi(b) = n−1
n G = n−1

n+1 as G = n
n+1 in the uniform case. Alternatively, using the

LHS of equation (12) (again ignoring the constant) gives that maxv∈Vn pCGK
i (b) = n−1

n . Hence,

it is clear that maxv∈Vn pCGK
i (b) > maxv∈Vn pi(b) so that the maximal price in CGK auction is

strictly higher than the one in the cash-constrained auction.

after simplifications, ∂Ui
∂bi

(bi; vi) = (n− 1)Z(b−1(bi))
[
−1 + vi−nbi−v

b−1(bi)−nbi−v

]
. It follows that ∂Ui

∂bi
(bi; vi) > 0 (resp.

6 0) when bi 6 b(vi) (resp. > b(vi)) for any vi ∈ V .
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Given that side payments are null in both auctions, EPCC requires that the maximal price

never exceeds the agents’ financial resources l̃. Let n = 2, then maxv∈Vn pCGK
i (b) = 1

2 and

maxv∈Vn pCGK
i (b) = 1

3 . It follows that any of the two auctions ex post efficiently dissolves

this symmetric partnership for l̃ > 1
2 and none dissolves it if l̃ < 1

3 (this indeed violates

condition (8)). However, only the cash-constrained auction ex post efficiently dissolves this

partnership for l̃ ∈
[ 1

3 , 1
2

)
as CGK auction requires agents to pay prices that may exceed their

financial resources. This particular example illustrates the discrepancy between the necessary

and sufficient condition (8) and the sufficient dissolution condition with CGK mechanism,

condition (13).

6. SECOND-BEST DISSOLUTION MECHANISMS

When condition (8) is not satisfied, it is not possible to simultaneously ensure an ex post

efficient allocation rule and all the required constraints. Therefore, the problem consists in

finding a new mechanism whose allocation rule simultaneously maximizes the ex ante surplus

and satisfies all the constraints. These mechanisms are referred to as second-best mechanisms.

One of the most difficult challenges when investigating second-best mechanisms comes

from the participation and cash constraints. Usually, the structure of the problems studied

in the literature are such that those types of constraints can be replaced by the one for the

lowest/highest type independently of the mechanism in question. In partnership models,

however, the worst-off types are endogenously determined by the mechanism and must be

defined simultaneously to the allocation rule.

Second-best mechanisms in partnership models have mainly been studied by Lu and Robert

(2001) and Loertscher and Wasser (2019) who consider Bayesian mechanisms without cash

constraints. I build on these two papers and on Boulatov and Severinov (2018) who investigate

the design of optimal auctions in the presence of cash-constrained bidders.

Methodology And Assumptions. I investigate dissolution mechanisms satisfying IIC, IIR,

EPCC but I relax EPBB to EABB as imposing EPBB had proved too difficult. I conjecture,

however, that adding the EPBB requirement can directly be derived using the present work

and only requires to construct an appropriate transfer function. I hope that future work will

address this issue.

The first-best analysis shows that implementing the ex post efficient allocation rule requires

that enough money can be collected on agents to cover the cost of imposing incentive compati-

bility. The same logic applies to any other allocation rule. Following the methodology of Lu

and Robert (2001) and Loertscher and Wasser (2019), I start by investigating allocation rules

that maximize a linear combination of the expected surplus and the expected revenue that

can be collected on agents by imposing IIC, IIR and EPCC but ignoring EABB. This allows
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to characterize optimal second-best mechanisms for any possible budget deficit.20 It then

appears that solving the second-best problem including EABB is just a particular solution to

the previous problem for well-chosen weights on expected surplus and collected revenue.

Then, for any weight λ ∈ [0, 1], the objective function writes,

Wλ := (1 − λ)
∑
i∈N

E
[
vi(si(v) − ri)

]
+ λ
∑
i∈N

E
[
− ti(v)

]
, (18)

where the first term is the expected surplus and the second term is the expected revenue. I

introduce the following two notations. For any λ ∈ [0, 1], let

α(vi | λ) = vi − λ
1 − F(vi)

f(vi)
and β(vi | λ) = vi + λ

F(vi)

f(vi)
,

where α(· | λ) and β(· | λ) are referred to as buyer’s virtual valuation and seller’s virutal

valuation, respectively (see Lu and Robert (2001)). Notice that for any vi ∈ (v, v) and λ ∈ [0, 1],

α(vi | λ) < vi < β(vi | λ). The following assumptions are made on these functions.

Assumption 1 For any λ ∈ [0, 1], the virtual valuations α(vi | λ) and β(vi | λ) are both strictly

increasing in vi.

This assumption is a regularity assumption on the distribution function F(·) to avoid bunching

due to nonregular distribution functions.21 It is standard in the literature (see Myerson, 1981)

and weaker than imposing increasing hazard rate.

Assumption 2 Assume that f(·) is nonincreasing.

This assumption is not necessary as suggested by Boulatov and Severinov (2018) but it is

imposed in the present work as it greatly simplifies the analysis.

6.1. Characterization Of General IIC, IIR And EPCC Mechanisms

The analysis of dissolution mechanisms is no longer restricted to the ex post efficient allocation

rule s∗ defined in Section 3. Therefore, Proposition 1 does not apply here and it is necessary to

characterize dissolution mechanisms satisfying IIC, IIR and EPCC for any possible allocation

rule.

Incentive Compatibility. Take any allocation rule s(v) = (s1(v), . . . , sn(v)) such that si(v) ∈
[0, 1] for all i ∈ N, v ∈ Vn and

∑
i∈N si(v) = 1 for all v ∈ Vn. The following standard

characterization of IIC mechanisms applies (see Myerson (1981)).

20It may sometimes not be desirable to strictly impose budget balance. For instance, if the dissolution problem is
run by a public authority, it may be willing to achieve a more efficient outcome at the expense of covering a strictly
positive deficit.

21However, second-best mechanisms will generically involve bunching due to the initial allocation of ownership
rights and to the cash constraints. This assumption on the distribution of valuation therefore only rules out
bunching due to nonregular distribution functions.
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Lemma 2 A dissolution mechanism (s, t) is IIC if and only if

Si is nondecreasing for all i ∈ N, (IC1)

Ui(vi) = Ui(v
∗
i ) +

∫vi
v∗i

(Si(x) − ri)dx for all vi, v∗i ∈ V . (IC2)

Proof. The proof is standard and thus omitted (see Myerson, 1981; Lu and Robert, 2001). �

The set of dissolution mechanisms satisfying IIC must then be such that the interim

allocation rule Si := E−isi is nondecreasing and the interim utility of each agent must satisfy

(IC2). Lemma 2 also implies that Ui is absolutely continuous. Recall that, by definition,

Ui(vi) = vi(Si(vi) − ri) + Ti(vi) so that (IC2) indirectly defines the interim transfers as follows

Ti(vi) = Ti(v
∗
i ) −

∫vi
v∗i

xdSi(x) for all vi, v∗i ∈ V , (19)

which is decreasing in vi.

Individual Rationality. Imposing IIR requires that Ui(vi) > 0 for all i ∈ N and vi ∈ V where

Ui(vi) is defined by (IC2). Let v∗i ∈ arg minṽi∈V Ui(ṽi) denote a worst-off type for agent i, then

IIR can be characterized as follows (see CGK and Lu and Robert (2001)).

Lemma 3 A dissolution mechanism (s, t) is IIC and IIR if and only if it satisfies Lemma 2 and for

every i ∈ N,

Ui(v
∗
i ) > 0, (IR1)

where v∗i denotes a worst-off type of agent i and

v∗i ∈ V∗(Si) := {vi | Si(x) 6 ri,∀x < vi; Si(y) > ri,∀y > vi}. (IR2)

Proof. The proof is the same as in Lu and Robert (2001). �

(IR1) simply states that the continuum of constraints Ui(vi) > 0 can be replaced by

imposing IIR only on the set of worst-off types V∗(Si) and (IR2) defines this set. Notice that (i)

the set of worst-off types is endogenously determined by the interim allocation rule Si and, (ii)

this set contains all agents who are expected to be neither a buyer nor a seller.

Cash Constraints. Finally, imposing EPCC requires that ti(v) > −li for all i ∈ N and

v ∈ Vn. As first noted by Laffont and Robert (1996), it is possible to set a mechanism (s, t)

where ti(v) depends only on agent i’s private information so that ti(v) = Ti(vi) for all v ∈ Vn.

It affects neither the objective function Wλ nor IIC nor IIR as they all depend only on the

interim transfers Ti(vi). Therefore, without loss of generality, EPCC is satisfied by requiring

Ti(vi) > −li for all i ∈ N, vi ∈ V .
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Following Boulatov and Severinov (2018), define

mi := inf {vi ∈ V | Ti(vi) = Ti(v)}. (20)

Then, any dissolution mechanism (s, t) for which mi < v is such that Ti(vi) = Ti(v) for all

vi ∈ [mi, v] as IIR imposes that Ti(vi) is nondecreasing in vi. As Si is nondecreasing it follows

from (19) that imposing Ti(vi) = Ti(v) for all vi ∈ [mi, v] requires that Si(vi) is constant over

[mi, v]. Then, without loss of generality, Si(vi) = Si(mi) for all vi ∈ [mi, v] must hold for

interim transfer to be constant.

EPCC can therefore be replaced with the following two conditions for all i ∈ N

Ti(mi) > −li, (CC1)

Si(vi) = Si(mi) for all vi ∈ [mi, v]. (CC2)

(CC1) ensures that all transfers are lower or equal to each agent’s cash resources while (CC2)

is necessary for interim transfers to stay constant when vi ∈ [mi, v].

Notice that (CC1) can also be expressed in terms of interim utility, that is, Ti(mi) =

Ui(mi) −mi
(
Si(mi) − ri

)
> −li. Replacing Ui(mi) by (IC2) evaluated at mi gives that (CC1)

rewrites

Ui(v
∗
i ) > mi

(
Si(mi) − ri

)
−

∫mi

v∗i

(Si(x) − ri)dx− li, (CC1)

so that (CC1) is expressed only in terms of the interim utility of a worst-off type.

6.2. The Second-Best Optimization Program

The problem therefore consists in maximizing Wλ subject to (IC1), (IC2), (IR1), (IR2), (CC1),

(CC2) and the two resource constraints si(v) ∈ [0, 1] for all vi ∈ V and
∑
i∈N si(v) = 0 for all

v ∈ Vn. First, notice that the transfer function only enters the objective function but can be

completely removed from the problem by directly imposing (IC2) on Wλ. Rewrite,

Wλ =
∑
i∈N

∫
V

{
(1 − λ)vi(Si(vi) − ri) − λTi(vi)

}
dF(vi).

(IC2) gives that Ti(vi) = Ui(v∗i ) +
∫vi
v∗i
(Si(x) − ri)dx− vi[Si(vi) − ri]. Plugging this expression

in the objective function, integrating by parts and rearranging yields

Wλ =
∑
i∈N

∫
V

(Si(vi) − ri)
[
vi + 1{vi 6 v

∗
i }λ
F(vi)

f(vi)
− 1{vi > v

∗
i }λ

1 − F(vi)

f(vi)

]
dF(vi) − λ

∑
i∈N

Ui(v
∗
i ).

