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Abstract

We study monitoring and manipulation in a dynamic career concerns model. An

agent “manipulates” for a private benefit and is punished when a monitor detects the

manipulation. The monitor’s detection ability is uncertain and requires investment to

maintain. By manipulating, the agent experiments about the monitor’s ability and this

experimentation motive encourages manipulation. Absent detection, the belief about

the monitor’s ability decreases, which increases the agent’s willingness to manipulate,

but discourages the monitor from investing in her ability. In equilibrium, the monitor

lets her ability decay, even though she could prevent manipulation forever. Surpris-

ingly, the monitor’s investment encourages manipulation. The relationship is generally

inefficient and there are multiple equilibria in which the monitor over-invests. Term

limits reduce manipulation by curbing the agent’s experimentation motive and long-

serving monitors start accepting bribes to hide detections. The optimal organizational

design exploits externalities between multiple manipulating agents.
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“It’s a little difficult to say when the fraud started [...] so I’m not sure at which

point we crossed the line. [...] Now, all of the deals were technically approved

by our attorneys and accountants, so if that’s your definition of fraud then there

was no fraud.”

— Andrew Fastow, former Enron CFO.1

1 Introduction

Misbehavior is an insidious process. When organizations finally discover misbehavior, they

typically trace its origins to the distant past. Enron’s bankruptcy in 2001 has shed light on

a fraudulent accounting scheme reaching back several years, throughout which both internal

and external monitors have failed to act. The manipulation of emissions tests at Volkswagen

might have been known to executives as early as 2007, but was only uncovered in 2015.2 More

starkly, problems with the component causing the Challenger disaster have been known nine

years prior to the incident, but NASA continually shifted its own internal standards rather

than censure the contractor responsible (Vaughan (1996)).3

This temporal dimension of manipulation has important implications for incentives.

Agents who repeatedly “get away” with manipulation start to believe that their monitors

are ineffective and that future manipulation is unlikely to be punished. Thus, they are

more encouraged to manipulate in the future. Since manipulation reveals information about

the monitor, agents effectively engage in experimentation (Bolton and Harris (1999); Keller

et al. (2005)) and manipulate to gain information about the monitor’s effectiveness. In other

words, agents manipulate to “test” the monitor.

Monitors, on the other hand, are tasked with detecting manipulation, which requires

specialized skills. Investing in these skills is necessary for the monitor to be effective, while

failing to do so leads to a deterioration of the monitor skills and allows the agent to manip-

ulate at a low risk. Indeed, monitors’ skills becoming outdated is a central concern among

practitioners and academics4 and is recognized as a key driver of managerial entrenchment.

Once a monitor is behind evaluating complex manipulation schemes may be either impossible

1See “Numbers manipulator describes Enron’s descent.” Fraud Magazine, March 2016. https://www.
fraud-magazine.com/article.aspx?id=4294991880. Last accessed Aug. 22, 2019.

2See “Olaf Lies wirft Volkswagen-Managern kriminelles Verhalten vor” [Olaf Lies Accuses Volkswagen
Managers of Criminal Behaviour], Der Spiegel (in German), September 30, 2015, https://www.spiegel.de/
wirtschaft/unternehmen/volkswagen-aufsichtsrat-lies-macht-managern-vorwuerfe-a-1055381.
html. Last accessed Aug. 22, 2019.

3Consistent with these anecdotes, a report by the Association of Certified Fraud Examiners, ACFE (2018),
finds that the average corporate fraud scheme lasts for over a year before being uncovered.

4See Canavan et al. (2004) for boards, Miller (1991) for managers, and Singer and Zhang (2017) for
auditors.
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or prohibitively costly. This explains why monitors caught up in ongoing schemes, such as

the ones above, fail over extended periods of time. When manipulation goes on undetected,

the monitor is discouraged and the agent becomes entrenched and is able to manipulate at

low risk.

In this paper, we provide a novel framework to address these issues, which is based on

career concerns (Holmström (1999)) and experimentation (Keller et al. (2005)). While the

standard paradigm of monitoring (Becker (1968)) ignores uncertainty about detection and

learning, our theory emphasizes the agent’s learning about the monitor and its dynamic

interaction with the monitor’s incentives.

We cast our model in continuous time. A monitor of unknown ability tries to detect an

agent’s manipulation, in which case she receives a reward. For example, a regulator may

monitor firms’ compliance, a manager may supervise an employee, a board member may try

to prevent CEO’s empire building, and an auditor may try to find violations of accounting

standards. The agent obtains private benefits from manipulating, but is penalized once

the manipulation is detected. The monitor’s ability is unknown to both monitor and agent

(Holmström (1999)). There are two types of monitor, good and bad, and only a good monitor

can detect manipulation. The monitor’s type may represent match-specific ability or human

capital (Jovanovic (1979)) that deteriorates over time if the agent does not invest to keep up.

The monitor can either shirk or invest to preserve her ability. When the monitor shirks, with

some probability her ability is destroyed.5 For example, a director may be uncertain whether

she understands enough about the firm to monitor the CEO, who has an inherent information

advantage. To effectively monitor, the director has to keep up with new developments in the

firm, to avoid “falling behind.”6

Both monitor and agent learn about the monitor’s type over time based on the history of

detections. Since only a good monitor can detect manipulation, detecting is good news about

the monitor’s ability while failing to detect is bad news. This provides an experimentation

motive for the agent. By manipulating, the agent speeds up learning about the monitor’s

type. Moreover, undetected manipulation makes the monitor pessimistic about her own

ability, which eventually leads her to stop exerting effort. This is beneficial for the agent,

since once the monitor’s ability decays, the agent can manipulate without fear of being

detected.

We consider Markov Perfect equilibria in which the belief about the monitoring ability

5This is a convenient modeling choice which allows us to capture the monitor’s incentives to preserve her
ability without introducing another state variable. We relax this and other assumptions in Section 7 and
show that our results go through in more general settings.

6Indeed, directors failing to maintain their skills is a central topic in the debate surrounding corporate
boards. See our discussion in Section 2.1 for details.
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is the only state variable. We can interpret this belief as the monitor’s reputation. We

focus attention on equilibria with monotone manipulation strategies, in which the agent

manipulates whenever the probability of detection is below a threshold. The monitor’s

strategy is generally non-monotone, with the monitor shirking for low and high beliefs while

exerting effort at intermediate ones. For high beliefs, the agent does not manipulate as the

risk of detection is too high. In this region, a higher reputation is counterproductive to the

monitor: the monitor can’t obtain rewards because her reputation preempts manipulation.

The monitor thus shirks, and her ability deteriorates. This process drives her reputation

down over time until the agent finds it optimal to start manipulating. At that point the

monitor starts exerting effort to preserve her ability. However, in the absence of detection,

her reputation continues to deteriorate. As the monitor becomes increasingly pessimistic

about her own ability, she stops exerting effort altogether. These equilibrium dynamics

illustrate the shortcomings of career concerns as an incentive mechanism. In our model, the

monitor could deter manipulation and maintain her ability, but it is not optimal for her to

do so. Instead, the monitor becomes ineffective over time.

Surprisingly, the agent’s manipulation incentive is stronger when the monitor invests.

If the monitor shirks, the agent has an incentive to delay manipulating until the monitor’s

ability is likely to have depreciated. By contrast, if the monitor is investing, waiting is

less valuable to the agent, because the monitor type is not deteriorating. This creates a

complementarity between the monitor’s investment and the agent’s manipulation. We prove

that such complementarity is a source of multiplicity and there is a continuum of equilibria

which differ in terms of the prevalence of manipulation. The worst equilibrium features

too much monitor investment and generates excessive manipulation. Vice-versa, the best

equilibrium features less monitor investment and also less manipulation. Thus, contrary to

common wisdom, the monitor is prone to over-investing in detection and a “light touch” is

more beneficial.

We use our model to evaluate commonly debated policies aimed at mitigating manipu-

lation. Our prediction that the monitor becomes ineffective over time is consistent with a

large academic literature on entrenchment.7 To solve the entrenchment problem, term limits

are a popular solution.8 In the UK and France, board members must be rotated out after

terms of 9 and 12 years, respectively. Some companies (e.g. Deloitte) have instituted term

limits for CEOs. Mandatory auditor rotation was recently introduced in the E.U. in 2014.

7See e.g. Hermalin and Weisbach (1988), Shleifer and Vishny (1989), Zwiebel (1996), Vafeas (2003),
Bebchuk and Fried (2006), Garrett and Pavan (2012), Bonini et al. (2017), and Huang and Hilary (2018)).

8For example, Institutional Shareholder Services (ISS) started to include director tenure in its company
governance ratings. ISS views tenure of more than nine years as excessive by virtue of potentially compro-
mising a director’s independence (see Huang and Hilary (2018)).
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Finally, of course, politicians, who monitor the executive branch, regularly face term limits.

In Section 4, we provide a new rationale for term limits: imposing a term limit lowers

manipulation, because it decreases the agent’s value of learning. Intuitively, the agent’s ben-

efit from manipulating comes from driving down the monitor reputation, which discourages

her from investing. But if the monitor is replaced before this happens, the agent is deprived

of his benefit. This learning channel appears to be absent from the discussion on term limits

and entrenchment.

Term limits may also help prevent corruption. Over time, monitors may start colluding

with agents and protect them instead of revealing misdeeds (Vafeas (2003)). In Section 5,

we allow the agent to bribe the monitor to hide detections from the public. Consistent

with the entrenchment literature, we find that longer serving monitors, who failed to detect

manipulations, start accepting bribes and “look the other way,” while newer ones reject

them. These dynamics are driven by changes to the joint surplus of monitor and agent,

which we show is decreasing in monitor reputation.

Finally, we consider an extension with multiple agents, and show how the optimal or-

ganizational design harnesses externalities between the agents. In many settings, monitors

supervise multiple agents. For example, managers oversee multiple employees, directors

often sit on the boards of multiple companies, auditors have different clients, etc. When

multiple agents manipulate, they jointly learn about the monitor’s ability. They are hence

engaged in a game of strategic experimentation (Bolton and Harris (1999), Keller et al.

(2005)). An organizational designer can then harness externalities between the agents to

reduce manipulation. The optimal organization structure depends on the availability of in-

formation. With individual punishments, the monitor can detect each individual agent’s

manipulation and punish him directly. In that case, overseeing multiple agents is optimal.

Compared to our main model, agents free-ride on information generated by others, which

then reduces the incentive to learn about the monitor and to manipulate. With collective

punishments, the monitor does not know which agent has manipulated and can only provide

group punishments for the entire team. In this case, overseeing multiple agents leads to

more manipulation, because agents free-ride on punishments. Each agent manipulates more,

knowing others will face part of the brunt.

Technical Contribution Experimentation models maintain tractability by exploiting

symmetry, smooth pasting, or closed-form solutions (see Keller et al. (2005); Keller and

Rady (2010, 2015)). In our model, the monitor and agent solve fundamentally different

problems, so we cannot appeal to symmetry. Because of the complementarity between effort

and manipulation, we generally cannot use smooth pasting either. Whenever the monitor’s

5



or agent’s strategies change, the other player’s value function exhibits a kink. Because of

this, the marginal values of effort and manipulation are discontinuous in the belief. To char-

acterize any equilibrium, we must characterize these jumps. While the value functions in

our model admit closed form solutions, the particular form depends on the action of the

other player. To characterize equilibria by using a combination of closed forms (as in Keller

et al. (2005)) and monotonicity arguments for ODEs. The key step in our argument is to

characterize the agent’s incentives in the upper region on which the monitor shirks. The left

boundary of this region, which we will call ph, is indeterminate because of the complemen-

tarity. Nonetheless, we completely characterize the set of equilibria and show that in any

equilibrium, ph belongs to an interval. We do this by characterizing the agent’s incentives

across equilibria and show that they are monotone.

Literature Our paper contributes to the experimentation literature with exponential ban-

dits.9 In Keller et al. (2005), the arrival process is a Poisson process with positive lump-sums

occurring only if the arm is good. This is also the case in our model. Keller and Rady (2015)

solve the opposite case with bad news. Keller and Rady (2010) consider the case in which

breakthroughs are not conclusive. Grenadier et al. (2014), Dong (2016), and Thomas (2019)

study signaling games in which the experimenter knows his type. In our model, the agent

experiments, but he does not have private information. Bonatti and Hörner (2017) and Ha-

lac and Kremer (2018) study the experimenter’s career concerns. In our setting, the career

concerns are on the side of the monitor, who does not experiment. Unlike all these papers,

our model is not a pure experimentation setting. While the agent experiments, the monitor

decides how much to effort to exert to retain her human capital. Thus, the monitor and

agent face fundamentally different types of problems.

In seminal and closely related work, Halac and Prat (2016) study a setting where a

myopic agent’s incentive to work depends on a forward-looking principal being attentive to

the agent’s performance, because only when the principal is attentive the agent is rewarded

for his effort. Thus, monitoring is a way to reward the agent’s effort (i.e., contrary to our

setting, the agent wants to be monitored).

Contrary to Halac and Prat (2016), we assume that both the monitor and the agent

are forward-looking. This is a key part of our contribution, since we are interested in the

experimentation incentives of manipulating agents and in how these incentives shape the

monitor’s behavior. Our results on the experimentation motive encouraging manipulation,

on the presence of multiple equilibria and the inherent inefficiency of the monitoring rela-

tionship, on the optimality of term limits, and on the use of organizational design to harness

9See Bolton and Harris (1999) for the Brownian case.
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externalities between agents all rely on the agent being forward-looking. They are unique to

our paper and absent from Halac and Prat (2016).

Corona and Randhawa (2010) is also closely related. They consider a two-period setting

where both the monitor detection ability and the agent’s manipulation propensity are un-

known. The agent may test the waters in the first period by manipulating with some small

probability and escalate in the second period if the first period manipulation goes unnoticed.

Interestingly, they show that if the agent reputation is high, a dishonest monitor may choose

to silence his findings in the second period, for this would reveal to the market he failed to

detect manipulation in the first period.

Our paper is also related to an extensive work on monitoring, that goes back to Becker

(1968). Recently, Dilmé and Garrett (2018) study a dynamic model, where the monitor faces

fixed switching costs, from re-starting its monitoring activity. They argue that this switching

costs lead to cycles of enforcement. In Kolb and Madsen (2019), the agent can undermine the

principal, who may detect this and who chooses how much information about an underlying

state to reveal. In Varas et al. (2017), a monitor chooses the detection intensity, and Orlov

(2018) studies the effect of monitoring in a dynamic contracting model. In a previous paper,

Marinovic and Szydlowski (2018), we consider monitoring with a long-term monitor who

privately knows his type and a myopic agent. Relative to that paper, our key innovation

is to consider a forward-looking agent. The results on experimentation motives and term

limits, among others, cannot be obtained in our previous paper.

2 Model

We study a dynamic game in continuous time between two forward-looking players, referred

to as monitor (she) and agent (he). We defer all proofs to the Appendix.

Monitor and Agent The agent takes an action mt ∈ [0, 1] that we label “manipulation,”

while under the scrutiny of the monitor. Manipulation generates a flow benefit Bmt for

the agent, but, if detected by the monitor, generates a penalty K. The monitor can detect

the agent’s manipulation, in which case she receives a reward R. The monitor’s ability to

detect manipulation is uncertain and subject to shocks. The monitor has career concerns

(Holmström (1999)) and her ability is unknown to both the agent and herself. She is either

a good type, who detects manipulation at a Poisson rate λmt, or a bad type who cannot

detect manipulation. The good type’s ability may depreciate, and she may become the bad

type. Once she is bad, she stays bad.10 To maintain her ability, the monitor can exert effort

10We generalize this feature in Section 7.2 and provide conditions such that our results go through.
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et ∈ [0, 1] at cost cet. This effort represents an investment in human capital. Formally, the

monitor’s ability depreciates with Poisson rate γ(1− et) if her type is good and by choosing

et = 1, the monitor can prevent her ability from decaying. Both the monitor’s and the agent’s

actions are observable, but not contractible.11 We assume that the relationship ends when

the monitor detects manipulation. This terminal assumption is natural in settings where

career concerns are significant and the power of pay for performance is limited (Dewatripont

et al. (1999)).12

Beliefs Detections are publicly observable.13 Both monitor and agent learn from observing

detection as well as from observing its absence. The common prior belief that the monitor

is good is p0 ∈ (0, 1). Let pt be the time-t equilibrium belief, which we can understand as

the monitor’s reputation. Since only the good monitor can detect manipulation, detection

fully reveals that the monitor is good, and the belief jumps to pt = 1.14 Generally, the belief

follows

dpt = − (λpt (1 − pt) mt + γpt (1 − et)) dt + (1 − pt)mtdNt.

Here, Nt is the Poisson process which marks detection and which satisfies E(dNt) = λptdt.

Absent detection, the belief pt drifts down. Since only the good monitor detects ma-

nipulation, a failure to detect increases the likelihood that the monitor is bad. The belief

decreases faster when the monitor exerts less effort (et is small), because then her ability

depreciates faster on average. Thus, the longer the monitor shirks, the more pessimistic she

becomes about her ability. The belief also decreases faster when the agent manipulates more

(mt is large). The latter effect shows the experimentation role of manipulation: by manipu-

lating, the agent learns about the monitor’s type. By manipulating more, the agent “speeds

up” his learning about the monitor. Then, if the agent is not caught, both monitor and agent

revise their belief downward more. As we will show, learning about the monitor is valuable

for the agent and diminishes the monitor’s incentives to exert effort. Naturally, the learning

depends on whether the agent is expected to be manipulating. Without manipulation, no

detection is uninformative, since there is nothing to detect.

11Otherwise, deviating from the equilibrium would create persistent private information. Intuitively, the
monitor may know the agent is shirking, but must uncover evidence to justify penalizing the agent. The
monitor’s ability to generate this evidence is uncertain.

12In some cases, it is more natural to assume that the monitor’s horizon goes beyond the first detection,
in which case the monitor’s continuation value upon detection is given V (1). We discuss this possibility in
Section 7.4, where we provide conditions such that our results go through.

13In the baseline model, we assume that the monitor has no discretion to withhold detection to avoid the
agent having to pay the penalty. In Section 5, we generalize this aspect and allow for collusion between
monitor and agent.

14We consider the effect of imperfect good news and the case of bad news, where undetected manipulation
is revealed by an external party, in Section 7.
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Equilibrium Concept We restrict attention to Markov Perfect Equilibria (MPE) in which

(mt, et) depend on pt alone. Furthermore, we focus on equilibria in which the agent uses

a threshold strategy, i.e., he manipulates whenever the belief is below a threshold.15 We

impose no such restriction on the monitor’s strategy, which generally will be non-monotone.

Following Keller and Rady (2015), we also require that the agent’s and monitor’s strategies

are piecewise Lipschitz continuous in the belief. In equilibrium, the monitor’s and agent’s

strategies will be piecewise constant.

Payoffs The monitor’s and agent’s continuation values at time t can be written as

V(pt) = Et

[

e−r(τ−t)R −
∫ τ

t

e−r(s−t)cesds

]

(1)

and

W (pt) = Et

[∫ τ

t

e−r(s−t)Bmsds − e−r(τ−t)K

]

, (2)

where τ is the time of detection.

The continuation values solve the following Hamilton-Jacobi-Bellman (HJB) equations:

rV (pt) = max
et∈[0,1]

−cet + ṗtV
′ (pt) + λptmt (R − V (pt)) (3)

and

rW (pt) = max
mt∈[0,1]

Bmt + ṗtW
′ (pt) − λptmt (K + W (pt)) , (4)

where ṗt = −λpt (1 − pt) mt − γpt (1 − et).

The monitor payoffs are straightforward. The monitor bears flow cost cet arising from the

effort required to maintain her ability et. In return, she obtains a lump-sum gain R − V (p)

if she detects manipulation. The likelihood that this happens depends on the belief p and

the intensity of manipulation mt. The agent enjoys a flow benefit B from manipulation, but

if detected he pays a penalty K and loses his ability to extract further private benefits. If

the belief decreases, the agent’s value increases because the expected present value of future

penalties decreases.

To measure the monitor and agent’s incentives at a given point in time, we define the

15This restriction in natural. As we show below, since the agent’s manipulation strategy is a threshold both
in the myopic case and when the monitor’s effort is constant (see Proposition 1). Without the restriction, the
complementarity between monitor effort and manipulation generates an infinite number of non-monotone
equilibria. These equilibria, however, do not have any additional economic content, and we choose not to
focus on them.
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instantaneous marginal benefit of effort as

v (p) ≡ γpV ′ (p) − c,

and the instantaneous marginal benefit of manipulation as

ω (p) ≡ B − λp (1 − p) W ′ (p) − λp (K + W (p)) .

