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1 Introduction

Information is a valuable good that fosters the allocation of limited resources towards their best
use. But gathering information is not costless. Rather, it requires expending resources taken
away from other uses. If the party that gathers information does not appropriate the returns to
information perfectly, information can be under-supplied. At the same time, information is also
a strategic instrument that agents use to persuade other parties to make choices desirable for
the former. It is therefore natural to inquire whether persuasion motives cause the information
to be produced efficiently, to be overproduced or to remain under-supplied.1

Particularly, in this paper we study a novel tradeoff in resource allocation between invest-
ment in productivity and acquiring information used for persuasion. To this end we construct
a simple principal-agent model where an agent (he) wants to persuade a principal (she) to
approve a project of a certain cost and uncertain return. The principal approves the project
only if the expected return exceeds the cost. The agent is endowed with a fixed budget that
he can allocate between productive investment that improves the project return stochastically,
and information acquisition that generates verifiable signals about the project return. The
principal observes neither the budget allocation, nor the realization of the signals. The agent
chooses which signals to disclose to the principal, who then decides whether to approve or
reject the project.

To keep the model tractable, we consider a binary signal structure. Each signal is either
a “success” or a “failure” where a success signals a higher project return, and a failure signals
the opposite.2 In our setup, the social value from investing a unit of the budget in information
acquisition and obtaining an additional signal is positive but below the value of allocating the
same unit into productive investment. This feature of the model allows us to identify and
highlight the effect of the persuasion motive in information acquisition without confounding it
with other motives.

We first show that in the equilibrium of our disclosure game the agent invests substantial
resources in acquiring information. This stands in contrast with the first-best outcome in which
the entire budget is allocated to productive investment, provided that the project cost is not
too high. Intuitively, the agent faces the following tradeoff in allocating the resources between
productive investment and information acquisition. As productive investment stochastically
improves the distribution of the project return, it also increases the probability that any given
signal is a success. In contrast, the distribution of the project return is not affected by informa-
tion acquisition. However, acquiring more signals increases the chances that the agent obtains

1This question is relevant given the importance of persuasion activities in modern economies. Donald
McCloskey and Arjo Klamer (1995) show that a substantial fraction of the US GDP is spent on persuasion
activities. The more recent study of Gerry Antioch et al. (2013) largely confirms these findings.

2There are many contexts where information comes in binary form. For example, the technology can either
work or not, a certain task can be completed or left unfinished or a test can be failed or passed. Often, it is
too costly or infeasible to observe or assess the “intermediate” values of partial success or failure.
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a sufficient number of successful ones to persuade the principal to implement the project.3 This
motivates the agent to shift resources towards information acquisition.

Moreover, our key result shows that as the project cost increases, the agent allocates more
resources towards information acquisition and away from productive investment. To under-
stand why this is so, consider the following thought experiment. Start with an equilibrium
allocation under a given principal’s cost of implementing the project and suppose that this
cost goes up. This leads the principal to revise her criterion for the project approval: she now
needs either more successful signals or a higher productive investment or both. But the only
instrument at her disposal is a threshold number of successful signals required for the project
approval, and in deciding how to change it the principal has to consider the agent’s equilibrium
response.

If the principal increases her requirement on the minimal number of successes, the agent
optimally shifts more resources to information acquisition away from productive investment.
But because productive investment increases the chances that any given signal is a success, the
rate at which the agent reduces his productive investment in response to a higher signal success
requirement is less than 1-to-1. This turns out to be both a blessing and a curse. It is a blessing
because productive investment does not fall too much in response to the principal’s increase
in the number of successes required for the project approval. But it is a also a curse: since
productive investment responds sluggishly, the principal finds it optimal to raise her signal
threshold requirement after a project cost increase. In equilibrium the project is approved
under a higher cost only when the sum of equilibrium investment level and the number of
successful signals is sufficiently high, but the equilibrium investment goes down as the project
cost increases.

We then ask whether the inefficiency of the resource allocation can be alleviated if one or
both parties have the ability to commit, at least partially, to their strategy choices. Particularly,
we consider the agent’s commitment to full disclosure of acquired information, and also the
principal commitment to a project approval rule.

First, by committing to full signal disclosure the agent ties his own hands as selective
disclosure becomes impossible. So by obtaining a small number of signals the agent can now
convey to the principal that he has allocated the rest of his budget to productive investment.
However, there is one caveat to this rule that implies that the principal does not simply deduct
the number of observed signals from the agent’s budget to compute the productive investment.
If the principal did that, then the agent would shirk and save the cost associated with productive
investment that is small but positive in our model.4 So, in order to be certain that the agent had
invested the remainder of his budget productively and to approve the project, the principal

3In the Appendix we show that if with some probability productive investment does not have any effect on
the project return, the first-best allocation features an interior solution for the budget allocation.

4We assume that the agent bears a small fixed cost of productive investment. This assumption is plausible
as productive investment typically requires not only a budget allocation but also additional activities such as
management, monitoring, etc.
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requires at least one successful signal. Faced with this requirement, the agent nevertheless
cannot reallocate a significant budget to information acquisition, as such reallocation would be
detectable and cause the principal to lower her expectation of the project return. In equilibrium,
the agent acquires such number of signals that the remaining productive investment, together
with one successful signal, are sufficient to push the project’s expected return above the cost.
Therefore, as the project cost increases the agent acquires less information and increases her
productive investment. In fact, under a high project cost the budget allocation is close to the
efficient one as the agent acquires only a small number of signals. This result stands in a sharp
contrast to the equilibrium without commitment where productive investment decreases in the
project cost.

The principal’s commitment to a decision rule results in an intermediate level of productive
investment: below its level under the agent’s commitment, but above its level in the disclosure
game. The principal finds it optimal to commit to a minimal threshold: depending on the
parameters, she requires either one or two successful signals for the project approval. Such
low threshold shifts the agent’s incentives towards more productive investment as the latter
increases the probability that any given signal is a success. However, in order to maximize
his chances of delivering a successful signal, the agent still allocates substantial resources to
information acquisition. Also, since the principal’s threshold requirement does not change with
the project cost, the agent’s investment in productive activities does not change with that cost
either.

Finally, if the agent can commit to full signal disclosure, the principal does not derive any
additional benefit from her ability to commit to an approval threshold. In fact, the princi-
pal’s additional commitment to a disclosure threshold would be counterproductive as it would
undermine the effect of the agent’s commitment. Under the latter, the agent makes a large
productive investment because the alternative – a high level of information acquisition – be-
comes observable and causes the principal to increase the threshold number of successful signals
required for project approval. This effect would disappear if the principal committed to the
threshold number of signals required for approval.

Our model has several applications. First, consider a manager who supervises the initial
stage of product development. She can allocate the resources given to her between improving
the technology and early testing of the product. At this stage, the work on the technology
improvement is more efficient. However, the shareholders of the firm do not observe this work.
Therefore, they require the manager to show some positive test results. Although improving
the technology makes positive test results more likely, our results imply that the manager
overinvests in testing. This inefficiency can be curtailed if either the manager can commit to
disclose all test results, or if the shareholders can commit to approve the project after a small
number of positive test results.

Second, consider a manager who decides over the promotion of an employee. Prior to
the promotion decision, the employee allocates her time between investing in her fundamental
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skills that raise her productivity and self-promotion activities that signal her productivity. The
latter involves participating in conferences, making presentations or preparing industry publi-
cations. Investing resources in the fundamental skills may be more efficient for the employee’s
development. However, the management does not observe such investment and so its deci-
sion is affected by the employee’s self-promotion successes. Although self-promotion is more
successful if the employee invests more in her fundamental skills, the employee overinvests in
self-promotion activities.

Third, consider a local government that decides on funding a non-profit organization in-
volved in socially beneficial projects, such as training and education. The non-profit can al-
locate its resources between developing the relevant skills and supporting the job-search of its
clients. Although the investment in skills improves the chances of employment, the non-profit
skews its resource allocation towards supporting the job-search activities in order to increase
the number of positive outcomes and use this evidence to support its request for continued
funding.

The unifying feature of the above examples is the unobservability of productive investment.
It results in a substantial inefficiency of the budget allocation skewed in favor of information
acquisition, provided that no party can commit either to a disclose policy or to a decision rule.

Related Literature: There is a large literature on disclosure games starting with Sanford J
Grossman (1981) and Paul R Milgrom (1981) where an agent holds verifiable information and
reveals it strategically.5 However, to the best of our knowledge this literature does not study
the question of strategic disclosure in the context of an allocation conflict between productive
and persuasion-related activities.

The interaction between disclosure and investment is studied in A Beyer and Ilan Guttman
(2012). In their paper a manager privately observes the value of the firm and undertakes
productive investment. The manager can then disclose the investment level to the market. They
show that the manager undertakes a suboptimal investment that she then publicly discloses
in an attempt to distort the market’s beliefs about the firm’s value. In contrast to Beyer and
Guttman (2012), in our paper the agent faces a different tradeoff of allocating limited resources
between investment and information acquisition used for persuasion.

Elchanan Ben-Porath, Eddie Dekel and Barton L Lipman (2017) and Peter M DeMarzo,
Ilan Kremer and Andrzej Skrzypacz (2018) study a disclosure setting where an agent chooses
a distribution over outcomes and then decides whether to disclose the outcome to an outside
observer. Ben-Porath, Dekel and Lipman (2017) show how the agent’s control of information

5Early papers in this literature focused on the “unraveling” result where all types of a sender are revealed
to an observer in equilibrium. Our paper relates to the subsequent literature that studies situations without
full unraveling. For earlier papers see, e.g., Ronald A Dye (1985); Michael J Fishman and Kathleen M Hagerty
(1990); Woon-Oh Jung and Young K Kwon (1988); Masahiro Okuno-Fujiwara, Andrew Postlewaite and Kotaro
Suzumura (1990); Robert E Verrecchia (1983). More recent contributions include Viral V Acharya, Peter
DeMarzo and Ilan Kremer (2011); Jacob Glazer and Ariel Rubinstein (2004, 2006); Ilan Guttman, Ilan Kremer
and Andrzej Skrzypacz (2014); Barton L Lipman and Duane J Seppi (1995).
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leads to inefficient risk-taking. In an attempt to impress an outside observer, the agent has an
incentive to choose a risky project even if a safe alternative has a higher expected value. They
show that the agent only discloses sufficiently good outcomes, and otherwise pretends to be
uninformed. DeMarzo, Kremer and Skrzypacz (2018) study a setting where a seller chooses a
test for a product of unknown quality, and then decides whether to disclose the test result to
a buyer. Similar to Ben-Porath, Dekel and Lipman (2017) they show that the seller has an
incentive to run an inefficient test.

While in Ben-Porath, Dekel and Lipman (2017) and DeMarzo, Kremer and Skrzypacz (2018)
the agent chooses a distribution over observable outcomes, in our setup the agent effectively
chooses two interdependent distributions. His investment decision influences the unobserved
distribution of the project returns, and both the investment decision and the information
acquisition decision determine the distribution of the number of successful signals.