Now I want to impose (CC2) directly on the objective function. For that matter, first consider

the following result.
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Lemma 4 For any IIC, IIR and EPCC mechanism with l ∈ (R∗+)
n, if mi < v then mi > supV∗(Si).

Proof. As mi < v then Ti(mi) = −li and then Ui(mi) = mi(Si(mi)− ri)− li. IIR implies that

Ui(mi) = mi(Si(mi) − ri) − li > 0 which immediately requires that Si(mi) > ri. By definition

of V∗(Si), Si(vi) 6 ri for all vi 6 infV∗(Si) and Si(vi) = ri for all vi in the interior of V∗(Si).

It follows that mi > supV∗(Si). �

As lemma 4 ensures that mi > supV∗(Si), plugging (CC2) into the objective function and

using the definitions of β(vi | λ) and α(vi | λ) yields

Wλ(s,U,m) :=
∑
i∈N

∫mi

v

(Si(vi) − ri)
[
1{vi 6 v

∗
i }β(vi | λ) + 1{vi > v

∗
i }α(vi | λ)

]
dF(vi)

+
∑
i∈N

∫v
mi

(Si(mi) − ri)α(vi | λ)dF(vi) − λ
∑
i∈N

Ui(v
∗
i ),

where Wλ(s,U,m) defines the objective as a function of the allocation rule s, the interim

utilities of the worst-off types U = (U1(v
∗
1), . . . ,Un(v∗n)) and the thresholds m := (m1, . . . ,mn).

The Relaxed Problem. As it is standard in the literature, consider a relaxed problem in

which (IC1) and (IR2) are ignored. It will be proven later that the relaxed problem satisfies

those constraints. Let χ := (χ1, . . . ,χn) ∈ Rn+ and τ := (τ1, . . . , τn) ∈ Rn+ denote the Lagrange

multipliers associated with (IR1) and (CC1), respectively. Then, the relaxed problem is given

by the following Lagrangian

L :=Wλ(s,U,m) +
∑
i∈N

χiUi(v
∗
i ) +

∑
i∈N

τi

(
Ui(v

∗
i ) −mi

(
Si(mi) − ri

)
+

∫mi

v∗i

(Si(x) − ri)dx+ li

)
.

A little algebra shows that the Lagrangian can be rewritten

L =
∑
i∈N

∫mi

v

(Si(vi) − ri)
[
1{vi 6 v

∗
i }β(vi | λ) + 1{vi > v

∗
i }
[
α(vi | λ) +

τi
f(vi)

]
dF(vi)

+
∑
i∈N

∫v
mi

(Si(mi) − ri)
[
α(vi | λ) −

τimi
1 − F(mi)

]
dF(vi) +

∑
i∈N

(χi + τi − λ)Ui(v
∗
i ) +

∑
i∈N

τili.

Notice that∫v
mi

(
Si(mi) − ri

)
α(vi | λ)dF(vi) =

∫v
mi

(
Si(mi) − ri

)
E
[
α(vi | λ) | vi > mi

]
dF(vi), (21)

Then, define the virtual valuation of agent i as

Γi(vi | v
∗
i ,mi, λ) :=



β(vi | λ) if vi ∈ [v, v∗i )

v∗i if vi = v
∗
i

α(vi | λ) +
τi
f(vi)

if vi ∈ (v∗i ,mi)

E
[
α(vi | λ) | vi > mi

]
− τimi

1−F(mi)
if vi > [mi, v].
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Using the fact that Si(vi) =
∫
Vn−1 si(v)

∏
j6=i dF(vj) and the definition of Γi, the Lagrangian

simply rewrites

L =

∫
Vn

(si(v) − ri)Γi(vi | v
∗
i ,mi, λ)

∏
k∈N

dF(vk) +
∑
i∈N

(χi + τi − λ)Ui(v
∗
i ) +

∑
i∈N

τili.

Notice that Γi is strictly increasing over [v, v∗i ) and (v∗i ,mi) and constant over [mi, v]. Yet, the

virtual valuation Γi has a downward discontinuous jump at v∗i and it is not clear how it behaves

at mi. Therefore, it is not possible to directly solve the problem by pointwise maximizing L as

it would violates the monotonicity of Si at vi = v∗i .

To ensure that (IC1) is satisfied, I first replace the virtual valuation Γi by an ironed virtual

valuation around v∗i (see Myerson (1981), Lu and Robert (2001) and Loertscher and Wasser

(2019)). Formally, for any given λ, define xi ∈ V such that β(xi | λ) = α(mi | λ) + τi
f(mi)

. Now,

for any xi ∈ [v, xi] let yi be such that

α(yi | λ) +
τi
f(yi)

= β(xi | λ). (22)

Then, define

δi(vi | xi,mi, λ) :=

Γi(vi | xi,mi, λ) if vi /∈ [xi,yi]

β(xi | λ) if vi ∈ [xi,yi].

The function δi(· | ·) is referred to as the ironed virtual valuation of agent i. It coincides with the

virtual valuation Γi everywhere but on [xi,yi] where it is constant. By definition of xi and yi,

δi(· | ·) is therefore increasing and continuous on [v,mi].

The methodology is as follows. First, I replace Γi by δi in the Lagrangian of the relaxed

problem and solve for si in the new problem by pointwise maximization. Building on Boulotov

and Severinov (2018), I show that δi is nondecreasing at vi = mi so that, combined with the

definition of δi for vi /∈ [xi,yi], the solution si is increasing in vi and so does Si, satisfying

(IC1). Second, I prove that the solution to the problem with ironed virtual valuation δi also

solves the problem with virtual valuation Γi.

For some xi ∈ [v, xi], consider the problem of maximizing the following Lagrangian

L̂ :=

∫
Vn

(si(v) − ri)δi(vi | xi,mi, λ)
∏
k∈N

dF(vk) +
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili.
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Pointwise maximization with respect to si gives

si(vi, v−i) =


1 if δi(vi | xi,mi, λ) > maxj6=i δj(vj | xj,mj, λ)

∈ [0, 1] if δi(vi | xi,mi, λ) = maxj6=i δj(vj | xj,mj, λ)

0 if δi(vi | xi,mi, λ) < maxj6=i δj(vj | xj,mj, λ),

(23)

as the problem is linear in si, full ownership goes to the agent with the highest ironed

virtual valuation δi. If two or more agents have the highest valuation, the final distribution

of ownership among those agents does not affect optimality. Yet, contrary to the first-best

mechanism, ties may occur with positive probability (due to bunching regions) so that the way

the mechanism breaks ties among agents will now affect IIR. As in Lu and Robert (2001) and

Boulatov and Severinov (2019), the design of tie-breaking rules becomes an important element

of the mechanism.

Using equation (23), the Lagrangian L̂ rewrites

L̂ =

∫
Vn

{
max
i∈N

δi(vi | xi,mi, λ) −
∑
i∈N

riδi(vi | xi,mi, λ)
} ∏
k∈N

dF(vk)

+
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili.

The following result is a generalization of Boulatov and Severinov (2018, Theorem 1, p. 15).

Define first,

δ−i (mi | xi,mi, λ) = lim
vi↑mi

δi(mi | xi,mi, λ) = α(mi | λ) +
τi

f(mi)
,

then,

Theorem 6 A solution to the maximization of L̂ is such that

1. For all i ∈ N such that mi 6 mj for some j 6= i, δi(vi | xi,mi, λ) is continuous at vi = mi,

that is,

τi =

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
. (24)

2. If it exists, agent z1 ∈ N such that maxi 6=z1 mi < mz1 < v then δz1(mz1 | xz1 ,mz1 , λ) >

δ−z1
(mz1 | xz1 ,mz1 , λ) = maxi 6=z1 δi(mi | xi,mi, λ). Hence, we have

α(mz1 | λ) +
τz1

f(mz1)
= max
i 6=z1

∫v
mi
α(vi | λ)dF(vi) +mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)
. (25)

Proof. See Appendix B. �

Although complex, Theorem 6 gives one important simple result: At vi = mi, the ironed
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virtual valuation δi(· | ·) is either continuous or has a discontinuous upward jump. Hence,

combined with the fact that by definition δi(· | ·) is increasing on [v,mi], the ironed virtual

valuation is therefore nondecreasing for all vi ∈ V . It follows that the allocation rule that

maximizes L̂, equation (23), is nondecreasing in vi. Thus, Si is also nondecreasing in vi and

pointwise maximization of L̂ satisfies (IC1). Then the following holds.

Theorem 7 If there exists an x := (x1, . . . , xn) ∈ ×i∈N[v, xi] and a solution to the following problem,

(A) max
s,m,U,τ,χ

L̂ =

∫
Vn

∑
i∈N

(si(v) − ri
)
δi(vi | xi,mi, λ)

∏
k∈N

dF(vk)

+
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili

s.t. si(v) > 0 ∀i ∈ N, v ∈ Vn∑
j∈N

sj(v) = 1,

(B) For all i ∈ N, Si(vi) = ri for vi ∈ [xi,yi].

Then if (s∗,U∗,m∗, τ∗,χ∗) satisfies (A) and (B) it also solves the full problem.

Proof. See Appendix B.

From Theorem 7, directly maximizing L̂ subject to the resource constraints is sufficient to

obtain the solution to the general problem. So, the second-best solution amounts to give the

final ownership to the agent with the highest ironed virtual valuation characterized by δi(vi | ·).
Those ironed virtual valuations are nondecreasing in vi so that higher valuations give (weakly)

better chances to receive final ownership. In case of tie (in terms of ironed virtual valuation),

however, the second-best solution can lead to a situation in which more than one agent receives

final ownership shares.

Yet, it remains to determine to characterize more precisely the ironed virtual valuations

that depend on the endogenously determined cut-off types m and the Lagrange multipliers

τ associated with (CC1). The following three corollaries derived from Theorem 6 help better

characterize the ironed virtual valuations. The proofs are relegated to Appendix B.

Corollary 1 At optimum, τi is decreasing in mi for all i ∈ N.

Corollary 2 For all i ∈ N such that δ−i (mi | xi,mi, λ) = δi(mi | xi,mi, λ), δi(mi) is increasing in

mi.

Corollary 3 There is a bijection between m = (m1, . . . ,mn) and τ = (τ1, . . . , τn) according to

equations (24) and (25).
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To illustrate the intuition of these results, take two agents with mi 6 mj, then τi > τj from

Corollary 1. From Corollary 2, δi(mi | xi,mi, λ) 6 δj(mj | xj,mj, λ). Loosely speaking, agent j

is given and advantage over agent i in terms of ironed virtual valuation for large valuations

as δi(mi | xi,mi, λ) 6 δj(mj | xj,mj, λ) but this advantage is compensated by a disadvantage

for middle range valuations as τi > τj implies that α(u | λ) + τi
f(u) > α(u | λ) +

τj
f(u) for some

u ∈ V .