These functions are the key objects of our study, since they determine when it is optimal for

the monitor to exert effort or for the agent to manipulate.

Finally, we impose the following parametric restriction, which ensures that the agent only

manipulates when the belief is sufficiently low.

Assumption 1. B < λK.

Without this condition, the agent would always manipulate, even if he knows he is facing

the good monitor.

2.1 Discussion

Here, we discuss our modeling assumptions and how they map to the literature and to

concrete applications.

Career Concerns We assume that both agent and monitor are uncertain about the mon-

itor’s ability. This makes sense if the ability is match-specific (e.g. Jovanovic (1979)). To be

effective, monitors such as regulators, directors, banks, or auditors often require firm-specific

knowledge, which is independent of their education or acquired track record.16 Upon enter-

ing a new monitoring relationship, the monitor is thus uncertain whether she understands

the firm enough to provide effective oversight.

Consistent with the career concerns literature, we do not consider optimal contracts

for the monitor or the agent. Regulators, corporate directors, banks, or auditing firms

face significant reputational incentives, which is well documented empirically.17 In many

organizations, incentives for managers come mainly from promotions (e.g. Lazear and Rosen

(1981)), which is consistent with the reward structure in our model. In reality, CEOs and

employees who are caught committing fraud usually face termination. This is consistent

with our assumption that the relationship ends after manipulation is detected. In Section

16See e.g. Diamond (1984) (for banks) or Bonini et al. (2017) (for directors).
17See e.g., Lucca et al. (2014) for regulators, Fang (2005) for banks, Firth (1990) for auditors, and Fich

and Shivdasani (2007) for boards.

10



7.4, we consider the case when the relationship continues instead, and we provide conditions

under which the equilibrium of Proposition 3 survives.

In Section 7.1, we consider more general payoff structures for the monitor, e.g. when she

receives a flow wage which depends on her reputation. We provide sufficient conditions such

that our results go through.

Human Capital Our modeling of the monitor’s ability captures concerns about monitors

falling behind new developments or gradually losing their independence. Such concerns are

prominent for corporate boards. For example, Canavan et al. (2004) features a round table

discussion on board tenure, in which participants note that “the more accustomed you are

to the procedures and approaches the company takes [...] the more you lose your ability to

be critical of what management is doing.” These concerns have been echoed by shareholder

activists, regulators, proxy advisory firms, and the press.18 Similar concerns arise in the

literature on CEOs (e.g. Miller (1991)) and, discussing CEO tenure, the Financial Times

pointedly notes that “[t]he risk is evident; the question is how long it really takes for atrophy

to set in.”19 There is also a large debate on “auditor rotation” (Singer and Zhang (2017)),

which features similar arguments against long auditor tenures.

In Section 7.2, we relax our assumption and allow the monitor’s effort to improve her

ability. We provide sufficient conditions such that all our results go through.

Observability We assume that the monitor’s effort and the agent’s manipulation are ob-

servable, but not contractible.20 This assumption captures the common situation where

agents must submit their work to monitors, who can thus detect whether something “un-

usual” is happening, but who might require special expertise to detect actual violations.

Often, agents keep close tabs on monitors and can observe whether a monitor exerts the

required effort to keep up with ongoing manipulation schemes.

This interpretation maps closely to the interaction between a CEO and a board of direc-

tors. For example, in its investigation of the Enron scandal, the U.S. Senate (U.S. Senate

(2002)) notes that “much of what was wrong at Enron was not concealed from its Board

of Directors. High risk accounting practices [...] were known to and authorized by the

Board,” since “[management provided the board] numerous Deal Approval Sheets (DASHs)

for approval of major transactions.”21

18See e.g. “US Board Composition: Male, Stale and Frail?,” Financial Times, August 15 2016, https:
//ig.ft.com/sites/us-board-diversity/ (last accessed 02/18/2020).

19See “The Perils of the Chief Who Stays Too Long at the Top,” Financial Times, April 16 2014, https:
//www.ft.com/content/aee47536-c48f-11e3-8dd4-00144feabdc0 (last accessed 02/18/2020).

20As we discussed, the assumption guarantees that the model features no persistent private information.
21Moreover, the senate committee identified “more than a dozen incidents over 3 years that should have
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Likewise, CEOs routinely sit on board meetings and closely interact with individual board

members. This is thus easy for them to observe whether board members are attempting to

stay abreast of new developments. The same investigation into Enron revealed that “[t]he

Board did not have a practice of meeting without Enron management present,” and that

“[o]utside of formal [...] meetings, the Enron Directors describe very little interaction or

communication [...] among board members.”22

Experimentation Our modeling of the information arrival process is standard in the

literature on exponential bandits. The same process appears in Keller et al. (2005), Grenadier

et al. (2014), Bonatti and Hörner (2017), and Halac and Kremer (2018). Learning via good

news makes sense in the context of our applications. In reality, manipulation only becomes

known if it is detected by a manager, director, auditor, etc. If no detection is reported,

we, by definition, cannot observe information about the agent or the monitor. Indeed, as

Dyck et al. (2013) document, detecting manipulation is rare. They find that in a given year,

fraud is detected in only 4% of companies. Thus, the average company goes long stretches

without detection, just as in our model. Moreover, Dyck et al. (2013) find that monitors

fail to detect a significant portion of manipulation, around 70%, which is also consistent

with our assumptions. We generalize the information technology in Section 7. In Section

7.3, we study the case with good and bad news. Bad news arise when the monitor misses

manipulation which then becomes public through other channels. In Section 7.5, we consider

perfect bad news only and show that most of our results go through.23

raised Board concerns about the activities of the company.” For example, “the Board was asked to and
approved an unprecedented arrangement allowing Enrons CFO to set up private equity funds [...] for the
purpose of improving Enrons financial statements. [...] Committee and Board presentations throughout
1999, 2000, and 2001 chronicled the companys foray into more and more off-the-books activity.”

22See also Breeden (2003) for similar findings from an investigation of the WorldCom scandal. The report
notes the board’s failure to keep up with developments: “As WorldCom did acquisition after acquisition, its
risk posture grew more complicated and required much more careful attention. [...] There is no indication
that the board analyzed how the enormous debts being accumulated by the Company in acquisitions would
be carried and ultimately retired.” For the board to be effective, the report recommends that “[b]oard
members need to be involved in the life of the company, visiting major facilities regularly, interacting with
a range of senior and mid-level staff, and also discussing issues with major shareholders periodically.” From
the absence of such activities, the CEO can easily detect whether the board is shirking in their duty to stay
current.

23We have also numerically solved a model with imperfect good news in which the bad monitor can detect
manipulation at a lower but positive rate. We can find parameters such that the equilibrium of Proposition
3 survives.
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3 Analysis

3.1 Benchmarks

A myopic agent’s value of manipulation is B − λptK. Thus, a myopic agent manipulates

whenever the belief is below a threshold pm, which satisfies

pm =
B

λK
.

To understand the agent’s incentives, we first study two benchmarks that fix the monitor’s

effort strategy at two polar levels: i) when the monitor always exerts effort and ii) when the

monitor always shirks. We then compare the agent’s forward-looking behavior versus that

of a myopic agent.

Proposition 1 (Complementarity). If the monitor never exerts effort, there is a threshold

pnm ∈ (0, 1), such that the agent manipulates if and only if p < pnm. If the monitor always

exerts effort, there is a threshold pmon ∈ (pm, 1), such that the agent manipulates if and only

if p < pmon. We have pnm < pmon. If (r + γ) B − λrK < 0, then pnm > pm, otherwise

pnm < pm.

In the benchmark where the monitor always exerts effort, the agent has strong incentives

to manipulate, that is pmon > pm. This reflects the agent’s experimentation motive: the

agent manipulates, in part, to learn the monitor’s type, which —given the monitor’s effort—

is very persistent.

Indeed, consider the agent’s behavior when the belief hits the myopic threshold pm. At

that point by definition the agent obtains zero flow profit from manipulating. However, as

the proposition shows, the agent still manipulates, precisely because his value of learning

about the monitor is positive.

Following Keller et al. (2005), the agent’s value of experimentation can be written as

−λp (1 − p) W ′ (p) − λpW (p) .

The agent’s value is decreasing in the belief, i.e. W ′(p) < 0. This slope is sufficiently large,

so that the agent’s value from experimenting is positive.

This result is reminiscent of the idea that manipulation is a slippery slope: Once the agent

manipulates and is not detected, he realizes that he is likely to get away with it in the future.

The more he manipulates, the lower is his assessment of the risk of detection, which leads

to a self-reinforcing spiral. In fact, absent detection the incentive to manipulate ω(p) grows
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over time, which captures the notion that manipulation today makes future manipulation

more appealing.

Consider, as a second benchmark, the case when the monitor always shirks. In this case

the agent faces countervailing incentives. Though manipulation continues to yield exper-

imentation benefits, the agent faces an incentive to wait rather than manipulate, to take

advantage of the fact that the monitor’s ability deteriorates over time. If the monitor shirks,

her type eventually goes bad, in which case the risk of detection vanishes. Because of this,

the agent’s incentive to manipulate is smaller, and we have pnm < pmon. This incentive to

wait may even dominate the experimentation incentive, and lead the agent to manipulate

less (i.e., wait more) than a myopic agent. For example, this is the case when the rate of

decay γ of the monitor’s ability is very large so that waiting has significant value.

Our analysis thus far suggest that there is complementarity between the monitor’s effort

and manipulation: the agent manipulates more with monitor effort than without it, that is

pmon > pnm.24 This complementarity also affects the monitor’s incentives. The monitor only

receives the reward when she detects manipulation. But if the agent does not manipulate,

there is nothing to detect. As a result, the monitor has no more incentive to preserve her

ability, since it does not generate any rewards for her.25

Lemma 2. In any MPE, there is no nonempty interval
(
p, p̄
)
such that m (p) = 0 and

e (p) = 1 for all p ∈
(
p, p̄
)
.

To understand this result, recall that effort is an investment that preserves the monitor’s

ability to detect manipulation. One would think that if manipulation is likely to take place

in the future, then the monitor would have an incentive to exert effort today, even if the

agent is not manipulating, to ensure she detects the agent’s future manipulation. However,

if there was a region with positive effort and no manipulation, then the belief would remain

stuck in that region. Indeed, Equation (2) implies that dpt = 0 in that case. Then, monitor

would never reap any rewards, as the belief would never reach the region where the agent

manipulates.

Taken together, Proposition 1 and Lemma 2 explain why monitoring incentives can be

weak. When the belief is sufficiently high, the agent does not manipulate, and, consequently,

the monitor shirks. Thus, even though the monitor could prevent her ability from deterio-

rating forever, it is not optimal for her to do so. Instead, her expected type monotonically

24A similar result is found in Halac and Prat (2016) but for different reason. In that paper the agent’s
payoff increases in the probability of monitoring. The key behind our complementarity result is the presence
of stronger experimentation incentives when the monitor is exerting effort.

25As mentioned before, we generalize this feature in Section 7.1, where we expand the model to incorporate
belief-dependent flow payoffs for the monitor. Unless the monitor’s flow payoff is very steep with respect to
the belief, all results below go through.
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0 pm pmonpnm 1 p

Figure 1: Benchmarks. A myopic agent manipulates whenever the belief is below pm. When the
monitor exerts effort, a forward-looking agent manipulates below pmon, while when the monitor shirks,
the agent manipulates below pnm.

decreases on path, until eventually the monitor becomes ineffective. As we show next, this

is exactly what happens in equilibrium.

3.2 Equilibrium

In our model, the monitor’s reputation is transitory; eventually the monitor’s ability and

her reputation are destroyed. This is because i) the monitor shirks for high beliefs, so that

her type deteriorates, and ii) because the agent manipulates for low beliefs. Undetected

manipulation erodes the monitor’s belief in her own ability and eventually leads her to stop

exerting effort. In a sense, the agent’s manipulation leads the monitor to “give up” over

time, because she concludes her type is low.

We now show this formally. The main challenge of this problem is that both monitor

effort and manipulation are jointly determined as part of the players’ dynamic optimization

problem. Because players are forward-looking, the complementarity we have characterized in

Proposition 1 becomes a dynamic one. If the agent does not expect the monitor to exert effort

in the future, this changes her incentive to manipulate today. Indeed, the complementarity

between effort and manipulation leads to multiple equilibria.

Proposition 3. Suppose that the monitor reward R satisfies

R > c
r + γ

rγ

B + rK

B
. (5)

Then, any equilibrium is characterized by two cutoffs pl < ph such that

m (p) =

{
1 if p < ph

0 if p ≥ ph

and

e (p) =






0 if p < pl

1 if p ∈ [pl, ph)

0 if p ≥ ph.

There exist two values p
h

and ph, such that 1 > ph > p
h

> pl. The pair {pl, ph} constitutes

an equilibrium if and only if ph ∈
[
p

h
, ph

]
. In particular, any equilibrium features the same
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pl.

The equilibrium is predicated on the reward, R, being large relative to the cost, or else

the monitor would never monitor, as in the no effort benchmark.

0 pl p̄hp
h

ph 1 p

Monitor Works

Figure 2: Equilibrium. The agent manipulates on the red region, when the belief is below ph.

Any equilibrium consists of three regions (see Figure 2). For high beliefs, namely for

pt > ph, the agent does not manipulate because the risk of detection is too high relative to

the benefit of manipulation B. At the same time, the monitor shirks, because she cannot

receive any rewards given that the agent is not manipulating. Lemma 2 applies to this region

and our argument above applies as well. If the monitor were to exert effort, the belief would

stay constant forever. But then, she would never receive the reward.

Consistent with this intuition, Figure 3 shows that the monitor value decreases in the

belief beyond ph. The non-monotonicity of V (∙) and the fact that V decreases to the right

of ph is explained again by the observation that high beliefs deter manipulation, destroying

the monitor’s ability to “cash-in.” The larger the belief, the longer the monitor has to wait

till she is able to cash-in.

0 0.2 0.4 0.6 0.8 1

monitor reputation p
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Figure 3: Equilibria. The left panel depicts the value functions when ph = ph and the right panel
depicts the value fucntions when ph = p̄h. The vertical dashed lines represent pl and ph. The monitor
value is non monotonic in the belief, since above ph the monitor needs to wait until the belief deteriorates
to be able to cash in any rewards.

By shirking in the top region, the belief deteriorates, eventually reaching the interme-

diate region, [pl, ph]. There, the agent manipulates, encouraged by the lower probability of
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p̄hpl0 1 p

ω(p)
γpV ′(p) − c

Figure 4: Incentives and reputation. The marginal incentives to manipulate (red) decrease in the belief,
except at pl where the monitor switches from shirking to exerting effort, thus boosting the incentive to
manipulate.

detection. On the other hand, the monitor exerts effort because her incentives jump in the

presence of manipulation: here she obtains a reward from detecting the agent’s manipula-

tion. Since her continuation value is relatively large, shirking is also costly. By putting in

effort she preserves her ability. However, absent detection the belief continues to deteriorate

on path. No detection is interpreted as a negative signal of monitor ability and, by manip-

ulating, the agent drives down the belief about the monitor’s ability. The longer the time

elapsed without detection, the lower is the monitor reputation.

This progressive deterioration eventually leads the players into the (third) bottom region,

where pt < pl. In this region the monitor stops exerting effort, discouraged by the low

perceived value of her ability. On the other hand, the incentive of the agent to manipulate

strengthens, as he is even more likely to get away with manipulation. Detection is still

possible as long as pt > 0, but that possibility becomes decreasingly likely over time and

eventually vanishes.

In conclusion, our analysis suggests that the monitor’s incentives are non-monotone,

being stronger (weak) for intermediate (extreme) beliefs. It also shows that the monitor’s

reputation is transitory. Although the monitor could ensure that she keeps her reputation

forever, it is not optimal for her to do so. Thus, the monitor eventually becomes ineffective.

There is a continuum of equilibria that differ in terms of the amount of manipulation they

induce. Specifically, we find that the upper end of the manipulation region, ph, belongs to
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an interval ph ∈
[
p

h
, ph

]
(while the lower end pl is fixed). Any ph in this interval is part of an

equilibrium. The threshold ph captures the equilibrium with the most manipulation, which

we refer to as the worst equilibrium. On the other extreme, p
h

captures the equilibrium with

the least manipulation, which we label the best equilibrium.

This multiplicity of equilibria reflects the strategic complementarity between monitor

effort and manipulation. The agent’s manipulation incentive is stronger when he exerts

effort (and effort incentives are stronger when the agent manipulates). The equilibria with

more monitor effort also feature more manipulation. The multiplicity contrasts with the

results in the experimentation literature (see Keller et al. (2005); Keller and Rady (2010)).

We characterize the thresholds p
h

and p̄h in the following lemma.

Lemma 4. Let W (p) denote the solution to the agent’s HJB Equation with m (p) = e (p) =

1, which satisfies the value matching condition at pl. Define p
h

as

lim
p↓p

h

ω(p) ≡ B +
λr

γ

(
1 − p

h

)
W
(
p

h

)
− λp

h

(
K + W

(
p

h

))
= 0 (6)

and define ph as

W (ph) = 0.

Then, p
h

> pl, 1 > ph > pm, and p
h

< ph. For any ph ∈
[
p

h
, ph

]
, m (p) = e (p) = 1 are

optimal on [pl, ph] and no ph /∈
[
p

h
, ph

]
can be part of an equilibrium.

At the worst equilibrium threshold p̄h, the agent is indifferent between manipulating or

not, provided that the monitor exerts effort. No ph > p̄h can be part of an equilibrium,

because then the agent does not find it optimal to manipulate at ph.

Because of the complementarity, we can have ph < p̄h. That is, if the monitor stops

exerting effort at ph, the agent stops manipulating as well, even though continuing for both

would constitute another equilibrium. For ph to be part of an equilibrium, it must be optimal

for the agent to not manipulate to the right, i.e. we must have limp↓ph
ω(p) ≤ 0. The best

equilibrium threshold p
h

is the one for which the agent is just indifferent.26 For any lower

threshold ph, the agent would prefer to manipulate to the right.

To conclude this section and for completeness we present the case when detection rewards

are small.

Proposition 5. Suppose that

R ≤ c
r + γ

rγ

B + rK

B
. (7)

26Generally, ω(p) is discontinuous at ph, so that its right and left limits do not coincide.
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Then, there is a unique equilibrium. The monitor never exerts effort and the agent manipu-

lates whenever p < pnm, where pnm is given by Proposition 1.

4 Term Limits and Turnover

In our model, the monitor’s expected ability decreases over time. Eventually, for p < pl,

the monitor stops exerting effort and the agent is unlikely to be caught. The agent’s benefit

of experimentation comes partially from reaching this region. This suggests a simple policy

intervention. We can impose a term limit on the monitor and replace her with a new one

before pl is reached. As we show in Proposition 6 below, this reduces the agent’s incentive

to manipulate.

Proposition 6. Consider a time TD at which the monitor is replaced with a new one if she

fails to detect manipulation. Let pD = pTD
. If pD < p0 and pD < p̄h, then p̄h decreases.

Replacing the monitor reduces the value of learning the monitor’s type, thus discouraging

manipulation. The value of experimentation increases in the length of the relationship and

the persistence of the monitor type; if the monitor is rotated frequently, the information the

agent learns from manipulating is shorter lived and thus less valuable. This is why imposing

term limits on the agent-monitor relationship can mitigate manipulation.

The monitor, of course, anticipates that she might be replaced. If her outside value is

lower, being replaced is more costly, and she has a stronger incentive to exert effort.

Proposition 7. Suppose that when the monitor is replaced, the monitor and the agent receive

lump-sum payments V 0
D and W 0

D. Suppose that pD < pl, that W 0
D = W (pD), and that

V 0
D ≤ V (pD) . Then, as V 0

D decreases, pl and p̄h both decrease.

Here, V 0
D is the monitor’s outside value upon replacement. As being replaced becomes

more costly, the monitor is more willing to exert effort to prevent the belief from decreasing.

Thus, pl decreases. Reaching low beliefs is less beneficial for the agent, because the monitor

still exerts effort. Therefore, the agent manipulates less.

The agent faces similar incentives. If dissolving the relationship, e.g., via firing both

monitor and agent or via shutting down the firm, manipulation becomes more costly for the

agent, he manipulates less.