A related literature (Glazer and Rubinstein, 2004, 2006; Sergiu Hart, Ilan Kremer and
Motty Perry, 2017) studies informational efficiency of disclosure strategies when the agent is
endowed with verifiable information and decides which information to disclose to affect the
principal’s decision. This literature shows that outcomes attained via optimal mechanism
design can also be supported as equilibria of the disclosure game in which no commitments
are made. In particular, Glazer and Rubinstein (2006) demonstrate this in a setup where
the principal’s action is binary. Itai Sher (2011) establishes this result for general action
sets of the principal, and shows that it holds as long as the principal’s payoff is concave. In
our setup where the principal’s set of action is binary, and the agent has state-independent
preferences and possesses verifiable information, the outcome under commitment is preferred
by the principal to the outcome of the disclosure game. The major difference between our
paper and this literature is that the agent’s type/project return is endogenous and his budget
allocation choice affects both this type, and the information about it.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
contains the analysis and our main results. Section 4 concludes, while all proofs are presented
in the Appendix.

2 Setup

A principal (she) possesses a project with a known cost c ∈ [0, 1] and an unknown return θ.
The principal’s payoff is θ − c if the project is implemented, and 0 otherwise. Before deciding
whether to approve the implementation of the project or not, the principal can hire an agent
(he) to develop it, which includes investing to improve the project’s return and/or acquiring
verifiable information about this return. The agent is endowed with a fixed budget of size
n ≥ 2 that he can allocate between such investment and information acquisition as specified
below. The budget allocation is unobserved by the principal. The agent receives a payoff 1
if the project is ultimately implemented and 0 otherwise. Thus, the agent always wants the
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project to be implemented.

Budget allocation: Productive investment and information acquisition. The agent
can allocate up to n discrete units of his budget to productive investment in the project and
spend the rest on information acquisition about the project return. We assume the size of the
budget to be exogenously fixed. What we have in mind is a situation in which the agent has
a fixed capacity for performing his tasks, and our main focus falls on the allocation of such
capacity between investment and information acquisition, when the latter is verifiable and can
be used for persuasion purposes. Intuitively, the agent may have a limited amount of time
and/or money available. Equivalently, the principal may have a fixed budget that she can
endow the agent with. An alternative assumption would be that the agent bears a cost for
each unit of budget that he spends. Then the optimal budget would be determined by the
tradeoff between the cost and benefits of an extra budget unit, which would make the model
more notationally complex but would not change anything as far as the main tradeoff in the
budget allocation is concerned. Likewise, the decision whether to implement the project or not
will not be affected by this cost as it would be sunk by the time the implementation decision
is made.

Productive investment can represent money, time, effort, attention or any other productive
resource that positively affects the project return. In addition, we assume that the agent incurs
a small fixed cost b > 0 when he chooses a positive level of investment.6

Without any investment, the project return θ is determined by a draw from the uniform
prior U [0, 1]. Each unit of investment results in an additional draw from U [0, 1], and the
realized project return θ is the maximum of these k + 1 draws. For instance, one could think
of each draw as an experiment or development work that produces an alternative technology,
so that the highest realization of k + 1 draws represents the best available technology. Thus,
with k units of investment, the project return is distributed according to the cdf Fk(θ) = θk+1.7

The players do not observe θ until the payoffs are realized.
If the agent spends k units of budget on investment, he can spend the rest on information

acquisition to obtain r ≤ n − k privately observed but verifiable signals about the project
return. Thus, one budget unit pays for one signal. Each signal s is binary and can either
be a “success” (s = 1) or a “failure” (s = 0), with probability of success conditional on θ,
Pr(s = 1|θ), equal to θ.

Thus, we can represent the agent’s budget allocation strategy by a pair (k, r) ∈ {0, ..., n}2

s.t. k+ r ≤ n. The obtained r signals constitute hard evidence set Sr := {s1, .., sr} that is not

6This assumption reflects that investment is arguably a more complex activity than information acquisition,
as the former requires more management and monitoring than the latter. Technically, it allows us to rule out
uninteresting equilibria.

7Thus, the project return distribution with an additional unit of productive investment first-order stochasti-
cally dominates the project return distribution without an additional investment unit. In the Appendix we relax
this assumption, explicitly allowing for the possibility that investment might not change the prior distribution
of the project return.
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observed by the principal.

Disclosure: As signals are verifiable, the agent can only disclose or not disclose each signal
to the principal, but he cannot forge them. To formalize the disclosure process, let j(Sr) be
the number of successes in the evidence set Sr: j(Sr) =

∑r
i=1 si. The agent’s disclosure to the

principal can be represented by a message that consists of two numbers: the first is the number
of disclosed signals h′, and the second is the number of successes j′ among the disclosed signals.
We use the notation mj′

h′ to denote such message. Given the evidence set Sr, the set of feasible
messages is M(Sr) = {(h′, j′)|h′ ≤ r, h′− r+ j(Sr) ≤ j′ ≤ j(Sr)}. The lower bound on j′ stems
from the fact that the agent cannot disclose more failures than their actual number in the set
Sr, that is r − j(Sr).

Timing: The timing of the game is as follows. First, the agent chooses how to allocate the
budget between investment and information acquisition. Second, the return θ is determined.
Then the signals are realized and are privately observed by the agent. After this the agent
makes the disclosure decision. Following this, the principal decides whether to approve the
implementation of the project or not, and then the payoffs are realized. This timing is depicted
in Figure 1.

Equilibrium: We use the standard notion of perfect Bayesian equilibrium and focus on equi-
libria in pure strategies. The agent’s resource allocation and disclosure strategies must be
sequentially rational given the principal’s belief and her approval strategy. The principal’s
approval strategy must be sequentially rational given the agent’s strategy and the principal’s
beliefs, that are represented by a mapping from the set of disclosures into the set of probability
distributions over [0, 1] × {0, ..., n}3, the product of the set of possible project returns, the
number of invested units k, the number of signals r and the number of successes j. The beliefs
will be denoted by µ(mj′

r′) where mj′

r′ stands for the agent’s disclosure including r′ signals and
j′ successes. The beliefs must be consistent with the agent’s resource allocation and disclosure
strategy i.e., derived from those by Bayes rule on the equilibrium path. On an off equilibrium
path, these beliefs must satisfy the restriction that µ(mj′

r′) puts a positive probability only on
4-tuples (θ, k, r, j) such that k + r ≤ n, r ≥ r′ and j ≥ j′.
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Agent allocates the budget

The return θ is realized

t

Signals are realized

Agent makes the disclosure decision

Principal approves or
rejects the project

Figure 1: The Timing of the Game

3 Analysis and Main Results

3.1 Principal’s beliefs and approval strategy

The principal approves the project if EP (θ|µ(mj′

r′)) ≥ c, and rejects it otherwise, where EP (θ|µ)

is the principal’s expectation of θ given beliefs µ.
In particular, if the principal puts probability 1 on the agent choosing k units of investment,

and acquiring r signals of which j are successes, then her posterior beliefs θ are characterized
by the probability distribution:

f(θ|k, r, j) = θk+j(1− θ)r−j (k + r + 1)!

(k + j)!(r − j)!
. (1)

In turn, the principal’s expectation of θ in this case is given by:

EP (θ|k, r, j) =
k + j + 1

r + k + 2
. (2)

Both equations are derived in the Appendix.
We now introduce some intuitive restrictions on the equilibrium strategies and beliefs. First,

it is without loss of generality to focus on the agent’s investment and information acquisition
strategies (k, r) such that k + r = n. In words, the agent always exhausts his budget. Recall
that feasibility requires that k + r ≤ n. However, acquiring r < n − k signals is weakly
dominated by acquiring n − k signals because: (i) the principal does not observe the number
of acquired signals and so this number does not affect her beliefs; (ii) any disclosure that is
feasible with r signals is also feasible with a larger number of signals. So the agent can never
be worse off by acquiring less than the maximal possible number of signals.

Thus, the equilibrium resource allocation strategy of the agent can be represented by a pair
(k∗, n− k∗).

Next, we will restrict the principal’s beliefs to have the following properties.

Property 1. (Uncontroverted k∗ and Skepticism) Suppose that the agent discloses r′ signals
satisfying r′ ≤ n− k∗. Then the principal’s beliefs put probability 1 on the event that the agent
has invested k∗ units, has acquired n− k∗ signals and has failed to disclose n− k∗ − r′ signals
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all of which are failures.

Property 2. Suppose that the agent discloses r′ signals and j′ successes where r′ satisfies
r′ > n − k∗. Then the principal’s beliefs put probability 1 on the event that the agent has
invested n − r′ or less units, and has disclosed all successes. In particular, the principal’s
beliefs about the number of invested units are characterized by probability distribution µw(r′, j′)

that is invariant to j′ and satisfies
∑n−r′

i=0 µiw(r′, j′) = 1 where µiw(r′, j′) ≥ 0 is the probability
that i units were invested.

Property 1 implies that the agent cannot convince the principal that he has invested more
than the equilibrium level k∗ by disclosing r′ signals s.t. r′ ≤ n − k∗. Disclosing such lower
number of signals r′ is still consistent with k∗ units being invested. So, in such case, the
principal maintains her beliefs that with probability 1 the agent has invested k∗ units and
adopts a skeptical point of view that the “missing,” undisclosed, n − k∗ − r′ signals are all
failures.

On the other hand, if the agent discloses a “large” number of signals r′ > n−k∗ that makes
it impossible that k∗ units were invested, the principal becomes convinced that a deviation
from k∗ units to a lower investment has occurred. Yet, she is still skeptical with regards to the
number of successful signals and believes that all successes have been disclosed.

Thus, Properties 1 and 2 imply that the principal believes that the agent never conceals
successful signals. Given these properties, we can now describe the principal’s equilibrium
posterior expectation of θ and her decision rule.

Lemma 1. Suppose that the principal’s beliefs satisfy Properties 1 and 2, and the agent dis-
closes r′ signals among which there are j′ successes.

1. If r′ ≤ n− k∗, then the principal’s posterior expectation of θ is given by k∗+j′+1
n+2

, and so
she approves the project if and only if 1+j′+k∗

n+2
≥ c.

2. If r′ > n−k∗, then the principal’s posterior expectation of θ is bounded above by n−r′+j′+1
n+2

,
and so she approves the project only if n−r′+j′+1

n+2
≥ c.

Lemma 1 implies that the principal’s equilibrium threshold j∗ i.e., the minimal number of
successes that she requires to approve the project, satisfies:

j∗ = dc(n+ 2)e − (k∗ + 1), (3)

where k∗ is the equilibrium level of investment.
A useful insight from Lemma 1 is that a disclosed success is a perfect substitute for a unit

of investment from the principal’s perspective: each affects the principal’s posterior beliefs in
the same way.
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3.2 Disclosure and budget allocation

In this subsection we first characterize the agent’s optimal information disclosure strategy,
given that the principal’s beliefs satisfy Properties 1 and 2 and given her decision rule (3).
Recall that the agent’s equilibrium strategy is denoted by (k∗, n− k∗) i.e., he invests k∗ units
and acquires r∗ = n− k∗ signals.

Lemma 2. Suppose that the agent obtains r′ signals with j′ successes.
(i) If r′ ≤ r∗ = n− k∗, then it is optimal for the agent to disclose all signals,
(ii) If r′ > r∗, then it is optimal for the agent to disclose r∗ = n−k∗ signals and min{j′, n−

k∗} successes.
After any optimal disclosure, the principal believes that the agent has invested k∗ units with

probability 1.

Next, let us consider the agent’s budget allocation decision. To provide a benchmark
case, we start with the first-best allocation attained when the principal can choose the budget
allocation directly and is able to observe all signal realizations.

Lemma 3. If the principal can choose a budget allocation, she would allocate the entire budget
into productive investment, provided that c ≤ n+1

n+2
and approve the project with probability

1. Otherwise, if c > n+1
n+2

the principal never approves any project and never undertakes any
productive investment.