Corollary 3 shows that the relationship between the cut-off types m and the Lagrange

multipliers τ is a one-to-one relationship. It follows that determining the optimal values of m

(resp. τ) uniquely determines the optimal values of τ (resp. m) therefore greatly simplifying

the problem.

Moreover, differentiating L̂ with respect to Ui(xi) gives χi + τi − λ = 0. Hence, for any

λ > 0 (i.e. nonnegative weight on collected revenue), it is clear that χi and τi cannot be

simultaneously null, that is, either the individual rationality or the cash constraint (or both)

is binding. As χi = λ− τi for all i ∈ N it is straightforward that if mi 6 mj then χi 6 χj as

τi > τj. If some agent j with cut-off mj gets some rent at optimum, i.e. Uj(xj) > 0, all agents i

with a lower cut-off mi 6 mj must also get some rent, i.e. Ui(xi) > 0 as χi 6 χj = 0 implies

χi = 0. Therefore, there is a clear relationship between the cut-off value mi and the presence of

rents.

In order to obtain a more detailed characterization of the second-best solution, the next

subsection investigates the case of bilateral equal-share partnerships.

6.3. Bilateral Equal-Share Partnerships

Consider a partnership with n = 2 whose partners are denoted by i and j. To focus on the

problem of cash-constraints, assume equal distribution of ownership shares r1 = r2 = 1
2 .

From Theorem 7, a solution to the second-best problem must be such that Si(vi) = ri for

all vi ∈ [xi,yi] and Sj(vj) = rj for all vj ∈ [xj,yj]. In particular, Si(xi) = Sj(xj) = 1
2 . Assume

xi < xj, then δi(u) = δj(u) for all u ∈ [v, xi]. It follows that Si(u) = Sj(u) for all u ∈ [v, xi].

But then as Si(xi) = Sj(xj) = 1
2 it must be that Sj(w) = 1

2 for all w ∈ [xi, xj] as Sj must be

nondecreasing. Yet, for Sj(w) to be constant on w ∈ [xi, xj] it is necessary that δj(w) is also

constant, however, xi < xj implies that δj(w) is strictly increasing on w ∈ [xi, xj]. Hence,

xi < xj is not possible. The exact same reasoning applies for xi > xj. Therefore, the only

possible solution is xi = xj =: x∗.

Now, it is possible to characterize the relationship between the cash resources li and lj with

the threshold values mi and mj.

Lemma 5 If li > lj then mi > mj.
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Proof. Assume that li > lj but assume instead that mi < mj. Then, τi > τj and yi < yj

from the definition of yi, equation (22). Moreover τi > τj implies that τi > 0 and thus

(CC1) is binding for agent i. Moreover, τi > τj implies that δi(u) > δj(u) for all u ∈ [yi,mi]

and thus Si(u) > Sj(u) for all u ∈ [yi,mi]. From Corollary 2, δi(mi) < δj(mj) and then

Si(mi) 6 Sj(mj). Then, as (CC1) must be satisfied for agent j. Notice that as mi < mj it must

be also be that χi < χj so that χj > 0 and thus Uj(xj) = 0. Therefore, (CC1) for agent j writes

lj >mj
(
Sj(mj) −

1
2

)
−

∫mj

yj

(
Sj(u) −

1
2

)
du

= mi

(
Sj(mj) −

1
2

)
+

∫mj

mi

(
Sj(mj) − Sj(u)

)
du−

∫mi

yj

(
Sj(u) −

1
2

)
du

> mi
(
Si(mi) −

1
2

)
−

∫mi

yj

(
Sj(u) −

1
2

)
du,

where the third line stems from the fact that Si(mi) 6 Sj(mj) and,
∫mj

mi

(
Sj(mj)−Sj(u)

)
du > 0

as mi < mj and Sj(mj) > Sj(u) for all u ∈ [mi,mj].

Assume first that mi 6 yj, then
∫mi

yj

(
Sj(u) −

1
2

)
du = 0 as Sj(u) = 1

2 for all u ∈ [mi,yj] ⊂
[x∗,yj]. Assume now that mi > yj, then

∫mi

yj

(
Sj(u) −

1
2

)
du 6

∫mi

yi

(
Si(u) −

1
2

)
du as Si(u) >

Sj(u) for all u ∈ [yj,mi] and Si(u) − 1
2 > 0 for all u ∈ [yi,yj]. Hence, in both cases,

lj > mi
(
Si(mi) −

1
2

)
−

∫mi

yj

(
Sj(u) −

1
2

)
du > mi

(
Si(mi) −

1
2

)
−

∫mi

yi

(
Si(u) −

1
2

)
du

= Ui(xi) + li,

where the equality holds as (CC1) binds for agent i. From (IR), Ui(xi) > 0 so that the above

result implies that li 6 lj, contradicting the initial assumption that li > lj. Therefore, li > lj
implies that mi > mj. �

Assume now, that l2 > l1. It follows from Lemma 5 that m1 6 m2 and thus τ1 > τ2. Figure

1 illustrates the different possible shapes for the ironed virtual valuations of each agent where

it is assumed, without loss of generality, that V = [0, 1] to simplify the exposition.

Case 1 illustrates the case in which both agents are cash-constrained but l1 and l2 are far

apart. In that case, agent 2 is defined as in equation (25) of Theorem 6 and agent 1 by equation

(24). Therefore agent 1 has a continuous ironed virtual valuation at m1 while agent 2’s ironed

virtual valuation jumps at m2. Both agents are similar for low and medium valuations (below

y1) but then agent 1 is advantaged over [y1,m1] and agent 2 is advantaged over [m1, v].

In case 2, the two agents share the same cut-off m1 = m2. This happens whenever they are

both cash-constrained and the difference between l1 and l2 is small. As m1 = m2 it follows that

τ1 and τ2 are defined by equation (24) so that both ironed virtual valuations are continuous at

m1 = m2.
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x∗ y1 y2 m1 m2 1

v

δi(vi | xi,mi, λ)

(a) Case 1

x∗ y1 = y2m1 = m2 1

v

δi(vi | xi,mi, λ)

(b) Case 2

x∗ y1 y2 m1 m2 = 1

v

δi(vi | xi,mi, λ)

(c) Case 3

Figure 1: Ironed virtual valuations for agent 1 (red) and 2 (green) when l1 < l2.
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Case 3 occurs when agent 1 is cash-constrained while agent 2 is almost not cash-constrained.

In that case, agent 2’s ironed virtual valuation is not distorted for large valuations but agent 2

is still disadvantaged over agent 1 for some valuations above y1.

6.4. Budget Balanced Second-Best Mechanisms

Now, assume that the goal is to maximize the ex ante surplus subject to incentive compatibility,

individual rationality, cash constraints and budget balance as in Section 3.22 This problem can

be written as

max
s,t

∑
i∈N

E
[
vi(si(v) − ri)

]
,

subject to incentive compatibility, individual rationality, cash constraints and −
∑
i∈NE

[
ti(v)

]
>

K. Where K ∈ R+ is a given budget limit that should not be exceeded by the transfers made

to the agents. Denote by λ > 0, the Lagrange multiplier associated with the budget balance

constraint so that the problem rewrites,

max
s,t

∑
i∈N

E
[
vi(si(v) − ri)

]
+ λ
(
−
∑
i∈N

E
[
ti(v)

]
−K

)
,

subject to incentive compatibility, individual rationality and cash constraints. Notice that

maximizing this objective is equivalent to maximize the following objective

max
s,t

(1 + λ)W λ
1+λ

(s, t) − λK,

subject to incentive compatibility, individual rationality and cash constraints and where Wω is

given by equation (18), i.e. the objective function of the problem solved in Section 6, where λ is

replaced by λ
1+λ and it is clear that λ

1+λ ∈ [0, 1).

Therefore, maximizing the ex ante surplus subject to incentive compatibility, individual

rationality, cash constraints and budget balancedness is equivalent to solve the second-best

problem derived in Subsection 6.2 for a well chosen λ.

7. EXTENSIONS

7.1. Other Ownership Structures

The ex post efficient dissolution condition, the Equivalence Theorem and the auction (Theorems

1, 2, 3, 4 and 5) actually apply to more general settings than the partnership problem discussed

above. The interpretation of the setting as a partnership problem lies in the assumption that

22Although, as previously said, I restrict the analysis to ex ante budget balanced mechanisms rather than ex post
budget balanced due to the complexity of the latter.
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for all i ∈ N, ri ∈ [0, 1] and
∑
i∈N ri = 1, that is, each partner initially owns a share of an asset

which is then redistributed to the one with the highest valuation.

Although crucial for the characterization of optimal initial ownership structures in Section

(4) and their interpretation, this assumption plays a very limited role in the derivation of

Theorems 1-5. Coming back to Section 3, recall that IIR can be written as Hi 6 C(ri) where

C(ri) := infvi
{

E−ig(v) − viri
}

. From there on, Theorems 1-5 can be written only using the

definition of C(ri) without any particular reference to the particular outside options viri.

Consider the following. If agent i ∈ N refuses to participate in the mechanism, then it

receives ϕi(v; θ, l) ∈ [0, v] where ϕi is assumed to be concave in vi and θ ∈ Rn+ is some vector

of parameters where θi ∈ R+ is associated with agent i. Notice that ϕi may depend on all

valuations, on the cash resources and on some other parameters defining the agents. Setting

ϕi(v; θ, l) := viθi with
∑
i∈N θi = 1 simply replicates the ownership structure investigated in

the rest of the paper. In the general case, IIR writes

viS
∗
i (vi) + T

∗
i (vi) − E−iϕi(v; θ, l) > 0, for all vi ∈ V , i ∈ N.

Replacing T∗i (vi) := E−it
∗
i (v) where t∗i (v) is given by equation (2), IIR rewrites

Hi 6 E−ig(v) − E−iϕi(v; θ, l), for all vi ∈ V , i ∈ N.

Define for each i ∈ N,

Zi(θ, l) := inf
vi∈V

{
E−ig(v) − E−iϕi(v; θ, l)

}
,

then IIR rewrites

Hi 6 Zi(θ, l), for all i ∈ N.

The function Zi(·) serves the same role as C(·) in Section 3. It defines the maximal amount that

can be collected on agent i without violating their interim individual rationality constraint.

Hence, v∗i ∈ arg minvi
{

E−ig(v) − E−iϕi(v; θ, l)
}

is agent i’s worst-off type which is character-

ized by the first-order condition of the minimization problem: F(v∗i )
n−1 = ∂

∂vi
E−iϕi(v; θ, l).23

The condition for the existence of ex post efficient dissolution (with Bayesian or Dominant

Strategy mechanisms) then simply rewrites

∑
i∈N

min
{
Zi(θ, l), li

}
> B.

23The first-order condition is necessary and sufficient. Indeed the second-order derivative of E−ig(v) −

E−iϕi(v; θ, l) immediately writes (n − 1)f(vi)F(vi)n−2 − ∂2

∂v2
i

E−iϕi(v; θ, l) < 0 as ϕi(v; θ, l) is assumed to be
concave in vi.
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The equivalence theorems still hold and the cash-constrained auction (Section 5) still applies by

modifying the side payments accordingly. Therefore, the dissolution condition applies to more

general settings than the ones with outside options of the form viri.

