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Abstract

I study how limited information and ex-post evaluation by third parties with

the benefit of hindsight affect how regulators approve innovations. In the face of

ambiguity over innovation characteristics, such a regulator limits or delays product

approval, even when she is not waiting for new information to arrive. When evidence

is costly for firms to generate but can be selectively reported, the regulator delegates

information acquisition to the firm with the objective of minimizing max-regret.

This model can explain observed patterns of correlation between firm costs and

benefits of approval, why regulators drag their feet on approval decisions even in

the face of strong favorable evidence, and support for regulatory sandboxes even

when they do not hasten learning.
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1 Introduction

Regulatory agencies charged with ensuring safety or efficacy of innovations are often ill-

informed and ill-equipped for the task. They know little about product characteristics,

and much of their information must come from parties with incentives to disclose only

favorable evidence. Despite the difficulties of consumer protection, various media, con-

sumer watchdogs and other political actors tend to measure the actions of regulators

against the best approval decision in hindsight. Congress may investigate the FDA for

failing to recall unsafe drugs in a timely manner, while patient advocacy groups hold it

accountable for delaying the passage of life-saving drugs. The National Highway Traffic

Safety Administration (NHTSA) may be criticized for delaying approval of automated

vehicles and perhaps criticized again if the technology turns out to cause an uptick in

accidents.

Facing ambiguity, cherry-picked evidence, and ex-post scrutiny, how does a regulator

design an approval process for innovations? How does design change with the metric of

ex-post evaluations, i.e., consumer welfare or consumer welfare and regulatory costs?

In my model, a regulator commits to an approval rule for new innovations, which maps

the evidence a firm shows to its level of approval. A firm generates costly evidence by

running trials. Each trial results in a success or failure with frequencies depending on its

privately known innovation quality. The firm reports a favorable subset of this evidence

to get some level of market approval. The quality of an innovation is eventually revealed

regardless of the regulator’s decision. The regulator is then evaluated on the basis of her

approval decision and ex-post optimal action (immediate approval or rejection) given the

status quo outcome and innovation quality. Her anticipation of potential criticism, given

the yardstick by which her performance is measured, guides her choices.

The regulator only knows the space of possible firm types but does not have a prior on

this space. She instead takes actions to maximize her worst-case performance on ex-post

evaluations. The firm knows its chances and costs of producing successful trials. It has

some prior over its true quality (and therefore its potential benefits), but the experiments

it runs for the regulator give no new information to the firm.1

Consider first the case where the firm can costlessly fabricate evidence of any sort,

so no information can be credibly communicated. Suppose that evaluations punish the

regulator by the size of her error: how much worse (better) is the approved (rejected)

innovation than the status quo. If the regulator has to make immediate or full approve

or reject decisions, she is limited in her ability to cope with ambiguity. If she passes a

drug, her worst outcome is that it turns out to be very harmful or ineffective, and vice

versa if she rejects. Depending on which error is punished less, she either approves all

1The FDA, for example, may ask a drug company to show efficacy of a heart disease treatment in

terms of its performance on a surrogate measure like cholesterol-reduction. The drug company may

already know how effectively it performs on this short term metric, and running trials may not reveal

how effectively the drug treats heart disease.
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innovations or waits for the eventual revelation of quality before passing any innovation.

These regulatory modes are sometimes referred to as ‘permissionless innovation’ or ‘strict

precautionary principle’, respectively.

But regulators can often partially approve innovations (e.g., through production quo-

tas, allowing sales in only some markets or delaying approval), and ex-post criticisms may

scale with the extent of approval. Consider for example an FDA regulator who is judged,

at the time the public learns the drug’s quality, by how long she had delayed approval of

a good drug or left a bad drug on the market. 2 Such a regulator can mitigate the size

of her worst case error by awarding partial approval. A recent political theory literature

emphasizes reputation to multiple audiences as the main driver of behavior among gov-

ernment bureaucracies (Carpenter, 2004). These incentives coupled with ambiguity over

innovation quality can explain why regulators limit or delay approval even when they are

not collecting or waiting for information.

When evidence is costly to generate and successful trials cannot be fabricated, the

regulator can reduce her worst case error further by committing to rules which vary

the approval awarded by the evidence reported. Even when firms disclose one-sided

evidence, costs of generating positive evidence are lower and benefits of approval higher

for firms with better quality innovations. Muddling this relationship is the fact that

some firms may simply enjoy lower costs of running trials or better marketing of their

products. Under any approval rule, firms with the same ratio of costs to benefits (i.e.,

costs of running successful trials to benefits of approval) will choose to provide the same

levels of evidence to the regulator. Therefore, screening in this multidimensional type

space reduces down to these one-dimensional ratios, which I call effective types. This

is consistent with evidence from FDA trials that approval delays (occurring after firms

complete and submit all trial results) are positively correlated to the ratio of costs to

revenues but insignificantly correlated to costs alone (Olson, 1997).

When the regulator is evaluated on the basis of consumer protection, the worst case

error of passing firms with low benefit to cost ratios can be smaller than the worst case

error of passing firms with intermediate benefit to cost ratios. For example, a firm may

have low benefit of approval for one of two reasons: its innovation is of obviously low

quality and would have low demand, or its innovation is good but has a niche market.

Approval is good in the latter case, and the harm of approving is limited in the former

case. On the other hand, a firm with an intermediate benefit of adoption may have an

innovation that is worse than the status quo, but not noticeably so. If such a product

enjoys high demand, it can be more destructive to consumer welfare. In such cases, a

regulator commits to giving less approval to low effective types than she would have given

had effective types been observable.

In some instances, the costs of approval incurred by regulated firms are also revealed,

2Or alternatively, consider a regulator who is evaluated by what portion of markets she exposes to a

bad AV technology or withholds a good one.
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and ex-post evaluations may punish regulators for such costs. For example, patient groups

worried about the spill-over into drug prices often criticize the drug approval process

in cases where clinical trial costs are revealed to be large. When evaluations punish

regulatory costs and errors in consumer protection, a regulator commits to awarding

more approval to low effective types than she would have given had effective types been

observable. On one hand, she risks making larger type I errors on low effective types.

But the benefit is that this reduces the burden of evidence for effective types to whom

the regulator wishes to give more approval, i.e., for whom the potential error of rejection

is worse than the error of acceptance.