Proposition 8. Fix VD = V (pD), i.e., assume that at pD the monitor receives a payment

equal to her equilibrium continuation payoff. Then, as W 0
D decreases, ph decreases as well.

If pm < pD < r
r+γ

and W 0
D is sufficiently close to zero, then the unique equilibrium features

no manipulation.
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We now briefly discuss concrete applications of these results and their relation to the

existing literature.

Board Entrenchment Board members oversee the actions of a firm’s CEO. As The

Economist put it “Their job is to police the relationship between shareholders who own

companies and managers who run them.”27 Board members themselves face career con-

cerns, since being perceived as competent allows them to obtain additional board seats.28

Director entrenchment is a significant concern for regulators, investors, and companies (see

e.g. Bacon and Brown (1973), Vance (1983), Hermalin and Weisbach (1988), Vafeas (2003),

Bonini et al. (2017), and Huang and Hilary (2018)). The literature has recognized that the

skills of long-serving directors may become outdated, which renders them ineffective. To

prevent this, regulators in the UK and France have imposed term limits on directors.

Our analysis underpins this reasoning. Although the monitor can exert effort to keep her

skills current, she fails to do so in equilibrium. As a result, the monitor becomes ineffective

over time. Imposing a term limit is effective, partially because it provides incentives for the

monitor and partially because it reduces the agent’s incentives to manipulate. The agent’s

learning motive is new and, to our knowledge, missing from the literature on boards.

Managerial Turnover Managers supervise their direct reports. A large literature has

identified the threat of turnover as an important incentive device.29 Absent turnover, how-

ever, managers may become entrenched and cease being effective (see e.g. Shleifer and

Vishny (1989), Zwiebel (1996), and Bebchuk and Fried (2006)). Our results establish a new

channel for turnover being beneficial. Independently of the manager’s incentives to exert

effort, turnover lowers the agent’s value from testing the manager’s ability. To the best of

our knowledge, this channel has been absent from the turnover literature.

Auditor Rotation CEOs face an incentive to manipulate financial statements to boost

the stock price or increase their own compensation. In turn, auditors monitor the integrity

of the financial reporting process. Auditor reputation is a key asset that determines the

auditor’s demand (see e.g., Firth (1990); Gipper et al. (2017)). The dynamics of auditor

incentives and the need to rotate monitors is a key regulatory issue30 and longer serving

27See ”Replacing the board”, August 16, 2014.
28See e.g., ”Should a Board Have a Reputation?”, Harvard Law School Forum on Corporate Governance,

August 9, 2018.
29See e.g. Spear and Wang (2005), Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006),

DeMarzo and Fishman (2007), Biais et al. (2007), He (2009), Garrett and Pavan (2012), and DeMarzo and
Sannikov (2016).

30“It was the year of the first X-ray, the first fatal car accident and the premiere of La Bohème. And
1896 was also the year that Barclays, a British bank, chose an ancestor of PwC as its auditor, a relationship
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Figure 5: Timeline with bribes on a small interval [t, t + h].

auditors appear to be less effective (see Singer and Zhang (2017)). In the US, the Sarbanes-

Oxley Act mandates rotating audit partners after five years. Similarly, the European Union

has mandated rotating audit firms after ten years. This is consistent with our results.

5 Bribes

Detection may cause a large loss to the agent K, relative to the reward obtained by the

monitor R. This fact may induce the agent to bribe the monitor, as a renegotiation device,

to avoid paying the penalty K. To study this possibility, we consider the following extension.

The agent and monitor observe when the manipulation shock Nt arrives (but the “pub-

lic” does not observe the realization). We interpret this realization as news of potential

manipulation or that some evidence is potentially available to incriminate the agent. Upon

seeing the signal, the monitor can decide whether to investigate or not. The investigation is

successful only if the monitor is good, with probability pt. Without investigation, the monitor

finds nothing. Thus, so far, the framework is the same as in our main model.

Here is the key change. Upon observing Nt, the agent can choose whether to offer a bribe

bt to the monitor, in exchange for the monitor “looking the other way”. (Formally, whether

the monitor investigates is observable by the agent and the bribe can be made contingent on

the decision to investigate.) For simplicity, we assume that the bribe is a take-it-or-leave-it

offer. A heuristic timeline is given in Figure 5.

When the monitor receives the bribe, he does not know whether her investigation will

be successful, since she does not know her type. Upon accepting the bribe, the change

in the monitor’s value is simply bt, since the belief stays the same, i.e. pt = pt−. If the

monitor rejects the bribe and investigate, her expected payoff is p (R − V (p)), since the

investigation succeeds only if the monitor is good. Similarly, the agent’s value changes by

−bt if the monitor accepts the bribe and by −p (K + W (p)) if she declines the bribe. Thus,

unbroken to this day. Fidelity is the norm in auditing. GE, Procter & Gamble and Dow Chemical have also
clocked up centuries with their auditors. The average tenure for an auditor of a British FTSE 100 company
is 48 years. Two-thirds of Germany’s DAX 30 have had their auditors for over 20 years.” Excerpt from
“Musical Chairs,” The Economist, September 2011.
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the optimal bribe (the minimal bribe the monitor will accept) satisfies

bt = pt (R − V (pt)) .

On the other hand, offering a bribe is optimal to the agent whenever

bt ≤ pt (K + W (pt)).

Taken together, these conditions imply that the monitor is bribed when

R − K ≤ V (pt) + W (pt) . (8)

The RHS is the joint value to monitor and agent from continuing the relationship at belief

pt, while the LHS is the joint value from investigating. Given that the agent’s offer is

TIOLI, it is not surprising that the decision whether to make a bribe ends up maximizing

the “social value” between monitor and agent. As we said before, bribes here play the role

of a renegotiation device.

Given Equation (8), if the joint value V +W is increasing in the belief, then bribes will be

accepted only when the belief is high. Conversely, if the joint value is decreasing, monitors

with low perceived ability will be bribed. Proposition 12 confirms that the latter is the case.

The mechanic behind this result is as follows. Below ph, V (p) is increasing in p. Thus,

for higher p, the monitor can offer a lower bribe since the monitor is eager to continue.

Intuitively, if the belief is high, the monitor is confident that he can catch the agent “next

time” if he does not accept the bribe. So the value of uncovering the manipulation, R−V (p) ,

is relatively low. Conversely, if the belief is low, the monitor knows that if he does not accept

the bribe, he is unlikely to ever catch the agent again. So he needs a relatively higher bribe

to accept (note that p also enters the equation, which makes things a bit more complicated).

However, the agent’s incentives are opposite. If p is high, the agent’s value from contin-

uing the relationship is low. He knows he’s likely going to get caught soon. So bribes are

less valuable. When p is low, W (p) is high, so the agent is more willing to offer bribes, but

now he has to offer a relatively high one to make the monitor accept. These countervailing

forces are summarized in Equation (8).

Proposition 9. Suppose that c is sufficiently small and that Condition (5) holds. When

bribes are possible, equilibria have the same structure as in Proposition 3. If

B − c

r
+ K < R <

B

r
+ K, (9)
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the monitor accepts bribes whenever the belief is below a threshold 0 < pB ≤ ph. If

R <
B − c

r
+ K, (10)

the monitor always accepts bribes, while if

R >
B

r
+ K, (11)

the monitor never accepts bribes. Whenever the monitor accepts bribes, the worst equilibrium

features more manipulation than in the case without bribes.

The low c requirement ensures that Condition (5) in Proposition 3 is satisfied, so the

monitor exerts effort in equilibrium. The proposition shows that when career concerns

are strong (high R) monitors are never bribed. However, the “amount of bribes” is not

continuous in R. That is, a small increase in R means that we go from bribes for low

reputation monitors to no bribes at all. For intermediate career concerns, only the low

reputation monitors accept bribes. Essentially, the value of offering bribes is decreasing

when monitor reputation is high. Longer serving monitors become “entrenched” and start

accepting bribes. After they’ve been accepting bribes for a while, they also start shirking.

Naturally, for low career concerns (small R) the monitor always accept bribes.

6 Organizational Design

In many applications, monitors oversee multiple agents. For example, directors often sit in

on multiple boards, credit agencies cover different firms, and managers supervise multiple

employees.

We now study whether such an organizational structure is optimal. That is, should the

monitor oversee multiple agents or just one? The answer depends on the available infor-

mation. With individual punishments, the monitor can detect and punish each individual

agent’s manipulation. With collective punishments, all agents are punished symmetrically

if the monitor detects manipulation, regardless of who manipulated. We can think of this

as a situation where manipulations cannot be attributed to an individual agent but are a

collective failure of the team.

The optimal organizational structure harnesses the externalities between agents. With

individual punishments, agents free-ride on experimentation, which reduces their willingness

to manipulate. Thus, overseeing multiple agents reduces manipulation, compared to our
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baseline model.31 With collective punishments, however, agents free-ride on punishments,

which increases manipulation. Then, having a single monitor and agent is optimal.

The setup is as follows. Each agent n ∈ {1, . . . , N} chooses manipulation mn ∈ [0, 1]

and has value function Wn. The total manipulation of the team is given by M =
∑N

n=1 mn.

Throughout, we focus on symmetric monotone-manipulation equilibria which are Markovian

in the public belief. That is, each agent n plays a symmetric, monotonically increasing

manipulation strategy mn (p) = m (p).

We set up this extension so that the cooperative solution of the team problem is the same

as that of the main model of Section 2.32 Thus, our main model serves as a benchmark under

both individual and collective punishments, if there are no coordination frictions among the

agents. Specifically, we scale the detection rate by N , so that the new detection rate is λ/N .

This means that if all the agents manipulate, then the arrival rate is the same as that in the

main model. Then, the monitor’s value is given by

rV (p) = −ce (p) −

(
λ

N
p (1 − p) M (p) + γ (1 − e (p))

)

V ′ (p) (12)

+
λ

N
pM (p) (R − V (p)) .

If for all p, M (p) /N equals the solution of the single-agent model, then the solution to the

monitor’s HJB equation is also the same and her best effort strategy is the same as well.

Individual Punishments Each agent operates an independent Poisson process with

arrival rate λ/N ∙mn. If agent n’s manipulation is detected, then only that agent is punished.

Punishments are publicly observable, so that all agents learn that the monitor is good. To

ensure that the cooperative solution is the same as the solution in the main model, we scale

the punishment to K ∙ N . Each agent’s individual value function is now

rWn (p) = max
mn∈[0,1]

(

B − λpK −
λ

N
p (1 − p) W ′

n (p) −
λ

N
pWn (p)

)

mn (13)

−

(
λ

N
p (1 − p) W ′

n (p) +
λ

N
pWn (p)

)

M−n (p)

−γp (1 − e (p)) W ′
n (p) .

31This is opposite to the encouragement effect found in the experimentation literature, e.g. Bolton and
Harris (1999) and Keller and Rady (2010). Our results differ because our benchmarks differ. The experi-
mentation literature compares the non-cooperative equilibrium to the single-agent case. On our setting, the
“single-agent case” refers to our baseline model, and we scale the model parameters so that the cooperative
solution with N agents is the same as the one in Proposition 3. This allows us to have a common and, we
believe, sensible benchmark across the different informational regimes.

32The cooperative solution is the one which maximizes the average value of each agent. See e.g. Equation
(42) below.
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Each agent prefers to manipulate whenever

ωn (p) = B − λpK −
λ

N
p (1 − p) W ′

n (p) −
λ

N
pWn (p) ≥ 0. (14)

Having multiple agents generates free-riding on experimentation. Each individual agent

internalizes his own cost of being detected, but does not internalize the benefit his experi-

mentation creates for other agents, by uncovering information about the monitor. Formally,

this can be seen by comparing Equation (14) to Equation (2), its analog in the baseline

model. With multiple agents, the value of experimentation is scaled by λ/N , while with a

single agent, it is scaled by λ. This free-riding is beneficial, because it reduces manipulation.

Proposition 10. Suppose that R > R̄, so that ωn− (pl) > 0, and that K is sufficiently

small. With multiple agents and individual punishments, the worst equilibrium features less

manipulation than with a single agent.

The condition R > R̄ is an analog of Condition (5). It guarantees that there is monitor

effort in equilibrium. Unlike in Keller and Rady (2010), agents stop experimenting at a cutoff

instead of choosing interior experimentation over a region in which they are indifferent. This

is driven by the strategic complementarity between effort and manipulation, which is absent

from Keller and Rady (2010), and by our assumption that K is small.

Collective punishments Suppose that the monitor punishes all agents equally whenever

she detects manipulation, either because she can only see if some agent has manipulated,

but not which one, or because she cannot target individual agents with punishments.

Now, there is free-riding on punishments, because agents do not internalize the cost of

being detected. This effect increases manipulation compared to the baseline model.

Specifically, each agent’s individual value is

rWn (p) = max
mn∈[0,1]

(

B −
λ

N
pK −

λ

N
p (1 − p) W ′

n (p) −
λ

N
pWn (p)

)

mn (15)

−

(
λ

N
pK +

λ

N
p (1 − p) W ′

n (p) +
λ

N
pWn (p)

)

M−n (p)

−γp (1 − e (p)) W ′
n (p) .

Each agent prefers to manipulate whenever

ωn (p) = B −
λ

N
pK −

λ

N
p ((1 − p) W ′

n (p) + Wn (p)) ≥ 0. (16)

Comparing this expression with Equation (2), we see that each agent’s expected punish-
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ment is given by λpK/N , as opposed to λpK in the baseline model. This is a consequence

of the free-riding effect we have described.

Just as with individual punishments, agents have an incentive to free-ride on experimen-

tation. However, free-riding on punishments is stronger and manipulation increases overall.

Proposition 11. Suppose that Condition (5) holds, that B < λ
N

K, and that K is sufficiently

small. Then, the worst equilibrium with multiple agents and collective punishments features

more manipulation than the single-agent case.

Busy Directors vs. Overwhelmed Managers Our results on the organization of mon-

itoring yield concrete implications. A prominent literature studies “busy directors,” who

sit on multiple boards, and, as a result, may be less effective at monitoring each individual

firm (see e.g. Ferris et al. (2003), Fich and Shivdasani (2006), and Field et al. (2013)). Our

individual punishments case applies to this setting, because directors can attribute failures

to a particular firm. Contrary to common wisdom, Proposition 10 shows that busy directors

can be more effective.

By contrast, managers inside a firm often cannot determine which employee is responsible

for failures. This setting corresponds to our collective punishments case and Proposition 11

shows that managers who oversee multiple employees are less effective. Indeed, a long line

of literature, going back to Williamson (1967) and Calvo and Wellisz (1978), highlights

managers’ “loss of control” as a limit to firm size.33 Our results expand on this literature by

incorporating learning about the manager’s effectiveness.

7 Robustness and Extensions

7.1 General Payoffs

Monitor Rewards So far we have assumed the monitor reward is independent of the

belief. Suppose now that the monitor faces a market, which reward the monitor with R(p)

once she detects manipulation. We assume that R(p) is increasing and differentiable. Below,

we show that there is an equilibrium with the same structure as that in the baseline model,

which is characterized by two thresholds pl and ph.

We can also study how the strength of career concerns, as measured by the slope of R(∙),

affects monitor effort and manipulation. We show that as rewards become more sensitive to

the belief, the monitor exerts more effort and the agent manipulates less.

33See also Qian (1994) and Faure-Grimaud et al. (2003).
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Consider two alternative reward functions R̂(p), R(p) where the former is steeper and

assume these functions cross at a single point p̂. Let pl denote the lower threshold of the

monitoring region under R(p). Also, denote by p̄h and p̂h the upper thresholds, in the worst

equilibrium, under R(p) and R̂(p) respectively. The following result can be established.

Proposition 12. Suppose that r and K are sufficiently small and that R(p) and R̂(p) are

sufficiently large. Then, all equilibria have the same structure as in Proposition 3. If pl < p̂

is sufficiently large, then p̂h < p̄h.

The logic of this result is similar to that of deadlines. If R(p) is steeper, reaching lower

beliefs leads to lower expected rewards. This provides incentives to exert more effort, so that

pl decreases. In response, the agent manipulates less.

The assumption that R (p) is large is the analog of Condition (5). It ensures that the

monitor exerts effort in equilibrium. We assume that the monitor is sufficiently patient, i.e.

r is small, to guarantee that the monitor’s incentive to exert effort is increasing in the belief

on the region [pl, ph).
34

Flow Payoffs In many applications, monitor flow payoffs depend on reputation as well.

For example, auditor fees arguably depend on their reputation (see Firth (1990)). We now

show that whenever the flow payoffs are sufficiently sensitive to reputation, the upper shirking

region may disappear.

Specifically, suppose that the monitor receives a wage w (p), which is strictly increas-

ing and continuously differentiable in p, in addition to the reward R (p) . Given the non-

linearity of w(p), we make the following assumptions to ensure tractability. We assume that

w′ (p) /w (p) > 1/p and that limp↓0 w (p) /p is bounded. Additionally, we assume that r and

c are sufficiently small.

The first assumption, together with the monitor being patient (r small), guarantees that

the monitor’s value is increasing in the belief. The second one is a technical condition which

rules out a singularity at p = 0. The assumption that c is small plays a similar role as

Condition (5). It ensures that the monitor exerts effort in equilibrium.

34Intuitively, a relatively impatient monitor puts a high weight on her expected reward λpR (p) for beliefs
which are close by. Since R (p) is generally nonlinear, the monitor’s incentive to exert effort, γpV ′ (p), may
then be non-monotone. By contrast, a patient monitor knows that without effort, she will eventually reach
very low beliefs, at which the expected rewards λpR (p) vanish. Also, we need pl to be sufficiently large,
because under R̂ (p) the monitor’s incentives are not uniformly stronger, compared to R (p). For low beliefs,
R̂ (p) is below R (p) and the monitor may have less incentive to exert effort. However, there exists a region
of beliefs at which R̂ (p) < R (p), i.e., the rewards are lower, but the incentives are stronger. If pl lies in this
region, then the monitor exerts more effort under R̂ (p).
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Proposition 13. Suppose that the assumptions above hold. If

w′ (p) <
rc

γp
and w(p) < c,

then all equilibria have the same structure as in Proposition 3. If instead

w′ (p) ≥
rc

γp
or w(p) > c,

then there exist equilibria for which m (p) = 0 and e (p) = 1 for p ≥ ph.

Thus, whenever the monitor’s flow payoff is sufficiently sensitive to the belief, the upper

shirking region disappears. Intuitively, when w(p) is sufficiently steep, the monitor prefers

to keep the belief high, irrespectively of whether the agent manipulates. Similarly, whenever

w(p) is sufficiently large the monitor prefers to exert effort even when the agent does not

manipulate.

7.2 Effort Improves Monitor Type

In our main model, we assumed that the monitor’s type can only deteriorate, but never

improve. We now relax this assumption and provide conditions for which our results go

through.

As before, suppose that if the monitor is good, she turns bad at rate γ (1 − et). Addi-

tionally, when the monitor is bad, she turns good with rate φet. Thus, monitor effort can

now improve her type.

In this case, absent detection, the belief evolves as

dpt

dt
= −λpt (1 − pt) mt + φ (1 − pt) et − γpt (1 − et) .

We have the following result.

Proposition 14. For φ sufficiently small, Proposition 3 characterizes all equilibria.

7.3 Good and Bad News

So far, we have assumed that detecting manipulation is good news about the monitor’s

ability. We now relax this assumption and provide conditions for which the equilibrium in

Proposition 3 survives.

Suppose that if the monitor is bad, manipulation causes a public loss (e.g. a loan default

or a scandal), which arrives with Poisson rate λB. That is, the model now features both
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good and bad news. On path, the belief evolves as

dpt

dt
= − (λ − λB) pt (1 − pt) mt − γpt (1 − et) .

For simplicity, assume that when the loss realizes the project is terminated. The monitor

receives no reward and the agent bears no punishment.35 Intuitively, the monitor must

collect evidence that the agent manipulates to be able to punish him and the bad monitor

fails to do so. A bad shock destroys the firm and the agent escapes punishment.

Proposition 15. For γB sufficiently small, Proposition 3 characterizes all equilibria.

7.4 Relationship Continues After Detection

If the relationship continues after detection, the analysis becomes significantly more com-

plicated. After detection, everyone learns that the monitor is good, i.e. p = 1, and the

monitor’s and agent’s continuation values are V (1) and W (1). These values are endogenous

and depend on the values and strategies for other beliefs. Thus, we resort to fixed-point

arguments.