To understand Lemma 3 note that each additional unit of investment increases the posterior
expectation of θ. In contrast, a signal affects the distribution of the project return in the same
way as one invested unit only if the signal realization is a success, which happens with a
probability strictly less than 1. A failed signal shifts the posterior distribution of returns to
the left. Hence, to maximize the posterior expectation of θ, the principal allocates the entire
budget into productive investment.

This result comes with a qualifier that the project implementation cost c cannot be too large.
In particular, c cannot exceed n+1

n+2
. This is because with n invested units (or, alternatively,

with k′ < n invested units and n− k′ successes), the posterior expectation of θ is equal to n+1
n+2

,
so the principal never approves the project if c exceeds this level.

While for c ≤ n+1
n+2

the principal prefers to allocate all resources into productive investment,
such allocation cannot arise in the disclosure game, as shown in the next lemma.

Lemma 4. There is no equilibrium in which k∗ = n.

Were the principal to expect k∗ = n from the agent and therefore no signals, the agent
would always deviate to k = 0 saving the fixed cost b > 0 of investment.

Turning to the agent’s equilibrium budget allocation strategy, we first provide our central
qualitative result for the disclosure game in the following Theorem:
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Theorem 1. Suppose that n > 4 and c ∈ [ n+4
2(n+2)

, n
n+2

]. If the project cost increases, the
equilibrium level of investment decreases. Thus, a higher project cost is associated with a lower
productive investment when c ≥ 1

2
and n is large.

Theorem 1 follows directly from Proposition 1 provided below. The Theorem highlights
that the level of information acquisition increases at the expense of productive investment as
the project cost c increases. This is inefficient since the first-best involves allocating the whole
budget into investment (Lemma 3). Significantly, the extent of this inefficiency grows as the
project cost increases.

In order to prove Theorem 1 and Proposition 1 below, we need to characterize the equilib-
rium allocation k∗ for various values of the cost c. To do so, we first obtain the probability of
having j ∈ {0, .., n − k} successes, provided that the agent invests k units and obtains n − k
signals:

Pr(j|k, n) =
(k + 1)(j + k)!(n− k)!

j!(n+ 1)!
, (4)

The derivation of expression (4) is provided in the Appendix. It allows us to obtain the
probability Pr(j ≥ j′|k, n) that the agent receives at least j′ successes out of n − k signals
when he invests k units.

Lemma 5. The probability Pr(j ≥ j′|k, n) is given by the following:

Pr(j ≥ j′|k, n) = 1− (n− k)!(k + j′)!

(n+ 1)!(j′ − 1)!
. (5)

The equilibrium requires that at the budget allocation stage the agent does not deviate from
k∗ to some k′ ∈ {0, ..., n−j∗} investment units where, according to (3), j∗ = dc(n+2)e−(k∗+1)

is the minimal number of successes that the principal requires to approve the project based
on her belief that the agent has chosen the level of investment k∗. Therefore, the agent’s
equilibrium strategy k∗ must be a solution to the following maximization problem:

max
k′∈{0,..,n−j∗}

Pr(j ≥ j∗|k′, n)− 1k′>0b (6)

Naturally, if the fixed cost b of investment is large enough, the agent will never choose a
positive level of investment in equilibrium. To focus on the interesting case where k∗ > 0, we
assume that b is sufficiently small:

Assumption 1. The fixed cost of investment is sufficiently small and satisfies b < n−2
n(n+1)

for
any n ≥ 3.

We can now characterize the equilibrium budget allocation.
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Proposition 1. Consider c ≥ 1
2
. The equilibrium budget allocation k∗ and the principal’s

evidence threshold j∗ are given by the following:

1. If c > n+1
n+2

, the agent does not undertake any investment, k∗ = 0, and the principal never
approves the project.

If c ∈ ( n
n+2

, n+1
n+2

], then k∗ = 0 (the agent does not undertake any investment), and j∗ = n.

2. If c belongs to the interval [1
2
, n
n+2

] and n > 3, then:

(a) If c ∈ [ n+4
2(n+2)

, n
n+2

], then k∗ = (n+ 2)− dc(n+ 2)e and j∗ = 2dc(n+ 2)e − (n+ 3),

(b) If c ∈ [ n+3
2(n+2)

, n+4
2(n+2)

), then k∗ = (n+ 1)−dc(n+ 2)e and j∗ = 2dc(n+ 2)e− (n+ 2),

(c) If c ∈ [1
2
, n+3

2(n+2)
), then k∗ = n− dc(n+ 2)e and j∗ = 2dc(n+ 2)e − (n+ 1).

3. If n = 2, then k∗ = 0 and j∗ = 2 for c ∈ [1
2
, 3

4
].

4. If n = 3, then k∗ = 1 and j∗ = 1 for c ∈ [1
2
, 3

5
].

0.60 0.65 0.70 0.75 0.80
c

2.5

3.0

3.5

4.0

(a) n = 10

0.60 0.65 0.70 0.75 0.80 0.85 0.90
c

3

4

5

6

7

8

9

(b) n = 20

0.6 0.7 0.8 0.9
c

5

10

15

20

25

(c) n = 50

0.6 0.7 0.8 0.9
c

10

20

30

40

50

(d) n = 100

Figure 2: k∗ for n = 10, 20, 50, 100 in the interval c ∈ [ n+4
2(n+2)

, n
n+2

]

The equilibrium allocation is illustrated in Figures 2 and 3. Figure 2 shows that for values
of c close to 1

2
the equilibrium investment is substantial. But as the cost c increases on the

interval [ n+4
2(n+2)

, n
n+2

], the equilibrium investment k∗ decreases.
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Figure 3: k∗ decreasing in c, and j∗ increasing in c, for n = 10, 20, 50, 100 and c ∈ [ n+4
2(n+2)

, n
n+2

]

To understand why the investment decreases in the project cost, consider Figure 3. It
shows that, as the project cost increases, j∗ grows faster than k∗ decreases. Intuitively, as c
grows, the principal has to be more confident that the project return is sufficiently high. So
she needs either more successful signals or a higher productive investment, or both. However,
since the principal does not observe the investment, she can only change the threshold number
of successful signals required for the project approval; and when she does so, she considers the
agent’s response. Particularly, when the successful signal threshold goes up, the agent shifts
resources into information acquisition away from productive investment, but the rate at which
the agent reduces his productive investment in response to a higher signal threshold is less than
1-to-1, because productive investment increases the chances that any given signal is a success.
Since productive investment responds in this sluggish manner, the principal finds it optimal
to raise her signal threshold requirement after a project cost increase. So, under a higher cost
the project is approved only when the sum of equilibrium investment level and the number of
successful signals is sufficiently high, but the equilibrium investment goes down as the project
cost increases.

The above analysis focuses on the case c ≥ 1
2
. To complete this section, we briefly highlight

the outcomes for c < 1
2
.

First, if c ≤ 1
n+2

, then the principal approves the project irrespective of her beliefs about
the agent’s actions and disclosure. This is so because in the worst case of zero investment
and n failed signals, the principal’s expectation of θ is 1

n+2
. Note that as n grows large, 1

n+2

converges to 0, and so the project is approved automatically only when the cost c is very small.
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For c ∈ ( 1
n+2

, 1
2
] there exists an “uninformative” equilibrium in which the principal approves

the project with probability 1. This equilibrium is supported by the principal’s beliefs that the
agent does not undertake any investment and does not obtain any signals.8

At the same time, for c < 1
2
an equilibrium supported by weakly skeptical beliefs fails

to exist. To see why, note that the incentive constraint preventing a deviation to a higher
investment under weakly skeptical beliefs is k∗ ≥ n − dc(n + 2)e, while the equilibrium re-
quirement j∗ ≥ 1 is equivalent to k∗ ≤ dc(n + 2)e − 2. However, when c < 1

2
, we have

n−dc(n+ 2)e > dc(n+ 2)e− 2, so both the feasibility constraint and the constraint preventing
a deviation to a larger investment cannot hold simultaneously.

3.3 Commitment and its Effects

Given the inefficiency of the budget allocation in the disclosure game, we next consider whether
such inefficiency can be mitigated when at least one of the parties has some commitment power.
We start our analysis with the scenario in which the agent is able to commit to full signal
disclosure. The outcome in this case is characterized in the following proposition.

Proposition 2. Suppose that the agent commits to reveal all signal realizations. Then, for
c ∈ [1

2
, n+1
n+2

], in equilibrium the agent choose investment level k∗ = dc(n + 2)e − 2 and obtains
n − k∗ signals, and on the equilibrium path the principal approves the project if the signals
include at least one success i.e., j∗ = 1.

The key aspect of the agent’s commitment is that it allows him to convey the information
about his productive investment to the principal. By revealing that he has acquired only a
few signals the agent “indicates” that he spent the rest on productive investment. There is one
caveat to the credibility of such message: the principal has to be sure that the agent did not
shirk and invested nothing. For this reason, the principal requires that the agent delivers at
least one successful signal. Otherwise, if no successes are required for the approval, the agent
would not undertake any investment in order to save the fixed cost b. At the same time, the
agent does not want to induce the principal to require strictly more than one success, which
would make approval more difficult. So, in equilibrium the agent chooses a budget allocation
with sufficiently few signals which, given the principal’s belief that the rest of the budget is
productively invested, keeps the principal’s optimal threshold at j∗ = 1.

Proposition 2 also establishes that the agent’s investment increases in the project cost.
This is because approval under a higher cost requires either a larger investment or a higher
number of successful signals, or both. So, in order to keep the principal’s approval threshold at
exactly one success, the agent increases his productive investment and decreases information
acquisition as the project cost goes up.

8Note that this equilibrium belongs to a different class of equilibria compared to the ones studied above,
because it relies on a different kind of principal’s beliefs that do not involve skepticism.
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Next, suppose that only the principal has the ability to commit. In particular, assume that
she can commit to a decision rule and choose an evidence threshold jc for approval before the
agent makes his budget allocation choice. The principal’s decision rule must have a threshold
nature, as otherwise the agent would simply withhold successful signals.

As we show in the proof of Proposition 3, the agent’s best response to the principal’s
commitment to the threshold jc is to invest the amount k(jc) = bn−jc+1

2
c and to allocate the

rest of the budget to information acquisition. So the principal’s optimal commitment decision
rule jc solves the following program:

max
j′∈{1,..,n−1}

n−k(j′)∑
j=j′

Pr(j|k(j′), n)
(k(j′) + j + 1

n+ 2
− c
)
, (7)

The solution to (7) is characterized in the following proposition.

Proposition 3. Suppose that the principal can commit to approval threshold, that n ≥ 6 and
c ∈ [1

2
, n−1
n+2

].

1. If n is even, then the principal’s equilibrium commitment threshold is jc = 1. The agent’s
best response is to invest k∗ = n

2
units.

2. If n is odd, then the principal’s equilibrium commitment threshold is jc = 2. The agent’s
best response is to invest k∗ = n−1

2
units.

To understand this proposition, note that the agent’s best response investment is decreas-
ing in the principal’s approval threshold. So by committing to a low approval threshold the
principal induces the agent to undertake substantial productive investment, even though it
sometimes hurts the principal ex-post i.e., when the number of realized signal successes is low.
Still, the principal does not want to commit to approve the project without any successes, as
such policy would cause the agent to shirk and invest nothing. The reason why the principal’s
approval threshold varies between 1 (for even n) and 2 (for odd n) successful signals has to do
with the discreteness of our model. In particular, when n is odd, both thresholds j = 1 and
j = 2 induce the agent to undertake the same investment, and the principal chooses j = 2 to
reduce the risk of approving an unprofitable project. However, when n is even, switching to
threshold j = 2 from threshold j = 1 causes the investment to go down by one unit, so the
principal chooses j = 1 because she prefers higher investment.