In fact, the regulator optimally awards some approval to a firm that shows no evi-

dence, which may explain widespread bureaucratic support for approval rules involving

regulatory sandboxes (see, for example, Buckley et al. (2019)). Next, the option of full

approval may not exist in a regulator’s optimal evidence-approval menu, even if firms

are willing to show evidence that guarantees their superiority to the status quo. This

happens when the regulator’s loss from allowing high effective types to incur more costs

and separate themselves further outweighs the benefit of making smaller type II errors.

It behooves the regulator to partially approve and wait for the eventual revelation of the

firm’s true quality before revising her earlier approval decision.

The next subsection reviews existing literature. Section 2 solves a simplified version

of the model to show how ex-post evaluations can lead to partial approval or delays.

Section 3 describes the full model, which can explain observed variation in approval

times. Section 4 solves for optimal rules of a regulator who cares only about consumer

protection. Section 5 characterizes regulator optimal approval rule when the regulator is

also penalized for costs imposed on innovating firms. Section 6 considers how the forms

of optimal approval rules compare when alternative assumptions about the regulator’s

information or objectives are made. It also discuss why the agency and communication

problems modeled here are difficult to overcome in practice. Section 7 concludes.

1.1 Related Literature

Like McClellan (2017), Escobar et al. (2019) and Tetenov (2016), the focus of this paper

is to characterize optimal approval rules for a regulator who has commitment power,

facing an innovating firm that can undertake costly experimentation. McClellan (2017)

considers a setting where firms decide when to stop public experimentation, and regulators

lower standards of approval over time to encourage continued experimentation.3 Escobar

et al. (2019) study a model where firms with private information experiment privately

and communicate with a regulator via cheap talk. To incentivize truthful reporting, the

regulator commits to rules that delay approval even after it becomes common knowledge

3Henry and Ottaviani (2019) compare various arrangements of commitment power between a regulator

and firm in a similar model. Unlike McClellan (2017), they study a setting with common knowledge and

restrict to stationary approval rules in the case with regulator commitment.
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that a project is good. Regulators in my setting delay or partially approve both to provide

incentives and to mitigate worst-case criticism. Closest to my setting is the static model

in Tetenov (2016), who also studies how regulators facing ambiguity design approval rules

when firms can provide verifiable and costly evidence. In my model, multidimensional

types and a concern for minimizing regret preclude the possibility of perfectly screening

out undesirable innovations, as in Tetenov (2016).4

The current paper departs from earlier work on optimal approval rules in two sub-

stantive ways. First, I assume that firms can manipulate by hiding negative trials or

manipulating experiments to increase chances of successful trials. These modes of ma-

nipulation are closest to the models of Janssen (2019) and Di Tillio et al. (2017), both

of which study the regulator’s approval decision without commitment. Second, I assume

that regulators care about ex-post evaluations, which may take into account correctness

of decisions and costs imposed on firms. Unlike the aforementioned papers, both the

regulator and the firm may incur costs when the latter generates evidence.5

The regulator’s concern for criticism in my model is motivated by a growing liter-

ature on bureaucratic reputation, notably Olson (1995), Carpenter (2014), Moynihan

(2012), and Gilad et al. (2015). These papers show evidence that reputation before mul-

tiple audiences drives regulators to behave in a way so as to avoid negative feedback.6

Additionally, Carpenter (2004) argues that some of these audiences have increased the

visibility (and therefore punishment) of type II errors. This contrasts with the older

view, famously argued by Milton Friedman, that regulators worry only about mistaken

approvals (Friedman, 1973) and motivates the objective function highlighted here.7

The solution to regulator’s problem, under ambiguity, is consistent with some observed

evidence on approval processes. Carpenter (2002) shows that significant delays in FDA

review occur after clinical trials are completed, though nearly all drugs that reached

this stage eventually get approved. Olson (1997) shows that the substantial variation in

FDA delay times is correlated to a ratio of firm research costs to post-approval revenue,

controlling for many other firm and drug characteristics, but uncorrelated to costs alone.

Finally, Buckley et al. (2019) documents how FinTech regulators in many countries give

away limited approval without much prior evidence in regulatory sandboxes. Sometimes

regulators push for these measures even when there is little learning in practice. The

model studied here accounts for all of these patterns. The same model with a Bayesian

regulator or a regulator concerned directly with product quality would not.

4Information generated by the firm is muddled as in Frankel and Kartik (2019). Unlike their setting,

the regulator has commitment power, so the focus here is on screening firms rather than signaling.
5Compare this to Guo (2016), for example, in which only the principal delegates experimentation but

also solely incurs experimentation costs.
6This contrasts with theories that focus on regulatory capture, budget maximization, or treat regu-

lators as social planners. See Noll (1982).
7This objective is reminiscent to that of Banerjee et al. (2017), which studies how researchers choose

samples to convince audience members with worst-case beliefs. But the current paper is about regulators

who, unlike researchers, delegate experimentation and contend with manipulation.
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Like Carroll (2015) and Frankel (2014), I use ambiguity to derive features of real world

contracts. Within the robust mechanism design literature, the current paper is especially

related to those with min-max regret criteria like Bergemann and Schlag (2008) and

Guo and Shmaya (2019), who respectively study robust monopoly pricing and monopoly

regulation. In comparison, I study consumer protection and design of approval processes.

2 Preliminary Model Without Verifiable Evidence

Before moving to the full model, it is instructive to consider a simpler model in which no

information is communicated between the regulator and the firm. This helps highlight

the role of ex-post evaluations on the approval decisions of the regulator.

The firm has an innovation of type θ ∈ Θ and seeks approval from a regulator to

market its product. We assume that any mappings that we later define on Θ have

finite maxima and minima and expectation, whenever we invoke them. The firm receives

a payoff of b(θ) > 0 if its innovation is approved by the regulator, and it receives 0

otherwise.

The regulator chooses an ‘extent of approval’, y ∈ [0, 1]. One interpretation of y is that

it is the proportion of markets in which the firm is allowed to sell its product. y = 1 means

the firm has full approval, and y = 0 means the firm is banned from selling its innovation

anywhere. y ∈ (0, 1) means the firm restricting output or selling in some markets but

not others, e.g., the Drug Enforcement Agency regulator sets opioid production quotas

or the NHTSA allows automated vehicles to be driven in some districts but not others.

In other contexts, the extent of approval can be thought of as the level of delay a

firm has to face prior to having a product approved. y = 1 means a drug is approved

immediately, y = 0 means a drug is never approved, and y ∈ (0, 1) means a drug is

approved after a period of delay. For example, there can be a flow of patients suffering

from a particular disease who need immediate treatment. A drug that is immediately

approved is accessible to patients immediately. If the drug is approved only with delay,

it is effectively denied to the patients who would have used it in the intervening time.