Example 1: Allocation of a Private Good. The simplest and most general extension of

the partnership dissolution framework is that of the allocation of a private good to agents

with type-dependent outside opportunities. Assume the state wants to privatize a publicly-

owned asset (road, spectrum, . . . ). A group of n candidate firms is considered. None of

the firms has initial ownership rights in the publicly-owned asset but each has some outside

opportunities that likely depend on their ability to efficiently run a business. Applying the

partnership dissolution framework with general outside opportunities ϕi(·) directly provides

the mechanism that efficiently allocates the asset to the most efficient firm. Those kinds of

allocation problems generally involve highly valued assets and require large monetary transfers

to get control rights. As previously showed, the mechanism I propose performs better than

that of CGK in the presence of limited cash resources and could be used to help small firms

with low cash resources to compete against larger well-established incumbents.

Example 2: Silent Partners. This example is inspired by Ornelas and Turner (2007). Assume

n partners jointly own a business where each of them can claim a share ri ∈ [0, 1] (and∑
i∈N ri = 1) of total output value. Each partner’s valuation vi ∈ V represents their ability to

run the business and the business value is given by the valuation of the partner in charge, say

partner 1. In this setting, it is assumed that partner 1 has claims r1 on total output value but is

also given control rights over the business. This framework provides a way to unbundle control

rights from ownership rights on the value of the output.

Let (with a slight abuse of notations) ϕ1 := v1r1 and ϕj := E−jv1rj for all j 6= 1. The

difference with the standard case is that if agent i ∈ N refuses to participate in the mechanism,

the business continues as usual, that is, it is still worth v1.

Assume now that the partners consider dissolving their partnership and let Zi(ri) be

partner i’s maximal payment before refusing to participate in dissolution. Then Z1(r1) = C(r1)

as partner 1 exhibits exactly the same outside option as in the previous analysis. On the

contrary, for each j 6= 1, Zj(rj) = infvj
{

E−jg(v) − rjE−jv1
}

=
∫v
v xdF(x)

n−1 − rj
∫v
v xdF(x)

where it is easy to show that the worst-off type is v∗j = v for all j 6= 1. The dissolution condition

therefore writes
∑
i∈Nmin{Zi(ri), li} > B.

Let n = 3, F(vi) = vi and V = [0, 1]. Then Z1(r1) = 2/3 − (2/3)r3/2
1 and Zj(rj) = 2/3 −

(1/2)rj for j 6= 1. In the absence of cash constraints, dissolution is possible if and only if

r1 6 9/16 and the remaining shares can be distributed arbitrarily between the silent partners.

Furthermore, the extreme ownership structure where r1 = 0 is also dissolvable. With cash-

constraints, however, those extreme ownership structures where r1 is close to zero will generally

prevent ex post efficient dissolution. Assume for instance that partner 1 has l1 = 1/2 while the
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other two partners are not cash-constrained. Then, ex post efficient dissolution is impossible

whenever r1 < 1/3. Cash constraints somehow prevents extreme ownership structures to be

desirable in some cases.

7.2. Asymmetric Distributions of Valuations

Most of the results concerning ex post efficient dissolution mechanisms naturally extends to

asymmetric distribution of the agents’ valuations. More precisely, Theorems 1, 2, 3 and 4 still

hold with only slight modifications of the dissolution condition for the first two. I give the

main elements of the proof for Bayesian mechanisms which mainly consists in the construction

of the transfer function to satisfy EPCC. The case of Dominant Strategy mechanisms can easily

be obtained using this transfer function and the proof of Theorem 2 and is therefore omitted.

Extending the analysis to asymmetric distributions of valuations is important as many

applications of the partnership dissolution framework can be better represented that way. In

the divorce problem for instance, the asset that has to be reallocated might be the family house

of one of the spouses. The family house might have a low market value but a large sentimental

value for the spouse who has spent their childhood in the family house. Therefore it is more

likely that this spouse has a larger valuation for the family house than the other one, i.e.

distributions of valuations are likely to be asymmetric. In the biotechnology sector, large well-

established firms partner with small young firms to develop new research. It is more likely that

large firms have higher valuations (as they are more capable of using the results of the research)

than small firms. The question is therefore to understand how asymmetric distributions of

valuations and limited cash resource interplay and affect the dissolution condition.

The Dissolution Condition. Consider the same setting as the one described in Section 2

except for the distribution of valuations. Assume that partner i ∈ N has valuation vi ∈ V where

each vi is independently distributed from an absolutely continuous cumulative distribution

function Fi. Let fi = F ′i be the probability distribution function for vi. For convenience for

any x ∈ V , let GGG(x) :=
∏
k∈N Fk(x), GGGi(x) :=

∏
k6=i Fk(x) and GGGij(x) :=

∏
k6=i,j Fk(x) denote

the distributions of the maximum of all valuations, all valuations except vi and all valuations

except vi and vj, respectively.

Proposition 1 holds with asymmetric distributions of valuations (see Makowski and

Mezzetti, 1994), then the transfer function of partner i ∈ N must write ti(v) = g(v) −

vis
∗
i (v) − hi(v). Recall that the ex ante cost of implementing a Groves mechanism writes

G := Eg(v) =
∫
V xdGGG(x) as in the case of symmetric distributions of valuations. The main

difference concerns the upper bound of how much can be taken from partner i without vi-

olating their individual rationality constraints. In Section 2, this upper bound was defined

by C(ri) = infvi
{

E−ig(v) − viri
}

so that two partners with the same initial ownership shares

ri = rj had the same upper bounds C(ri) = C(rj). With asymmetric distributions of valuations

two agents with the same initial ownership shares may have different upper bounds. Formally,
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simply let Ci(ri) := infvi
{

E−ig(v) − viri
}

denote this upper bound in the asymmetric case.

The only difference is that now each partner may have a different function Ci(·) depending on

their cumulative distribution function Fi. These new pieces of notations are sufficient to state

the result extending the analysis to asymmetric distributions of valuations.

Proposition 6 An EF, IIC (resp. EPIC), IIR, EPBB (resp. EABB) and EPCC dissolution mechanism

exists if and only if

∑
i∈N

min{Ci(ri), li} > (n− 1)G. (26)

Proof. I provide a sketch of the main elements of the proof for Bayesian mechanisms. See

Appendix C for further details. The “only if” part (necessity) is obtained exactly as in the proof

of Theorem 1: Simply replace C(ri) by Ci(ri) in equation (6) and then combining it with (7)

and (4) it gives (26).

The “if” part (sufficiency) requires the construction of an appropriate transfer function.

Again, using the transfer function proposed by Dudek, Kim and Ledyard (1995) is helpful for

the cash-constrained case. Consider the following:

ti(v) :=


−

∫
vi

v

∑
k6=i

∫x
vGGG(y)dy

GGG(x)

fk(x)

Fk(x)
dx−

n− 1
n

v−φi if ρ(v) = i∫
vj

v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−φi if ρ(v) = j 6= i,

(27)

where ρ(v) is defined as in Section 3 and φi ∈ R is a constant.

It is immediate to see from (27) that EPBB is equivalent to
∑
i∈Nφi = 0. It is also EF as

it allocates all the ownership shares to the partner with the highest valuation. Moreover, it is

clear that the minimum of this function is attained when ρ(v) = i and vi = v, that is

min
v∈Vn

ti(v) = φi −

∫v
v

∑
k6=i

∫x
vGGG(y)dy

GGG(x)

fk(x)

Fk(x)
dx−

n− 1
n

v.

A little algebra on the integral term (see Appendix C for detailed computations) shows that

EPCC can be written as

φi 6
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+ li. (28)

Computing the interim transfer Ti(vi) := E−iti(v) gives

Ti(vi) =

∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+

∫v
vi

xdGGGi(x) −φi,
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Detailed computations of Ti(vi) and proof that the mechanism is IIC can be found in Appendix

C. The characterization of C(ri) =
∫v
v∗i (ri)

xdF(x)n−1 given by equation (15) naturally extends

to asymmetric distributions of valuations as follows: Ci(ri) =
∫v
v∗i (ri)

xdGGGi(x), where v∗i (ri) is

the worst-off type that solves infvi
{

E−ig(v) − viri
}

which is given by GGGi(v∗i (ri)) = ri. As in

CGK, satisfying IIR is equivalent to Ti(v∗i (ri)) > 0. Therefore, using the expression of Ci(ri),

IIR can be written as

φi 6
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+ Ci(ri). (29)

Combining equations (28) and (29) and simplifying gives

φi 6 min{Ci(ri), li}+
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G. (30)

Simply let

φi = min{Ci(ri), li}+
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G−

1
n

∑
j∈N

min{Cj(rj), lj}− (n− 1)G

 .

Given that equation (26) is satisfied, it is then immediate that φi satisfies equation (30) so

that the mechanism is IIR and EPCC. For EPBB, it is easy to show that
∑
iφi = 0 holds after

noticing that
∑
i∈N
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx = G− v where the result is obtained by integration

by parts. �

Some Characterization Results. Providing a full characterization of the dissolution condition

with asymmetric distributions of valuations and asymetric cash resources is not very insightful.

Many subcases can occur depending on the various initial conditions for distributions of

valuations and for cash resources. Instead, I provide particular characterization results to

illustrate some of the effects of asymmetric distributions of valuations on optimal initial

ownership structures.

In order to make meaningful and easy comparisons between the partners, assume that

distributions of valuations can be ranked according to first-order stochastic dominance as

follows: For all x ∈ V , F1(x) 6 F2(x) 6 · · · 6 Fn(x). It follows that for any i, j ∈ N with

i < j, partner i is more likely to have a higher valuation than partner j. For any i < j and

x ∈ V , notice that GGGi(x) = GGGj(x)
Fj(x)
Fi(x)

> GGGj(x) as Fi(x) 6 Fj(x). Given that for any k ∈ N and

r̂ ∈ [0, 1], GGGk(v∗k(r̂)) = r̂ then for any i, j with i < j, v∗i (r̂) 6 v
∗
j (r̂) as Gi(x) > Gj(x) and Gk(x) is

increasing for any x ∈ V . It follows that for any i, j with i < j and any r̂ ∈ [0, 1], Ci(r̂) 6 Cj(r̂)
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as

Ci(r̂) − Cj(r̂) =

∫v
v∗i (r̂)

xdGGGi(x) −

∫v
v∗j (r̂)

xdGGGj(x)

= v∗j (r̂)GGGj(v
∗
j (r̂)) − v

∗
i (r̂)GGGi(v

∗
i (r̂)) −

∫v
v∗i (r̂)

GGGi(x)dx+

∫v
v∗j (r̂)

GGGj(x)dx

=

∫v
v∗j (r̂)

[GGGj(x) −GGGi(x)]dx−

∫v∗j (r̂)
v∗i (r̂)

[GGGi(x) − r̂]dx 6 0,

where the second line is obtained after integrating the two terms by parts and the third line

uses the fact that GGGi(v∗i (r̂)) = GGGj(v
∗
j (r̂)) = r̂. The inequality follows from GGGi(x) > GGGj(x) for all

x ∈ V , v∗i (r̂) 6 v
∗
j (r̂) and GGGi(x) > r̂ for x ∈ [v∗i (r̂), v

∗
j (r̂)] so that the first is always nonpositive

and the second one always nonnegative.