However, whether n is odd or even, the main message of Proposition 3 is the same: the
principal commits to a low approval threshold in order to stimulate investment. At the same
time, it shows that the power of the principal’s commitment is limited: she cannot induce the
agent to spend more than half of his budget on investment. So, there remains a considerable gap
between the outcome attained under the principal’s commitment and the first-best allocation
that requires allocating all budget to investment.
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Figure 4: Productive investment k∗ (vertical axis) for n = 20 and n = 100, c ∈ [1
2
, n−1
n+2

].

Figure 4 illustrates the level of productive investment under the three scenarios that we have
studied. Observe that the difference in the investment level under any commitment scenario
and in the disclosure game gets larger as the project cost c increases. Eventually, under high
project cost – but not prohibitively high to prevent any investment activities – the investment
level under the agent’s commitment gets close to the principal’s first-best, whereas in the
disclosure game the agent allocates almost the entire budget to information acquisition.

Figure 5 depicts the level of information acquisition under the three scenarios. It shows
that amount of information acquisition is: (i) lowest and decreasing in cost under the agent’s
commitment; (ii) highest and increasing in cost in the equilibrium of the disclosure game.
Under the principal’s commitment to a decision rule the number of signals is intermediate and
is independent of the project’s cost.

Based on our previous results, we can now compare the principal’s and the agent’s payoffs
under different commitment scenarios and in the disclosure game.

Proposition 4. Assume that c ∈ ( n+4
2(n+2)

, n−1
n+2

] and n > 6.
(i) The principal prefers agent’s commitment to her own commitment, and her own com-

mitment to the equilibrium of the disclosure game.
(ii) The agent prefers both principal’s commitment and his own commitment to the equilib-

rium of the disclosure game.

To understand the principal’s ranking of the three scenarios, note that the principal can at
least replicate the outcome of the disclosure game by committing to the same decision rule that
she uses in the equilibrium of the latter. So, the possibility to commit to a decision rule makes
the principal better off than in the disclosure game. Also, a comparison of Propositions 2 and
3 shows that the agent’s commitment to disclosure leads to a more efficient outcome – namely,
a higher investment under the same approval threshold – than the principal’s commitment to a
decision rule. For this reason, the agent’s commitment is more valuable for the principal than
her own commitment to the decision rule.

On the other hand, the agent prefers a lower evidence threshold for the project approval.
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Figure 5: Number of signals acquired (vertical axis) for n = 20 and n = 100 for c ∈ [ n+4
2(n+2)

, n−1
n+2

].

That is why he is better off under both commitment scenarios than in the disclosure game.
The only ranking not determined by Proposition 4 is the agent’s ranking of the outcomes under
his own and under the principal’s commitment. This ranking remains ambiguous as it depends
on the budget n and the corresponding evidence threshold j.

To conclude this section, we provide the following corollary of Propositions 2 and 3 showing
that, when the agent can commit to reveal all signals, the principal does not get any additional
benefit from her ability to commit to a decision rule.

Corollary 1. Consider c ∈ [1
2
, n−1
n+2

] and suppose that the agent is able to commit to full signal
disclosure. Then the principal does not benefit from her additional ability to commit to a
decision rule.

The intuition for this corollary is simple. When the principal commits to an approval
threshold, the agent’s disclosure has no effect on the outcome. So the agent’s budget allocation
would be the same as under the principal’s commitment only. Thus, the principal’s additional
commitment would only undermine strong investment incentives that the agent has under her
own commitment to disclosure. Therefore, an additional commitment to an approval threshold
does not benefit the principal, provided that the agent is committed to full signal disclosure.

4 Conclusions

In this paper, we have studied the interaction between productive investment and information
acquisition used for persuasion. We have demonstrated that in the disclosure game, persuasion
motives lead to a significant inefficiency and misallocation of resources away from productive
investment and towards information acquisition. However, the agent’s ability to commit to a
full signal disclosure partially alleviates this inefficiency and leads to a significant increase in
productive investment. In contrast, if only the principal can commit to a decision rule before
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the agent makes his choices, the allocation is less efficient than under the agent’s commitment.
Notably, under both commitment scenarios the resulting allocation remains below the first-best.

There are several promising avenues for future research. In particular, it would be interest-
ing to study what would happen if the principal had access to additional instruments including
transfers, allocation of decision rights or monitoring technologies. The analysis of such instru-
ments would be relevant for understanding real-world organizations in which the management
typically employs multiple tools to overcome informational problems as well as the conflicts of
interest between various parties in an organization. It would also be interesting to consider how
the tradeoff between productive investment and persuasion activities is resolved in a frame-
work with soft information or when the agent could design the public information structure as
in (Robert J Aumann and Michael Maschler (1995); Emir Kamenica and Matthew Gentzkow
(2011)).
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5 Appendix

Derivation of expressions (1) and (2):
If the principal puts probability 1 on the agent investing k units, and acquiring r signals of

which j are successes, then her beliefs about θ can be computed in two stages as follows. First,

20



conditioning on k invested units, the density of the highest realization of θ is fk(θ) = (k+1)θk.
The probability of j successes in r independent trials given that the probability of success in
each trial is θ, Pr(j|r, θ), is given by

(
r
j

)
θj(1− θ)r−j. So, by Bayes rule, the posterior density

of θ given a triple (k, r, j) is equal to:

f(θ|k, r, j) =
Pr(j|r, θ)(k + 1)θk∫ 1

0
Pr(j|r, θ)(k + 1)θkdθ

=

(
r
j

)
θj(1− θ)r−j(k + 1)θk∫ 1

0

(
r
j

)
θj(1− θ)r−j(k + 1)θkdθ

= θk+j(1− θ)r−j (k + r + 1)!

(k + j)!(r − j)!
.

Note that the last equality in (1) relies on the identity
∫ 1

0
θk+j(1 − θ)r−jdθ = (k+j)!(r−j)!

(r+k+1)!
.

Therefore,

EP (θ|k, r, j) =

∫ 1

0

θf(θ|k, r, j)dθ =

∫ 1

0

θk+j+1(1− θ)r−jdθ (r + k + 1)!

(k + j)!(r − j)!
=
k + j + 1

r + k + 2
.

Proof of Lemma 1 If r′ ≤ n − k∗, then the principal’s posterior beliefs about θ are
characterized by the probability density function:

f(θ|k∗, n− k∗, j′) =
Pr(j′|n− k∗, θ)(k∗ + 1)θk

∗∫ 1

0
Pr(j′|n− k∗, θ)(k∗ + 1)θk∗dθ

=

(
n−k∗
j′

)
θj
′
(1− θ)n−k∗−j′(k∗ + 1)θk

∗∫ 1

0

(
n−k∗
j′

)
θj′(1− θ)n−k∗−j′(k∗ + 1)θk∗dθ

= θk
∗+j′(1− θ)n−k∗−j′ (n+ 1)!

(k∗ + j′)!(n− k∗ − j′)!
. (8)

Correspondingly, the principal’s expectation of θ is given by:

EP (θ|k∗, n− k∗, j′) =

∫ 1

0

θf(θ|k∗, n− k∗, j′)dθ

=

∫ 1

0

θk
∗+j′+1(1− θ)n−k∗−j′dθ (n+ 1)!

(k∗ + j′)!(n− k∗ − j′)!
=
k∗ + j′ + 1

n+ 2
. (9)

If r′ > n − k∗, then the principal’s posterior beliefs about θ are characterized by the
probability density function:

f(θ|mj′

r′) =
n−r′∑
i=0

µiw(r′, j′)
Pr(j′|n− i, θ)(i+ 1)θi∫ 1

0
Pr(j′|n− i, θ)(i+ 1)θidθ

=
n−r′∑
i=0

µiw(r′, j′)

(
n−i
j′

)
θj
′
(1− θ)n−i−j′(i+ 1)θi∫ 1

0

(
n−i
j′

)
θj′(1− θ)n−i−j′(i+ 1)θidθ

=
n−r′∑
i=0

µiw(r′, j′)θi+j
′
(1− θ)n−i−j′ (n+ 1)!

(i+ j′)!(n− i− j′)!
. (10)
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Correspondingly, the principal’s expectation of θ satisfies:

EP (θ|mj′

r′) =
n−r′∑
i=0

µiw(r′, j′)

∫ 1

0

θi+j
′+1(1− θ)n−i−j′dθ (n+ 1)!

(i+ j′)!(n− i− j′)!

=
n−r′∑
i=0

µiw(r′, j′)
i+ j′ + 1

n+ 2
≤ n− r′ + j′ + 1

n+ 2
. (11)

Q.E.D.

Proof of Lemma 2: First, note that the agent’s optimal disclosure strategy maximizes the
principal’s posterior expectation of θ given by (9) if r′ ≤ n− k∗ or (11) if r′ > n− k∗.

Let us start with case (i) in which the agent acquires (weakly) less than the equilibrium
number of signals r∗ = n− k∗. Then, no matter what he discloses, according to Property 1 the
principal believes that with probability 1 the agent has invested k∗ units.

So, if the agent discloses all signals, which includes j′ successes, then according to (9) the
principal’s posterior expectation of θ is equal to EP (θ|k∗, n− k∗, j′) = k∗+j′+1

n+2
,

On the other hand, if the agent makes a disclosure mj′′

r′′ that includes j′′ successes and r′′

signals where j′′ ≤ j′ and r′′ ≤ r′ then, again by (9), the principal’s posterior expectation of θ is
equal to EP (θ|k∗, n−k∗, j′′) = k∗+j′′+1

n+2
. Since the latter is less than EP (θ|k∗, n−k∗, j′) = k∗+j′+1

n+2

as j′′ ≤ j′, such deviation is not profitable.
Now consider case (ii) in which r′ > r∗ = n − k∗. If the agent chooses to disclose r∗ =

n−k∗ signals and min{j, n−k∗} successes, then according to Property 1 the principal believes
that with probability 1 the agent has invested k∗ units. So, by (9) the principal’s posterior
expectation of θ is equal to EP (θ|k∗, n−k∗, j′) = k∗+min{j′,n−k∗}+1

n+2
. Thus, to complete the proof

we need to show that the principal’s posterior expectation under any alternative disclosure
strategy cannot exceed k∗+min{j′,n−k∗}+1

n+2
.

First, if j′ ≥ n− k∗, then by (9) disclosing r∗ = n− k∗ signals and n− k∗ successes induces
the principal’s posterior expectation equal to n+1

n+2
. On the other hand, if the agent follows any

alternative disclosure strategy mj′′

r′′ s.t. r′′ > n − k∗, then according to (11) the principal’s
posterior expectation of θ does not exceed n−r′′+j′′+1

n+2
. The latter expression does not exceed

n+1
n+2

since j′′ ≤ r′′. So deviating from disclosure mn−k∗
n−k∗ is not profitable.