Delay also diminishes the profits of the pharmaceutical company which paid research and

development costs upfront but can only begin to enjoy sales at a future date.

In this section, we assume that the firm’s scope for manipulating the evidence is very

large. In fact, the only way the firm can communicate with the regulator is through

cheap talk. By our assumptions, the firm always prefers approval to no approval, so

only a babbling equilibrium exists: no information is conveyed between the firm and the

regulator.

The regulator has a payoff that depends on the type of the firm’s product and scales

with the extent of approval. Let ṽ(θ) ∈ R be some aggregate measure of the innovation’s

quality (which could account for its safety, efficacy, etc.) and let ṽ0 be the quality of the

existing outside option. Before turning to the case where the regulator is worried about
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ex-post evaluations, first consider the case of a regulator who is directly concerned with

ensuring a larger extent of the market utilizes a higher quality product. In particular, a

regulator who chooses an approval level y for an innovation of type θ receives a payoff of

yṽ(θ) + (1− y)ṽ0.

The regulator wants to approve the innovation only when ṽ(θ) ≥ ṽ0. But while all

other aspects of the game are common knowledge (i.e., Θ, ṽ0, and the mappings b and

ṽ), θ is privately known to the firm and not to the regulator.

2.1 Average or Worst-Case Product Quality

Suppose first that the regulator has some prior F over Θ. Then the regulator will award

full approval if EF [ṽ(θ)] > ṽ0, reject the innovation if EF [ṽ(θ)] < ṽ0, and is indifferent to

any level of approval when EF [ṽ(θ)] = ṽ0.

Taking one step closer to the setting considered in this paper, suppose instead that

the regulator faces ambiguity over Θ and evaluates any decision by its worst case out-

come.8 Such a regulator will approve only if there is no possibility that the quality of the

innovation is worse than the status quo, i.e., infθ∈Θ ṽ(θ) ≥ ṽ0. As in the Bayesian case,

the optimal policy can be implemented as an immediate rejection or approval.

2.2 Ex-post Evaluations

Now consider instead the case where the regulator is concerned, not with product quality

directly, but by how she is evaluated by third parties in hindsight. Carpenter (2004)

emphasizes the primacy of such concerns in driving incentives:

Bureaucratic reputations often have multiple audiences. . . Reputation is simply a

currency of bureaucratic politics. Agencies with strong reputations can more easily

attract desired personnel; fend off budget cuts; and lobby for the programs, funds,

and other things they desire. There are other things that bureaucracies protect and

“maximize,” but for many agencies such as the FDA, reputation protection serves

as the simplest and most powerful dynamic governing their behavior.

Suppose that the state of the firm’s innovation is exogenously revealed to the regulator

and third-parties at some point after it comes to the regulator for review. In particular,

suppose that the regulator’s chosen extent of approval does not affect the timing of

8There are many examples where regulators either claimed or were directed to behave according to

a maximin principle. For example, a 1981 White House directive explicitly directed all federal agencies

to declare and evaluate decisions by “reasonable projections of the worst possible consequences of a

proposed action” in issues such as environmental regulation or storage plans for nuclear waste, where

“catastrophic uncertainty” was involved (Farber, 2010). Cass Sunstein documents the ubiquity of this

sort of decision regulatory making under ambiguity in his book Worst-Case Scenarios (Sunstein, 2009).
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the revelation of the state. This assumption embodies two common features of many

regulatory approval processes.

The first feature is weak post-market oversight: consequences of approval are difficult

to actively monitor (see Section 6). As in the recent public awakening to a decades long

opioid crisis, the quality of a product is publicly understood and the relevant agency

undertakes costly hearings and clean-up measures long after the initial approval decision.

The second feature is that exogenous revelation of information is possible even when

a regulator rejects an innovation. For example, a drug or a technology that is blocked

in one jurisdiction may still be approved in other countries and its qualities may become

publicly revealed. Additionally, Carpenter (2004) argues that in the FDA context, the

“rise in patient advocacy has led to a balancing of the visibility of Type II versus Type

I errors”, suggesting other parties could eventually produce unbiased information even

when the firm does not.

When the state of the world, θ is revealed, the regulator is evaluated on how large an

error she had made in her approval decision. Her error scales with her extent of approval.

The regulator faces faces ambiguity over Θ and attempts to minimize worst case payoff

over this space, i.e., solves

inf
y∈[0,1]

sup
θ∈Θ

f(ṽ0 − ṽ(θ))y1ṽ0≥ṽ(θ) + g(ṽ(θ)− ṽ0)(1− y)1ṽ0<ṽ(θ),

where f, g : R+ → R+ are strictly increasing with f(0) = g(0) = 0. These loss func-

tions capture how severely errors of each kind are punished and may even encode the

probabilities with which errors are observed, depending on their size.

The objective of minimizing worst case type I and type II errors is equivalent to

minimizing max regret, after a change of variables. To see this, define v : Θ → R such

that v(θ) ≡ (ṽ0 + C) − f(ṽ0 − ṽ(θ)) if ṽ(θ) ≤ ṽ0 and v(θ) ≡ g(ṽ(θ) − ṽ0) + (ṽ0 + C) if

ṽ(θ) > ṽ0. Without loss of generality, suppose C > 0 was chosen such that v ≥ 0; denote

ṽ0 +C by v0. A regulator who minimizes worst case losses from type I and type II errors

chooses y ∈ [0, 1] to solve

inf
y∈[0,1]

sup
θ∈Θ

f(ṽ0 − ṽ(θ))y1ṽ0≥ṽ(θ) + g(ṽ(θ)− ṽ0)(1− y)1ṽ0<ṽ(θ)

= inf
y∈[0,1]

sup
θ∈Θ
|v0 − v(θ)|y1v0≥v(θ) + |v0 − v(θ)|(1− y)1v0<v(θ)

= inf
y∈[0,1]

sup
θ∈Θ

max{v0, v(θ)} − (1− y)v0 − yv(θ)

≡ inf
y∈[0,1]

R(y)

For any extent of approval and type θ, the regulator’s utility is the difference between

the ‘payoff’ to the best action in hindsight and the ‘payoff’ to the action taken by the

regulator, where this ‘payoff’ is measured by v. Since the regulator evaluates decisions
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by worst case, she imagines an adversary who chooses θ to maximize her regret, and we

denote this max regret by R(y).9

To give the regulator’s optimal decision rule, we define l ≡ inf v(Θ) and m ≡ sup v(Θ).

Lemma 1. Let y∗ be a solution to miny∈[0,1] R(y), and suppose m > l.