While we cannot characterize the full set of equilibria in this case, we can show that the

equilibrium of Proposition 3 survives.

Proposition 16. Under the assumptions of Proposition 3, there exists an equilibrium such

that m (p) = 1 if p < ph and m (p) = 0 if p ≥ ph and e (p) = 1 if p ∈ [pl, ph) and e (p) = 0

otherwise.

7.5 Perfect Bad News

We now contrast our model with the perfect bad news case (e.g. Keller and Rady (2015)).

We show that our main results survive: the agent’s experimentation motive still encourages

manipulation and term limits, this time for the agent, are still beneficial. Interestingly, the

multiplicity we have found in Proposition 3 disappears.

Now, if the monitor is bad, a signal realizes with arrival rate λ. If the monitor is good,

there is no realization. To make monitoring and manipulation meaningful in this setting,

and to keep the model tractable, we make the following changes to our assumptions.

First, the monitor receives a flow reward R before the first occurrence of bad news

and nothing afterwards. This means that avoiding bad news serves as an incentive for the

monitor. Second, the agent now has a flow cost of manipulation, κmt, and he receives a

35That is, the agent “gets away” with manipulation.
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private benefit B only if the bad news realizes. Third, after bad news realizes, the monitor

is removed and the agent may continue manipulating.

Thus, we can interpret the bad news as the agent successfully stealing from the firm

while concealing his identity, in which case the monitor gets fired. We can easily change the

continuation game. For example, we could assume that the agent is matched with a new

firm with a less effective monitor.

Finally, we reverse the monitor’s human capital technology. If the monitor is bad, she

becomes good at rate γ if she exerts effort. Otherwise, she stays good. This assumption,

together with having perfect bad news, implies that the belief pt is monotonically increasing

on path, which is the opposite of our main model:

dpt

dt
= λpt (1 − pt) mt − ptmtdNt + γ(1 − pt)et.

The monitor’s and agent’s HJB equations are now

rV (p) = R − ce (p) + (λp (1 − p) m (p) + γ (1 − p) e (p)) V ′ (p)

−λ (1 − p) m (p) V (p)

and

rW (p) = −κm (p) + (λp (1 − p) m (p) + γ (1 − p) e (p)) W ′ (p)

+λ (1 − p) m (p) (B + W (0) − W (p)) .

In the myopic benchmark, the agent manipulates whenever the belief is sufficiently low, just

as in our baseline model. We assume

Bλ > κ,

which is the analog of Assumption (1) and which ensures that the myopic agent prefers to

manipulate when the belief is low.36 Then, a myopic agent manipulates whenever

p ≤ pm =
λB − κ

λB
.

The following Lemma, which is the analog of Proposition 1, shows that a forward-looking

agent still has an experimentation motive, which leads him to manipulate more than a myopic

36His value is

W (0) =
λB − κ

r
.

Without this assumption, the agent would never manipulate.
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agent.

Lemma 17. If the monitor never exerts effort, the agent manipulates for p ≤ pnm and

does not manipulate for p > pnm. If the monitor always exerts effort, the agent manipulates

whenever p ≤ pmon. We have pm < pmon < pnm.

Unlike in our baseline model, when the monitor exerts effort, the agent manipulates

less. Intuitively, when the monitor exerts effort, the belief increases faster. Being at a lower

belief, where it is likely that bad news realizes and the agent gets the reward, is less valuable,

because the time spent there is shorter. Thus, W ′(p) decreases and so does the agent’s value

of experimentation. In our main model, the effect was opposite. There, if the monitor exerts

effort, the belief changes less over time, which increases the agent’s incentive to manipulate.

Thus, the complementarity between monitor effort and manipulation disappears and the

equilibrium is unique. As we show in the Proposition below, our result that term limits lower

manipulation survives.

Proposition 18. For r sufficiently small, there exists a unique MPE in which the agent

manipulates if and only if p ≤ ph and the monitor exerts effort if and only if p ≤ pl ≤ ph. A

term limit after bad news has realized lowers ph.

A contingent term limit requires replacing the agent, e.g. via dissolving the firm, at some

time T after bad news has been observed. This lowers the agent’s payoff from manipulating

and decreases his incentive to manipulate.

The assumption that r is small helps ensure that the monitor’s incentive to exert effort

is monotone. Intuitively, as p increases, effort becomes less effective, because it becomes less

likely that the monitor is bad. A sufficiently patient monitor, however, will still want to

exert effort decrease the chance that the bad news realizes.

Thus, in summary, (1) “manipulation as experimentation” survives, (2) term limits

(sumtably modified) survive, and (3) the equilibrium is unique.

8 Conclusion

In this paper we develop a theory of monitoring and manipulation. We study a game between

two forward-looking players, a monitor and an agent, when the monitor’s detection ability

is uncertain. The agent receives private benefits from manipulating but bears a penalty if

detected, in which case the monitor receives a reward. We analyze the effect that uncertainty

about enforcement plays on the dynamics of monitoring and malfeasance.
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We conclude with some thoughts about the practical relevance and limitations of our

analysis. We strongly believe that the mechanism behind manipulations that we highlight in

this paper is empirically relevant. In practice, manipulation provides an experimental benefit

to manipulating agents, who are always uncertain about the level of enforcement they face

(e.g., when they commit white collar crime, such as financial fraud, insider trading, or tax-

avoidance). Agents learn about the level of enforcement they face precisely by engaging

in manipulation. Such learning is valuable and may become a strong incentive to engage

in manipulations, even when manipulation would not take place in the absence of such

uncertainty. Our results thus suggest that regulators should try to reduce uncertainty about

enforcement as a means of mitigating agents’ propensity to manipulate, even if this leads

some times to more manipulation (e.g., when enforcement is revealed to be weak). In other

words, from a policy perspective, environments that feature more enforcement uncertainty

are more prone to manipulation. Hence, policies aimed at reducing such uncertainty could

play an important role in the battle against malfeasance. This is an interesting avenue for

future research.

Studying the experimental nature of manipulation may help explain key facts about the

dynamics of manipulation and monitoring. For example, manipulation is often character-

ized as a persistent habit that escalates over manipulating agents’ life cycle.37 Our model

suggests that such persistence may arise as a result of the agent being uncertain about the

monitor’s effectiveness. Indeed, our model predicts that after the agent successfully manipu-

lates for the first time, he never stops, until eventually detected. This persistent propensity

to manipulate arises in our model not because of habit formation but because of learning.

Second, our results suggest that the incentive to manipulate grows stronger over time (unless

the agent is detected). If manipulation were a continuous choice, then it would start small

and progressively snowball into something large, since successful past manipulation would

lead the agent to grow (over)confident that the monitor is unable to detect his manipulation.

Thus, as time goes by, manipulation would become more and more appealing to the agent.

An interesting avenue for future research would be to explore, theoretically and empirically,

whether experimentation incentives are able to explain a “power law” in the distribution of

frauds.

37This process is eloquently described by Bernard Madoff: “you know what happens is, it starts out with
you taking a little bit, maybe a few hundred, a few thousand. You get comfortable with that, and before
you know it, it snowballs into something big.”
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A Proofs

A.1 Preliminaries

We begin with laying out definitions. On any nonempty interval of beliefs on which there is no
manipulation or monitoring, i.e. m(p) = e(p) = 0, the monitor’s HJB equation satisfies

rV = −γpV ′, (17)

while the agent’s HJB equation satisfies

rW = −pγW ′. (18)

For manipulation to be suboptimal, it must be the case that

ω(p) = B − λp (1 − p) W ′ (p) − λp (K + W (p)) ≤ 0, (19)

i.e., the value of manipulation to the agent is negative. Similarly, shirking is optimal for the monitor
whenever

V ′ (p) ≤
c

γp
. (20)

On any nonempty interval on which the agent manipulates and the monitor shirks, i.e. m(p) = 1
and e(p) = 0, the monitor’s value function satisfies

rV (p) = − (λp (1 − p) + γp) V ′ (p) + λp (R − V (p)) , (21)

while the agent’s value function satisfies

rW (p) = B − (λp (1 − p) + γp) W ′ (p) − λp (K + W (p)) . (22)

Finally, on any nonempty interval on which the agent manipulates and the monitor exerts effort,
i.e., m(p) = e(p) = 1, the monitor’s value function solves

rV (p) = −c − λp (1 − p) V ′ (p) + λp (R − V (p)) (23)

and the agent’s value solves

rW (p) = B − λp (1 − p) W ′ (p) − λp (K + W (p)) . (24)

We next prove Lemma 2, which we restate below.

Lemma 19. In any MPE, there is no nonempty interval
(
p, p̄
)
such that m (p) = 0 and e (p) = 1

for all p ∈
(
p, p̄
)
.

Proof. Suppose that such an interval exists. On that interval, the monitor’s HJB equation solves

rV (p) = −c
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and thus V ′ (p) = 0. But then exerting effort cannot be optimal, since the condition γpV ′ (p) ≥ c
does not hold.

Lemma 2 implies that in any equilibrium, the HJB equations for monitor and agent (equations
(3) and (4)) are non-degenerate at all p > 0. That is, in any equilibrium, e(p) > 0 and/or m(p) > 0
for all p > 0. Since we assumed that strategies are piecewise Lipschitz continuous in p, standard
existence and uniqueness arguments apply to the HJB equations. Specifically, the monitor’s HJB
equation admits a unique solution for any candidate equilibrium strategy of the agent. This solution
is continuous everywhere (in p) and continuously differentiable almost everywhere. The analog is
true for the agent’s HJB equation. See Davis (1993), Th. 41.4, p. 138. Throughout the proofs, we
will make extensive use of value matching conditions, which exploit the continuity of the monitor’s
and agent’s HJB equations.

Given the above properties of the HJB equations, standard verification arguments apply, which
establish that the solution to the monitor’s and agent’s respective HJB equations equal their optimal
values. See Davis (1993), Th. 42.8, p. 141.

In the proofs below, we will often consider different cases for possible equilibria. The Lemma
above guarantees that we never have to consider the case where the monitor exerts effort but the
agent does not manipulate. In the following, we skip this case without mention.

We first provide closed-form solutions to the monitor’s and agent’s HJB equations on regions
where monitor effort and manipulation are constant. In the Lemma below, CA

0 and CM
0 denote

generic constants. They differ from one equation to the other.

Lemma 20. Consider a nonempty interval
(
p, p
)
⊂ [0, 1]. The monitor’s and agent’s HJB equa-

tions have the following general solutions. If m (p) = e (p) = 0 for all p ∈
(
p, p
)
, then

V (p) = CM
0 p−

r

γ (25)

and
W (p) = CA

0 p−
r

γ (26)

for two constants CA
0 and CM

0 . If m (p) = e (p) = 1 for all p ∈
(
p, p
)
, then

V (p) = λp
c + rR

r (r + λ)
−

c

r
+ CM

0

(1 − p)
r+λ

λ

p
r

λ

(27)

and

W (p) =
B

r
− λp

B + rK

r (r + λ)
+ CA

0

(1 − p)
r+λ

λ

p
r

λ

. (28)

If m (p) = 1 and e (p) = 0 for all p ∈
(
p, p
)
, then

V (p) =
λpR

r + λ + γ
+ CM

0

(γ + λ (1 − p))
r+λ+γ

λ+γ

p
r

λ+γ

(29)

and

W (p) =
B

r
− λp

B + rK

r (r + λ + γ)
+ CA

0

(γ + λ (1 − p))
r+λ+γ

λ+γ

p
r

λ+γ

. (30)
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The monitor’s and agent’s HJB equations are linear first-order ODEs. General solutions to this
class of equations can be found in Polyanin and Zaitsev (2002), Section 0.1.2-5. The expressions in
the Lemma then follow after some algebra.38

Finally, throughout the proofs we will abbreviate f+ (p) = limp′↓p f (p′) and f− (p) = limp′↑p f (p′)
for functions f (p). The distinction is necessary because the derivatives of the monitor’s and agent’s
value functions, and therefore their willingness to exert effort and to manipulate, respectively, are
discontinuous in p.

A.2 Main Results

A.2.1 Proof of Proposition 1

If the monitor never exerts effort, then the agent’s value admits the closed form solution

W (p) =
B

r
− λp

B + rK

r (r + λ + γ)

on the region [0, pnm), which follows from Equation (30) and the boundary condition W (0) = B/r.
This yields

ω (p) = B − λp
r + γ

r (r + λ + γ)
(B + rK) . (31)

We have ω (0) > 0 > ω (1) and ω (p) is decreasing. This establishes the existence of a point
pnm ∈ (0, 1), so that manipulating is optimal to the left of pnm. To the right of pnm, the agent’s
value satisfies the HJB Equation (18). Using this equation together with the HJB Equation (22),
which holds to the left of pnm and the value matching condition, implies that the agent’s value
satisfies smooth pasting at pnm. Since on [0, pnm), ω (p) = rW (p) + γpW ′ (p) > 0 and W ′ (p) < 0,
we have W (p) > 0 for p ∈ [0, pnm) and in particular W (pnm) > 0. Since the agent’s value satisfies
the closed form solution in Equation (18) to the right of pnm, we have W ′ (pnm) = − r

γpW (pnm) < 0.
Using Equation (18), we then have for p > pnm,

ω′ (p) =
λr

γ
(1 − p) W ′ (p) − λ (K + W (p)) < 0.

Thus, not manipulating is optimal to the right of pnm.
To derive whether pnm exceeds pm, we can plug B = λpK into Equation (31). This implies

that ω (pm) is positive if and only if

(r + γ) B − λrK < 0.

Thus, when the above inequality holds, pnm > pm and otherwise pnm < pm.
If the monitor always exerts effort, the agent’s value admits the closed form solution

W (p) =
B

r
− λp

B + rK

r (r + λ)
,

38As we have shown in Lemma 2, the monitor shirks on any region where m (p) = 0. Thus, we do not
need to consider the case where m (p) = 0 and e (p) = 1.
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which follows from Equation (28) and the boundary condition W (0) = B/r. Since the agent’s
value satisfies the HJB Equation (24), we have ω (p) = rW (p), so that

ω (p) = B − λp
B + rK

r + λ
. (32)

We can thus immediately see that ω (p) is decreasing and that ω (0) > 0 > ω (1). This establishes
existence of pmon ∈ (0, 1). That no manipulation is optimal to the right of pmon follows from a
similar argument as in the previous case. To show that pmon > pm, we plug B = λpK into the
closed form of the agent’s value. Using the condition B < λK and some algebra, we can then
confirm that ω (pm) > 0.

Finally, to show that pnm < pmon, we can subtract Equation (32) from Equation (31). The two
equations are equal at p = 0. For all p > 0, the difference is negative.

A.2.2 Proof of Proposition 3

The proof of Proposition 3 proceeds via a sequence of Lemmas. Because of Lemma 2, the belief
has strictly negative drift. Because of this, the monitor’s and agent’s values at any given belief p
are independent of the strategies played for all p′ > p. This allows us to use a backward-induction
type argument. We start constructing equilibria with the region [0, pl) and then characterize the
adjacent region [pl, ph). Finally, we construct the region [ph, 1].

Intuitively, we prove that on [0, pl), the incentives of the monitor to exert effort are increasing
in the belief. We then define pl as the belief at which the monitor is indifferent between shirking
or not. On [pl, ph), the monitor’s incentives are still increasing in p, whereas the agent’s incentive
to manipulate is decreasing. The belief ph is the point at which the agent is indifferent between
manipulating or not. To the right of ph, not manipulating and not exerting effort is optimal.

We start with characterizing the region [0, pl).

Lemma 21. On [0, pl), the monitor’s value is given by

V (p) =
λpR

r + λ + γ
(33)

and the agent’s value is given by

W (p) =
B

r
− λp

B + rK

r (r + λ + γ)
. (34)

The interval [0, pl) is part of an equilibrium in Proposition 3 only if

γλplR

r + λ + γ
= c (35)

and

pl <
B (r + λ + γ)

(B + rK) λ
(
1 + γ

r

) .

The last two equations are equivalent to Condition (5) in the statement of Proposition 3.
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Proof. The expressions for the monitor’s and agent’s value functions follow from Lemma 20. The
boundary conditions W (0) = B

r and V (0) = 0 imply CA
0 = CM

0 = 0 in Equations (30) and (29),
respectively.

Given the closed form in Equation (34), we have

ω (p) = B − λp
(r + γ) (B + rK)

r (r + λ + γ)
, (36)

which is decreasing in p.
We now establish the necessary conditions for pl in the statement of the Lemma. Suppose by

way of contradiction that pl is such that γplV
′
− (pl) < c and ω− (pl) > 0. Suppose the equilibrium

switches to m (p) = 1 and e (p) = 1 to the right of pl. Then, using the monitor’s HJB Equations
(21) and (27) and the value matching condition at pl, we can derive the following expression

γpl

(
V ′

+ (pl) − V ′
− (pl)

)
= γplV

′
− (p) − c < 0.

Thus, γplV
′
+ (pl) < c, so that e (p) = 1 cannot be optimal to the right of pl.

Suppose instead the equilibrium switches to m (p) = e (p) = 0. Then, using the agent’s HJB
Equations (22) and (18) and the value matching condition at pl, we can similarly derive

γpl

(
W ′

− (pl) − W ′
+ (pl)

)
= ω− (pl) > 0.

Thus, ω+ (pl) > ω− (pl) > 0, so m (p) = 0 cannot be optimal to the right of pl, which is another
contradiction. Therefore, we cannot have γplV

′
− (pl) < c and ω− (pl) > 0.

Suppose now that γplV
′
− (pl) > c. Then, there must exist a region left of pl where the monitor

does not exert effort, but it is optimal for her to do so. Thus, such a pl cannot be part of an
equilibrium. Similarly, if pl is such that ω− (pl) < 0, then the agent manipulates at some p < pl at
which ω (p) < 0, which is not optimal.

Thus, we have the following necessary conditions: (1) γplV
′
− (pl) = c when ω− (pl) > 0, (2)

γplV
′
− (pl) ≤ c, and (3) ω− (pl) ≥ 0.

We now consider the case when ω− (pl) = 0 and γplV
′
− (pl) < c. That is, at pl, the monitor

does not exert effort, but the agent weakly prefers to stop manipulating.
Suppose that right of pl, the equilibrium features m (p) = e (p) = 0. Then, using again the

agent’s HJB Equations (22) and (18) and the value matching condition at pl, we can show that
W ′

− (pl) = W ′
+ (pl), i.e. smooth pasting at pl holds for the agent. Right of pl, the agent’s value

is given by Equation (18) and the agent prefers to not manipulate. This case does not have the
same structure as the equilibrium in Proposition 3 which features a region with m (p) = e (p) = 1
to the right of pl. Thus, a necessary condition for pl to be part of the conjectured equilibrium is
γplV

′
− (pl) = c and ω− (pl) > 0.39

Plugging in Equation (33) then yields condition (35). Using Equation (34) and some algebra,
we can see that ω− (pl) > 0 is equivalent to

pl <
r (r + λ + γ) B

λ (r + γ) (B + rK)
. (37)

39In other words, the conditions γplV
′
− (pl) = c and ω− (pl) > 0 rule out (among others) the case when

there is no monitoring and manipulation to the right of pl.
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Note that this condition is equivalent to Equation (5) in Proposition 3. This concludes the proof.

We now construct the region [pl, ph), on which exerting effort and manipulating are optimal.
To do so, we must characterize the jumps in the agent’s incentives at pl and we must verify that to
the right of pl, the agent indeed prefers to manipulate and that the monitor prefers to exert effort.

Lemma 22. If Equation (5) holds, then there exists a nonempty interval [pl, ph), such that m (p) =
1 and e (p) = 1 are optimal for all p ∈ [pl, ph).

Proof. We first show that it is optimal for the agent to manipulate. Using the agent’s HJB Equa-
tions (30) and (28) and the value matching condition at pl yields

W ′
+(pl) =

B − λplK − (r + λpl) W (pl)
λpl (1 − pl)

<
B − λplK − (r + λpl) W (pl)

λpl (1 − pl) + γpl
= W ′

− (pl) .

This implies that ω+ (pl) > ω− (pl) > 0. Since the agent’s HJB Equation (24) is linear and has
continuous coefficients, the agent’s value function is continuously differentiable on any interval
[pl, ph) on which the monitor’s effort stays constant. Thus, ω (p) is continuous to the right of pl

and there exists a region on which ω (p) > 0, i.e. manipulation is indeed optimal.
At pl, the monitor’s value satisfies γplV

′
− (pl) = c. Using this condition together with the value

matching condition and the monitor’s HJB Equations (21) and (24) yields V ′
− (pl) = V ′

+ (pl) after
some algebra. That is, the monitor’s value satisfies smooth pasting at pl. Since V ′

− (pl) > 0 and
since V ′ (p) is continuous on any interval [pl, ph) on which the agent’s manipulation is constant,
there exists a ph > pl such that γpV ′ (p) > c on [pl, ph). That is, exerting effort is indeed optimal.