Consider now the optimal ownership structure r∗ ∈ arg maxr∈∆n−1

∑
i∈N Ci(ri) in the

absence of cash constraints. Recall that from the Envelope Theorem, C ′k(rk) = −v∗k(rk), then

optimality conditions implies C ′i(r
∗
i ) = C ′j(r

∗
j ) for all i, j, which is equivalent to v∗i (r

∗
i ) = v

∗
j (r
∗
j ).

As v∗i (r
∗
i ) 6 v

∗
j (r
∗
j ) and v∗k(·) is increasing for all k ∈ N, it follows that the initial ownership

structure maximizing
∑
i∈N Ci(ri) must satisfy r∗1 > r

∗
2 > · · · > r∗n. This result is the one

obtained by Figueroa and Skreta (2012, Corollary 1).

Intuitively, Ci(r̂) 6 Cj(r̂) for i < j means that less money can be collected on partners

whose valuations are more likely to be high as they are more likely to have a higher initial

outside option. Optimality conditions reveal that it is better to give more initial ownership

rights to those partners as already few money can be collected on them and fewer initial

ownership rights to partners who are more likely to have low valuations in order to collect

larger amount of money from them. This feature is reminiscent of the results of Figueroa

and Skreta (2012) who characterize optimal ownership structures in partnership dissolution

problems with asymmetric distributions of valuations. They show that if asymmetries in

distributions of valuations are quite important, the optimal ownership structures might be very

extreme. Limited cash resources, however, may mitigate those extreme ownership structures as

it is illustrated in the following example.

A Two-agent Example. Take the case of a large pharmaceutical firm i and a small R&D firm

j forming an alliance to develop a new drug. Ownership shares ri and rj := 1 − ri represent

initial claims on the output generated with the new drug. It is reasonable to think that the

pharmaceutical firm has a higher potential than the R&D firm to distribute the drug once it

has been developed. This idea is simply modeled by assuming that the pharmaceutical firm is

more likely to have a higher valuation for the drug than the R&D firm. Then, let Fi(x) 6 Fj(x)

for all x ∈ V . Furthermore, the small R&D firm can be assumed to be financially constrained

while I assume that the large firm is not for convenience. Let li = +∞ and lj < +∞ and define

r∗i ∈ arg maxri∈[0,1] Ci(ri) + Cj(1 − ri).
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Consider first the case in which lj > Cj(1 − r∗i ). Then, it is clear that r∗i is also the

solution to maxr̂i Ci(r̂i) + min{Cj(1 − r̂i), lj}. Previous computations show that r∗i > r
∗
j , i.e. the

pharmaceutical firm should have more initial ownership rights as it is more likely to be the

final owner of the drug. If asymmetries in distributions of valuations are large, then it can

become optimal to initially give a very large share of ownership rights to the pharmaceutical

firm.

But now consider the case in which lj < Cj(1 − r∗i ). It is clear that r∗i is not the optimal

ownership structure anymore. Indeed, take r̂i such that Cj(1− r̂i) = lj. As Cj(·) is a decreasing

function this implies that r̂i < r∗i and as Ci(·) is also a decreasing function it implies that

Ci(r̂i) > Ci(r
∗
i ). It follows that Ci(r̂i)+Cj(1− r̂i) = Ci(r̂i)+ lj > Ci(r

∗
i )+ lj. If it were beneficial

to further decrease r̂i then the left derivative of Ci(ri) + Cj(1 − ri) at ri = r̂i would be negative,

i.e., C ′i(r̂i) − C ′j(1 − r̂i) < 0. But from optimality conditions recall that C ′i(r
∗
i ) = C ′j(1 − r∗i ) and

thus C ′i(r̂i) > C ′i(r
∗
i ) = C

′
j(1 − r

∗
i ) > C ′j(1 − r̂i) as C ′i(·) and C ′j(·) are both decreasing. Therefore,

the left derivative of the objective at ri = r̂i is nonnegative and r̂i is the solution to the problem

when lj < Cj(1 − r∗i ).

In the latter case, r̂i < r∗i , that is, the distortion in initial ownership rights due to asym-

metries in distributions of valuations is mitigated by the presence of cash constraints. Giving

more initial ownership shares to the pharmaceutical firm is good as it is likely that it will

efficiently be the final owner of the drug but at the same time it could make impossible an

efficient buyout by the financially-constrained R&D firm.

8. CONCLUSION

In this paper, I study partnership dissolution problems with cash-constrained agents. This

framework applies to various economic settings such as divorces, terminations of joint ventures,

bankruptcy procedures or land reallocation. Relying on the mechanism design literature, I

construct dissolution mechanisms that perform well even in the presence of cash-constrained

agents. I derive necessary and sufficient conditions for ex post efficient partnership dissolution

with interim (resp. ex post) incentive compatible, interim individually rational, ex post (resp.

ex ante) budget balance and ex post cash-constrained mechanisms. I show that the dissolution

condition is a generalization of the condition found in CGK. Interestingly, when partners

have asymmetric cash constraints, the equal-share partnership is no more the optimal initial

ownership structure (as found by CGK). Instead, the optimal initial ownership structure allocates

relatively more (resp. less) property rights to more (resp. less) cash-constrained partners. This

result sheds light on the role of the distributions of liquid and illiquid assets in organizations.

I show that the standard equivalence between Bayesian and dominant strategy mechanisms

remains valid under the assumption of cash-constrained partners. This result indicates that both

classes of mechanisms can be equivalently implemented and that there is no new restrictions

due to the presence of cash-constraints.
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I propose a simple “cash-constrained” auction to implement the ex post efficient dissolution

mechanisms. It simply consists in asking agents to submit bids to an auctioneer who finally

allocates ownership rights to the highest bidder. Prices and side payments are designed

to satisfy all the desired properties of the dissolution mechanism. I further show that the

cash-constrained auction allows to dissolve some partnerships with cash-constrained agents

that CGK’s auction would fail to dissolve.

Finally, I investigate second-best mechanisms whose objective function is a convex com-

bination of the expected surplus and the expected collected revenues. I characterize the set

of interim incentive compatible, interim individually rational and ex post cash-constrained

mechanism for any allocation rule. I show that the problem can be solved using a relaxed

problem. The solution involves (i) ironing of the virtual valuations of the partners and, (ii)

favors heavily cash-constrained agents towards less cash-constrained agents for medium-range

valuation and (iii) favors less cash-constrained agents towards heavily cash-constrained agents

for high-range valuations. Imposing a budget balance condition can be simply done by solving

the above problem for a well-chosen weight of the convex combination the expected surplus

and the expected collected revenues.
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APPENDIX A

Additional computations for Theorem 1. To prove that tCi is IIC, Proposition 1 requires that E−ih
C
i (v) = Hi

where Hi ∈ R is a constant. Taking expectations E−i over equation (9) gives

E−ih
C
i (v) =

n− 1
n

E−ig(v) +
1

n− 1

∑
j6=i

E−isj(v)ψ(vj) −ψ(vi)E−isi(v)

+φi

=
n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 +

∫v
vi

ψ(vj)F(vj)
n−2dF(vj) −ψ(vi)F(vi)

n−1
]
+φi.

Replacing ψ(·) by its expression and integrating the third term by part gives

E−ih
C
i (v) =

n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 +

(
−

∫v
v
F(x)ndx+

∫vi
v F(x)ndx

F(vi)
+

∫v
vi

F(x)n−1dx

)

−

∫vi
v F(x)ndx

F(vi)

]
+φi

=
n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 −

∫v
v
F(x)ndx+

∫v
vi

F(x)n−1dx
]
+φi.

Notice that, by integration by parts∫v
vi

F(x)n−1dx = v− viF(vi)
n−1 −

∫v
vi

xdF(x)n−1.

Plugging this expression into E−ih
C
i (v) gives

E−ihi(v) =
n− 1
n

[
v−

∫v
v
F(s)nds

]
−φi

=
n− 1
n

G−φi,

which concludes the proof. �

Proof of Lemma 1. Notice that,

∫vk
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt = −

[∫t
v F(s)

nds

nF(t)n

]vk
v

+
1
n

∫vk
v
dt

=
1
n

[
vk −

∫vk
v F(s)nds

F(vk)n
− v

]

=
1
n
[vk −ψ(vk) − v] ,

where the first line stems from integration by parts and the second line is obtained using L’Hôpital’s rule, i.e.,

limt→v

∫t
v F(s)

nds

nF(t)n
= limt→v

F(t)

nf(t)
= 0.

Then, vk −ψ(vk) = n
∫vk
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ v from which it immediately follows that [vk −ψ(vk)] is nonneg-

ative and increasing in vk ∈ V . �

Proof of Theorem 2. (Necessity) Take a dissolution mechanism (s∗, t∗) satisfying EF and EPIC, i.e., satisfying

Proposition 1.b. Then, t∗i (v) = g(v) − visi ∗ (vi) − hi(v) with hi(v) is constant in vi. Define Hi := E−ihi(v), it is

then straightforward to see that equations (6) and (7) necessary in Bayesian mechanisms are also necessary for

dominant strategy mechanisms. As shown in the proof of Theorem 1, the necessity of equations (6) and (7) implies

the necessity of
∑
i∈Nmin{C(ri), li} > (n− 1)G which is (14).
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(Sufficiency) Consider the following transfer function for agent i: t∗i (v) = g(v) − vis
∗
i (v) −Φi where Φi ∈ R is

a constant. From Proposition 1.b., t∗i (v) is EF and EPIC. EABB requires E
[∑

i t
∗
i (v)

]
= 0, which is equivalent

to
∑
iΦi = (n − 1)G. EPCC requires that t∗i (v) = g(v) − vis

∗
i (v) −Φi > −li which is equivalent to Φi 6

li +
∑
j6=i vjs

∗
j (v) for all v ∈ Vn. Thus, the most restrictive case gives Φi 6 li. Finally, IIR requires

E−ivi(s
∗
i (v) − ri) + E−it

∗
i (vi) = E−ig(v) −Φi − viri > 0 for all vi ∈ V ,

or equivalently that Φi 6 C(ri) with C(ri) := infvi {E−ig(v) − viri}. Aggregating IIR and EPCC, i.e. Φi 6 li and

Φi 6 C(ri), respectively, gives Φi 6 min{C(ri), li} for all i ∈ N.