1. If l > v0, y∗ = 1.

2. If m < v0, y∗ = 0.

3. Otherwise, y∗ = m−v0
m−l .

Proof. If l > v0, R(y) = supθ∈Θ(1− y)(v(θ)− v0), which is minimized at y∗ = 1. Case 2

is handled symmetrically.

For case 3, note that

R(y) = sup
θ∈Θ

max{y(v0 − v(θ)), (1− y)(v(θ)− v0)}

= max{ inf
θ∈Θ

y(v0 − v(θ)), sup
θ∈Θ

(1− y)(v(θ)− v0)}

= max{y(v0 − l), (1− y)(m− v0)},

which is minimized at y∗, where y∗(v0 − l) = (1− y∗)(m− v0).

Lemma 1 shows that a regulator who faces ambiguity and is worried about ex-post

evaluation may find it favorable to partially approve innovations or only award approval

after some delay.

2.3 Approval Delays in Practice

The preceding discussion suggests that responding to incentives arising from ex-post

evaluations could be a reason for why regulators restrict approval or drag their feet

with approval decisions. In many situations, natural competing explanations are that the

regulator waits for information to arrive before taking an irreversible action or approves a

product in a limited set of markets for the sake of experimentation. Henry Miller, a former

FDA scientist, describes an instance where apparently concern for ex-post evaluations

motivated one regulator to try and delay approval of a new type of insulin:

My team and I were ready to recommend approval after four months’ review. But

when I took the packet to my supervisor, he said, “Four months? No way! If

anything goes wrong with this product down the road, people will say we rushed

it, and we’ll be toast.” That’s the bureaucratic mind-set. . . A large part of regula-

tors’ self-interest lies in staying out of trouble. One way to do that, my supervisor

understood, is not to approve in record time products that might experience unan-

ticipated problems. (Miller, 2018)

9Appendix shows that a similar representation holds when v(θ) is stochastic.
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In fact, motives for additional information acquisition alone seem insufficient in ex-

plaining systematic delays in the FDA review process, which occur after all evidence

is submitted. Pharmaceutical companies that have made it to this stage almost always

receive a decision of approval from the FDA. Notably, there is substantial variation in

the length of the FDA review process ranging from a week to eighty two months after a

company has submitted all evidence. Indeed, Carpenter (2002) writes:

FDA review occurs only after pharmaceutical companies have completed three

stages of clinical trials on the drug. The requirement that firms provide all infor-

mation to the FDA drastically reduces the agency’s information costs and reduces

the variance of product uncertainty in drug review. Agency design, administrative

procedures, or informational barriers will, by themselves, have difficulty explaining

the variance in FDA review times.

3 The Model

With only cheap talk, there is no scope for the regulator to discriminate between firms.

In reality, regulators typically require firms to generate evidence by running costly trials

to signal their type, even if they can manipulate results by selectively disclosing evi-

dence. Hereafter, we focus on such a model to explore how an ambiguity averse regulator

incorporates the information disclosed by firms.

Olson (1997) shows that (after controlling for a host of other firm and drug char-

acteristics) FDA review times tend to be negatively correlated with a ratio of research

expenditure to aggregate drug sales, while the relationship between delays and aggregate

research costs is statistically insignificant. The model here accounts for both of these

patterns.10

3.1 Primitives, Firm Information and Firm Objectives

Players There is a regulator (she) and a firm (it) with an innovation.

The firm has a type θ ∈ Θ. The firm’s type determines its marginal cost k(θ) of

running trials, the probability q(θ) that each trial succeeds, and its private benefit b(θ)

of approval. Moreover, the regulator has a payoff v(θ) to approving the firm. If the

regulator does not approve the firm, her payoff is v0 and the firm’s payoff is 0. Let Z be

the image of Θ under (k, q, b, v). I assume Z is a compact and connected set, bounded

away from 0.

The firm’s type is its private information. Θ, Z, k, q, b, v and v0 are common

knowledge. I defer describing the regulator’s information about θ to Subsection 3.3.

10While Olson (1997) does not have data on the actual costs of clinical trials, she notes that “research-

intensive firms may submit more comprehensive clinical evidence in support of [a New Drug Application]”.
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Figure 1: The game proceeds in four periods, with the regulator committing to a delay

policy first.

Actions and Timing The game consists of four periods, as pictured in Figure 1. I

describe these periods out of order, as it is convenient to first introduce the firm’s actions.

In the second period, the firm runs trials in sequence and decides when to stop. Each

trial has a binary outcome, resulting in a success with probability q(θ) or a failure with

probability 1− q(θ).
After r rounds of trials, the firm privately observes the number of failures ρr0 and

successes ρr1 that it has accumulated so far and chooses to run ωr ∈ [0, 1] more trials.11

Let sr ≡ (ρr0, ρ
r
1) denote the firms cumulative results after r rounds of trials. If the firm

chooses ωr = 0, the game moves to the third period. If ωr > 0, then the trial contributes

to the cumulative outcomes, resulting in sr+1 = (ρ0 + ωr, ρ1) with probability 1 − q(θ)
and sr+1 = (ρ0, ρ1 + ωr) with probability q(θ).

Suppose the firm decides to stop running additional trials after r∗ rounds, i.e., ωr∗ ∈
[0, 1]. In the third period, the firm reports any tuple (ρ̂0, ρ̂1) ∈ R2

+ such that ρ̂1 ≤ ρr
∗

1 :

the firm can hide and fabricate failures but cannot fabricate successes. This describes the

FDA drug approval process prior to the recent era where preregistration and transparency

policies are seriously enforced; it can also capture the current state of AV regulation, for

which formal safeguards have not yet been erected.12

In the fourth period, the firm’s type θ is revealed and payoffs are realized. The

revelation of the state happens independent of the level of manipulated evidence that

the firm provides. One interpretation is that regardless of whether the drug was passed

domestically, it would have been approved in a foreign country with potentially lower

standards and the quality of the drug would be revealed. At this point, interest groups

and media sources can evaluate the performance of the regulator. They can criticize the

regulator for letting a bad drug linger on the market for too long or affect too many

people, or criticize delayed approval of what turned out to be a good drug.

In the first period, the regulator commits to an allocation rule x : R2
+ → [0, 1], which is

a mapping from the firm’s reported successes and failures to an extent of market approval.

In different cases, the regulator may modulate the extent of market approval by delaying

11Allowing for infinitely divisible trials makes results easier to state, and having discrete trials would

not substantively affect results.
12Even if policies preclude burying negative evidence outright, a firm may still be able to inflate its

success rate by choosing samples selectively or ending trials early at first indications of success. Appendix

C shows how the model and results can be extended to treat such cases.
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approval, opening an innovation to only a portion of the market, restricting production

etc. I discuss these interpretations at the end of this section.