The following Lemma implies that the agent’s value of manipulation ω (p) is decreasing in p on
[pl, ph), while the monitor’s value of effort, γpV ′ (p) − c, is increasing.

Lemma 23. On any interval [pl, ph) such that m (p) = 1 and e (p) = 1 are optimal for all p ∈
[pl, ph), we have W ′ (p) < 0, V ′ (p) > 0, and V ′′ (p) > 0.

Proof. Using the agent’s HJB Equation (24), we can calculate the second derivative of the agent’s
value as

W ′′ (p) =
1

λp (1 − p)
1
p

(
rW (p) − B − rpW ′ (p)

)
.

If W ′ (p) is zero, then W ′′ (p) is strictly negative, because W (p) < B/r for all p > 0. Thus, W ′ (p)
cannot cross zero from below. Since W ′

+ (pl) < W ′
− (pl) < 0, this establishes that W ′ (p) is negative

for all p ∈ [pl, ph).
To show that V ′′ (p) > 0, we can use the closed-form solution to the monitor’s value in Equation

(27) together with the closed-form solution on [0, pl), in Equation (33), the value matching condition
at pl, and the condition γplV

′
− (pl) = c to show that the constant CM

0 in Equation (27) is positive.
Then, we can directly calculate V ′′ (p) from the closed-form solution, which is strictly positive on
[pl, ph). Since V ′ (pl) > 0 this also implies that V ′ (p) > 0 for all p ∈ [pl, ph).

We now characterize the equilibria with the least and most manipulation.
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Lemma 24. Let W (p) denote the solution to the agent’s HJB Equation (24), i.e., when m (p) =
e (p) = 1, which satisfies the value matching condition at pl. There exist two unique thresholds p

h
and ph, such that

B +
λr

γ

(
1 − p

h

)
W
(
p

h

)
− λp

h

(
K + W

(
p

h

))
= 0 (38)

and
W (ph) = 0.

Moreover, p
h

> pl, 1 > ph > pm, and p
h

< ph. The threshold ph is part of an equilibrium only if

ph ∈
[
p

h
, ph

]
. For any such ph, m (p) = e (p) = 1 are optimal on [pl, ph).

Proof. Suppose the equilibrium switches to no manipulation and shirking at some ph > pl, so that
m (p) = e (p) = 0 are optimal for all p ≥ ph. At ph, we must have ω− (ph) ≥ 0 and ω+ (ph) ≤ 0,

otherwise the agent’s strategy is not optimal. Equation (38) defines p
h

via ω+

(
p

h

)
= 0.

We first consider the bound p
h
. We show that p

h
exists, is unique, and that we have p

h
∈ (pl, 1).

The argument to establish that p
h

< 1 is as follows. For p ≥ pl, the agent’s value satisfies the closed
form solution in Equation (28). This solution implies that if p approaches one, then W (p) < 0.
Thus, for p > pm and p sufficiently large, we have

ω+ (p) = B +
λr

γ
(1 − p) W (p) − λp (K + W (p)) < 0.

Thus, if p
h

exists, is must be strictly below one.
Since W (p) is differentiable on [pl, ph), ω+ (p) is continuous and differentible. The function

ω+ (p) is strictly decreasing in the belief. To show this, we can plug in the HJB Equation (18) into
Equation (38). The derivative of the left-hand side of Equation (38) with respect to p is

−
λ

γ2p
W (p)

(
r2 (1 − p) + γ2p

)
− λK < 0,

which follows after some algebra.
We now use this fact to show that ω+ (pl) > 0. Suppose by way of contradiction that ω+ (pl) ≤ 0.

This implies that there exists an equilibrium where ph = pl, so that there is manipulation but no
monitor effort left of pl, and no effort and no manipulation right of pl. Then, the agent’s value
satisfies Equation (22) left of pl and (18) right of pl. These equations, together with the value
matching condition, imply that W ′

− (pl) > W ′
+ (pl), so that 0 < ω− (pl) < ω+ (pl), a contradiction.

Therefore, we have ω+ (pl) > 0.
We have shown that ω+ (pl) > 0 > ω+ (1) . Since ω+ (p) is strictly decreasing and continuous,

there exists a unique p
h
∈ (pl, 1), such that ω+

(
p

h

)
= 0. This is what we set out to prove.

We now characterize p̄h. The closed form solution in Equation (28) and Assumption 1 imply
that W (1) < 0. We have W (pl) > 0 and we have shown in Lemma 23 that W ′ (p) < 0 on [pl, ph).
Thus, there exists a unique point p̄h ∈ (pl, 1) at which W (p) crosses zero.

That ph > pm follows from W (ph) = 0 and the agent’ HJB Equation (24), which implies

B − λphK = λph (1 − ph) W ′
− (ph) < 0.

The inequality holds because W ′ (p) < 0 for p ∈ [pl, ph).
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Next, we show that p
h

< ph. Since ph > pm and W (ph) = 0, we have

B +
λr

γ
(1 − ph) W (ph) − λph (K + W (ph))

= B − λphK < 0.

Because the left-and side of Equation (38) is decreasing, we have p
h

< ph.

We now show that ph is part of an equilibrium only if ph ∈
[
p

h
, ph

]
. First, suppose that

ph < p
h
. By construction, p

h
is the lowest belief at which ω+ (ph) ≤ 0. Thus, ph < p

h
cannot be

part of an equilibrium, because then we have ω+ (ph) > 0, so not manipulating to the right of ph is
suboptimal. Similarly, ph > ph cannot be part of an equilibrium, because we would have m (p) = 1
and ω (p) < 0 for p ∈ (ph, ph).40

We close by showing that for any ph ∈
[
p

h
, ph

]
, m (p) = e (p) = 1 are optimal on [pl, ph).

Since we have shown in Lemma 23 that the monitor’s incentive to exert effort is increasing in p on
[pl, ph), we only need to check that the agent prefers to manipulate. This is straightforward, since
ω (p) = rW (p) ≥ 0 for all p ≤ ph ≤ ph.

We finish our characterization by showing that there is indeed no manipulation or monitor

effort to the right of ph. Thus, any ph ∈
[
p

h
, ph

]
constitutes an equilibrium.

Lemma 25. For any ph ∈
[
p

h
, ph

]
, the equilibrium features no effort and manipulation on [ph, 1].

Proof. We first show that the agent does not prefer to manipulate for p ≥ ph. By construction of
ph, we have ω+ (ph) ≤ 0. For p > ph, we have

ω′ (p) = −λ (1 − p) W ′ (p) − λp (1 − p) W ′′ (p) − λ (K + W (p)) .

Taking the closed form for the agent’s HJB Equation (26), we can express the second derivative
as

W ′′ (p) = −
r + γ

γp
W ′ (p) .

Thus, we have

ω′ (p) =
λr

γ
(1 − p) W ′ (p) − λ (K + W (p)) .

Since W ′ (p) ≤ 0, this expression is negative. Thus, ω (p) ≤ 0 for all p > ph. Manipulating is not
optimal for the agent.

It only remains to show that γpV ′ (p) stays below c on [ph, 1], so that exerting effort is not
optimal. We have V (pl) > 0 and by Lemma 23, V (p) is increasing on [pl, ph). Thus, we have
V (ph) > 0. On [ph, 1], the monitor’s value admits the closed-form solution in Equation (25).
The value matching condition at ph and the fact that V (ph) > 0, imply that the constant CM

0

in Equation (25) is positive. Then, Equation (25) implies that V ′ (p) is negative and therefore
γpV ′ (p) < 0 < c for p > ph.

If Condition (5) does not hold, the equilibrium features no monitor effort. Intuitively, R is small
and the monitor’s incentives are weak. She is only willing to exert effort for very high beliefs, at
which the agent does not manipulate anyway.

40Recall that ω (p) = rW (p) on [pl, ph).
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Lemma 26. Suppose that

R ≤ c
r + γ

rγ

B + rK

B
. (39)

Then, there is a unique equilibrium. The monitor never exerts effort and the agent manipulates
whenever p < pnm, where pnm is given by Proposition 1.

Proof. We first prove that manipulating below pnm and not exerting effort is an equilibrium. Pick

pnm =
r (r + λ + γ) B

λ (r + γ) (B + rK)
.

This is the same value as in Proposition 1. Then, ω (pnm) = 0 and ω (p) > 0 for all p < pnm, which
follows from the closed-form of the agent’s value function in Equation (26).

Condition (39) implies that shirking is optimal for the monitor for all p < pnm. Suppose that
the equilibrium is such that m (p) = e (p) = 0 for all p ≥ pnm. Repeating a similar argument as in
the proof of Lemma 25, establishes that not manipulating and shirking is optimal on [pnm, 1]. Thus,
e (p) = 0 for all p and m (p) = 1 if p < pnm and m (p) = 0 if p ≥ pnm constitutes an equilibrium.

We now prove uniqueness. Suppose that the agent stops manipulating for some p̂nm < pnm.
Then, using the agent’s HJB Equations (22) and (18) and the value matching condition at p̂nm

yields
γp̂nm

(
W ′

− (p̂nm) − W ′
+ (p̂nm)

)
= ω− (p̂nm) > 0

and therefore ω+ (p̂nm) > ω− (p̂nm) > 0. Thus the agent strictly prefers to manipulate to the right
of p̂nm and there can be no such equilibrium. Similarly, we cannot have p̂nm > pnm, because then
for p ∈ (pnm, p̂nm), we have ω (p) < 0, so manipulating cannot be optimal.

A.3 Proofs for Section 4

We prove the results in a different order, since this helps us minimize repetition.

A.3.1 Proof of Proposition 8

To prove the result, we need to consider different cases, depending on whether pD is larger or smaller
than pl. Throughout, let VD (p) and WD (p) denote the monitor and agent’s values for p ≥ pD with
the deadline at pD. Since we are not changing the monitor’s value at pD, her incentives to monitor
remain the same, as long as the agent manipulates.

Lemma 27. Suppose that pD < pl and that W 0
D is sufficiently close to W (pD). Then, the agent

manipulates on [pD, pl) and ph decreases when W 0
D decreases.

Proof. Suppose that the agent manipulates on [pD, pl). Then, the agent’s value WD (p) satisfies
the HJB Equation (22) with boundary condition WD (pD) = W 0

D. We can rewrite this equation as

W ′
D (p) =

B − λpK − (r + λp) WD (p)
λp (1 − p) + γp

.

WD (p) is uniformly continuous in W 0
D on [pD, pl) and the above equation shows that W ′

D (p) is
uniformly continuous as well. This establishes that for W 0

D sufficiently close to W (pD) , we have
ωD (p) > 0 for p ∈ [pD, pl), i.e., manipulating remains optimal.
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We next show that p̄h decreases. Consider two solutions to the agent’s HJB Equation (22) with
different initial condition W 0

D. The equation above implies that these solutions can never cross,
because when the values are equal, the derivative must be equal as well. Thus, as W 0

D decreases,
WD (p) decreases for all p ∈ [pD, pl).

Right of pl, the agent’s value satisfies the HJB Equation (24). When W 0
D decreases, WD (pl),

the value at the left boundary of this region, decreases, as we have just shown. We can rewrite the
HJB equation as

W ′
D (p) =

B − λpK − (r + λp) WD (p)
λp (1 − p)

,

which again shows that two solutions with different initial conditions cannot cross on any interval
[pl, ph). Thus, as W 0

D decreases so does WD (p) for all p ≥ pl. Since on that region, we have
rWD (p) = ωD (p), ph must decrease as well.

Lemma 28. Suppose that pD ≥ pl and that W 0
D is sufficiently close to W (pD), so that the agent

manipulates on a nonempty interval with pD as its left boundary. Then, ph decreases when W 0
D

decreases.

We omit the proof because it is similar to the proof of the preceding Lemma.

Lemma 29. If pm < pD < r
r+γ and W 0

D is sufficiently close to zero, the unique equilibrium features
no manipulation.

Proof. We first show that there exists an equilibrium in which the agent does not manipulate and
the monitor does not exert effort to the right of pD We start with characterizing the agent’s
incentives.

In this equilibrium, not manipulating on a small neighborhood to the right of pD is optimal
whenever W 0

D is sufficiently small. To see this, we use the HJB Equation (18) to write

ωD (pD) = B − λpDK +
λ

γ
(r − (r + γ) pD) W 0

D,

which becomes negative as W 0
D approaches zero. Thus, not manipulating close to pD is indeed

optimal for W 0
D sufficiently small, because ωD (pD) < 0.

To show that not manipulating is optimal for all p > pD, we can differentiate ωD (p) to get

ω′
D (p) = −λK +

λ

γ
(r − (r + γ) p) W ′

D (p) −
λ (r + γ)

γ
WD (p) ,

which is negative for p ≤ r
r+γ . Thus, ωD (p) cannot cross zero for p ≤ r

r+γ . If ωD (p) > 0 for some
p > r

r+γ , we have

ωD (p) = B − λpK +
λ

γ
(r − (r + γ) p) WD (p) ,

which is negative because WD (p) is positive. Thus, ωD (p) cannot cross zero for p > r
r+γ either.

This establishes that ωD (p) < 0 for all p ≥ pD.
We next show that the monitor shirks to the right of pD. Since the monitor’s value satisfies

Equation (25) for p ≥ pD and since her value is positive at pD, the constant in Equation (25) is
positive. Then, Equation (25) implies that V ′ (p) < 0 for p > pD, so the monitor indeed prefers to
shirk.
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The above arguments establish that there exists an equilibrium in which the agent does not
manipulate and the monitor shirks for all p ≥ pD. We now show that this equilibrium is unique.

Monotonicity of m (p) implies that there is no other equilibrium at which m (p) = 1 for p > pD

if m (p) = 0 on a neighborhood of pD. We thus only have to rule out equilibria where m (p) = 1 on
a neighborhood of pD.

First, suppose that m (p) = e (p) = 1 for all p ∈ [pD, pD + ε) for some ε > 0. Then, ωD (p) =
rWD (p) and in particular ωD (pD) = rWD (pD). The HJB Equation (24), implies that

W ′ (pD) =
B − λpDK − (r + λpD) W 0

D

λpD (1 − pD)
.

Since we assumed that pD > pm, the first term in the numerator is negative. Thus, as W 0
D

approaches zero, W ′
D (pD) becomes negative. By continuity, there is a p ∈ (pD, pD + ε) for which

ωD (p) = rWD (p) < 0. Thus, such an equilibrium cannot exist.
Now, suppose that m (p) = 1 and e (p) = 0. In this case, a similar argument shows that

W ′
D (pD) < 0 whenever W 0

D is sufficiently small. For p > pD, we have ωD (p) = rWD (p)+γpW ′
D (p).

By continuity, there is then a p > pD for which WD (p) < 0 and W ′
D (p) < 0, so that ωD (p) < 0.

This rules out such an equilibrium.

A.3.2 Proof of Proposition 6

Proposition 6 is a straightforward corollary to Lemma 28. When the monitor is replaced with a
new one, the agent’s continuation value is W 0

D = W (p0), which is strictly smaller than the agent’s
value without replacement.

A.3.3 Proof of Proposition 7

Before we prove the result, we first introduce notation. Let VD

(
p, V 0

D

)
and WD

(
p, V 0

D

)
denote

the monitor and agent’s value functions given the boundary condition at pD, respectively. The
agent’s value only depends on V 0

D through the monitor’s effort. Similarly, let pl

(
V 0

D

)
denote the

threshold below which the monitor shirks and let ph

(
V 0

D

)
denote the threshold which characterizes

the equilibrium with the most manipulation.

Lemma 30. pl

(
V 0

D

)
is decreasing.

Proof. Consider the region [0, pl

(
V 0

D

)
). Using the monitor’s HJB Equation (21) we can see that

two solutions with different boundary conditions can never cross. Thus, as V 0
D decreases, the value

VD

(
p, V 0

D

)
decreases for all p ∈ [pD, pl). Writing the monitor’s HJB equation as

V ′
D

(
p, V 0

D

)
=

λpR − (r + λp) VD

(
p, V 0

D

)

λp (1 − p) + γp

we can see that if VD

(
p, V 0

D

)
, then V ′

D

(
p, V 0

D

)
is larger. This implies that pl

(
V 0

D

)
is decreasing.

Otherwise, we would have for V̂ 0
D < V 0

D

γpl

(
V̂ 0

D

)
V ′

D

(
pl

(
V̂ 0

D

)
, V̂ 0

D

)
> c = γpl

(
V 0

D

)
V ′

D

(
p, V 0

D

)
,
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so that pl

(
V̂ 0

D

)
cannot be an equilibrium threshold.

To establish that ph

(
V 0

D

)
is also decreasing, we need the following auxiliary result.

Lemma 31. Let W̃ (p) be a decreasing solution to the HJB Equation (22), i.e., when m (p) = 1
and e (p) = 0, and let Ŵ (p) be the solution to the HJB Equation (24), i.e., when m (p) = e (p) = 1.
Then, Ŵ (p) cannot cross W̃ (p) from below.

Proof. Taking Equations (22) and (24), we can see that whenever W̃ (p) = Ŵ (p), then

−γpW̃ ′ (p) = λp (1 − p)
(
W̃ ′ (p) − Ŵ ′ (p)

)
> 0.

Thus, Ŵ (p) cannot cross W̃ (p) from below.

Lemma 32. ph

(
V 0

D

)
is decreasing.

Proof. We establish the result by showing that W
(
p, V̂ 0

D

)
< W

(
p, V 0

D

)
for p > pl and V̂ 0

D < V 0
D.

Since for p ∈ [pl, ph), we have ωD (p) = rW
(
p, V 0

D

)
, this implies that p̄h

(
V 0

D

)
is decreasing.

Following a similar argument as in the proof of Lemma 23, we can show that

W ′
D+

(
pl

(
V 0

D

)
, V 0

D

)
< W ′

D−

(
pl

(
V 0

D

)
, V 0

D

)
,

so that the agent still prefers to manipulate on some region right of pl

(
V 0

D

)
, for any V 0

D.

Now, pick V̂ 0
D < V 0

D. If ph

(
V̂ 0

D

)
< pl

(
V 0

D

)
, then we are done. If not, then pl

(
V 0

D

)
∈

[
pl

(
V̂ 0

D

)
, ph

(
V̂ 0

D

)]
.41 We have

W
(
pl

(
V 0

D

)
, V̂ 0

D

)
< W

(
pl

(
V 0

D

)
, V 0

D

)
, (40)

that is, at pl

(
V 0

D

)
, the agent’s value under V̂ 0

D must be smaller. This follows from Lemma 31.

The argument is as follows. We know that W
(
p, V̂ 0

D

)
< W

(
p, V 0

D

)
for p ∈ [pD, pl

(
V̂ 0

D

)
). On

[
pl

(
V̂ 0

D

)
, pl

(
V 0

D

)]
, the value function W

(
p, V̂ 0

D

)
satisfies the HJB Equation (24), while W

(
p, V 0

D

)

admits the closed form in Equation (34), which is a decreasing solution to the HJB Equation (22).

Lemma 31 then establishes that W
(
p, V̂ 0

D

)
cannot cross W

(
p, V 0

D

)
from below on

[
pl

(
V̂ 0

D

)
, pl

(
V 0

D

)]
,

which implies Inequality (40).

Now, we can compare the values W
(
p, V̂ 0

D

)
and W

(
p, V 0

D

)
on the interval

[
pl

(
V 0

D

)
, ph

(
V̂ 0

D

)]
.

Since both satisfy the HJB Equation (24), since two solutions to that HJB equation cannot

cross, and since W
(
pl

(
V 0

D

)
, V̂ 0

D

)
< W

(
pl

(
V 0

D

)
, V 0

D

)
, we have W

(
p, V̂ 0

D

)
< W

(
p, V 0

D

)
for all

p ∈
[
pl

(
V 0

D

)
, ph

(
V̂ 0

D

)]
. This implies that ph

(
V̂ 0

D

)
< ph

(
V 0

D

)
.

41Lemma 30 establishes that pl

(
V̂ 0

D

)
< pl

(
V 0

D

)
.