Take for instance, Φi = min{C(ri), li}−
∑

k∈N min{C(rk),lk}−(n−1)G
n . It is immediate that EABB is satisfied as∑

i∈NΦi = (n− 1)G. Moreover, as condition (14) is satisfied, i.e.
∑
imin{C(ri), li} > (n− 1)G, it is clear that

Φi 6 min{C(ri), li} therefore satisfying IIR and EPCC as well. �

Proof of Theorem 3. The dissolution mechanism (s∗, t̃) is EF and EPIC then, from Proposition 1.b., t̃i(v) = g(v) −

vis
∗
i (v) − ki(v−i) for some function ki independent of vi. Let Ki := E−iki(v−i). From EABB, E

∑
i∈N t̃i(v) =

(n− 1)G−
∑
i∈N Ki = 0. Take another dissolution mechanism (s∗, t) with

ti(v) = g(v) − vis
∗
i (v) − hi(v) +

n− 1
n

G−φi −Ki,

where hi(v) is defined by equation (9) for which E−ihi(v−i) = n−1
n G− φi and

∑
i∈N hi(v) = (n− 1)g(v) −∑

i∈N φi. Then, it is immediate that (s∗, t) is EF and IIC. From (11), minv g(v) − visi(v) − hi(v) = −n−1
n G+φi

and then minv ti(v) = −Ki. As t̃ is EPCC, t̃i(v) = g(v) − vis
∗
i (v) − ki(v−i) > −li for all i ∈ N, v ∈ Vn

which implies that E−i[g(v) − vis
∗
i (v)] − Ki > −li for all i ∈ N, vi ∈ V and then that −Ki > −li given that

the infimum of E−i[g(v) − vis
∗
i (v)] is zero. It follows that minv ti(v) = −Ki > −li so that t is also EPCC.

Straightforward computations shows that
∑
i∈N ti(v) = 0 as

∑
i∈N Ki = (n− 1)G. Finally, notice that E−iti(v) =

E−i[g(v) − vis
∗
i (v)] −Ki = E−it̃i(v) implying that (s∗, t) is payoff equivalent to (s∗, t̃) at the interim stage and thus

also IIR. �

Proof of Theorem 4. The dissolution mechanism (s∗, t) is EF and IIC then, from Proposition 1.a., ti(v) =

g(v) − vis
∗
i (v) − hi(v) where E−ihi(v) =: Hi. Take another dissolution mechanism (s∗, t̃) where

t̃i(v) = ti(v) + hi(v) −Hi

= g(v) − vis
∗
i (v) −Hi.

Then, from Proposition 1.b., t̃ is EF and EPIC. From EPCC, ti(v) = g(v)− vis∗i (v)−hi(v) > −li for all i ∈ N, v ∈ Vn

which implies that E−i[g(v)− vis
∗
i (v)−Hi > −li for all i ∈ N, vi ∈ V . This is equivalent to −Hi > −li for all i ∈ N.

Then notice that minv t̃i(v) = −Hi > −li such that t̃ is also EPCC. Computing E
∑
i∈N t̃i(v) = E

∑
i∈N ti(v) = 0

and thus t̃ is EABB. Finally, as E−it̃i(v) = E−iti(v) for all i ∈ N, vi ∈ V , then (s∗, t̃) is interim payoff equivalent to

(s∗, t) and also IIR. �

Proof of Proposition 2. (Only if) Assume there exists an EF, IIC, IIR, EPBB and EPCC mechanism (s, t). From

EPCC we have ti(v) > −li for all i ∈ N, v ∈ Vn. Then, simply let t̃i(v) = ti(v) for all i, v and it is immediate that

E−it̃i(vi, v−i) > −li for all i,v. The mechanism (s, t̃) therefore satisfies all the properties of the mechanism (s, t)

and also satisfies interim cash constraints.

(If) Assume there exists an EF, IIC, IIR, EPBB and interim cash-constrained mechanism (s, t̃). As (s, t̃) is IIC, the

transfer rule is Groves in expectations and can be written as t̃i(v) = g(v) − visi(v) − hi(v) with E−ihi(v) := Hi for

all i, vi. The interim cash constraints then writes E−it̃i(vi, v−i) > −li for all i ∈ N, vi ∈ V or equivalently

Gi(vi) − E−ivisi(v) −Hi > −li for all i, vi.
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This inequality is equivalent to Hi 6 infvi {Gi(vi)−E−ivisi(v)}+ li for all i ∈ N. As the infimum is zero, we simply

have Hi 6 li for all i ∈ N. Remark that this is the same necessary condition to satisfy the cash constraints as in the

proof of Theorem 1, i.e., it is the same necessary condition than for a mechanism with EPCC. As the other conditions

(EF, IIR and EPBB) are the same we can say that we have a mechanism (s, t̃) only if
∑
imin{Ci, li} > (n− 1)G. But

from Theorem 1, we know that this condition is sufficient to construct a mechanism (s, t) satisfying EPCC. �

Proof of Proposition 3. Starting with Proposition 3.a., assume that r̃i 6 1
n for all i ∈ N. Notice that

maxr∈∆n−1
∑
i∈N C(ri) =

∑
i∈N C(

1
n ) and thus for all r ∈ ∆n−1,

∑
i∈Nmin{C(ri), li} 6

∑
i∈N C(

1
n ). It is

then clear that choosing r∗i =
1
n for all i ∈ N is such that for each i ∈ N, min{C(r∗i ), li} = C(r

∗
i ) = C(

1
n ) provided

that r∗i > r̃i for all i ∈ N. Hence,
∑
i∈Nmin{C(ri), li} =

∑
i∈N C(

1
n ) which is the upper bound.

Consider now Proposition 3.b., i.e. assume that r̃i > 1
n for some i ∈ N. Define L(r, λ) =

∑
i∈Nmin{C(ri), li}+

λ(
∑
i∈N ri − 1) where λ ∈ R is the Lagrange multiplier associated with the constraint

∑
i∈N ri = 1. Notice that∑

i∈Nmin{C(ri), li} is concave as C(ri) is concave for each i ∈ N and differentiable everywhere except at ri = r̃i.

Let δriL(r, λ) denote the superdifferential of the Lagrangian in ri, then

δriL(r, λ) = λ+


0 if ri < r̃i

[C ′(r̃i), 0] if ri = r̃i

C ′(ri) if ri > r̃i.

The necessary optimality condition writes 0 ∈ δriL(r, λ) for all i ∈ N. First, assume that there is at least one

r∗j < r̃j. Then λ = 0 and ri > r̃i is impossible as it is impossible to have C ′(ri) = 0 with ri > r̃i (indeed C ′(ri) = 0

only occurs when v = 0 and ri = 0). But then, if all r∗i 6 r̃i with one strict inequality at least, it follows that∑
i∈N r

∗
i <
∑
i∈N r̃i 6 1 which is also impossible. Therefore, it is necessary that ri > r̃i for all i ∈ N. Assume now

that ri > r̃i for all i ∈ N. Then, the necessary optimality condition implies that λ+C ′(r∗i ) = 0 for all i ∈ N. But

then it follows that r∗i =
1
n for all i ∈ N which is impossible as some r̃i > 1

n contradicting that r∗i > r̃i for all i ∈ N.

Hence, the solution must be such r∗i > r̃i for all i ∈ N with at least one equality. Let A := {i ∈ N | r∗i > r̃i} and

B := {j ∈ N | r∗j = r̃j}. Then, for all i ∈ A, λ+C ′(r∗i ) = 0 implies that λ > 0 and r∗i = r∗k for any two i,k ∈ A. For

any i ∈ A, and let r∗i = r̂ with r̂ :=
1−
∑

j∈B r̃j
|A|

. As by assumption r̃1 6 · · · 6 r̃n and for all i ∈ A it is necessary that

r̂ > r̃i, it is possible to rewrite A := {i ∈ N | i < p} and B := {j ∈ N | j > p} for some p ∈ N \ {1} and r̂ = 1−
∑
j>pr̃j
p−1 .

It is also necessary that r̂ 6 r̃j for all j ∈ B. The solution therefore writes r∗ = (r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) and

maxi<p r̃i < r̂ 6 minj>p r̃j. �

APPENDIX B

Proof of Theorem 6. The right derivative of δi(vi) | ·) writes:

∂+δi(vi | ·)
∂mi

=

0 if vi < mi
f(mi)

1−F(mi)

[
1

1−F(mi)

∫v
mi
α(vi | λ)dF(vi) −α(mi | λ) −

τi
f(mi)

− τimi

1−F(mi)

]
if vi > mi,

then we simply have

∂+δi(vi | ·)
∂mi

=

0 if vi < mi
f(mi)

1−F(mi)

[
δi(mi | xi,mi, λ) − δ−i (mi | xi,mi, λ)

]
if vi > mi.
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Now, taking the right derivative of L̂ at mi gives

∂+L̂

∂mi
=

∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v) − ri

∫
V

∂+δi(vi | ·)
∂mi

dF(vi)

+ f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i)

− ri

(
δ−i (mi | ·) − δi(mi | ·)

)
f(mi).

Notice that the terms that depend on ri cancel out. Thus we obtain

∂+L̂

∂mi
=

∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v)

+ f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i).

First, assume that δ−i (mi | ·) > δi(mi | ·). This is equivalent to say that

τi >

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
.

Using the fact that ∂+δj(vj | ·)/∂mi = 0 for all j 6= i and the expression of the right derivative of δi(vi | ·), the first

term of ∂+L̂
∂mi

rewrites∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v) =∫
v∈Vn | vi∈[mi,v],maxj 6=i δj(vj|·)<δi(mi|·)

f(mi)

1 − F(mi)

(
δi(mi | ·) − δ−i (mi | ·)

)
dF(v) =

f(mi)

∫
v−i∈Vn−1 | maxj 6=i δj(vj|·)<δi(mi|·)

(
δi(mi | ·) − δ−i (mi | ·)

)
dF−i(v−i).

As for the second term, it rewrites

f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i) =

f(mi)

∫
v−i∈Vn−1 | maxj 6=i δj(vj|·)<δi(mi|·)

(
δ−i (mi | ·) − δi(mi | ·)

)
dF(v−i)

+ f(mi)

∫
v−i∈Vn−1 | δi(mi|·)6maxj 6=i δj(vj|·)<δ−i (mi|·)

(
δ−i (mi | ·) − max

j6=i
δj(vj | ·)

)
dF(v−i).

As the first term of ∂+L̂
∂mi

cancels out with the first term of the above equation we finally get

∂+L̂

∂mi
= f(mi)

∫
v−i∈Vn−1 | δi(mi|·)6maxj 6=i δj(vj|·)<δ−i (mi|·)

(
δ−i (mi | ·) − max

j6=i
δj(vj | ·)

)
dF(v−i).

Therefore, this expression is exactly the same as in Boulatov and Severinov (2018). It follows that is it not possible

that δ−i (mi | ·) > δi(mi | ·) and that the set Ai(·) := {v−i ∈ Vn−1 | δi(mi | ·) 6 maxj6=i δj(vj | ·) < δ−i (mi | ·)} has

positive measure as it would imply that ∂+L̂
∂mi

> 0, contradicting the optimality of mi.

The same reasoning as in Boulatov and Severinov (2018) can be done to prove that it is not possible to have

δ−i (mi | ·) < δi(mi | ·) and the set Bi(·) := {v−i ∈ Vn−1 | δ−i (mi | ·) < maxj6=i δj(vj | ·) 6 δi(mi | ·)} has a positive

measure.