Firm’s Objective A firm of type θ that runs ρT0 + ρT1 trials and reports (ρ̂0, ρ̂1) receives

a payoff of

b(θ)x(ρ̂0, ρ̂1)− k(θ)(ρT0 + ρT1 ),

and I assume the firm is risk neutral. Since the firm is free to report any ρ̂0, it produces

evidence in stage one only to reach a target number of successes. Since evidence produc-

tion is costly, it will produce exactly as many successes as it plans to at the outset. Note

that the expected cost of producing one success is given by c(θ) ≡ k(θ)
q(θ)

.

Putting this together, I can express the firm’s maximization problem as follows. A

firm of type θ produces n successes to maximize its ex-ante expected payoff, i.e., to solve:

sup
n,ρ̂0∈R+

b(θ)x(ρ̂0, n)− c(θ)n.

Before turning to the regulator’s objectives, I show how the search for optimal approval

rules can be simplified in my setting.

3.2 Simplifying the Space of Approval Rules

An allocation rule x induces a mapping from the firm’s type to a corresponding optimal

choice of extent of market approval and number of successful trials. The number of

successful trials that a firm needs to show to achieve some level of market approval is

a standard of proof. I let x̃(θ) and ñ(θ) denote (a selection of) a type θ firm’s optimal

choices given the regulator’s allocation rule.

Let u(θ, θ̂) ≡ b(θ)x̃(θ̂) − c(θ)ñ(θ̂). The regulator’s allocation rule induces a menu

consisting of tuples of market approval and standards of proof (x̃, ñ) : Θ → [0, 1] × R+

that satisfies incentive compatibility and individual rationality: for all θ, θ̂ ∈ Θ,

u(θ, θ) ≥ u(θ, θ̂) (IC)

u(θ, θ) ≥ 0 (IR)

An allocation rule x̃ is implementable if there exists some ñ such that (x̃, ñ) is incentive

compatible.

Let τ(θ) ≡ b(θ)
c(θ)

, which is well defined since Z is bounded away from 0. Note that b(·)
and c(·) are not co-monotone in general, the example in Section 4.1 illustrates.

Lemma 2. If x̃ is implementable, and τ(θ) > τ(θ̂), then x̃(θ) ≥ x̃(θ̂).

This and other omitted proofs appear in Appendix E. The proof shows that all firm

types θ with the same τ(θ) have identical preferences over the menu of allocation proba-

bilities and standards of proof offered.
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Let T = {τ |τ = b(θ)
c(θ)

for θ ∈ Θ} be the space of the firm’s effective types, which

determine its behavior. Note that since T is a continuous transformation of Z, which is

compact and connected, T = [τ , τ ], for some τ , τ ∈ R+.

Assumption 1. All types of the firm break indifferences among optimal menu choices in

the same way.

This assumption limits the space of implementable allocation rules, but is not needed

in any characterizations of optimal rules. With this, we can consider allocation rules and

standards of proof as functions of effective types: (y, n) : T → [0, 1] × R+. To avoid

confusion with the term for mappings from Θ, I call such mappings approval rules. This

leads to the familiar characterization of implementability.

Lemma 3. An approval rule y : T → [0, 1] is implementable if and only if it is nonde-

creasing.

If an approval rule is implementable, then there is a standard of proof that implements

it so that the menu is IR. Let I denote the set of implementable approval rules y : T →
[0, 1].

3.3 Regulator’s Information and Objectives

The regulator is evaluated on how large an error she makes in her approval decisions,

where errors scale with her extent of approval. The regulator faces ambiguity over Θ and

attempts to minimize worst case payoff over this space. As seen in Section 2, we can

represent such a regulator as minimizing worst case regret. How the regulator designs

approval rules depends on the criteria on which she is evaluated. In general, the regulator

is evaluated both on the basis of errors in decision making and the costs of regulation

imposed on firms. She compares the realized outcome to the outcome had she been

informed of the firm’s type a priori and not asked the firm to generate costly evidence.

Formally, the regulator’s worst case evaluation for an approval rule y ∈ I is:

R(y) ≡ sup
θ∈Θ

max{v(θ), v0} − [y(τ(θ))v(θ) + (1− y(τ(θ)))v0] + h(θ)n(τ(θ)) (1)

where h : Θ → R+. h captures now negatively the regulator is evaluated ex-post for

making a type θ firm expend effort n(τ(θ)) to prove its efficacy. Depending on how the

regulator is being evaluated, v(·) may encode a concern with only the quality of the firm’s

innovation relative to the status quo; or it might also account for how many consumers

were actually negatively affected by the regulator’s decision relative to the best action in

hindsight.

The regulator chooses a y ∈ I and corresponding standard of proof n which imple-

ments y with n(τ) = 0 to solve:

inf
y∈I

R(y) (2)
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Section 4 analyzes the special case where h = 0: the regulator is judged on consumer

protection. Section 5 considers the case where h > 0: the regulator is judged on consumer

protection and firm approval costs.

3.4 Discussion of Assumptions

Firm’s Private Information The assumption that the firm knows its benefit of approval

exactly can be relaxed. b can instead be interpreted as the firm’s expected benefit, and

Appendix A shows that a risk-neutral regulator still behaves as if she minimizes worst-

case expected regret when outcomes are stochastic.

The assumption that the firm knows q is more appropriate if this is easily learned in

the course of developing the product or conducting tests. For example, an AV manufac-

turer knows how frequently its product requires human intervention and would therefore

learn little from logging miles without intervention.13 A company producing drugs for

treating heart-disease may only be required by the FDA to show short term test results

exhibiting how well the drug reduces bad cholesterol. The company may be much more

knowledgeable about how it fares in terms of this surrogate endpoint than it would be

about the genuine efficacy of its drug.

Regulator’s Actions The firm is assumed to prefer more approval to less, regardless of

its type. The interpretation is that by changing y, the regulator changes the number of

potential customers that the firm has access to in a way such that those with and without

access are representative of the full population.14 For example, the regulator may allow

immediate passage of self driving cars in some states.