49



A.4 Proofs for Section 6

A.4.1 Proof of Proposition 10

The precise expression for the bound R̄ in the proposition statement is

R̄ =
c

γrB
((r + γ) (B + rK) + (N − 1) r (r + λ + γ) K) . (41)

Condition (41) is the analog of Condition (5) in the single-agent case. It guarantees that the
monitor’s incentives are sufficiently strong. Otherwise, the equilibrium would feature no monitor
effort. Condition (41) is stronger than Condition (5). Thus, under the assumptions of Proposition
10, Proposition 3 (for the single-agent case) holds as well.

The cooperative value function is given by Wc = 1
N

∑N
n=1 Wn. It satisfies the HJB equation

rWc (p) = max
M∈[0,N ]

B
M

N
− λpK

M

N
−

(

λ
M

N
p (1 − p) + γp (1 − e (p))

)

W ′
c (p) (42)

−λp
M

N
Wc (p) .

Since M ∈ [0, N ], we can see that this equation is identical to the single-agent HJB equation in
the main model, Equation (4). If for all p, M (p) /N equals the solution of the single-agent model,
then the solution to the monitor’s HJB equation is also the same and her best response is the same
as well.

In a symmetric equilibrium, whenever m (p) = e (p) = 1, then each agent’s HJB equation is
given by Equation (24) and the monitor’s HJB equation is given by Equation (27). The analog
holds for the cases when m (p) = 1 and e (p) = 0 and when m (p) = e (p) = 0. We will exploit this
fact throughout.

The proof proceeds in a sequence of Lemmas and mirrors the proof of Proposition 3. The key
step is to show that on the region [pl, ph), each agent’s incentives to manipulate are smaller than
in the single-agent case.

Lemma 33. There exists a region [0, pl), such that m (p) = 1 and e (p) = 0 for all p ∈ [0, pl). At
pl, we have γplV

′
− (pl) = c. The point pl is the same point as in the single-agent case.

Proof. We first show that shirking and manipulation are an equilibrium on [0, pl). Since by con-
struction, the monitor’s value function is the same as in the single-agent case, we focus on the
agent’s incentives.

Suppose that pl is determined by the monitor’s indifference condition γplV
′
− (pl) = c. The

assumption in Equation (41) implies that ωn (p) > 0 for all p ≤ pl. This follows from the closed
form solutions in Equation (30) for the agent and Equation (29) for the monitor, which imply

ωn (p) = B − λpK −
λ

N
p

(
B

r
−

λ (B + rK)
r (r + λ + γ)

)

(43)

and

pl =
c (r + λ + γ)

γλR
.
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Condition (41) guarantees that ωn− (pl) > 0. From Equation (43), we can see that ωn (p) is strictly
decreasing. Thus, ωn (p) > 0 for all p ≥ pl. It is optimal for the agent to manipulate on [0, pl).

Next, we show that no other pl constitutes and equilibrium. Suppose by way of contradiction
that the region [0, pl) instead has some value p̂l 6= pl as its right boundary. First, suppose that
p̂l < pl, such that γp̂lV

′
− (p̂l) < c and ωn− (p̂l) > 0. If the equilibrium switches to m (p) = e (p) = 1

to the right of p̂l, then, using similar arguments as in the proof of Lemma 21, we can show that
V ′

+ (p̂l) < V ′
− (p̂l). This implies that γp̂lV

′
+ (p̂l) < c, which contradicts e (p) = 1 being optimal to

the right of p̂l. If the equilibrium switches to m (p) = e (p) = 0, then we can use the agent’s HJB
Equations (22) and (18) to show that

γp̂l

(
W ′

− (p̂l) − W ′
+ (p̂l)

)
= ω− (p̂l) .

For all N ≥ 1, if Condition (41) holds, so does Condition (5). Thus, ω− (pl) > 0 and ω (p) > 0
for all p ≤ pl. Since we assumed that p̂l < pl and since ω (p) is decreasing, we have ω− (p̂l) > 0.
This implies that W− (p̂l) > W+ (p̂l) and thus ωn+ (p̂l) > ωn− (p̂l) > 0, i.e. not manipulating to
the right of p̂l cannot be optimal.

Next, suppose that p̂l > pl, which implies that γp̂lV
′
− (p̂l) > c, and also suppose that ωn− (p̂l) ≥

0. Then, there exists an interval left of p̂l on which the monitor does not exert effort even though
it is optimal for her to do so. If p̂l > pl and ωn− (p̂l) < 0 then there exists a region on which both
monitor and agent make suboptimal choices.

Thus, we must have p̂l = pl in equilibrium. Then, the monitor’s value to the left of pl is the
same as in the single-agent case. This implies pl is the same as in the single-agent case as well.

Lemma 34. There exists a region [pl, ph) such that m (p) = e (p) = 1 for all p ∈ [pl, ph). On any
such region, V ′ (p) > 0, V ′′ (p) > 0, W ′

n (p) < 0, and ω′
n (p) < 0.

Proof. On the conjectured region, each agent’s value function solves the HJB Equation (24), i.e.
the HJB equation in the single-agent case when m (p) = e (p) = 1. We can exploit this fact and use
the same argument as in the proof of Lemma 22 to show that W ′

n+ (pl) < W ′
n− (pl), which in turn

implies that ωn+ (pl) > ωn− (pl), so that manipulatin is optimal on a nonempty interval to the right
of pl. As in the single-agent case, the monitor’s value satisfies smooth pasting at pl. These two
facts establish that a nonempty region with m (p) = e (p) = 1 exists to the right of pl. Analogous
arguments as in Lemma 23 establish that V ′ (p) > 0, V ′′ (p) > 0, and W ′

n (p) < 0 on this region.
To show that ω′

n (p) < 0, we can use the HJB Equation (24) to write

ωn (p) =
N − 1

N
(B − λpK) +

r

N
Wn (p) , (44)

which is decreasing in p. Finally, note that since V ′ (p) > 0 and V ′′ (p) > 0, γpV ′ (p)−c is increasing
in p. Thus, the monitor prefers to exert effort on [pl, ph).

We now characterize the largest region on which manipulation and monitor effort are both
optimal. We denote its right boundary with p̂h, which satisfies

ωn− (p̂h) = 0,

similarly to the single-agent case. As before, ph denotes the analogous boundary with a single
agent, which solves W (ph) = 0.
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Lemma 35. For any region [pl, ph) such that m (p) = e (p) = 1 for all p ∈ [pl, ph), we have ph ≤ p̂h.
Also, p̂h < ph.

Proof. The preceding lemma implies that ωn (p) is decreasing and V ′ (p) is increasing on [pl, p̂h].
Therefore, m (p) = e (p) = 1 is optimal on this region. Since ωn (p) is strictly decreasing, ph > p̂h

cannot be an equilibrium, because it would require that m (p) = 1 for some p for which ωn (p) < 0.
Thus, in any equilibrium, ph ≤ p̂h.

To show that p̂h < ph, suppose by way of contradiction that p̂h = ph. Then, Wn (p) = W (p)
for p ∈ [pl, ph], i.e. each agent’s value function equals the value function in the single-agent case.
Then, we have

ωn− (ph) − ω− (ph) =
N − 1

N
(B − λphK − ω− (ph))

= λph (1 − ph) W ′
− (ph) + λphW (ph)

= λph (1 − ph) W ′
− (ph) < 0.

The last inequality uses the fact that W (ph) = 0 and that W (p) is strictly decreasing on [pl, ph).
Since p̄h satisfies ω− (p̄h) = 0, the above equation implies that ωn− (p̄h) < 0. This is a contradiction,
because p̂h must satisfy ωn− (p̂h) = 0.

To finish constructing the equilibrium, it remains to show that for p > p̂h the equilibrium
features no manipulation and no monitor effort.

Lemma 36. Under the assumptions of Proposition 10, we have m (p) = e (p) = 0 for all p > p̂h.

Proof. We prove the result by showing that ωn (p) < 0 for all p ≥ p̂h. We first show that ωn+ (p̂h) <
0. Using Equation (44), the condition ωn− (p̂h) = 0, the agent’s HJB Equation (18), and the value
matching condition at p̂h yields

ωn+ (p̂h) = −
r

N − 1
Wn (p̂h) +

λ

γN
(r − (r + γ) p̂h) Wn (p̂h) .

A sufficient condition for this expression to be negative is Wn (p̂h) > 0 and p̂h > r
r+γ . Substituting

ωn− (p̂h) = 0 in Equation (44), we get

rWn (p̂h) = − (N − 1) (B − λp̂hK) . (45)

Thus, Wn (p̂h) is positive if and only if p̂h > pm. We now show this is true.
Suppose not, i.e., p̂h ≤ pm. Then, Wn (p̂h) < 0. Now, since p̂h < p̄h, on [0, p̂h], we have

Wn (p) = W (p), since both value functions satisfy the HJB Equation (24) with the same boundary
condition at pl. This implies that Wn (p̂h) = W (p̂h) < 0. Since, W (p) is decreasing and ph > p̂h,
we have W (ph) < 0. But this is impossible, since ph, by definition, satisfies W (ph) = 0. Thus, we
must have p̂h > pm. This implies that Wn (p̂h) > 0

To show that ωn+ (p̂h) < 0, it remains to prove that p̂h > r
r+γ . We now show that this is true

whenever K is sufficiently small, which have assumed in Proposition 10. Specifically, we show that
as K decreases, p̂h increases and that as K becomes small, p̂h tends to one.
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We know that p̂h satisfies Equation (45). Intuitively, the implicit function theorem yields

dp̂h

dK
= −

r ∂Wn(p̂h)
∂K − (N − 1) λp̂h

W ′
n− (p̂h) − (N − 1) λK

.

Here, we denote limp↑p̂h

∂
∂pWn (p) = W ′

n− (p̂h). We suppress the dependence of Wn on K to keep
the notation simple. Since W ′

n− (p̂h) < 0, p̂h is increasing in K whenever Wn (p̂h) is decreasing in
K. We now show this is the case, via a sequence of value matching arguments. Of course, we must
guarantee that Wn is differentiable in K to apply the argument. Using the closed-form in Equation
(28), we see that this is the case.

As K increases, each agent’s closed-form value in Equation (30) on [0, pl) decreases uniformly.
Importantly, pl does not depend on K, which we can see from Equation (35) in the single-agent
case.42 Thus, at pl, the boundary condition for each agent’s HJB Equation (24) on [pl, p̂h] decreases.

Using the closed-form solution in Equation (28), we can calculate how the constant CA
0 must

change when K changes at pl. Specifically, the value matching condition at pl is

B

r
− λpl

B + rK

r (r + λ + γ)
=

B

r
− λpl

B + rK

r (r + λ)
+ CA

0

(1 − pl)
r+λ

λ

p
r

λ

l

,

where the left-hand side is obtained from the closed-form solution in Equation (34). After some
algebra, we get

CA
0

(1 − pl)
r+λ

λ

p
r

λ

l

=
λγpl (B + rK)

r (r + λ) (r + λ + γ)
,

which shows that CA
0 is increasing in K. We also have

W ′
n (p) = −

λ

r (r + λ)
(B + rK) − CA

0

r+λ
λ (1 − p)

r

λ + r
λp (1 − p)

r+λ

λ

p
r

λ

for p ≥ pl. Since CA
0 is increasing in K, W ′

n (p) is decreasing in K for all p ≥ pl. Thus, as K
increases, the agent’s value function starts at a lower value at pl and has a smaller slope. Thus,
Wn (p) is uniformly decreasing in K for p ≥ pl. In particular, Wn (p̂h) is decreasing in K for a fixed
p̂h. Then, applying the implicit function theorem to Equation (45) establishes that p̂h is decreasing
in K.

We now show that as K becomes small, p̂h converges to one. Specifically, as K approaches B
λ

from above, pm converges to one. Above, we have shown that p̂h > pm. Therefore, p̂h converges to
one as well so that, for K sufficiently small, we then have p̂h > r

r+γ .
We have now shown that ωn+ (p̂h) < 0. To conclude the proof, we must show that ωn (p) < 0

for all p > p̂h. Using the closed-form in Equation (26), we get

ωn (p) = B − λpK +
λ

γN
(r − (r + γ) p) Wn (p) ,

which is decreasing, since W ′
n (p) < 0 on that region. Thus, ωn (p) < ωn+ (p̂h) for all p > p̂h. That

42Also, if Condition (14) holds for some K, it holds for all K̂ < K.
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the monitor prefers to shirk follows from the same argument as in Lemma 25.

A.4.2 Proof of Proposition 11

The condition B < λ
N K is the analog of Condition (1) in the single-agent case.43 If it holds, then

Condition (1) holds as well. Thus, under the assumptions of Proposition 11, Proposition 3, for the
single-agent case, holds.

The cooperative value is

rWc (p) = max
M∈[0,1]

B
M

N
−

λ

N
pKM −

(
λ

N
Mp (1 − p) + γp (1 − e (p))

)

W ′
c (p) (46)

−
λ

N
pMWc (p) .

As in the case with individual punishments, the cooperative value function is identical to the single-
agent HJB equation in the main model, Equation (4). Also, in a symmetric equilibrium, each agent’s
value is given by Equation (24) whenever all agents choose m (p) = 1 and the monitor chooses,
e (p) = 1. The analog holds for the cases when m (p) = 1 and e (p) = 0 and when m (p) = e (p) = 0.

The proof proceeds similarly to the proofs of Proposition 3 and Proposition 10. We therefore
only provide a brief sketch. The main step is to show that on the region [pl, ph), each agent’s
incentive to manipulate is stronger than in the single-agent case.

Proof. We denote with p̃h the threshold in the equilibrium with the most manipulation. As before,
ph is the analog in the single-agent case.

Using Equation (5), we can verify that the proof of Lemma 21 goes through, so pl is characterized
by γplV

′
− (pl) = c and is the same as in the single-agent case.

The proof of Lemma 22 goes through without modifications, so there exists a region [pl, ph) on
which e (p) = 1 and mn (p) = 1 for all n is optimal. Using the same argument as in the proof of
Lemma 23, yields V ′ (p) > 0 and W ′

n (p) < 0 for p ∈ [pl, ph). Using the HJB Equation (24), we can
write

ωn (p) =
N − 1

N

(

B −
λ

N
pK

)

+
1

rN
Wn (p) , (47)

which shows that ωn (p) is strictly decreasing on [pl, ph).
We now show that p̃h > p̄h. First, suppose that ph = ph. We will show that this is an

equilibrium, which implies that p̃h ≥ p̄h. On the interval [pl, ph], each agent’s value function is the
same as the value function in the single-agent case, in Equation (24).44 We thus have Wn (ph) = 0
and

0 = ω− (ph)

= B − λphK − λph

(
(1 − ph) W ′

− (ph) + W (ph)
)

< NB − λphK − λph

(
(1 − ph) W ′

n− (ph) + Wn (ph)
)

= Nωn− (ph) .

43In the case with individual punishments, we did not need to impose a similar condition, because each
agent’s instantaneous benefit from manipulating was B − λpK, the same as in the single-agent case. See
Equation (13).

44Here, recall that because we assumed that Equation (5) holds, the threshold pl is the same as in the
single-agent case and the boundary condition for each agent’s value is the same as well.
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On the region [ph, 1], we have m (p) = e (p) = 0. To see this, we can use the HJB Equation (18) to
calculate

ωn+ (ph) = B −
λ

N
phK +

λ

γN
(r − (r + γ) ph) Wn (ph)

= B −
λ

N
phK.

This expression is negative if ph > BN
λK . In the proposition statement, we have assumed that BN

λK < 1.
As K approaches B

λ from above, a similar argument as in the proof of Lemma 36 shows that ph

converges to one. Thus, for K sufficiently small, the condition ph > BN
λK holds and ωn+ (ph) < 0.

Using the value matching condition Wn (ph) = 0, we can see that the constant CA
0 in Equation (26)

is zero and thus Wn (p) = 0 for all p > ph. Therefore, ωn (p) < 0 for p ≥ ph and not manipulating
is indeed optimal.45

To show that p̃h > ph, note that ωn+ (ph) < 0 and that the constant CA
0 in Equation (26)

depends continuously on the value matching condition. This implies that on [ph, 1], Wn (p) is
uniformly continuous with respect to the boundary condition at ph. Thus, there exists a sufficiently
small ph > ph such that ωn+ (ph) < 0 and ωn (p) < 0 for all p > ph. Thus, to the right of such a
ph, m (p) = 0 is optimal. That e (p) = 0 is optimal follows from essentially the same argument as
in Lemma 25. This concludes our proof.

A.5 Bribes: Proof of Proposition 9

Consider first the case when R is intermediate, so that the monitor accepts bribes when p < pB .
Specifically, we assume that Condition (9) holds, i.e.,

B − c

r
+ K < R <

B

r
+ K.

Following Proposition 3, we also assume that Condition (5) holds, i.e.,

R > c
r + γ

rγ

B + rK

B
.

The two conditions are not mutually exclusive. Both hold simultaneously whenever

c < B
γ

r + γ
,

i.e. c is not too large, which we have assumed in the statement of Proposition 9.
We now prove the result in the proposition. To do this, we construct the regions [0, pl), [pl, ph),

and [ph, 1], just as we have done in the proof of Proposition 3. Since parts of the previous analysis
carry over, our exposition focuses on the differences to keep the repetition at a minimum.

The key technical difficulty is that with bribes, the agent’s value function also depends on the
monitor’s value (see Equations (49) and (53) below). Thus, we must be careful in showing that the
agent indeed wants to manipulate on [0, pl) and on [pl, ph).

45We skip the characterization of the monitor’s incentives. It is similar to the single-agent case.
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Additionally, we must verify that it is optimal to offer bribes whenever p ≤ pB . We do this by
showing that the joint value S (p) can cross R−K at most once from above, so that Condition (8)
can only hold for beliefs below a threshold. The analysis here is subtle, since on different regions
S (p) satisfies different ODEs (see Equations (52), (54), and (56)) and since we cannot rely on S (p)
being monotone.

Throughout the analysis, we will compare the monitor’s and agent’s value functions to the ones
in the baseline model. To avoid confusion, we denote the value functions when bribes are possible
as WB (p) and VB (p) and the agent’s value of manipulation as ωB (p). We continue denoting the
corresponding functions without bribes as W (p), V (p), and ω (p).

We now start constructing the equilibrium with the region [0, pl). Since WB (0) = B
r and

VB (0) = 0, Condition (9) implies that offering a bribe at p = 0 is optimal. That is,

R − K < S (0)

= VB (0) + WB (0)

=
B

r
.

As in Proposition 3, there exists a region [0, pl) on which the agent manipulates and the monitor
does not exert effort. We have pB > pl and pl is the same as in the case without bribes.

Lemma 37. Let pl be given by the monitor’s indifference condition in Equation (35). We have
pB > pl and no other threshold p̃l 6= pl so that m (p) = 1 and e (p) = 0 for p < p̃l can be part of a
monotone-manipulation equilibrium.

Proof. Since the optimal bribe is
b (p) = p (R − VB (p)) (48)

for p < pB , the monitor’s value function is exactly the same as in the case without bribes. That is,
the monitor’s value follows

rVB (p) = − (λp (1 − p) + γp) V ′
B (p) + λb (p)

= − (λp (1 − p) + γp) V ′
B (p) + λp (R − VB (p)) ,

which is the same as in Equation (21). Thus, on [0, min{pB , pl}), we have VB (p) = V (p). In
particular, the monitor’s value admits the closed form solution in Equation (33). This implies that
shirking is optimal for the monitor for p ∈ [0, min{pB , pl}).

On [0, min{pB , pl}), the agent’s value satisfies

rWB (p) = B − (λp (1 − p) + γp) W ′
B (p) − λb (p) .

Plugging in the optimal bribe in Equation (48) and the closed form of the monitor’s value in
Equation (33), we get

rWB (p) = B − (λp (1 − p) + γp) W ′
B (p) − λp

(

R − λp
R

r + λ + γ

)

. (49)
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As we have done in Lemma 20, we can calculate a general solution to this ODE. It is given by

WB (p) =
B

r
− λp

R

r + λ + γ
+ CA

0

(γ + λ (1 − p))
r

λ+γ

p
r

λ+γ

.

The only solution which satisfies the boundary condition WB (0) = B
r is the one with CA

0 = 0.
Thus, the agent’s value function admits the closed-form solution

WB (p) =
B

r
− λp

R

r + λ + γ
. (50)

From this equation, we can compute the agent’s incentive to manipulate, which is given by

ωB (p) = B − λp
(r + γ) R

r + λ + γ
. (51)

In the case without bribes, this equation has its analog in Equation (36), in the proof of Lemma
21. That is,

ω (p) = B − λp
(r + γ) (B + rK)

r (r + λ + γ)
.