Let δi(mi | ·) be replaced by δi(mi) for convenience of the following lemmas.

Lemma 6 Assume that for some i and j, δ−i (mi) 6 δ
−
j (mj). Then δ−i (mi) 6 δi(mi).

Proof. Assume that δ−i (mi) 6 δ
−
j (mj) for some i and j but δi(mi) < δ−i (mi). Then, as for any k ∈ N, δk(v) = v

we must have δ−i (mi) > v. Then, for all k ∈ N there exists a ṽk ∈ (0,mk] such that δk(vk) < δ−i (mi) for all

vk ∈ [v, ṽk).
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At the same time, as v 6 δi(mi) < δ−i (mi) 6 δ−j (mj) and δj(v) = v, then, by continuity of δj(vj) there

must exist some ṽj such that δj(ṽj) = δ−i (mi) and a bj > 0 (that can be made arbitrarily small) such that

δi(mi) < δj(vj) < δ−i (mi) for all vj ∈ (ṽj − bj, ṽj). Hence, for all vj ∈ (ṽj − bj, ṽj) and all vk ∈ [v, ṽk) for all

k 6= i, j we have δi(mi) < max{δj(vj), maxk6=i,j δk(vk)} < δ−i (mi). As both (ṽj − bj, ṽj) and [v, ṽk) have non-zero

measure, it follows that Ai(·) has positive measure which contradicts the optimality of mi. Thus, we must have

δ−i (mi) 6 δi(mi). �

Lemma 7 Let h1 ∈ arg maxj∈N δ
−
j (mj). Assume either (i) δ−i (mi) < δ−h1

(mh1) or (ii) δ−i (mi) = δ−h1
(mh1) and

δi(mi) 6 δh1(mh1). Then δi(mi) 6 δ−i (mi).

Proof. Case (i). Assume (i) but suppose that δ−i (mi) < δi(mi). Then, as δk(v) = v for all k ∈ N we must have

δi(mi) > v. For all k 6= i,h1 is it clear that there exists ṽk ∈ (v,mk] such that δk(vk) < δi(mi) for all vk ∈ [v, ṽk).

Additionally either v 6 δ−i (mi) < δ
−
h1
(mh1) 6 δi(mi) or v 6 δ−i (mi) < δi(mi) < δ

−
h1
(mh1). In both cases,

there must exist a m̃h1 ∈ (v,mh1] such that δh1(vh1) < δi(mi) for all vh1 ∈ [v, m̃h1). As δ−i (mi) < δi(mi)

there must be a bh1 > 0 (that can be made arbitrarily small) such that δ−i (mi) < δh1(vh1) < δi(mi) for all

vh1 ∈ (m̃h1 − bh1 , m̃h1).

It immediately follows that for all k 6= i,h1, vk ∈ [v, ṽk) and for all vh1 ∈ (m̃h1 − bh1 , m̃h1), δi(mi) <

max{δ−h1
(vh1), maxk6=i,h1 δk(vk)} < δi(mi), i.e., the set Bi(·) has a positive measure, which contradicts the optimality

of mi.

Case (ii). Assume now (ii) and δ−i (mi) < δi(mi). This would imply δ−i (mi) = δ
−
h1
(mh1) < δi(mi) 6 δh1(mh1).

It follows that δi(mi) > v and also that the set {vk | δk(vk) < δh1(mh1)} includes [v,mk) for all k 6= i,h1 as by

definition δ−i (mi) = maxj∈N δ−j (mj) < δi(mi) 6 δh1(mh1).

Additionally, we have the {vi | δ
−
h1
(mh1) < δi(vi) 6 δh1(mh1)} = [mi, v] which has positive measure as mi < v

(given that we have a jump in δi(·)).
Therefore, for all vi ∈ [mi, v] and vk ∈ [v,mk) for k 6= i,h1, we have that δ−h1

(mh1) < max{δi(vi), maxk6=i,h1 δk(vk)} 6

δh1(mh1) and thus the set Bh1(·) has positive measure which contradicts the optimality of mh1 . �

Lemma 8 Let h1 ∈ arg maxj∈N δ
−
j (mj) and assume that for i 6= h1, δ−i (mi) = δi(mi) < δ

−
h1
(mh1) then we must have

δ−i (mi) = δi(mi) < δh1(mh1).

Proof. Assume instead that δh1(mh1) 6 δ
−
i (mi) = δi(mi) < δ−h1

(mh1). It follows that δ−h1
(mh1) > v. Hence,

as for all k ∈ N, δk(v) = v, there exists a ṽk ∈ (v,mk] such that δk(vk) < δ−h1
(mh1) for all vk ∈ [v, ṽk). Then, as

v 6 δh1(mh1) 6 δi(mi) < δ
−
h1
(mh1), there must exists a m̃i ∈ (v,mi] and a bi > 0 such that δh1(mh1) 6 δi(vi) <

δ−h1
(mh1) for all vi ∈ (m̃i − bi, m̃i). Then, the set Ah1 would have positive measure and this would contradict the

optimality of mh1 .

Lemma 9 There exists a unique z1 ∈ arg maxj∈N δ
−
j (mj) and z1 ∈ arg maxj∈H1

δj(mj) such that for all i 6= z1 we have

δ−i (mi) = δi(mi).

and either

min{δ−z1
(mh1), δz1(mz1)} > max

i 6=z1
δi(mi) = max

i 6=z1
δ−i (mi)

or

δz1(mz1) > δ
−
z1
(mz1) = max

i 6=z1
δi(mi) = max

i 6=z1
δ−i (mi).



52 g. pommey

Proof. Let H1 =
{
h1 ∈ N | h1 = arg maxj∈N δ

−
j (mj)

}
, i.e., the set of agents for which δ−j (mj) is the maximum.

Let Z1 =
{
z1 ∈ H1 | z1 = arg maxj∈N δj(mj)

}
, i.e., the set of agents in H1 for which δj(mj) is the maximum.

Then, for all i /∈ H1 we must have δ−i (mi) < δ
−
h1
(mh1) and both Lemma 6 and Lemma 7 (through condition (i))

apply. Hence δ−i (mi) = δi(mi) for all i /∈ H1.

Now consider i ∈ H1.

1. Case |H1| > 1. Clearly, for all i ∈ H1, Lemma 6 applies and thus δ−i (mi) 6 δi(mi) for all i ∈ H1.

(a) Case |Z1| > 1 then all i ∈ H1 ∩ Z1 have δ−i (mi) < δj(mj) for j ∈ Z1 and all k, j ∈ Z1 have δ−k (mk) <

δj(mj). Thus Lemma 7 (part (ii)) applies for all i ∈ H1 ∩Z1 and all i ∈ Z1. Hence δ−i (mi) = δi(mi)

for all i ∈ N.

(b) If |Z1| = 1, then Lemma 7 (part (ii)) applies to all i ∈ H1 ∩Z1 but not to z1 ∈ Z1 = {z1}.

2. Case |H1| = 1. Then it is immediate that |Z1| = 1 as well. Then Lemma 7 (part (ii)) applies to all i ∈ H1 ∩Z1

but not to z1 ∈ Z1 = {z1}.

Then either |Z1| > 1 and δ−i (mi) = δi(mi) for all i ∈ N or |Z1| = 1 and δ−i (mi) = δi(mi) for all i 6=
z1. By definition of Z1, when |Z1| = 1, δz1(mz1) > maxi 6=z1 δi(mi) = maxi 6=z1 δ

−
i (mi). As z1 ∈ H1 we also

have that δ−z1
(mz1) > maxi 6=z1 δi(mi) = maxi 6=z1 δ

−
i (mi). Therefore, we must have min{δ−z1

(mz1), δz1(mz1)} >

maxi 6=z1 δ
−
i (mi) = maxi 6=z1 δi(mi).

The only reason we could have an equality in the above inequality is when δ−z1
(mz1) = maxi 6=z1 δ

−
i (mi) as we

have shown that δz1(mz1) > maxi 6=z1 δ
−
i (mi). But if we assume δ−z1

(mz1) = maxi 6=z1 δ
−
i (mi) then it means that

Lemma 6 applies and thus we must have δ−z1
(mz1) 6 δz1(mz1).

Hence either we have min{δ−z1
(mz1), δz1(mz1)} > maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi) or we have maxi 6=z1 δi(mi) =

maxi 6=z1 δ
−
i (mi) = δ

−
z1
(mz1) 6 δz1(mz1). �

Lemma 10 There exists mz1 > mj for all j 6= z1 if and only if either for all j 6= z1, min{δ−z1
(mz1), δz1(mz1)} > δ

−
j (mj) =

δj(mj) or δz1(mz1) > δ
−
z1
(mz1) = maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi).

Proof. (Only if) Assume mp > mj for all j 6= p. First, let us show that this implies that p ∈ arg maxj∈N δ
−
j (mj).

Suppose the contrary, that is, p /∈ H1. Then by Lemma 6 and 7 we must have δ−p (mp) = δp(mp) and thus

δ−p (mp) = δp(mp) < δ−i (mi) for some i ∈ H1. From Lemma 8 it must then also be the case that δ−p (mp) =

δp(mp) < δi(mi) for i ∈ H1. But then min{δ−i (mi), δi(mi)} > δ−p (mp) = δp(mp). For any j, let ∆j(mj) :=∫v
mj
α(vj|λ)dF(vj)+mjf(mj)α(mj|λ)

1−F(mj)+mjf(mj)
, i.e. the value of δi(mi) when it is continuous at mi. Notice that when

min{δ−i (mi), δi(mi)} = δ
−
i (mi) then we must have τi 6 τ̂i and then it follows that δ−i (mi) 6 ∆i(mi). Hence we

must have ∆i(mi) > δ−i (mi) > ∆p(mp) = δ
−
p (mp) = δp(mp). However, from Lemma ??, ∆j(mj) is increasing in

mj and thus this would imply that mi > mp, a contradiction. Now when min{δ−i (mi), δi(mi)} = δi(mi) we must

have τi > τ̂i and thus δi(mi) 6 ∆i(mi). This would then imply ∆i(mi) > ∆p(mp) and thus mi > mp, again a

contradiction. Hence, if mp > mj, we must have p ∈ H1.

From now on, we know that p ∈ H1, that is, δ−p (mp) > δ
−
j (mj) for all j ∈ N. Let us consider the following

subcases.

1. Assume p /∈ Z1.

(a) If |Z1| = 1 then from Lemma 9, there is a unique i ∈ Z1 such that min{δ−i (mi), δi(mi)} > δ
−
p (mp) =

δp(mp). But then, if δi(mi) > δ−i (mi) we must have τi 6 τ̂i, ∆i(mi) > δ−i (mi) > δ−p (mp) =

δp(mp) = ∆p(mp) and thus mi > mp which is a contradiction. If otherwise δi(mi) 6 δ−i (mi)

then we must have ∆i(mi) > δi(mi) > δ−p (mp) = δp(mp) = ∆p(mp). Which also leads to the

contradiction that mi > mp. Then, if p /∈ Z1 we cannot have |Z1| = 1.