The regulator may also achieve a similar effect by delaying approval. If a new batch of

potential customers arrive each period (e.g., patients falling ill to a certain condition) and

each has the same distribution of preferences, delay simply reduces the firm’s market size

without changing the firm’s pricing and quantity decisions. Alternatively, the population

of potential consumers may stay the same, and delay causes the firm’s payoffs to be

discounted at some rate (alternatively, some change in the environment arrives at some

rate and renders the proposed class of innovations obsolete).15

13This is policy, for example, in California: “California requires AV testing companies operating in

California to document and report miles driven as well as the number of times when a human driver,

when present, had to retake control of the vehicle” (Brown et al., 2018).
14A regulator may have power to limit supply more directly by placing quantity caps on the innovating

firm, rather than restricting market exposure. In contrast to market exposure, the firm need not strictly

prefer higher quantity caps to lower ones once the constraint exceeds the monopoly optimal quantity

chosen by the firm. This case again can be dealt with a slight adjustment to the existing model.
15The model currently assumes that the regulator’s benefit v and the firm’s payoff b scale the same

way with y, but easily extends to the case where they scale differently.
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4 Consumer Protection

This section considers a case of the model where the regulator is evaluated solely based

on consumer interests. Section 4.1 gives a simple example to illustrate the model and

how optimal rules are constructed. Section 4.2 solves the problem for a regulator evalu-

ated only on the basis of consumer protection. Section 4.3 describes how certain natu-

rally arising implementability considerations in the consumer protection problem shape

regulator-optimal approval rules.

4.1 Partial Disclosure Example

An agency regulating vehicle safety, like the NHTSA, concludes that their value for

approving a particular automated vehicle model lies in [v, v]. The firm’s type θ is a

vector of characteristics of the car and the firm (physical design features of the car, cost

of manufacturing and employing workers, marketing strategy etc.), which completely

determines the regulator’s value for approval, v(θ). Suppose that v(θ) = αq(θ) for some

α > 0, where q(θ) ∈ [q, q] is the expected fraction of trips where the AV’s algorithm

produces no errors. Assume that the benefit of approval to the firm is independent of its

type and normalized to 1.16

The car manufacturer collects data to prove the safety of its cars in a variety of natural

situations at a cost k(θ) ∈ [k, k] per trip. Let c(θ) ≡ k(θ)
q(θ)

, the expected cost of running

enough trips to produce one incident-free trip.

The firm cannot fabricate evidence of successful trips its drivers have taken, but it can

1) selectively disclose data so as not to reveal those involving errors or requiring human

intervention and 2) intentionally create trips with errors at no cost.

The regulator evaluates her choice of allocation rule x by the size of the type I or

type II mistakes she makes, in the worst case. That is, given a benchmark of v0 and ρ̂0

reported failed trials and ρ̂1 reported successful trials by a firm with a product of quality

v, the regulator has an ex-post payoff given by

RC(v0, v|x, ρ̂0, ρ̂1) = max{(1− x(ρ̂0, ρ̂1))(v − v0), x(ρ̂0, ρ̂1)(v0 − v)}.

For a given allocation rule x, let (y, n) denote the induced approval rule and standard

of proof. A firm of type θ optimally chooses to produce n( 1
c(θ)

) successes for approval

level y( 1
c(θ)

), giving it a payoff of y( 1
c(θ)

)− n( 1
c(θ)

) · c(θ).
The regulator effectively chooses an approval rule y to solve

min
y∈I

max
q,k,v

max{(1− y(
q

k
))(v − v0), y(

q

k
)(v0 − v)}.

Suppose the interpretation of y is the fraction of districts within a country for which

AVs are approved, with y = 0 meaning that the innovation is rejected (at least until the

16One may think, for example, that while the variation in safety specifications and accident rates

matter to the regulator, the differences in safety are imperceptible to consumers within the range [v, v].
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Figure 2: The type space is the column between k and k. The upper left figure shows iso

effective type curves, which are the intersection of the type space and the rays emanating

from the origin. The figures on the top right and bottom left depict participating (green)

and nonparticipating (blue) types under different cutoff approval rules. The fully optimal

screening contract is depicted on the bottom right. It consists of a region of partial

allocation where effective types smoothly increase from full rejection to full approval.

revelation of the actual quality of the AV model) and y = 1 meaning that the innovation

is approved nationwide. Consider first the regulator’s choice of approval rule within the

space of cutoff rules: approve the product nationally if at least n∗ ∈ R+ successes are

shown and rejects otherwise. For any standard of proof n∗, the firm will engage in the task

of evidence provision only if expected payoff of doing so is positive, i.e., if 1−n∗ ·c(θ) ≥ 0.

This means the firm provides the evidence necessary for immediate approval whenever

q(θ) ≥ n∗ · k(θ). Figure 2 shows the projection of the firm’s type space Θ onto (regulator

outcome)×(marginal cost) space. A ray of slope α · n∗ divides types who would obtain

approval and those for whom providing the requisite evidence is prohibitively costly.

The largest mistakes from any such cutoff rule come from one of two types of the

firm. The first type has very high costs running trips and opts out of the regulator’s test.

To the regulator’s dismay, this happens even though the firm has a product safe enough

to push the regulator’s value of approval over v0. The other type of firm produces an

automated vehicle much worse than the status quo but enjoys a low cost of generating

trips. It games the regulator’s approval standard by suppressing failed test runs from

surfacing. The optimal choice of n∗ is therefore one which equalizes the largest size of

either type of error.

But cutoff rules are typically sub-optimal. Optimal rules in general take the form of

a menu where sufficiently low types never get approved, and sufficiently high types are
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Figure 3: On the left, the white area between the green and blue regions shows types

for whom the regulator cannot avoid making approval errors. The firm types highlighted

in red are those who have lowest marginal cost of running trials among those types she

prefers to fail. The types highlighted in green are those who have the highest costs among

types she prefers to pass. On the right, the regulator’s outcome v of passing these red

and green firm types are represented in the x axis, and the regret of making the wrong

approval decision with these types is plotted in orange. The solid blue line plots the

regret of an arbitrary approval rule y for these same types.

approved immediately, and intermediate types receive partial approval.

In this example, a particular regret-minimizing approval rule y∗ can be constructed

by applying Lemma 1 to each iso-effective type subset of Θ. Higher effective types get

more approval in exchange for showing more evidence. Such an approval rule is pictured

on the bottom right of Figure 2. Even if the regulator could not commit to an approval

rule, if it could observe the firm’s effective type (while the firm’s type remains private

information), it would still choose to give y∗(τ) approval to a firm of type τ .