Next, suppose that r′ > n − k∗ and j′ < n − k∗. Then by making a disclosure mj′′

r′′ where
r′′ ≤ n−k∗ and j′′ ≤ j′, the agent induces the principal’s posterior expectation equal to k∗+j′′+1

n+2

by (9). The latter does not exceed k∗+j′+1
n+2

, the principal’s posterior expectation of θ when the
agent discloses n−k∗ signals and j′ successes. Therefore, such disclosure mj′′

r′′ where r
′′ ≤ n−k∗

and j′′ ≤ j′, is suboptimal.
Finally, suppose that the agent’s disclosure mj′′

r′′ is such that r′′ > n− k∗ and j′′ ≤ j′. Then
by (11) the principal’s posterior expectation does not exceed n−r′′+j′′+1

n+2
which, in turn, is less

than k∗+j′+1
n+2

. The latter is the principal’s posterior after disclosure mj′

n−k∗ . So we conclude
that the disclosure mj′′

r′′ is suboptimal.
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Finally, since the agent’s optimal disclosure is always such that r′′ ≤ k∗, it follows by
Property 1 that the principal believes that the agent has invested k∗ units with probability 1.
Q.E.D.

Proof of Lemma 3: First, for c > n+1
n+2

there is no budget allocation resulting in E(θ|·) > n+1
n+2

.
So, the principal optimally chooses k∗ = 0. Moreover, there is an equilibrium where she does
not conduct any trials as no signal realization ever leads to the project approval since in the
best possible scenario – when all trials are successes – the expected value of θ is n+1

n+2
.

Consider now c ≤ n+1
n+2

. Suppose that the principal invests n units. Then, the expected
payoff is given by n+1

n+2
− c ≥ 0.

Now, suppose that the principal chooses k < n invested units instead. Then, her expected
payoff is

n−k∑
j=0

Pr(j|k, n) max{0, [E(θ|k, j, n)− c]} =
n−k∑
j=0

Pr(j|k, n) max

{
0,

[
j + k + 1

n+ 2
− c
]}

<
n−k∑
j=0

Pr(j|k, n) max

{
0,

[
n+ 1

n+ 2
− c
]}
≤ n+ 1

n+ 2
− c

Thus, the principal maximizes her payoff by investing k = n units.
Q.E.D.

Derivation of equation (4):

Pr(j|k, n) =

∫ 1

0

Pr(j|k, n, θ)Pr(θ|k)dθ

=

∫ 1

0

(
n− k
j

)
θj(1− θ)n−k−j(k + 1)θkdθ =

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!
.

Proof of Lemma 4: Suppose the agent invests n units. In this case, there are no resources
available for signal acquisition and therefore m = ∅. If c ≤ n+1

n+2
and the principal believes

that k∗ = n, she approves the project upon no disclosure. Anticipating the principal’s best
response, the agent deviates and chooses k∗ = 0 to save on cost b, a contradiction. If c > n+1

n+2
,

there is no budget allocation resulting in EP (θ|k, n) > n+1
n+2

and therefore the principal never
approves a project. The agent’s best response is to deviate and to choose k∗ = 0 to save cost
b, a contradiction. Therefore, there is no equilibrium with k∗ = n.
Q.E.D.

Proof of Lemma 5: Using (4) we obtain:

Pr(j ≥ j′|k, n) =
n−k∑
j=j′

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!
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= 1−
j′−1∑
j=0

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!
= 1− (k + 1)(n− k)!

(n+ 1)!

j′−1∑
j=0

(j + k)!

j!
. (12)

Now let us apply a known result on the sum of partial factorials saying that:

j′−1∑
j=0

(j + k)!

j!
=

(k + j′)!

(k + 1)(j′ − 1)!
. (13)

Substituting (13) into (12) yields:

Pr(j ≥ j′|k, n) = 1− (k + 1)(n− k)!

(n+ 1)!

(k + j′)!

(k + 1)(j′ − 1)!
= 1− (k + j′)!(n− k)!

(n+ 1)!(j′ − 1)!
.

Q.E.D.

Proof of Proposition 1:
The equilibrium level of investment k∗ must be a solution to the program (6). To find k∗

we, first, ignore the fixed cost b and derive the conditions under which

k∗ ∈ arg max
k′∈{0,..,n−j∗}

Pr(j ≥ j∗|k′, n). (14)

This ensures that the agent would not deviate from k∗ to any other positive number of invested
units. Then we show that provided that Assumption 1 holds, a deviation to zero invested units
is also unprofitable.

If k′ units are invested, then the probability of getting at least j∗ successes and hence getting
the project approved is equal to

1− (k′ + j∗)!(n− k′)!
(j∗ − 1)!(n+ 1)!

. (15)

Thus, k∗ is optimal for the agent if and only if

k∗ ∈ arg min
k′∈{0,...,n−j∗}

(k′ + j∗)!(n− k′)! (16)

In order to solve the problem (16), let us first allow a continuous choice k′ i.e., k′ ∈ [0, n−j∗].
Then the objective of (16) can be rewritten as

D(k′, j∗, n) ≡ Γ(k′ + j∗ + 1)Γ(n− k′ + 1) ≡
∫ ∞

0

xk
′+j∗e−xdx×

∫ ∞
0

xn−k
′
e−xdx

Note that

dD(k′, j∗, n)

dk′
= (log(k′ + j∗)− log(n− k′)) Γ(k′ + j∗ + 1)Γ(n− k′ + 1) (17)
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It follows from (17) that dD(k′,j∗,n)
dk′

< 0 (dD(k′,j∗,n)
dk′

> 0) if k′ < n−j∗
2

(k′ > n−j∗
2

) and dD(k′,j∗,n)
dk′

= 0

if k′ = n−j∗
2

. Hence, D(k′, j∗, n) attains a unique minimum at k′ = n−j∗
2

. Also note that, for
fixed (j∗, n), D(k′, j∗, n) is symmetric around k′ = n−j∗

2
. Therefore, k∗ minimizing (16) over a

discrete set {0, ..., n− j∗} has to satisfy:

n− j∗ − 1

2
≤ k∗ ≤ n− j∗ + 1

2
. (18)

Next, recall that by Lemma 1, j∗ := dc(n + 2)e − (k∗ + 1). Substituting the latter into (18)
yields:

n− dc(n+ 2)e ≤ k∗ ≤ n+ 2− dc(n+ 2)e. (19)

Note that a pair k∗ > 0 and j∗ = 0 cannot be part of an equilibrium because in this case
the agent would deviate to save the fixed cost b > 0 of investment. So, k∗ must also satisfy
j∗ = dc(n+ 2)e − (k∗ + 1) ≥ 1. This equilibrium requirement can be rewritten as follows:

k∗ ≤ dc(n+ 2)e − 2. (20)

In the rest of the proof, we identify the solution over different parts of the relevant cost
range [1

2
, 1].

Case 0. c > n
n+2

.
First, if c > n+1

n+2
, then (19) implies that k∗ = 0. The project never gets approved, because

1+j∗+k∗

n+2
< c i.e., the posterior expectation of θ is below c.

Second, consider c ∈ ( n
n+2

, n+1
n+2

). In this range, the only solution to inequality (19) is k = 1,
and so j∗ = dc(n+ 2)e− (k∗+ 1) = n−1. Using (23), the probability of obtaining the evidence
if the agent adheres to the candidate equilibrium strategy k = 1 and when he deviates to k = 0

is the same and equal to 1 − j∗

n+1
. Thus, there is no fixed cost b > 0 that can support an

equilibrium with k∗ = 1. We conclude that for c > n
n+2

, k∗ = 0.

For the following Cases 1-3 assume n > 3.
Case 1. c ∈ [ n+4

2(n+2)
, n
n+2

].
In this case, n + 2 − dc(n + 2)e ≤ dc(n + 2)e − 2. So, the equilibrium k∗ is determined

only by (19). There are multiple solutions to (19). Focusing on a Pareto efficient equilibrium
implies that we need to choose the largest possible k. Hence, in this case we have

k∗ = (n+ 2)− dc(n+ 2)e.

Case 2. c ∈ [ n+3
2(n+2)

, n+4
2(n+2)

).
In this case, n + 1 − dc(n + 2)e ≤ dc(n + 2)e − 2 < n + 2 − dc(n + 2)e. So the largest k∗
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that satisfies both (19) and (20) is

k∗ = n+ 1− dc(n+ 2)e.

Case 3. c ∈ [1
2
, n+3

2(n+2)
).

In this case, n − dc(n + 2)e ≤ dc(n + 2)e − 2 < n + 1 − dc(n + 2)e. So the largest k∗ that
satisfies both (19) and (20) is

k∗ = n− dc(n+ 2)e.

In the following we show that in Cases 1-3 the agent adheres to investing k∗ units provided
that Assumption 1 holds i.e., b ≤ n−2

n(n+1)
. In fact, we will show that the agent prefers to invest

1 unit rather than 0 units, which then implies that investing k∗ units is better than investing
zero units.

Note that the probability of obtaining at least j∗ successes and hence getting the project
approved when k = 0, is 1− j∗

n+1
. Also, the probability of obtaining at least j∗ successes when

k = 1, is 1− (j∗+1)j∗

(n+1)n
. The difference between these probabilities, which we denote by DP (j∗, n),

is given by:

DP (j∗, n) = 1− (j∗ + 1)j∗

(n+ 1)n
−
(

1− j∗

n+ 1

)
=
j∗(n− j∗ − 1)

n(n+ 1)
. (21)

As a function of j∗, DP (j∗, n) reaches its minimum both at j∗ = 1 and at j∗ = n − 2. So for
n > 2, we have

min
j∗

DP (j∗, n) = DP (1, n) = DP (n− 2, n) =
n− 2

n(n+ 1)
> 0.

Thus, if b < n−2
n(n+1)

and n > 3, then the agent would not deviate to zero invested units, because
she prefers to invest 1 unit to no investment.

Finally, we consider n = 2 and n = 3. For n = 2, the only candidate equilibrium with a
positive number of invested units requires k∗ = 1 and j∗ = 1. But then, according to (21),
DP (1, 2) = 0 i.e., the agent gets the same probability of approval by choosing no investment.
Thus, there is no equilibrium with k = 1, and so for c ≥ 1

2
and n = 2, k∗ = 0.

Next, consider n = 3. In this case, we must have k∗ < 2, for otherwise we will have j∗ = 0,
which cannot be a part of an equilibrium. Let us now show that an equilibrium with n = 3

and k∗ = 1 exists. Given k∗ = 1, the principal’s decision rules implies that j∗ = 1. Next, we
may compute:

Pr(j ≥ j∗|k = 1, n = 3)− Pr(j ≥ j∗|k = 0, n = 3) =
1

12
(4− d5ce)(d5ce − 2).
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Note that 1
12

(4− d5ce)(d5ce − 2) is equal to 1
12

for c ∈ [1
2
, 3

5
] and 0 for c > 3

5
.

By Assumption 1, b < n−2
n(n+1)

, which is equal to 1
12

when n = 3. So, the agent does not have
an incentive to deviate to no investment. Hence we conclude that for n = 3 in equilibirum we
have k∗ = 1 if c ∈ [1

2
, 3

5
] and k∗ = 0 if c > 3

5
.

Q.E.D.

Proof of Proposition 2: First, let us establish which strategies cannot be supported in an
equilibrium:
Claim 1: There is no equilibrium with j∗ = 0 and k∗ > 0.

Suppose to the contrary that there exist an equilibrium in which the agent chooses k∗ > 0

and obtains r∗ signals and the principal uses threshold j∗ = 0. Then the agent has a profitable
deviation: choose zero investment and obtain r∗ signals in order to save the cost b > 0. This
establishes Claim 1.

Note a direct consequence of Claim 1 is that there is no equilibrium with k∗ = n. It also
implies that in an equilibrium we must have j∗ ≥ 1, for otherwise the probability of approval
would be zero.