(b) If |Z1| > 1 then we have δ−j = δj for all j ∈ N. As p ∈ H1 and |Z1| > 1 we must have |H1| > 1 and then

there exists a i ∈ H1, i 6= p such that δ−p = δp = δ−i = δi. It directly follows that ∆p = ∆i and thus

mp = mi, which is a contradiction. Therefore, we must have p ∈ Z1.
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2. Assume now that p ∈ Z1.

(a) If |H1| = 1 then δ−p > δ
−
j for all j 6= p. We also have |Z1| = 1 and thus δp > δj for all j 6= p. As |H1| = 1,

then H1 = {p} and thus for all j 6= p, δ−j = δj. Hence min{δ−p , δp} > δ−j = δj for all j 6= p, which is the

first condition of the Lemma.

(b) If |H1| > 1 and |Z1| = 1. Then δp > δj for all j 6= p. As p ∈ H1 and |H1| > 1, then from Lemma 6 we

must have δ−p 6 δp. But as |H1| > 1, there must exist a i ∈ H1, i 6= p such that δ−i = δ−p . As i ∈ H1 but

i /∈ Z1 then δ−i = δi. It follows that we must have δp > δ−p = δ−i = δi which is the second condition of

the Lemma.

(c) If |H1| > 1 and |Z1| > 1. Then we must have δ−j = δj for all j ∈ N. Then take any i ∈ Z1, i 6= p which

exists as |Z1| > 1, it follows that δp = δ−p = δi = δ
−
i . However, this implies that ∆p = ∆i and thus that

mp = mi which is a contradiction.

Then, assuming mp > mi implies that for any j 6= p, either min{δ−p , δp} > δ−j = δj or δp > δ−p = δ−j = δj

which concludes the proof of the only if statement.

(If) For any j 6= p we have δ−j = δj = ∆j. Assume first that min{δ−p , δp} > δ−j = δj for some j 6= p. If δp > δ−p
then we must have τp 6 τ̂p and thus ∆p > δ−p > δ

−
j = δj = ∆j. This implies that mp > mj. Same logic applies

when δp 6 δ−p as this implies that τp > τ̂p, ∆p > δp > δ−j = δj = ∆j and thus mp > mj. Assume now that for

some j 6= p, δp > δ−p = δ−j = δj. Then, τp < τ̂p and ∆p > δ−p = δ−j = δj = ∆j, implying mp > mj. �

Lemma 11 Let z1 ∈ arg maxj∈N δ
−
j (mj), for any j 6= z1 it is not possible that min{δ−z1

(mz1), δz1(mz1)} > δ
−
j (mj) =

δj(mj). Therefore, only the case δz1(mz1) > δ
−
z1
(mz1) = maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi) is possible.

Proof. Assume that there is an mz1 such that min{δ−z1
(mz1), δz1(mz1)} > δ

−
j (mj) = δj(mj) for all j 6= z1. Notice

that for any k ∈ N, δk(v) = v and min{δ−z1
(mz1), δz1(mz1)} > v. So, there must exist a m̃z1 < mz1 such that for all

vz1 ∈ [m̃z1 ,mz1) we have maxi 6=z1 δi(mi) < δz1(vz1) 6 δz1(mz1). But then, for all those vz1 ∈ [m̃z1 ,mz1), we have

δz1(vz1) > maxi 6=z1 maxvi∈V δi(vi) and thus Sz1(vz1) = 1 for all vz1 ∈ [m̃z1 ,mz1). It follows that Tz1(vz1) = Tz1(v).

But then, this means that mz1 is not the smallest value in V before transfers become constant due to cash-constraints.

Therefore, their must exist a m̂z1 such that δ−z1
(m̂z1) = maxi 6=z1 δi(mi). �

Proof of Theorem 7. Assume that for a given x∗ = (x∗1 , . . . , x∗n), the vector O∗ := (s∗,U∗,m∗, τ∗,χ∗) solves (A)

and satisfies (B). Then, from (A) we must have that s∗i (v) writes

s∗i (vi, v−i) =


1 if δi(vi | x∗i ,m∗i , λ) > maxj6=i δj(vj | x∗j ,m∗j , λ)

something in [0, 1] if δi(vi | x∗i ,m∗i , λ) = maxj6=i δj(vj | x∗j ,m∗j , λ)

0 if δi(vi | xi,m∗i , λ) < maxj6=i δj(vj | x∗j ,m∗j , λ)

As shown previously, m∗ is such that for all i ∈ N, δi(vi | x∗i ,m∗i , λ) is nondecreasing w.r.t. vi. It follows that Si(vi)

is also nondecreasing in vi. From (B), V∗(S∗i ) = [x∗i ,y∗i ] for all i ∈ N and thus s∗i satisfies all constraints of the

original problem.

Notice also that for any v∗i ∈ V∗(S∗i ) = [x∗i ,y∗i ]

E
[∑
i∈N

(
S∗i (vi) − ri

)
δi(vi | x

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(x

∗
i ) +

∑
i∈N

τ∗i li =

E
[∑
i∈N

(
S∗i (vi) − ri

)
Γi(vi | v

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(v

∗
i ) +

∑
i∈N

τ∗i li. (31)

This equality stems from two facts.

(i) We have that δi(vi | x∗i ,m∗i , λ) = Γi(vi | v∗i ,m∗i , λ) for all vi /∈ [x∗i ,y∗i ] and v∗i ∈ [x∗i ,y∗i ] by definition of δi(·)
so that the expectation is the same on both sides for vi /∈ [x∗i ,y∗i ]. For vi ∈ [x∗i ,y∗i ], δi and Γi differ, but at the same

time we have that S∗i (vi) = ri as s∗ satisfies (B). Thus the expectation is the same on both sides.



54 g. pommey

(ii) As V∗(S∗i ) = [x∗i ,y∗i ] it is clear that Ui(v∗i ) = Ui(x
∗
i ).

Now, by definition of O∗, we must have that for all Ô := (ŝ, Û, m̂, τ̂, χ̂)

E
[∑
i∈N

(
S∗i (vi) − ri

)
δi(vi | x

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(x

∗
i ) +

∑
i∈N

τ∗i li >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
δi(vi | x

∗
i , m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili. (32)

At the same time we also have that for any v̂i ∈ V∗(Ŝi)

E
[∑
i∈N

(
Ŝi(vi) − ri

)
δi(vi | x

∗
i , m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili, (33)

as for all vi < v̂i we have δi(vi | x∗i , m̂i, λ) 6 Γi(vi | v̂i, m̂i, λ) and Ŝi(vi) − ri 6 0 and for all vi > v̂i we have

δi(vi | x∗i , m̂i, λ) > Γi(vi | v̂i, m̂i, λ) and Ŝi(vi) − ri > 0. 24 Hence, for all vi ∈ V we have
(
Ŝi(vi) − ri

)
δi(vi |

x∗i , m̂i, λ) >
(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ).

But then combining equation (31), (32) and (33) we get that for all Ô and v̂i ∈ V∗(Ŝi)

E
[∑
i∈N

(
S∗i (vi) − ri

)
Γi(vi | v

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(v

∗
i ) +

∑
i∈N

τ∗i li >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili, (34)

which directly means that O∗ is also the maximum of the original problem. �

Proof of Corollary 1. Assume first that τi is defined by equation (24). It can easily be rewritten as

τ̂i =
f(mi)

∫v
mi
α(vi | λ)dF(vi) −α(mi | λ)(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
.

Differentiating w.r.t. to mi gives the following condition for the numerator (after factorization by (1− F(mi)) which

is positive)(
f ′(mi)E

[
α(vi | λ) | vi > mi

]
−α ′(mi | λ))f(mi) −α(mi | λ)f ′(mi)

)(
1 − F(mi) +mif(mi)

)
−mif

′(mi)
(

E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
f(mi) 6 0,

which reduces to

−α ′(mi | λ))f(mi)
(

1 − F(mi) +mif(mi)
)

+ f ′(mi)(1 − F(mi))
[
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

]
6 0.

The above inequality holds as α ′ is positive, f is nonincreasing and E
[
α(vi | λ) | vi > mi

]
−α(mi | λ) > 0. Then, τi

is decreasing in mi.

Now assume instead that τz1 is defined by equation (25). For a given m−z1 the right-hand side of (25) is

constant. Fix τz1 and assume mz1 increases. Then α(mz1 | λ) +
τz1

f(mz1)
increases as α(vi | λ) is increasing in vi and

f is nonincreasing. Hence, to maintain the equality defined by equation (25) it is necessary that τz1 decreases. �

24Ŝi(vi) − ri 6 0 (> 0) for all vi < v̂i (vi > v̂i) directly stems from the fact that v̂i ∈ V∗(Ŝi).
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Proof of Corollary 2. Assume that for i ∈ N, δ−i (mi) = δi(mi). This implies that τi is defined by equation (24).

Therefore,

δi(mi) = E
[
α(vi | λ) | vi > mi

]
−

τimi
1 − F(mi)

= E
[
α(vi | λ) | vi > mi

]
−mi

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
f(mi)

1 − F(mi) +mif(mi)

=
(1 − F(mi))E

[
α(vi | λ) | vi > mi

]
+mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)

=

∫v
mi
α(vi | λ)dF(vi) +mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)
.

Differentiating this expression w.r.t. mi gives the following numerator

mif(mi)α
′(mi | λ)][1 − F(mi) +mif(mi)]+

(1 − F(mi))mif
′(mi)

[
α(mi | λ) −

1
1 − F(mi)

∫v
mi

α(vi | λ)dF(vi)
]
. (35)

Given the assumption that f is nonincreasing, that α(·) is increasing and that α(mi | λ) − 1
1−F(mi)

∫v
mi
α(vi |

λ)dF(vi) = α(mi | λ)−E
[
α(vi | λ) | vi > mi

]
6 0 then (35) is positive and thus δi(mi) is increasing in mi whenever

δi(mi) is continuous at mi. �

Proof of Corollary 3. (i) Take any m ∈ ×i∈N(yi, v]. Then for all mi 6 mj for some j, τi is uniquely defined by

(24). If it exists, mz1 > maxi 6=z1 mi defines τz1 from equation (25).

(ii) Now take any τ. Notice first that for all i ∈ N, mi is decreasing in τi. Indeed, for any mi satisfying (24),

the RHS is decreasing in mi. Now for mz1 satisfying (25), it is clear that the RHS does not depend on τz1 nor mz1 .

Then, if τz1 increases, the only way to satisfy the equality is that mz1 decreases as α(vz1 | λ) +
τz1
f(vz1)

is increasing

in vz1 .

Then, for any i, j such that τi > τj we must have mi 6 mj. It follows that mi is uniquely defined by (24) as

the RHS is decreasing in mi. Finally, if there exists a τz1 < mini 6=z1 τj then we must have maxi 6=z1 mi < mz1 and

mz1 solves (25). The RHS of (25) depends only on mini 6=z1 τi and thus there exists a unique mz1 that solves (25)

for a given τz1 given that α(vz1 | λ) +
τz1
f(vz1)

is increasing in vz1 . �
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