This optimal approval rule is not unique, and there is a solution other than y∗ that

is of interest. Since an approval rule is evaluated at its worst case effective types, the

level of approval for other effective types may be altered without raising the max regret

of the original approval rule. Indeed, in this example, Figure 3 and Figure 4 illustrate

how to graphically construct a solution where 1) all sufficiently low effective types achieve

the max regret, and 2) all higher types have full approval. Under this “constant regret,

full approval” approval rule, the worst case error that a regulator can commit on any

effective type of the firm is always a type I error. While this example shows that there

can a multiplicity of solutions to the consumer protection problem, the solution in Figure

4 will emerge in the limit as the regulator’s concern about producer costs approaches 0,

as Section 5 will make clear.
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Figure 4: The regret on a “red firm” is increased by giving it more approval. But this

reduces the regret for the corresponding “green firm” with the same effective type. Taking

the regret profile of an arbitrary approval rule, we can increase the regret on red types so

as not to increase the max regret of the contract (left). This regret profile corresponds

to an approval rule which has a constant regret on red types and almost everywhere

lower regret for the green firms. From this regret profile, we now have leeway to move

to another approval rule that has a lower constant regret level of regret on red firms but

higher regret on green firms (middle). If the highest regret on green firms is the same as

the highest regret on red firms, the corresponding approval rule must be optimal (right).

We could have started this procedure by moving to a constant regret level on the green

firms, and that would have yielded a different optimal approval rule.

4.2 Regret Minimizing Approval Rules

A solution to the regulator’s problem (2) is called a regret minimizing approval rule. Let

RC(·) denote the objective function mapping approval rules to worst case regret in the

case of pure consumer protection, i.e., h = 0. I henceforth assume that Θ is rich enough

that the regulator cannot avoid every error:

Assumption 2. There exist θ, θ′ ∈ Θ such that τ(θ) = τ(θ′) and v(θ) > v0 > v(θ′).

There exist θ, θ′ ∈ Θ such that τ(θ) > τ(θ′).

In particular, Assumption 2 implies that all cutoff rules are suboptimal.

Let Θτ ⊂ Θ denote the set of firm types with effective type τ . Let v(Θτ ) ⊂ R+ denote

the image of Θτ under v. Finally, let l(τ) ≡ inf v(Θτ ) and m(τ) ≡ sup v(Θτ ). Define the

regret arising from an allocation rule conditional on a given effective type as follows:

RC
τ (y) ≡ sup

θ∈Θτ

max{v0, v(θ)} − (1− y(τ))v0 − y(τ)v(θ).

I restrict attention to those approval rules which are undominated : y is said to dom-

inate ŷ if the former gives the regulator a weakly better payoff in all states of the

world (i.e., for all realizations of the firm’s type, θ ∈ Θ, y(θ)v(θ) + (1 − y(θ))v0 ≥
ŷ(θ)v(θ) + (1 − ŷ(θ))v0) and a strictly better payoff in some state. ŷ is undominated if

no y dominates ŷ.
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An approval rule y is admissible if,

1. y(τ) = 1 if l(τ) ≥ v0 and m(τ) > v0

2. y(τ) = 0 if m(τ) ≤ v0 and l(τ) < v0

The first criterion, for example, says an effective type is passed when there is a possi-

bility of an upside but no possibility of a downside. The following lemma characterizes

undominated approval rules in this setting.

Lemma 4. An approval rule y : T → [0, 1] is undominated if and only if it is admissible.

Let the approval rule y∗ be defined such that y∗(τ) = arg minp∈[0,1]R
C
τ (p) for all τ ;

Lemma 1 gives the expression for y∗(τ).

Proposition 1. If y∗ is increasing, it minimizes regret among all undominated and

implementable approval rules.

The proof in Appendix E shows a stronger statement, characterizing all undominated,

regret-minimizing approval rules. Note that one sufficient condition for y∗ to be increasing

is that l(·) and m(·) are increasing.

Suppose a set of firms have types drawn from some full support distribution on Θ,

and that these firms participate in the regulator’s approval process. By Lemma 3 and

Proposition 1, approval levels depend only on and are increasing in effective type. On the

other hand, a firm A with lower costs or higher benefits of approval than firm B can have

more delay if it is of a lower effective type. This accords with the findings of Olson (1997)

that upon controlling for firm and drug characteristics, the correlation between FDA

approval delays and the ratio of research costs to ex-post revenue was significant, while

the correlation to costs alone was insignificant. This fact indeed suggests that regulators

see information beyond reported findings in firm costs and expected revenues, consistent

with a model of experimental manipulation.

4.3 Interpreting Intermediate Evidence

Monotonicity of l(·) and m(·) is violated in many consumer protection contexts.

Imperfect Markets or Information A firm may have a low benefit of approval, and

therefore a low effective type, for one of two reasons. Its product may be of obviously

low quality and fail to reach a wide population. Alternatively, the firm’s benefit may be

low simply because it makes a niche product, which is still effective and safe. Given the

market’s ability to partially self-regulate, raising standards of proof high enough to weed

out low quality products may not be worth the cost of precluding such niche products from

passing. The issue however may arise with products of seemingly intermediate quality. If

indeed they turn out to be worse than existing substitutes, they may nevertheless reach

a wide audience upon approval.
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The same issues can arise when consumers are perfectly informed if the regulator’s

interests and consumer interests are divergent (e.g., the former cares about quality, the

latter care about quality and price). See Appendix D for a numerical example.

Behavioral Responses It may be the case that AVs that approach the regulator’s

desired standard of safety, measured by rate of incident-free trips, may be more dangerous

than those with much higher incident rates. A driver may be much more vigilant in a

vehicle known to require frequent human intervention than in one that rarely fails. But

this compensating behavioral response may make the latter vehicle type more dangerous

in terms of fatal crashes. In the best case, the regulator may still think the lower incident

rate car is the safer one. But in the worst case, approval may lead to more accidents than

possible with a higher incident rate car.

These examples suggest scenarios where l is initially decreasing and subsequently

increasing, while m is nondecreasing. Denoting τ ′ as the effective type at which the slope

of l changes sign. Consider the approval rule,

y0 =

y∗(τ ′), if τ ∈ [τ , τ ′]

y∗(τ), if τ > τ ′

which pools effective types in [τ , τ ′]. This is a regret minimizing approval rule, and

RC
τ ′(y

∗(τ ′)) is the max regret. To see why, note that the interval [l(τ ′),m(τ ′)] contains

[l(τ),m(τ)] for all τ < τ ′. This means any action that the adversary can take to best

respond to the regulator’s choice of delay at τ < τ ′, it can also take at τ ′ and produce

weakly larger errors.