Taking as given that the principal’s approval strategy must satisfy j∗ ≥ 1, we can now
prove the following claim:
Claim 2: A strategy under which the agent chooses k′ > 0 and obtains r′ > 0 signals s.t.
k′ + r′ < n is dominated by a strategy of investing n− r′ units and obtaining r′ signals.

Consider an agent’s strategy that does not exhaust the budget i.e., under which the agent
invests k′ > 0 units and obtains r′ signals s.t. r′ < n − k′. Then the agent has a profitable
deviation to n−r′ > k′ invested units as this would increase the likelihood of a successful signal,
Pr(si = 1|θ, k, n), and hence raise the probability of the project approval. This establishes
Claim 2.

Claim 2 implies that, if there exists an equilibrium with a positive number of invested units
k′, then in this equilibrium the agent obtains n− k′ signals.

Next, to complete the proof that in equilibrium the agent invests k∗ = dc(n+ 2)e − 2 units
and commits to disclosing n − k∗ signals, while the principal uses approval threshold j∗ = 1,
we rule out two types of deviations. We first rule out the case of no positive investment. Then
we show that the agent would not deviate to any other positive number of invested units and
a complementary number of signals.
Claim 3: Deviation to no investment is unprofitable for the agent.

Assume, first, that the agent obtains n − k∗ + t signals with t ≥ 1. Consider the most
optimistic principal’s belief: upon observing the signals she believes that k∗ − t units are
invested. Denote her new threshold by j′ with j′ ≥ 2. Then, the agent expects the principal
to approve the project with probability 1− (j′)!(n)!

(j′−1)!(n+1)!
. Recall that on path, the probability of

persuading the principal is 1− (k∗+1)!(n−k∗)!
(n+1)!

where we use j∗ = 1.
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In the following we show that for any k∗(c, n)

1− (k∗ + 1)!(n− k∗)!
(n+ 1)!

−
(

1− (j′)!(n)!

(j′ − 1)!(n+ 1)!

)
=

j′

n+ 1
− Γ(k∗ + 2)Γ(n− k∗ + 1)

Γ(n+ 2)
≥ n− 2

n(n+ 1)
. (22)

Consider the following derivative:

∂ Γ(k+2)Γ(n−k+1)
Γ(n+2)

∂k
=

Γ(k + 2)Γ(n− k + 1)(ψ(k + 2)− ψ(n− k + 1))

Γ(n+ 2)
.

This derivative is monotonically increasing on k ∈ {1, .., n− 1} because

∂2 Γ(k+2)Γ(n−k+1)
Γ(n+2)

∂k2
=

Γ(k + 2)Γ(n− k + 1) ((Hk+1 −Hn−k)
2 + ψ(n− k + 1) + ψ(k + 2))

Γ(n+ 2)
> 0.

Given that ψ(k + 2) − ψ(n − k + 1) < 0 for k = 1, and ψ(k + 2) − ψ(n − k + 1) > 0 for
k = n− 1, it must be that the function Γ(k+2)Γ(n−k+1)

Γ(n+2)
, first, decreases in k, and then increases

in k. Therefore the maximum of the function is attained either at k = 1 or at k = n − 1.
Because the function Γ(k+2)Γ(n−k+1)

Γ(n+2)
is 2

n(n+1)
at k = 1, and is 1

n+1
at k = n − 1, and since

2
n(n+1)

< 1
n+1

for n ≥ 3, the maximum of the function Γ(k+2)Γ(n−k+1)
Γ(n+2)

for n ≥ 3 is at k = n− 1.
Recall that the minimal approval threshold used by the principal is j′ = 2. If we use j′ = 2

on the LHS of (22), together with k∗ = n− 1, the inequality is satisfied because

2

n+ 1
− 1

n+ 1
=

1

n+ 1
>

n− 2

n(n+ 1)
,

and is therefore satisfied for any k∗(c, n). Therefore, we conclude that the agent has no incentive
to deviate to no investment and to obtain n− k∗ + t > n− k∗ signals.

Second, suppose that the agent obtains n− k∗ + t < n− k∗ signals i.e. that t < 0. Assume
that upon observing the signals, the principal believes that the agent invests at most k∗ − 1

units. But then, as the principal’s decision rule satisfies j′ ≥ 2, above we have shown that the
inequality (22) is satisfied for any k∗(c, n). Therefore the agent has no incentive to deviate to
no investment and to obtain n− k∗ + t < n− k∗ signals.

Claim 4: A deviation to k′ 6= k∗ = dc(n+ 2)e − 2 is unprofitable for the agent.
Note that by Claim 2 we only need to consider deviations that involve k′ invested units

and n − k′ signals, after which the principal following her optimal decision rule approves the
project only if the number of successes j is such that j = max{dc(n+ 2)e − k′ − 1, 1}.

First, suppose that k′ ≥ dc(n + 2)e − 1 and so j = 1. Since c > 1
2
, it follows that k′ > n

2
.
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Then with j = 1 the probability that the project is approved is equal to:

1− (k′ + 1)!(n− k′)!
(n+ 1)!

. (23)

Consider now the agent deviating and choosing k′′ = k′ − 1 invested units. In this case,
k′′ ≥ dc(n+ 2)e− 2, so the principal’s approval threshold remains j = 1, and so the probability
of the project approval is equal to 1 − k′!(n−k′+1)!

(n+1)!
. This probability is greater than the value

of (23) because k′!(n − k′ + 1)! < (k′ + 1)!(n − k′)! The latter inequality holds because it is
equivalent to n− k′ + 1 < k′ + 1 which holds because k′ > n

2
.

Thus, it follows that the agent is strictly better off choosing k′ = dc(n + 2)e − 2 than any
larger number of invested units.

Next, let us show that the agent would not deviate to k′′ < dc(n + 2)e − 2. We prove this
by showing that, when k ≤ dc(n + 2)e − 2, the agent’s payoff when she chooses k is greater
than the payoff that she gets by choosing k − 1. First, when k ≤ dc(n + 2)e − 2 the principal
uses threshold j(k) s.t. j(k) + k = dc(n + 2)e − 1. This implies that the agent’s payoff when
she chooses k is greater than the payoff that she gets by choosing k − 1 iff

(n− k)!

(j(k)− 1)!
<

(n− k + 1)!

j(k)!
.

The latter inequality is equivalent to n + 1 > j(k) + k, which holds because j(k) + k =

dc(n+ 2)e − 1 < n+ 1. The latter inequality follows from c < n+1
n+2

.
Q.E.D.

Proof of Proposition 3: Let jc denote the threshold that the principal’s commits to. The
proof of Theorem 3 establishes the following. If c ∈ [1

2
, n−1
n+2

] and the principal uses threshold
j′ at the project approval stage, then the agent’s best response is to invest k(j′) units such
that n−j′−1

2
≤ k(j′) ≤ n−j′+1

2
. So, given the principal’s commitment to use threshold jc, we can

take the agent’s best response to be k(jc) = bn−jc+1
2
c i.e., k(jc) = n−jc+1

2
if n− jc is odd, and

k(jc) = n−jc
2

if n− jc is even.
Below, we provide the argument for the two cases where n is even (Case 1) and n is odd

(Case 2).

Case 1A: Suppose that n is even and jc is restricted to be odd, so that k(jc) = n−jc+1
2

. Let us
show that in this case the optimal commitment strategy for the principal is to choose jc = 1.

First, note that if the agent discloses j successes and the principal believes – as she does in
equilibrium – that the agent has invested k(jc) = n−jc+1

2
units and disclosed all successes, then

the principal’s expected value of θ is k(jc)+j+1
n+2

= 3+2j−jc+n
4+2n

. Therefore, the principal’s optimal
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commitment threshold jc∗ solves the following optimization problem:

max
jc∈{1,..,n−1}

n−k(jc)∑
j=jc

Pr(j|k(jc), n)
(k(jc) + j + 1

n+ 2
− c
)

= max
jc∈{1,..,n−1}

n−k(jc)∑
j=jc

(k(jc) + 1)(j + k(jc))!(n− k(jc))

(j)!(n+ 1)!

(3 + 2j − jc + n

4 + 2n
− c
)

︸ ︷︷ ︸
≡T (c,n,jc)

,

Let us consider the objective of the above problem:

T (c, n, jc) =

n−k(jc)∑
j=jc

Pr(j|k(jc), n)
(k(jc) + j + 1

n+ 2
− c
)

=

n−k(jc)∑
j=jc

(k(jc) + 1)(j + k(jc))!(n− k(jc))

(j)!(n+ 1)!

(k(jc) + j + 1

n+ 2
− c
)

= −c
(

1− (n− k(jc))!(k(jc) + jc)!

(n+ 1)!(jc − 1)!

)
+

n−k(jc)∑
j=jc

(k(jc) + 1)(j + k(jc) + 1)!(n− k(jc))

(j)!(n+ 2)!

=
k(jc) + 1

k(jc) + 2
− c+

(n− k(jc))!(k(jc) + jc)!

(n+ 1)!(jc − 1)!

(
c− (k(jc) + 1 + jc)(k(jc) + 1)

(n+ 2)(k(jc) + 2)

)
(24)

Using k(jc) = n−jc+1
2

, we can rearrange (24) as follows:

T (c, n, jc) = −c+ c
(jc + n+ 1)Γ

(
1
2
(jc + n+ 1)

)2

2Γ(jc)Γ(n+ 2)
+

n− jc + 3

n− jc + 5
−

((n+ 3)2 − (jc)2)Γ(1
2
(jc + n+ 3))2

(n− jc + 5)(jc + n+ 1)Γ(jc)Γ(n+ 3)
(25)

Next we will establish the following claims:

• Claim 1: T (c, n, jc) is decreasing in c and |∂T (c,n,jc)
∂c

| is decreasing in jc.

• Claim 2: Suppose that c = n−1
n+2

, and jc ∈ {1, 2, 3, .., n − 1}. Then T (c, n, jc) reaches a
maximum in jc at jc = 1.

In combination Claims 1 and 2 imply that for n even and jc ∈ {1, 3, .., n − 1}, jc = 1

maximizes T (c, n, jc) for all c ∈ [ n+4
2(n+2)

, n−1
n+2

].

Proof of Claim 1: Differentiating (25) we get:

∂T (c, n, jc)

∂c
=

(jc + n+ 1)Γ
(

1
2
(jc + n+ 1)

)2

2Γ(jc)Γ(n+ 2)
− 1 < 0 (26)
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Further, let jc be a real number in [1, n− 1]. Then differentiating (26) we get:

∂2T (c, n, jc)

∂c ∂jc
=

Γ
(

1
2
(jc + n+ 1)

)2 (
(jc + n+ 1)[ψ

(
1
2
(jc + n+ 1)

)
− ψ(jc)] + 1

)
2Γ(jc)Γ(n+ 2)

> 0, (27)

where ψ(.) = Γ′(.)
Γ(.)

is the digamma function. The sign of the inequality in (27) follows from the
fact that ψ′(x) > 0 for x > 0.

Combining (26) and (27) establishes that |∂T (c,n,jc)
∂c

| is decreasing in jc, which completes the
proof of Claim 1

Proof of Claim 2.
To establish this Claim, we show that T (c = n−1

n+2
, n, jc = 1) − T (c = n−1

n+2
, n, jc = f) > 0

where f ∈ {3, 5, n− 1}. First, note that rearranging (25) yields:

T (c, n, jc) =

− c+
n− jc + 3

n− jc + 5
−
jc (2c(n+ 2)(jc − n− 5)− (jc)2 + (n+ 3)2) Γ

(
1
2
(jc + n+ 3)

)2

(n+ 5− jc)(jc + n+ 1)Γ(jc + 1)Γ(n+ 3)
.