Condition (9) implies that ωB (p) > ω (p) . Thus, the agent is more willing to manipulate on
[0, min{pB , pl}) when he can offer bribes. Under Condition (5), manipulating is then optimal on
[0, min{pB , pl}).

The above arguments have established that for p < [0, min{pB , pl}), the agent manipulates and
the monitor shirks. We now show that pB > pl.

Suppose by way of contradiction that pB ≤ pl. Then, on [0, pB ], the joint value S (p) is given
by

S (p) = VB (p) + WB (p) (52)

= λp
R

r + λ + γ
+

B

r
− λp

R

r + λ + γ

=
B

r
> 0.

Here, we have used the closed form solutions for the agent’s value in Equation (50) and the monitor’s
value in Equation (33). Condition (9) then implies that S (p) > R − K for p ≤ pB , i.e., Condition
(8) holds. In particular, S (pB) > R − K, so not offering a bribe at pB is suboptimal, which is a
contradiction.

To conclude the argument, it only remains to show that no other threshold p̃l 6= pl can constitute
the right boundary of the region [0, p̃l) on which m (p) = 1 and e (p) = 0. The arguments are
analogous to the ones in Lemma 21 and we omit them.

Now, suppose that pB ∈ [pl, ph]. Recall that ph is the threshold in Proposition 3, which
characterizes the equilibrium with the most manipulation.

We consider the region [pl, pB) and show that manipulating and exerting effort is optimal.
The monitor prefers to exert effort, because her value is the same as in the case without bribes.
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Specifically, on [pl, pB), her value satisfies the HJB Equation

rVB (p) = −c − λp (1 − p) V ′
B (p) + λb (p)

= −c − λp (1 − p) V ′
B (p) + λp (R − VB (p)) ,

which is identical to Equation (23). Since on [0, pl), we have VB (p) = V (p), the boundary condition
at pl is the same as well. Thus, VB (p) = V (p) on [pl, pB). Lemma 23 then goes through and
establishes that the monitor prefers to exert effort on [pl, pB).

The lemma below shows that the agent prefers to manipulate.

Lemma 38. On [pl, pB), we have ωB (p) > 0.

Proof. We will show that WB (p) > W (p) on [pl, pB). Since ωB (p) = rWB (p) and ω (p) = rW (p)
on this region, this establishes the result.

The proof relies on a comparison argument. On [pl, pB), the agent’s value satisfies the following
HJB equation,

rWB (p) = B − λp (1 − p) W ′
B (p) − λp (R − VB (p)) , (53)

while the monitor’s value satisfies VB (p) = V (p).
At pl, the boundary value of the agent’s HJB equation is larger than in the case without bribes,

i.e. WB (pl) > W (pl), because WB (p) > W (p) for p < pl.46

We now show that WB (p) and W (p) cannot cross on [pl, pB). Define

p̃ = inf {p ∈ (pl, pB) : WB (p) = W (p)} .

Suppose by way of contradiction that p̃ exists. Using the two HJB Equations and some algebra
yields

λp (1 − p)
(
W ′ (p̃) − W ′

B (p̃)
)

= λp (R − K − (VB (p) + WB (p))) .

By construction, we have R−VB (p) < K+WB (p) on [pl, pB). Thus, the RHS in the above equation
is negative, which implies that W ′ (p̃) < W ′

B (p̃). Thus, W (p) cannot cross WB (p) from below.
But, since WB (pl) > W (pl), if p̃ exists, we must have W ′ (p̃) ≥ W ′

B (p̃), a contradiction. Thus, we
have WB (p) > W (p) for all p ∈ [pl, pB).

Since pB ≤ ph, we have ω (p) ≥ 0 on [pl, pB). But then

ωB (p) = rWB (p) > rW (p) = ω (p) ≥ 0,

which is what we set out to prove.

We now consider the interval [pB , ph). We confirm that on this region, the monitor prefers to
exert effort and the agent prefers to manipulate.

Lemma 39. For p ∈ [pB , ph), we have ωB (p) > ω (p) ≥ 0 and γpV ′
B (p) > c.

Proof. As in the previous cases, the monitor’s value function is identical to the case without bribes,
i.e., VB (p) = V (p) for p ∈ [pB , ph), so all results about the monitor’s value function in Lemma 23
apply. In particular, the monitor prefers to exert effort for [pB , ph).

46We have established this in Lemma 37.
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The agent’s value function satisfies the HJB Equation (24). The only difference is that at pB ,
the boundary value is larger, i.e., WB (pB) > W (pB). A similar argument as in Lemma 38 above
shows that WB (p) and W (p) cannot cross on [pB , ph), which implies that ωB (p) > ω (p) ≥ 0.
Thus, manipulating is optimal for the agent.

To finish constructing equilibria, we must show that not manipulating and not exerting effort is
optimal for p ≥ ph. The argument in Lemma 25 goes through, so we omit the proof. As in Lemma

24, we can characterize bounds pB
h

and p̄B
h so that any equilibrium must have ph ∈

[
pB

h
, p̄B

h

]
. We

also omit these arguments since they are similar.
We now show that if pB ∈ [pl, ph), the joint value S (p) is decreasing for p ∈ [pl, pB) and stays

below R − K for p ∈ (pB , ph) . We do not need to consider p ≥ ph, because when the agent does
not manipulate, Nt never realizes. Thus, no bribes can potentially be offered. In other words, we
must have pB ≤ ph in any equilibrium.

Lemma 40. If pB ∈ [pl, ph), then, on [pl, ph), S (p) crosses R − K exactly once from above at pB .

Proof. We treat the regions [pl, pB) and [pB , ph) separately. We start with [pl, pB).
Using the monitor’s HJB Equation (23) and the agent’s HJB Equation (53) yields

r (VB (p) + WB (p)) = B − c − λp (1 − p)
(
V ′

B (p) + W ′
B (p)

)
.

Thus, the joint value S (p) satisfies the ODE

rS (p) = B − c − λp (1 − p) S′ (p) . (54)

This equation admits the general solution

S (p) =
B − c

r
+ CS

0

(1 − p)
r

λ

p
r

λ

. (55)

We will show that CS
0 > 0, which implies S′ (p) < 0. At pl, have S (pl) = B

r , which follows from
Equation (52). Thus, the value matching condition is

B

r
=

B − c

r
+ CS

0

(1 − pl)
r

λ

p
r

λ

l

or equivalently

CS
0

(1 − pl)
r

λ

p
r

λ

l

=
c

r
> 0.

This shows that S′ (p) < 0 on [pl, pB). At pB , we must have S (pB) = R − K. Plugging this into
Equation (54) yields

rR − rK − B + c = −λpB (1 − pB) S′ (pB) .

Because of Condition (9), the LHS is positive and thus indeed S′
− (pB) < 0.

59



Next, consider the interval [pB , ph). We have

r (VB (p) + WB (p)) = B − c − λp (1 − p)
(
V ′

B (p) + W ′
B (p)

)

+λp (R − K − VB (p) − WB (p)) .

Thus, S (p) solves the ODE

rS (p) = B − c − λp (1 − p) S′ (p) (56)

+λp (R − K − S (p)) .

Using ODEs (54) and (56), the value matching condition, and the fact that S (pB) = R−K implies
that S′

− (pB) = S′
+ (pB) < 0. That is, smooth pasting holds at pB and S′

+ (pB) is negative.
The joint value S (p) cannot cross R − K again on the interval (pB , ph). To see this, suppose

that
p̃ = inf {p ∈ (pB, ph) : S (p) = R − K}

exists. At this point, we have

rR − rK − B + c = −λp̃ (1 − p̃) S′ (p̃) .

Condition (9) implies that S′ (p̃) < 0. Since S (p) must cross R − K from below at p̃, this is a
contradiction. Thus, S (p) < R − K on (pB , ph).

Since Condition (8) holds at p = 0, the above result establishes the existence of a point pB ≤ ph,
such that offering bribes is optimal for p < pB .

It does not necessarily have to be the case that S (pB) = R − K. In particular, we could have
S (p) > R−K for all p ∈ [0, ph). In this case, pB is determined via pB = ph, since for p > ph, there
is no manipulation and therefore no possibility to pay bribes. If, on the other hand, S (ph) < R−K,
then pB < ph and S (pB) = R − K.

Let us now briefly sketch why this class of equilibria is unique. Because of Condition (9),
offering bribes on [0, pl) is always optimal, as we have shown above. Suppose that pB ∈ [pl, ph), so
that offering bribes is optimal for p ≤ pB , but there is another threshold p̃B > pB , so that offering
bribes is optimal at p̃B . On [pB, p̃B), we must have m (p) = e (p) = 1. Therefore, the joint value
satisfies Equation (56). At p̃B, we must have S (p̃B) = R − K. But Lemma 40 shows that this is
impossible. Thus, no such point can exist. Any equilibrium must feature bribes if and only if p is
below pB.

We close our characterization by showing that with bribes, the agent is more willing to manip-
ulate. This follows as a Corollary to Lemma 39.

Corollary 41. Let p̄B
h be the threshold characterizing the equilibrium with the most manipulation

when there are bribes, i.e., p̄B
h > pl and WB

(
p̄B

h

)
= 0. We have p̄B

h > p̄h.

Proof. In Lemma 39, we have shown that ωB (p) > ω (p) for p ∈ [pB , ph). Picking p = ph = p̄h

implies ωB (p̄h) > ω (p̄h) = 0. Thus, p̄B
h > p̄h.

We now characterize the case when bribes are always offered. Since much of the argument
is identical to the previous case, we only provide a brief sketch. The proof relies on deriving a
contradiction when pB ∈ (pl, ph), which shows that pB = ph.

60



Suppose that Condition (10) and Condition (5) hold. As before, the two conditions hold
simultaneously whenever c is sufficiently small. Condition (10) implies

R <
B

r
+ K.

Because of this, the analysis in Lemmas 37 and 38 goes through. Thus, offering bribes must be
strictly optimal for p ∈ [0, pl] and, by continuity of S (p), on some nonempty interval [pl, pB)

Suppose now that pB ∈ (pl, ph), so that offering bribes is not optimal for p > pB . We now
derive our contradiction.

On [pl, pB), the joint value satisfies Equation (54) in Lemma 40 with the same boundary con-
dition, i.e. S (pl) = B

r . Just as in Lemma 40, this implies that S′ (p) < 0 for p ∈ [pl, pB). At pB ,
we must have S (pB) = R − K. Plugging this into Equation (54) yields

λp (1 − p) S′
− (pB) = B − c − rR + rK.

However, Condition (10) implies that the RHS is positive. Thus, S′
− (pB) > 0. Since S′ (p) is

continuous on (pl, pB), this is a contradiction.47 This shows that there cannot exist a pB ∈ (pl, ph).
The only possibility is that pB = ph. That is, the agent always offers bribes.

Finally, we show that whenever R is large, no bribes are offered in equilibrium. The argument
is similar to the previous case. We therefore only provide a brief sketch.

Assume that Condition (11) and Condition (5) hold. Offering bribes is strictly suboptimal on
[0, pl]. Here is the argument. Condition (11) implies that S (0) < R − K. Suppose by way of
contradiction that it is optimal to offer bribes at pB < pl. Then, on [0, pB), we have

S (p) =
B

r
+ λp

rR − B − rK

r (r + λ + γ)
,

which follows from Equations (34) and (33). Because of Condition (11), S (p) is increasing.
However, equating S (pB) = R − K yields pB > 1, a contradiction. This shows that we have
S (p) < R − K on [0, pl), so offering bribes is strictly suboptimal on that region.

The interval [0, pl) is then the same as in Lemma 21. On this region, the monitor’s and agent’s
values are the same as in the case without bribes.

By continuity of S (p), there exists some interval [pl, pB), so that offering bribes is strictly
suboptimal. Suppose that offering bribes is optimal at belief pB ∈ (pl, ph]. We will show that this
yields a contradiction.

The monitor’s and agent’s values continue to be the same as in the case without bribes on
[pl, pB). In particular, Lemmas 22 and 23 continue to hold on that region. On [pl, pB), S (p)
satisfies ODE (56), since offering bribes is not optimal on that region. Since S (p) is continuous,
we must have S (p) < R − K for p ∈ [pl, pB) and S (pB) = R − K. However, at pB , we have

λp (1 − p) S′
− (p) = B − c − rR + rK < 0,

because of Condition (11). This contradicts S (p) crossing R−K at pB from below. Thus, we cannot
have pB ∈ (pl, ph]. In particular, since pB > pl, we cannot have pB ≤ ph. Thus, in equilibrium,
bribes are never offered.

47Continuity of S′ (p) follows form the general solution in Equation (55).
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A.6 Robustness

A.6.1 Proof of Proposition 12

We split Proposition 12 into two parts and prove them separately.

Proposition 42. Suppose that R (p) is strictly increasing and continuously differentiable. Then,
for r sufficiently small and R (p) sufficiently large, any monotone-manipulation equilibrium is char-
acterized by two thresholds pl < ph, such that the monitor exerts effort if and only if p ∈ [pl, ph)
and the agent manipulates if and only if p < ph.

Proof. The proof is similar to the proof of Proposition 3. We therefore keep it brief.
The monitor’s HJB equation is

rV (p) = −ce (p) − (λp (1 − p) m (p) + γp (1 − e (p))) V ′ (p) (57)

+λpm (p) (R (p) − V (p)) .

We first construct the region [0, pl), on which m (p) = 1 and e (p) = 0. On this region, we have

pV ′ (p) =
λpR (p) − (r + λp) V (p)

λ (1 − p) + γ
. (58)

Recall that the monitor prefers to shirk whenever γpV ′ (p) < c. This inequality holds whenever

λp (R (p) − V (p)) − rV (p) <
λc

γ
(1 − p) + c.

Letting p approach zero, the inequality becomes

rV (0) > −c
λ + γ

γ
.

Since V (0) = 0, this condition holds. Thus, for p sufficiently close to zero, γpV ′ (p) < c. The region
[0, pl) exists.

On [0, pl), we have V ′ (p) > 0. Here is the argument. The monitor’s value is nonnegative for all
p, since for any strategy of the agent, the monitor can guarantee himself a nonnegative payoff by
choosing m (p) = 0. This implies that V ′ (0) > 0. We can differentiate the monitor’s HJB equation
to yield

(λp (1 − p) + γp) V ′′ (p) =
r

p

(
V (p) − pV ′ (p)

)
+ λpR′ (p) . (59)

Thus, V ′′ (p) > 0 whenever V ′ (p) = 0 so that V ′ (p) cannot cross zero form above. Thus, we have
V ′ (p) > 0 for all p ∈ [0, pl).

We now adapt the arguments of Lemma 21. Define pl with γplV
′
− (pl) = c. On this region, the

agent’s value function is given by Equation (34). Mirroring Condition (5), we have assumed that
R (p) is sufficiently large, so that ω (p) > 0 for all p < pl.

Suppose by way of contradiction that the region ends at a point p̂l < pl, at which γp̂lV
′
− (p̂l) < c.

Suppose first that to the right of p̂l, the equilibrium features m (p) = e (p) = 1. Then, using a
similar argument as in the proof of Lemma 21, we can show that V ′

+ (p̂l) < V̂ ′
− (pl), so that exerting
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effort to the right of p̂l is not optimal. Specifically, the monitor’s HJB equation to the left of p̂l is

rV (p̂l) = − (λp̂l (1 − p̂l) + γp̂l) V ′
− (p̂l) + λp̂l (R (p̂l) − V (p̂l))

and the HJB equation to the right of p̂l is

rV (p̂l) = −c − λp̂l (1 − p̂l) V ′
+ (p̂l) + λp̂l (R (p̂l) − V (p̂l)) .

Thus,
λp̂l (1 − p̂l)

(
V ′

+ (p̂l) − V ′
− (p̂l)

)
= −c + γp̂lV

′
− (p̂l) < 0.

Suppose instead that to the right of p̂l, the equilibrium features m (p) = e (p) = 0. The same
argument as in the proof of Lemma 21 then shows that W ′

+ (p̂l) < W ′
− (p̂l), so that ω+ (p̂l) >

ω− (p̂l) > 0. Not manipulating right of p̂l thus cannot be an equilibrium.
Finally, suppose that we have p̂l > pl, so that γp̂lV

′
− (p̂l) > c. Then, there is a region on which

the monitor does not exert effort, even though it would be optimal for him to do so. This establishes
that the region [0, pl] is characterized by the indifference condition γplV

′
− (pl) = c.

Now, consider the region [pl, ph) on which the agent manipulates and the monitor exerts effort.
The monitor’s value function satisfies smooth pasting at pl. Using a similar argument as above,
we can show that V ′ (p) cannot cross zero from above on [pl, ph). Since V ′

− (pl) = c
γpl

> 0, this,
together with smooth pasting, establishes that V ′ (p) > 0 on [pl, ph). The same arguments as in
the proof of Lemma 23 yield W ′ (p) < 0 and ω′ (p) < 0.

It only remains to show that γpV ′ (p) is increasing, which guarantees that the monitor is willing
to exert effort on [pl, ph). Suppose that V ′ (p) + pV ′′ (p) = 0 for some p > pl. Differentiating the
monitor’s HJB equation at this belief yields

0 =
1
p

(
rV (p) + c + p (λ − r − λp) V ′ (p)

)
+ λpR′ (p) .

For any p < 1, there exists a sufficiently small r at which this equation cannot hold. This is because
V ′ (p) > 0 and λ − r − λp > 0 for p < λ−r

λ . Thus, γpV ′ (p) > c for all p ∈ [pl, ph).
Since the agent’s value function satisfies Equation (24) on [pl, ph) and Equation (18) on [ph, 1],

we can use the same arguments as in the proof of Lemmas 23 and 25 to construct the equilibrium to
the right of ph. In particular, we can again define ph as ω (ph) = 0. On [ph, 1], the monitor’s value
function has the closed-form solution in Equation (25), i.e. the same as in the case with constant
reward. The same argument as in the proof of Lemma 25 then establishes that γpV ′ (p) < c for
p > ph.

Proposition 43. Suppose that R̂ (p) and R (p) are strictly increasing and continuously differen-
tiable and that r and K are sufficiently small. Additionally, suppose that R̂′ (p) > R′ (p) for all p
and that R̂ (p) and R (p) satisfy single crossing, i.e. R̂ (p) < R (p) for p < p̂ and R̂ (p) > R (p) for
p > p̂. Let pl be the threshold at which the monitor starts exerting effort under R (p). Then, there
exists a p̃l < p̂, so that if pl > p̃l the worst equilibrium under R̂ (p) features less manipulation than
the worst equilibrium under R (p).

Proof. We denote with V̂ (p) the monitor’s value function given reward R̂ (p) and with V (p) the
value given R (p) . Let pl denote the threshold below which the monitor shirks under reward R (p),
i.e. the threshold defined via γpV ′ (p) = c, and let p̂l denote its analog under R̂ (p). We will show
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that V̂ ′ (p) > V ′ (p) for p ≥ p̃l for some p̃l < p̂, which implies the desired result, i.e., p̂l > pl

whenever pl is sufficiently close to p̂.
On the region [0, pl), the monitor’s value satisfies

V ′ (p) =
λpR (p) − (r + λp) V (p)

λp (1 − p) + γp
, (60)

which follows form the HJB Equation (57). The analog holds for V̂ (p).
We now study solutions to the differential Equation (60) with the boundary conditions V (0) = 0

and V̂ (0) = 0, respectively, on the domain [0, 1].48

Using Equation (60) yields

(λp (1 − p) + γp)
(
V̂ ′ (p) − V ′ (p)

)
= (r + λp)

(
V (p) − V̂ (p)

)
+ λp

(
R̂ (p) − R (p)

)
. (61)

This equation implies the following. First, we have V̂ ′ (0) < V ′ (0), because V (0) = V̂ (0) = 0 and
R̂ (0) < R (0).

Second, let

p̃ = inf
{

p > 0 : V̂ ′ (p) = V ′ (p)
}

.

This point exists. If it does not exist, then V̂ ′ (p) < V ′ (p) for all p > 0 and therefore V̂ (p) < V (p)
for all p > 0. But then for p > p̂, Equation (61) cannot hold, which is a contradiction.

We have V (p̃) > V̂ (p̃) by construction of p̃. Moreover, Equation (61) implies that R̂ (p̃) < R (p̃).
Thus, we have p̃ < p̂.

Third, let

π̃ = inf
{

p > 0 : V̂ (p) = V (p)
}

.

If π̃ does not exist, then V̂ (p) < V (p) for all p > 0. In this case, Equation (61) implies that
V̂ ′ (p) > V ′ (p) for all p ≥ p̂, which is the property we are trying to prove. Suppose that π̃ exists.
Then, V̂ (p) must cross V (p) from below at π̃. This implies that V̂ ′ (π̃) ≥ V ′ (π̃) . Given Equation
(61), this inequality holds if and only if R̂ (π̃) ≥ R (π̃). Thus, we must have π̃ ≥ p̂. This implies
that V̂ (p) < V (p) for all p < p̂.

Fourth, V̂ (p) can cross V (p) at most once. If there are multiple crossing points, there must
exist a point to the right of π̃ at which V̂ (p) crosses V (p) from above. Since π̃ > p̂, that point
must lie to the right of p̂, and Equation (61) implies that V̂ ′ (p) > V ′ (p), a contradiction.

We now use the properties of π̃ we have just derived to show that V̂ ′ (p) > V ′ (p) for all p ≥ p̂.49

Using Equation (59), we can derive

(λp (1 − p) + γp)
(
V̂ ′′ (p) − V ′′ (p)

)
=

r

p

(
V̂ (p) − V (p) − p

(
V̂ ′ (p) − V ′ (p)

))

+λp
(
R̂′ (p) − R′ (p)

)
.

48To save notation, we still use V (p) and V̂ (p) to denote these solutions.
49As we have argued above, when π̃ does not exist, then V̂ ′ (p) > V ′ (p) for p ≥ p̂.
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We know that V̂ ′ (π̃) > V ′ (π̃). Define with

π′ = inf
{

p > π̃ : V̂ ′ (p) = V ′ (p)
}

.

If no such point exists, then V̂ ′ (p) > V ′ (p) for all p ≥ π̃. Suppose by way of constradiction that
π′ exists. Since V̂ (p) > V (p) for p > π̃, the above equation implies that V̂ ′′ (π′) > V ′′ (π′), which
is a contradiction, since V̂ ′ (p) must cross V ′ (p) from above at π′. Thus, no such π′ exists and
V̂ ′ (p) > V ′ (p) for p ≥ π̃.

For p ∈ [p̂, π̃), Equation (61) implies that V̂ ′ (p) > V ′ (p), because V (p) > V̂ (p) and R̂ (p) ≥
R (p). Thus, V̂ ′ (p) > V ′ (p) for all p ≥ p̂. Since both V̂ ′ (p) and V ′ (p) are continuous, there exists
a p̃l < p̂, such that Ṽ ′ (p) > V ′ (p) for all p > p̃l.

Now, suppose that pl > p̃l, as in the statement of the Proposition. Then, we have p̂l < pl. This
result is immediate from our previous arguments, because they imply that V̂ ′ (pl) > V ′ (pl).

To conclude our proof, we only have to show that with the lower pl, ph decreases. The effect
on the agent’s incentives is similar to the case with deadlines, i.e. in Proposition 7. In fact, since
the agent’s incentives are unchanged except for the decrease in pl, the argument in the proof of
Lemma 32 goes through without modification. This establishes that ph decreases.

A.6.2 Proof of Proposition 13

The proof is similar to Proposition 42. We only consider the monitor’s incentives. Similar arguments
as in the proof of Proposition 3 guarantee that the agent manipulates for p < ph and does not
manipulate for p ≥ ph.

We start with characterizing the region [0, pl). On [0, pl) the monitor’s HJB equation is

rV (p) = w (p) − (λp (1 − p) + γp) V ′ (p)

+λp (R (p) − V (p)) ,

which implies

pV ′ (p) =
w (p) + λpR (p) − (r + λp) V (p)

λ (1 − p) + γ
.

Thus, γpV ′ (p) < c whenever

w (p) + λpR (p) − (r + λp) V (p) <
c

γ
λ (1 − p) + c.

This inequality holds at p = 0 whenever

w (0) <
c

γ
λ + c,

i.e., w (0) is sufficiently small. This is true, since we assume that limp↓0 w (p) /p is bounded, which
implies that w (0) = 0. This implies that the region [0, pl) exists.

We next show that if
w′ (p)
w (p)

>
1
p
,

65



we have V ′ (p) > 0 on [0, pl).
We can differentiate the monitor’s HJB equation to get

λp (1 − p) V ′′ (p) = w′ (p) + λpR′ (p) +
1
p

(rV (p) − w (p)) − rV ′ (p) . (62)

Given the condition, whenever V ′ (p) = 0, we have V ′′ (p) > 0, so V ′ (p) cannot cross zero from
above. Since V (0) = 0 and V (p) > 0 for p > 0, we then have V ′ (0) > 0, which establishes that
V ′ (p) > 0 on [0, pl).

We next show that V ′′ (p) > 0 on [0, pl), under the conditions that limp↓0
w(p)

p is bounded and
that r is sufficiently small. This follows from Equation (62) above. As r → 0, the monitor’s HJB
equation approaches

0 = w (p) − (λp (1 − p) + γp) V ′ (p) + λp (R (p) − V (p)) .

This equation has a closed form solution

V (p) = C0 (γ + λ (1 − p)) + γ − λp − λ

∫ 1

p

λsR (s) + w (s)

s (γ + λ (1 − s))2
ds.

Differentiating this equation implies that V ′ (p) is bounded on [0, pl) if limp↓0
w(p)

p is bounded. Thus,
under the stated conditions, as r → 0, the term rV ′ (p) disappears in Equation (62). Thus, we have
V ′′ (p) > 0 on [0, pl). Since V ′ (p) > 0 and V ′′ (p) > 0, γpV ′ (p) is strictly increasing.

As before, we define pl via γplV
′ (pl) = c. This point exists whenever c is sufficiently small.

The argument is analog to Condition (5) and Lemma 21. For c sufficiently small, we also have
ω (p) > 0 for p ≤ pl, so that the agent finds it optimal to manipulate on [0, pl).

On [pl, ph), the monitor’s HJB equation is given by

rV (p) = w (p) − c − λp (1 − p) V ′ (p)

+λp (R (p) − V (p)) .

Differentiating the HJB equation yields

λp (1 − p) V ′′ (p) = w′ (p) + λpR′ (p) +
λ

p
(rV (p) − w (p) + c) − rV ′ (p) .

The same arguments as above establish that V ′ (p) > 0 and V ′′ (p) > 0, so that γpV ′ (p) is increas-
ing.

On [ph, 1), we have
rV (p) = w (p) − γpV ′ (p)

and we need that γpV ′ (p) < c, so that shirking is optimal. At r = 0, we have γpV ′ (p) = w (p) .
Thus, γpV ′ (p) < c if and only if w (p) < c. For r sufficiently small, w (p) < c also implies that
γpV ′ (p) < c.

We now have constructed an equilibrium as in Proposition 3. The uniqueness arguments are
similar and we skip them.

We close by constructing an equilibrium where m (p) = 0 and e (p) = 1 on (ph, 1), under the
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condition
w′ (p) >

rc

γp
.

The monitor’s HJB equation for p > ph is now

rV (p) = w (p) ,

so that V ′ (p) = w(p)
r and

γpV ′ (p) =
γp

r
w′ (p) .

This expression exceeds c whenever
w′ (p) >

rc

γp
,

which we have assumed. Thus, the monitor indeed prefers to exert effort. It only remains to check
that the agent prefers to not manipulate. The agent’s value for p > ph is given by V (p) = 0, since
he does not manipulate and since the belief never changes. Thus, we have

ω (p) = B − λpK.

The agent prefers to not manipulate for p > ph whenever ph > pm. As we have shown in the proof
of Proposition 3, we have p̄h > pm, so equilibria with ph > pm exist.

A.6.3 Proof of Proposition 14

The arguments are similar to the ones in the proof of Proposition 3. Therefore, we only provide a
brief sketch.

Shirking is optimal whenever

(φ (1 − p) + γp) V ′ (p) ≤ c. (63)

Consider the region [0, pl) and the closed-form solution in Equation (33). For φ sufficiently small,
the LHS of Equation (63) is positive below a threshold pl, which now satisfies

pl =
1

γ − φ

( c

λR
(r + λ + γ) − φ

)
.

We can confirm that under analog assumptions to Condition (5), the agent finds it optimal to
manipulate to the left of pl. On [pl, ph), the monitor’s value function satisfies the following HJB
equation:

rV (p) = −c − (λp (1 − p) − φ (1 − p)) V ′ (p) + λp (R − V (p)) .

The solution to this equation is uniformly continuous with respect to φ, for p bounded away from
zero. Thus, for φ sufficiently small, we have V ′ (p) > 0 for p > pl. Lemmas 22, 23 and 24 then go
through. For p > ph, Lemma 25 applies without modification.
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A.6.4 Proof of Proposition 15

We only sketch the result. The monitor’s and agent’s HJB equations are

rV (p) = −ce (p) − ((λ − λB) p (1 − p) m (p) + γp (1 − e (p))) V ′ (p)

+λpm (p) (R − V (p)) − λB (1 − p) m (p) V (p)

and

rW (p) = Bm (p) − ((λ − λB) p (1 − p) m (p) + γp (1 − e (p))) W ′ (p)

−λpm (p) (K + W (p)) − λBpm (p) W (p) .

For λB sufficiently small, beliefs are monotonically decreasing on path. There exists a region [0, pl)
on which the monitor shirks and the agent manipulates. On that region, the monitor’s and agent’s
value functions are uniformly continuous in λB . Thus, for λB sufficiently small, we have ω (p) > 0 for
p < pl and γpV ′ (p) ≤ c for p ≤ pl. Likewise, picking λB small ensures that the region [pl, ph) exists
(Lemma 22), that the agent’s incentive to manipulate is decreasing and the monitor’s incentive to
exerts effort is increasing (Lemma 23), and that no effort and no manipulation is optimal for p > ph

(Lemma 25). We can characterize the bounds p
h

and ph as in Lemma 24.

A.6.5 Proof of Proposition 16

The moniotor’s and agent’s HJB equations are

rV (p) = −ce (p) − (λp (1 − p) m (p) + γp (1 − e (p))) V ′ (p)

+λpm (p) (V (1) + R − W (p))

and

rW (p) = Bm (p) − (λp (1 − p) m (p) + γp (1 − e (p))) W ′ (p)

+λpm (p) (W (1) − K − W (p)) .

Intuitively, we have the same HJB equation as in our main model, except that the reward is
R̃ = R + V (1) and the punishment is K̃ = K − W (1). For fixed values (R̃, K̃), the construction
of equilibria is the same as before. In particular, if {pl, ph} constitute an equilibrium when the
relationship ends after detection (i.e. Condition (5) holds), then they also constitute an equilibrium
when the relationship continues. This is because we have R̃ > R and K̃ < K which imply that if
Condition (5) holds for R and K, it also holds for R̃ and K̃. Specifically, R̃ > R implies that pl is
lower than in the main model. Together with K̃ < K, this implies that ω− (pl) > 0.

Thus, to construct equilibria it only remains to pin down the pair (V (1) , W (1)) endogenously.
On [ph, 1), we have m (p) = 0 so the value functions are the same as in the main model and are given
by the closed form solutions in Equations (27) and (28). The closed forms imply that W (1) = CA

0

and V (1) = CM
0 , where the constants are determined by value matching at ph. We now construct

an equilibrium with ph = p̄h. In this equilibrium, we have W (p̄h) = 0, so that CA
0 = 0. The agent’s

value function is then the same as in the main model, i.e. R̃ = R.50 For the monitor, we can redo

50Except that pl will be different, which will affect the agent’s incentives.
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the construction of the value function on [0, pl) and [pl, p̄h) with R̃ instead of R. All of our previous
results go through. It then only remains to pin down CM

0 .
Let CM

00 be the constant in the main model. Let us pick an arbitrary CM
0 ≥ CM

00 . Then for
any such CM

0 , our equilibrium construction goes through and there exists an equilibrium which is
characterized by

{
pl

(
CM

0

)
, p̄h

(
CM

0

)}
. We can show that pl is decreasing in CM

0 and that p̄h is
decreasing as well.51 The constant CM

0 must satisfy the value matching condition at p̄h, i.e.,

V
(
p̄h

(
CM

0

)
, CM

0

)
= CM

0 p̄h

(
CM

0

)− r

γ .

Here, we have written the monitor’s value as V
(
p, CM

0

)
for p ≤ p̄h to highlight the dependence of

this function on CM
0 . The monitor’s value and agent’s values are continuous in CM

0 for all p. This
implies that p̄h

(
CM

0

)
is continuous as well.

Existence of a CM
0 which satisfies the value matching condition follows from the continuous

mapping theorem. We only have to show that for CM
0 small,

V
(
p̄h

(
CM

0

)
, CM

0

)
> CM

0 p̄h

(
CM

0

)− r

γ

and that for CM
0 large, the opposite inequality holds. Suppose that CM

0 = CM
00 . Then, p̄h is the

same as in the main model. We have

V
(
p̄h

(
CM

00

)
, CM

00

)
> V

(
p̄h

(
CM

00

))
= CM

00 p̄
r

γ

h ,

where V (p) denotes the value in the main model, i.e. when the relationship ends after detection.
Conversely, if CM

0 becomes large, then pl approaches zero and p̄h approaches pmon. The closed
form solution in Equation (27) implies that as CM

0 becomes large, the monitor’s value approaches

λp
c + r

(
R + CM

0

)

r (r + λ)
−

c

r
.

Thus, a sufficient condition for

V
(
p̄h

(
CM

0

)
, CM

0

)
< CM

0 p̄h

(
CM

0

)− r

γ

to hold is

λpmon
c + r

(
R + CM

0

)

r (r + λ)
−

c

r
< CM

0 p
− r

γ
mon.

As CM
0 becomes large, this inequality holds if

λ

r + λ
< p

− r+γ

γ
mon ,

which is true because pmon < 1. Thus, the continuous mapping theorem implies that there exists
a CM

0 such that value matching holds. We have now constructed an equilibrium.

51The argument for p̄h being decreasing is the same as in Lemma 30. That pl is decreasing follows from
the closed form solution (33). Increasing CM

0 increases R̃, which then increases V ′ (p) for all p ∈ [0, pl].
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A.6.6 Proofs for Section 7.5

Proof of Lemma 17. Suppose first that the monitor never exerts effort. The agent’s value function
solves the HJB equation

rW (p) = λ (1 − p) B − κ + λp (1 − p) W ′ (p)

+λ (1 − p) (W (0) − W (p))

and admits the closed form solution

W (p) =
(B + W (0)) λ (1 − p)

r + λ
−

κ (r + λp)
r (r + λ)

+ CA
0

p
r+λ

λ

(1 − p)
r

λ

. (64)

The agent manipulates for p ≤ pnm, and the boundary condition is W (pnm) = 0.
We now show that pnm > pm. The optimal threshold satisfies smooth pasting, i.e. W ′ (pnm) = 0.

Otherwise, if W ′ (pnm) < 0, the agent can increase his value by continuing at pnm, until he reaches
a threshold p′nm > pnm at which W ′ (pnm) = 0. We have

ω (pnm) = Bλ (1 − pnm) − κ + λpnm (1 − pnm) W ′ (pnm) + λ (1 − pnm) (W (0) − W (pnm)) = 0.

Since W ′ (pnm) = W (pnm) = 0 and W (0) > 0, the first two terms must be negative. Thus,
pnm > pm.

The closed form in Equation (64) and the fact that W (pm) > 0 then imply that CA
0 > 0, so

that W ′′ (p) > 0 for p ≤ pnm and W ′ (p) < 0 for p < pnm.
Consider the case when the monitor always exerts effort. We denote the agent’s value with

W̃ (p). The agent’s value satisfies the HJB equation

rW̃ (p) = −κ + (λp (1 − p) + γ (1 − p)) W̃ ′ (p)

+λ (1 − p)
(
B + W (0) − W̃ (p)

)

and admits the closed form solution

W̃ (p) =
(B + W (0)) λ (1 − p)

r + λ + γ
−

κ (r + λp + γ)
r (r + λ + γ)

+ CA
0

(γ + λp)
r+λ+γ

λ+γ

(1 − p)
r

λ+γ

. (65)

The argument for establishing that pmon > pm is exactly the same as in the previous case.
To show that pmon < pnm, we subtract the two HJB equations to get

(r + λ (1 − p))
(
W (p) − W̃ (p)

)
= λp (1 − p)

(
W ′ (p) − W̃ ′ (p)

)
− γ (1 − p) W̃ ′ (p) .

Suppose that pmon ≥ pnm. Then, at pnm, we have W̃ (pnm) ≥ W (pnm) = 0 and W̃ ′ (pnm) ≤
W ′ (pnm) = 0. However, since W̃ ′ (p) < 0 for p < pmon (because W̃ (p) is convex and its derivative
is zero at pmon), this contradicts the equation above. Thus, we have pmon < pnm.

Proof of Proposition 18. Let ph denote the threshold below which the agent manipulates. In any
equilibrium, we must have pl ≤ ph. Once the agent stops manipulating, there is no value for the
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monitor to exert effort, so that e (p) = 0 for all p ≥ ph. Thus, pl ≤ ph.
We first consider the case pl < ph. Consider the region [pl, ph). On this region, the agent’s

value does not depend on actions to the left of pl. Thus, it is the same as in Lemma 17 and ph is
determined the same way. The monitor’s value is given by

V (p) =
R (rp + λ)
r (r + λ)

+ CM
0

p
r+λ

λ

(1 − p)
r

λ

,

with boundary condition V (ph) = R
r . We denote the monitor’s incentive to exert effort with

ωM (p) = −c + γ (1 − p) V ′ (p) .

By construction, we have ωM (pl) = 0. We now show that ωM (p) < 0 on (pl, ph).
The boundary condition implies that CM

0 > 0, so that V (p) is convex on [pl, ph). Specifically,
we have

CM
0 = R

1 − ph

r + λ

(1 − ph)
r

λ

p
r+λ

λ

h

(66)

Differentiating the closed-form expression for the monitor’s value yields

ωM (p) = −c + γ (1 − p)
R

r + λ

+γ (1 − p) CM
0

(
r + λ

λ

(
p

1 − p

) r

λ

+
r

λ

(
p

1 − p

) r+λ

λ

)

.

For r sufficiently small, we get ω′
M (p) < 0. As r → 0, CM

0 is bounded, which can be seen from
Equation (66), and the last term in brackets vanishes.

We have shown that ωM (p) < 0 on [pl, ph). Now, we can simply define pl as the point at which
ωM (p) hits zero. It remains to verify that the agent indeed prefers to manipulate for p < pl. On
this region, we have

ω (p) = rW (p) − γ (1 − p) W ′ (p) , (67)

while for p ∈ [pl, ph), we have ω (p) = rW (p) . This implies that

ω− (pl) − ω+ (pl) = −γ (1 − pl) W ′
− (pl) . (68)

The two closed-form expressions in Equations (64) and (65), together with the value matching
condition at pl, imply that the constant CA

0 in Equation (65) is positive, so that W (p) is strictly
convex on [0, pl). A similar argument as in the proof of Lemma 22 then establishes that

(λp (1 − p) + γ (1 − p))
(
W ′

− (pl) − W ′
+ (pl)

)
= −γ (1 − p) W ′

+ (pl) > 0,

because W ′
+ (pl) < 0. Plugging in Equation (68) yields ω− (pl) > ω+ (pl) . Thus, it is optimal for

the agent to manipulate on some interval to the left of pl.
Since ω+ (pl) > 0, Equation (68) implies that W ′

− (pl) < 0. Since W (p) is convex on [0, pl), we
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have W ′ (p) < 0 for any p ∈ [0, pl). Differentiating Equation (67), yields

ω′ (p) = (r + γ) W ′ (p) − γ (1 − p) W ′′ (p) < 0,

since W ′ (p) < 0 and W ′′ (p) > 0. Thus, ω (p) > 0 for p < pl and the agent indeed prefers to
manipulate on [0, pl).

We now consider the case pl = ph. In that case, the monitor exerts effort for all p ≤ ph, i.e.
ωM (p) > 0 for all p ≤ ph. The agent’s incentives are the same as in the benchmark case in Lemma
17 and ph is the same as well.

Finally, we show that a term limit reduces manipulation. Specifically, suppose that, conditional
on bad news occurring, the relationship is dissolved after a fixed time T . This lowers W (0) and
therefore ph.
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