(28)

Note that, when c = n−1
n+2

, then

jc
(
2c(n+ 2)(jc − n− 5)− (jc)2 + (n+ 3)2

)
= −jc

(
(jc)2 − 2jc(n− 1) + n(n+ 2)− 19

)
.

Using this equality in the numerator of (28) we obtain:

T (c =
n− 1

n+ 2
, n, jc = f) = − 2

n+ 5− f
− 3

n+ 2
−

−
f (f 2 − 2f(n− 1) + n(n+ 2)− 19) Γ

(
1
2
(f + n+ 1)

)2
(f + n+ 1)

4(f − n− 5)Γ(f + 1)Γ(n+ 3)

In particular,

T (c =
n− 1

n+ 2
, n, jc = 1) =

n+ 8

n2 + 6n+ 8
+

(n− 4)Γ
(
n
2

+ 2
)2

(n+ 2)Γ(n+ 3)
.

Combining the last two equalities yields:

T (c =
n− 1

n+ 2
, n, jc = 1)− T (c =

n− 1

n+ 2
, n, jc = f)

=

(−2fn+f(f+2)+n2+2n−19)Γ( 1
2

(f+n+1))
2
(f+n+1)

4Γ(f)Γ(n+3)
+ 2−2f

n+4

f − n− 5
+

(n− 4)Γ
(
n
2

+ 2
)2

(n+ 2)Γ(n+ 3)
. (29)
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Since f − n− 5 < 0, (29) is positive if and only if

(n+ 2)

(
(−2fn+ f(f + 2) + n2 + 2n− 19) Γ

(
1
2
(f + n+ 1)

)2
(f + n+ 1)

4Γ(f)
− 2(f − 1)Γ(n+ 3)

n+ 4

)
− (n− 4)(n+ 5− f)Γ

(n
2

+ 2
)2

< 0. (30)

The inequality (30) holds because both terms in it are negative. It is easy to see that its second
term is negative because f < n. Additionally, in Appendix B we show that the first term in
(30) is negative.

Case 1B: Now suppose that n is even and jc is even, jc ∈ {2, 4, ..., n}. Then k(jc) = n−jc
2

.
Thus, if the principal believes that the agent has invested k(jc) units and that the sum of the
n−k(jc) signals is j, the principal’s expected value of θ is k(jc)+j+1

n+2
= 2j−jc+n+2

2n+4
. The principal’s

optimal threshold jc solves the following optimization problem:

arg max
jc∈{2,..,n−2}

n−k(jc)∑
j=jc

Pr(j|k(jc), n)
(k(jc) + j + 1

n+ 2
− c
)

= arg max
jc∈{2,..,n−2}

n−k(jc)∑
j=jc

(k(jc) + 1)(j + k(jc))!(n− k(jc))

(j)!(n+ 1)!

(2j − jc + n+ 2

2n+ 4
− c
)

︸ ︷︷ ︸
≡T̂ (c,n,jc)

,

where

T̂ (c, n, jc) = 1− c− 2

4− jc + n
+

(2c(n+ 2)(jc − n− 4)− (jc)2 + (n+ 2)2) Γ
(

1
2
(jc + n+ 2)

)
Γ
(

1
2
(jc + n+ 4)

)
(jc − n− 4)(jc + n+ 2)Γ(jc)Γ(n+ 3)

.

Following the same approach as in Case 1 A we establish the following Claims.
Claim 3: T̂ (c, n, jc) is decreasing in c and |∂T̂ (c,n,jc)

∂c
| is decreasing in jc.

Proof of Claim 3. First, we have:

∂T̂ (c, n, jc)

∂c
=

Γ
(

1
2
(jc + n+ 2)

)2

Γ(jc)Γ(n+ 2)
− 1 < 0.

Second, consider a continuous variable ĵc ∈ R+. We have:

∂T̂ (c, n, ĵc)

∂c ∂ĵc
=

Γ
(

1
2
(ĵc + n+ 2)

)2 (
ψ
(

1
2
(ĵc + n+ 2)

)
− ψ(ĵc)

)
Γ(ĵc)Γ(n+ 2)

> 0.

So ∂T̂ (c,n,jc)
∂c

increases in jc and since it is negative, we conclude that |∂T̂ (c,n,jc)
∂c

| decreases in jc
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. This completes the proof of Claim 3.

Claim 4: Suppose that c = n−1
n+2

, and jc ∈ {2, 4, .., n}. Then T̂ (c, n, jc) reaches a maximum in
jc at jc = 2.
Proof of Claim 4. Next, we show that at c = n−1

n+2
, the maximum of T̂ (c = n−1

n+2
, n, jc) over

{2, 4, .., n− 2} is at jc = 2. To see this, assume f ≥ 4 and consider the difference

T̂ (c =
n− 1

n+ 2
, n, jc = 2)− T̂ (c =

n− 1

n+ 2
, n, jc = f)

=

(f2−2f(n−1)+n(n+2)−12)Γ( 1
2

(f+n+2))
2

(f−n−4)Γ(f)
+

((n−2)n−4)Γ(n
2

+2)
2

n+2

2Γ(n+ 3)
+

2(f − 2)

(n+ 2)(−f + n+ 4)
.

The inequality T̂ (c = n−1
n+2

, n, jc = 2)− T̂ (c = n−1
n+2

, n, jc = f) > 0 holds if and only if

((n− 2)n− 4)(−f + n+ 4)Γ
(n

2
+ 2
)2

+ 4(f − 2)Γ(n+ 3)−

(n+ 2) (−2fn+ f(f + 2) + n2 + 2(n− 6)) Γ
(

1
2
(f + n+ 2)

)2

Γ(f)
> 0

which is true since both

4(f − 2)Γ(n+ 3)−
(n+ 2) (−2fn+ f(f + 2) + n2 + 2(n− 6)) Γ

(
1
2
(f + n+ 2)

)2

Γ(f)
> 0

and

((n− 2)n− 4)(−f + n+ 4)Γ
(n

2
+ 2
)2

> 0.

So, we have established that T̂ (c = n−1
n+2

, n, jc = 2)− T̂ (c = n−1
n+2

, n, jc = f ′) > 0 for f ′ = 4, 6, ..n,
completing the proof of Claim 4.

Given Claims 3 and 4, in order to complete Case 1B we only need to prove the following
claim.
Claim 5: If n is even, then the principal gets a higher payoff under commitment threshold
jc = 1 than under commitment threshold jc = 2

Proof of Claim 5. We have:

T̂ (c =
n− 1

n+ 2
, n, jc = 1)− T̂ (c =

n− 1

n+ 2
, n, jc = 2) =

n+8
n+4

+
(n−4)Γ(n

2
+2)

2

Γ(n+3)

n+ 2
−

((n−2)n−4)Γ(n
2

+2)
2

Γ(n+3)
+ 2

2(n+ 2)
=

8
n+4
− (n−2)2Γ(n

2
+2)

2

Γ(n+3)

2(n+ 2)
> 0.

This inequality establishes Claim 5.

We now consider Case 2 where n is odd.
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Case 2A: Suppose that n is odd and jc is odd, so that k(jc) = n−jc
2

. Let us show that jc = 1

is the principal’s optimal choice.
Given the results derived in Case 1B, namely that ∂T̂ (c,n,jc)

∂c
< 0 and ∂T̂ (c,n,jc)

∂c∂jc
> 0 where

T̂ (c, n, jc) is the principal’s expected payoff when k(jc) = n−jc
2

, we only need to establish that
at c = n−1

n+2
, T̂ (c, n, jc = 1)− T̂ (c, n, jc = f) > 0 for f = 3, 5, .., n− 1.

Indeed, we have:

T̂ (c, n, jc = 1)− T̂ (c, n, jc = f)

=
1

2

 (−2fn+f(f+2)+n2+2(n−6))Γ( 1
2

(f+n+2))
2

Γ(f)Γ(n+3)
+ 4−4f

n+3

f − n− 4
+

(n− 3)Γ
(
n+3

2

)2

Γ(n+ 3)

 (31)

Since f − (n+ 4) < 0, the expression in (31) is positive if and only if

Γ(n+ 3)

(
(−2fn+ f(f + 2) + n2 + 2(n− 6)) Γ

(
1
2
(f + n+ 2)

)2

Γ(f)Γ(n+ 3)
+

4− 4f

n+ 3

)
−

(n− 3)(n+ 4− f)Γ

(
n+ 3

2

)2

< 0

which is true since both

(−2fn+ f(f + 2) + n2 + 2(n− 6)) Γ
(

1
2
(f + n+ 2)

)2

Γ(f)Γ(n+ 3)
+

4− 4f

n+ 3
< 0

and

−(n− 3)(n+ 4− f)Γ

(
n+ 3

2

)2

< 0.

Thus, T̂ (c, n, jc = 1) − T̂ (c, n, jc = f) > 0 for any f ≥ 3. This completes the proof for Case
2A.

Case 2B: Suppose that n is odd and jc is restricted to be even, so that k(jc) = n−jc+1
2

. Let
us show that jc = 2 is the principal’s optimal choice in this case.

First, let us show that T (c, n, jc = 2) − T (c, n, jc = f) > 0 for f ∈ {4, 6, .., n}. Given
the results in Case 1A, namely that ∂T (c,n,jc)

∂c
< 0 and ∂T (c,n,jc)

∂c∂jc
> 0 where T (c, n, jc) is the

principal’s expected payoff when the threshold is k(jc) = n−jc+1
2

, to prove this claim we only
need to establish that T (c, n, jc = 2)−T (c, n, jc = f) > 0 for f ∈ {4, 6, .., n} at c = n−1

n+2
. First,

assuming f ≥ 4 we obtain:

T (c =
n− 1

n+ 2
, n, jc = 2)− T (c =

n− 1

n+ 2
, n, jc = f)
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=

(−2fn+f(f+2)+n2+2n−19)Γ( 1
2

(f+n+3))
2

(f+n+1)Γ(f)Γ(n+3)
+ 4−2f

n+3

f − n− 5
+

((n− 2)n− 11)Γ
(
n+5

2

)2

(n+ 3)Γ(n+ 4)
. (32)

Because f − (n+ 5) < 0, the expression in (32) is positive if and only if:

((n− 2)n− 11)(f − n− 5)Γ

(
n+ 5

2

)2

−

(n+ 3)2 (−2fn+ f(f + 2) + n2 + 2n− 19) Γ
(

1
2
(f + n+ 3)

)2

(f + n+ 1)Γ(f)
− 2(f − 2)Γ(n+ 4) < 0.

Note that the last inequality holds because

((n− 2)n− 11)(f − n− 5)Γ

(
n+ 5

2

)2

< 0

and

−
(n+ 3)2 (−2fn+ f(f + 2) + n2 + 2n− 19) Γ

(
1
2
(f + n+ 3)

)2

(f + n+ 1)Γ(f)
− 2(f − 2)Γ(n+ 4) < 0.

To finalize the proof for Case 2 (n is odd), we need to establish the following claim:

Claim 6: Provided that n is odd, T (c, n, jc = 2)− T̂ (c, n, jc = 1) > 0.
Proof of Claim 6: We have:

T (c, n, jc = 2)− T̂ (c, n, jc = 1)

=
(n3 − 15n− 22) Γ

(
n+5

2

)2
+ (n+ 5)Γ(n+ 4)

(n+ 2)(n+ 3)Γ(n+ 4)
−
( n+ 5

n2 + 5n+ 6
+

(n− 3)Γ
(
n+3

2

)2

2Γ(n+ 3)

)
=

(n− 5)(n+ 1)Γ(n+ 3)Γ
(
n+5

2

)2

Γ(n+ 4)2
. (33)

Since n − 5 > 0, the value of (33) is positive which establishes Claim 6. This completed the
proof of Proposition 3.
Q.E.D.

Proof of Proposition 4: Recall from Proposition 3 that the level of investment under prin-
cipal’s commitment is kp ∈ {n2 ,

n−1
2
}, depending on whether n is even or odd. On the other

hand, the level of investment under the agent’s commitment is ka := dc(n+ 2)e − 2. Consider
the following expected payoffs:

1. First, consider the case under the principal’s commitment with n as an even integer. In
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this case, jc = 1 and k(jc) = n
2
. Then, we can directly calculate the following objects

Pr(j|k(jc), n) =
Γ
(
n
2

+ 2
)

Γ
(
j + n

2
+ 1
)

Γ(j + 1)Γ(n+ 2)

and E(θ|k(jc), n) = 1
2

+ j
n+2

. Therefore the principal’s expected payoff is

n−k(jc)∑
j=1

(Γ
(
n
2

+ 2
)

Γ
(
j + n

2
+ 1
)

Γ(j + 1)Γ(n+ 2)
− c
)

=
(2c− 1)Γ

(
n
2

+ 2
)2

Γ(n+ 3)
− c+

n+ 2

n+ 4
. (34)

2. Second, consider the case under the principal’s commitment with n as an odd integer. In
this case, jc = 2. Thus, we know that for jc = 1 the principal’s payoff would be lower
than for jc = 2. Consider jc = 1: then, the principal’s expected payoff is the same as
calculated above,

(2c− 1)Γ
(
n
2

+ 2
)2

Γ(n+ 3)
− c+

n+ 2

n+ 4
.

3. Third, consider the principal’s expected payoff under the agent’s commitment. Here,
jc = 1 and ka(j

c = 1) = dc(n + 2)e − 2. Consider a change of variables, and take
k̂ = c(n+ 2)− 2. Then, E(θ|k̂, n) = c+ j−1

n+2
, and

Pr(j|k̂, n) =
(c(n+ 2)− 1)Γ(n− c(n+ 2) + 3)Γ(j + c(n+ 2)− 1)

Γ(j + 1)Γ(n+ 2)
.

Therefore, the principal’s expected payoff under the agent’s commitment is

n−k̂∑
j=1

(c(n+ 2)− 1)Γ(n− c(n+ 2) + 3)Γ(j + c(n+ 2)− 1)

Γ(j + 1)Γ(n+ 2)

j − 1

n+ 2

= − 1

c(n+ 2)
+

Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)

Γ(n+ 3)
− c+ 1. (35)

Now, we want to show that the difference (35)− (34) > 0. The difference (35)− (34) is

− 1

c(n+ 2)
−

(2c− 1)Γ
(
n
2

+ 2
)2

Γ(n+ 3)
+

Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)

Γ(n+ 3)
− n+ 2

n+ 4
+ 1. (36)

Consider the following derivatives:

∂ − 1
c(n+2)

− (2c−1)Γ(n
2

+2)
2

Γ(n+3)
− n+2

n+4
+ 1

∂c
=

1

c2(n+ 2)
−

2Γ
(
n
2

+ 2
)2

Γ(n+ 3)
(37)
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that itself decreases in c, and the derivative

∂ Γ(c(n+2))Γ(n−c(n+2)+3)
Γ(n+3)

∂c

=
(n+ 2)Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)(ψ(c(n+ 2))− ψ(n− c(n+ 2) + 3))

Γ(n+ 3)
> 0 (38)

since ψ(c(n+ 2)) > ψ(n− c(n+ 2) + 3). We want to show that (37) > (38). To see this, note
that the derivative of (38) with respect to c is positive:

∂ (n+2)Γ(c(n+2))Γ(n−c(n+2)+3)(ψ(c(n+2))−ψ(n−c(n+2)+3))
Γ(n+3)

∂c
=

(n+ 2)2Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)×(
(ψ(0)(c(n+ 2))− ψ(0)(n− c(n+ 2) + 3))2 + ψ(1)(c(n+ 2)) + ψ(1)(n− c(n+ 2) + 3)

)
Γ(n+ 3)

> 0.

Then, using c′ := n−1
n+2

, the difference (37)− (38) may be computed as

n+ 2

(n− 1)2
−

2Γ
(
n
2

+ 2
)2

Γ(n+ 3)
−

6(n+ 2)Γ(n− 1)
(
ψ(0)(n− 1) + γ − 11

6

)
Γ(n+ 3)

(39)

and (39) > 0 can be expressed as

−2(n−1)2Γ
(n

2
+ 2
)2

+(n+2)Γ(n+3)−6(n+2)(n−1)2Γ(n−1)

(
ψ(0)(n− 1) + γEM − 11

6

)
> 0.

where γEM is the Euler-Masceroni constant.
In the next step, consider ĉ = n+4

2(n+2)
. Then

− 1

ĉ(n+ 2)
−

(2ĉ− 1)Γ
(
n
2

+ 2
)2

Γ(n+ 3)
− n+ 2

n+ 4
+ 1 =

Γ(ĉ(n+ 2))Γ(n− ĉ(n+ 2) + 3)

Γ(n+ 3)

and therefore we conclude that (36) > 0. Thus, we conclude that the principal’s expected
payoff under the agent’s commitment is (weakly) higher than the principal’s payoff under the
principal’s commitment.

Note further that the principal’s expected payoff under her commitment is better than
under the equilibrium of the disclosure game, because the principal can always replicate the
outcome of the disclosure game under commitment.

Next, consider the agent. We first show that the agent prefers his commitment to full
disclosure to his equilibrium payoff in the disclosure game. We maintain the assumption that
the agent wants to invest at least one unit, and therefore we need to compare the probabilities
of the project approval in the two environments. First, under the commitment to full signal
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disclosure the probability of the project approval that is, provided that j∗ = 1 and k∗ =

dc(n+ 2)e − 2:

1− Γ(n− dc(n+ 2)e+ 3)Γ(dc(n+ 2)e)
Γ(n+ 2)

.

In the equilibrium of the disclosure game, provided that c ∈
(

n+4
2(n+2), n

n+2

]
, the probability of

the project approval is:

1− Γ(dc(n+ 2)e − 1)Γ(dc(n+ 2)e)
Γ(n+ 2)Γ(−n+ 2dc(n+ 2)e − 3)

.

Then, the agent (strictly) prefers the commitment to full signal disclosure if

Γ(dc(n+ 2)e − 1)

Γ(n− dc(n+ 2)e+ 3)Γ(−n+ 2dc(n+ 2)e − 3)
> 1. (40)

Due to the properties of the ceiling-function, we have:

Γ(dc(n+ 2)e − 1)

Γ(n− dc(n+ 2)e+ 3)Γ(−n+ 2dc(n+ 2)e − 3)
≥ Γ(c(n+ 2)− 1)

Γ(n− c(n+ 2) + 3)Γ(−n+ 2c(n+ 2)− 2)
.

(41)

Now, one may show that

∂ Γ(c(n+2)−1)
Γ(n−c(n+2)+3)Γ(−n+2c(n+2)−2)

∂c
=

(n+ 2)Γ(c(n+ 2)− 1)(−2ψ((2c− 1)(n+ 2)) + ψ(n− c(n+ 2) + 3) + ψ(c(n+ 2)− 1))

Γ((2c− 1)(n+ 2))Γ(n− c(n+ 2) + 3)
,

and that it is positive below some interior c within the cost interval specified in the lemma,
and negative otherwise. Thus, the RHS of (41) is, first, increasing and then decreasing on the
given cost interval.

First, consider the realization of the RHS of (41) at c = n+4
2(n+2)

, that is 1. Second, consider
the realization of the RHS of (41) at c = n−1

n+2
, that is 1

6
(n − 4)(n − 3) > 1 for n > 6. Given

that the RHS of (41) increases in c at c = n+4
2(n+2)

, it must be the case that the inequality (40)

is satisfied on c ∈
(

n+4
2(n+2)

, n−1
n+2

]
, and therefore the agent prefers commitment to full signal

disclosure to the equilibrium of the disclosure game.

Next, we show that the agent prefers principal’s commitment to the outcome of the dis-
closure game. To obtain this result, consider, first, the agent’s expected payoffs under the
principal’s commitment:

1. Consider n even; jc = 1 and k∗ = n
2
. In this case the agent’s expected payoff is (i.e. by
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omitting the fixed cost of investment it is just the probability of persuading the principal)

1−
Γ
(
n+3

2

)
Γ
(
n+4

2

)
Γ(n+ 2)

,

2. Consider n odd; jc = 2 and k∗ = n−1
2
. In this case the agent’s expected payoff is

1−
Γ
(
n+3

2

)
Γ
(
n+5

2

)
Γ(n+ 2)

.

As we know from the previous part of the proof, in the disclosure game the agent’s expected
payoff is:

1− Γ(dc(n+ 2)e − 1)Γ(dc(n+ 2)e)
Γ(n+ 2)Γ(2dc(n+ 2)e − (n+ 3))

(42)

that is (weakly) decreasing in c. At the lower bound of the cost interval, c = n+4
2(n+2)

, the
expected payoff (42) becomes

1−
Γ
(⌈

n
2

⌉
+ 1
)

Γ
(⌈

n
2

⌉
+ 2
)

Γ(n+ 2)Γ
(
−n+ 2

⌈
n
2

⌉
+ 1
) . (43)

Consider n even. Then, since dn
2
e = n

2
, (43) can be expressed as

1−
Γ
(
n+3

2

)
Γ
(
n+4

2

)
Γ(n+ 2)Γ

(
−n+ 2n

2
+ 1
) = 1−

Γ
(
n+3

2

)
Γ
(
n+4

2

)
Γ(n+ 2)

which is exactly the same as the payoff under the principal’s commitment with n even. Since
the agent’s payoff in the game decreases in c, the agent prefers principal’s commitment to the
outcome of the game.

Consider n odd. Then, since dn
2
e = n+1

2
, (43) can be expressed as

1−
Γ
(
n+3

2

)
Γ
(
n+5

2

)
Γ(n+ 2)Γ

(
−n+ 2n+1

2
+ 1
) = 1−

Γ
(
n+3

2

)
Γ
(
n+5

2

)
Γ(n+ 2)

where the latter equality is satisfied since Γ(2) = 1. The above payoff is the same as the payoff
under the principal’s commitment with n odd. And again, since the agent’s payoff in the game
decreases in c, the agent prefers principal’s commitment to the outcome of the game.
Q.E.D.

Proof of Corollary 1:
Suppose that the agent is committed to full signal disclosure and the principal is committed

to some approval threshold jc. Then the agent’s disclosure has no effect on approval of the
project. Therefore, the agent’s best response budget allocation would be the same as the one
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characterized in Proposition 3. So the equilibrium outcome would be the same as the one that
emerges when only the principal can commit and which is characterized in Proposition 3. But
by Proposition 4, the principal prefers the equilibrium outcome under the agent’s commitment
to the outcome under her own commitment. So, the principal would be better off not to use
any commitment when the agent is committed to disclosure.
Q.E.D.
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