Approval rule y0 under-serves low effective types relative to the (unimplementable)

rule, y∗. A corollary in Appendix B implies that when R(y0) = Rτ ′(y0), all optimal rules

do the same. Upon reviewing the submitted evidence, a regulator awards firm effective

types in [τ , τ ′] less approval than she would like. Committing to doing so helps her avoid

making even costlier mistakes on the firms that show intermediate levels of approval.

5 Consumer Protection and Regulatory Costs

In addition to the ex-post correctness of their actions, regulators are also frequently

evaluated on the basis of the costs they create for regulated industries, once they are

publicly revealed. A common criticism of the FDA is that the costs they create for firms

to approve their products are in part reflected in drug prices paid by consumers.

Section 5.1 shows that unlike the case of pure consumer protection, regulators con-

cerned with costs of evidence provision commit to give more approval to firms showing

low levels of evidence than what they would like. They even give some level of approval

away without seeing any evidence. This can be interpreted as setting up product testing
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regulatory sandboxes, which is a common practice in fintech regulation. Section 5.2 char-

acterizes regulator optimal rules when additional assumptions are made about the type

space. Delegation sets might preclude the option of full approval, and optimal approval

rules may be unique unlike the case where evaluations only measure consumer protection.

Section 5.3 discusses the interpretation of these results.

5.1 Internalizing Evidence Production Costs

A regret minimizing regulator compares the realized costs of evidence provision and the

correctness of the approval decisions to the outcome realized she would have realized

had she known the firm’s type prior to engaging the latter party in the task of costly

information provision.

The regulator chooses an approval rule y ∈ I17 and corresponding standard of proof

n which implements y with n(τ) = 0 to minimize:

R(y) = sup
τ∈T

max
θ∈Θτ

max{v(θ), v0} − [y(τ(θ))v(θ) + (1− y(τ(θ)))v0] + h(θ)n(τ(θ))

≡ sup
τ∈T

max
θ∈Θτ

Rτ (y, θ)

≡ sup
τ∈T

Rτ (y),

where h : Θ→ R+ is a strictly positive valued function representing the costs of producing

successful evidence. h may differ from c: the regulator may be be evaluated, for example,

on the basis of the environmental and traffic costs of running extensive AV trials, and

not the firm’s incurred costs of evidence production directly.

Proposition 2. Suppose that l(τ) is nondecreasing. An optimal approval rule for a

regret minimizing regulator who internalizes the firm’s welfare 1) awards strictly positive

level of approval is given even when no evidence is shown, 2) attains max regret at the

lowest effective type.

Proof. Take any implementable y such that R(y) > Rτ (y). Note that y(τ) 6= 1. Other-

wise, implementability would require that y(τ) = 1 and n(τ(θ)) = 0 for all τ ; this coupled

with the fact that l(·) is nondecreasing would imply that R(y) = Rτ (y), a contradiction.

Choose ε > 0 small enough so that Rτ (y
′) < R(y), where

y′ ≡

y(τ) + ε, if y < y(τ) + ε

y, if y ≥ y(τ) + ε

17Note the earlier notion of admissibility is dropped. In fact, all admissible rules will typically be

suboptimal when the regulator internalizes the firm’s cost of evidence.
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and n′(τ) implements y′ with n′(τ) = 0. Consider τ such that y(τ) < y′(τ). Note that

n′(τ) = 0, so

Rτ (y
′) = max

θ∈Θτ
max{(1− y′(τ))(v(θ)− v0), y′(τ)(v0 − v(θ))}

= max{(1− y′(τ))(max
θ∈Θτ

v(θ)− v0), y′(τ)(v0 − l(τ))}.

If Rτ (y
′) = y′(τ)(v0 − l(τ)), then Rτ (y

′) ≤ Rτ (y
′) < R(y), since l(·) is nondecreasing.

And if Rτ (y
′) = (1− y′(τ))(maxθ∈Θτ v(θ)− v0), then Rτ (y

′) < (1− y(τ))(maxθ∈Θτ v(θ)−
v0) ≤ Rτ (y) ≤ R(y).

Now suppose τ is such that that y(τ) = y′(τ). Then n′(τ) = τy′(τ) − τ(y(τ) + ε) −∫ τ
τ
y′(t)dt < τy(τ)− τy(τ)−

∫ τ
τ
y(t)dt = n(τ). Since h > 0, Rτ (y, θ) > Rτ (y

′, θ) for every

θ, so Rτ (y
′) < Rτ (y) ≤ R(y).

Therefore R(y′) < R(y), so the chosen y is not optimal. This shows that if y is

optimal, y(τ) > 0 and Rτ (y) = R(y).

Firms may decide to show no evidence. But rather than reject such firms outright, the

regulator gives them limited approval, like in a regulatory sandbox. In particular, this is

also true when m(τ) < v0. Partially approving even those firms who are guaranteed to

generate outcomes worse than the status quo reduces the burden of evidence that higher

effective types would need to show in order to secure more approval.

5.2 Optimal Approval Rules: Interval Type Spaces

The solution to the regulator’s problem can be fully characterized with the help of some

assumptions on the range of costs and benefits to the regulator.

Assumption 3 (Interval Type Space). For every τ , there exist θ′, θ′′ ∈ Θτ such that

c(θ′) = c and c(θ′′) = c. The regulator’s benefit of approval is within an interval of the

firm’s benefit of approval: v(θ) ∈ [b(θ) − d(τ(θ)), b(θ) + D(τ(θ))] for all θ ∈ Θτ , for

some differentiable functions d,D ≥ 0, where d is nonincreasing and D in nondecreasing.

Moreover, v(θ′) = b(θ′)− d(τ(θ′)) and v(θ′′) = b(θ′′) +D(τ(θ′′)).

These assumptions, for instance, nest the case where all types of the firm are equally

likely to pass tests but have different benefits in obtaining approval. In the case of AVs,

when the probability of human intervention is very low for any type of firm, the biggest

source of variation in the difficulty of logging successful trips arises from differences in

operational costs. Moreover, if accident statistics are public and newsworthy (as they

tend to be for new technologies), differences in firm benefits to approval are likely to drive

differences in willingness to show evidence. This case is also covered by Assumption 3.

The regulator minimizes the following objective with respect to y ∈ I:

sup
τ

max
θ∈Θτ

max{v0, v(θ)} − [y(τ)v(θ) + (1− y(τ))v0)] + c(θ)n(τ)
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Consider the special class of approval rules which have constant regret on one region,

followed by constant allocation on the next.

Definition 1. y is a constant regret, constant allocation (CRCA) approval rule

if there is some τ ′ ∈ [τ , τ ] that partitions the effective type space into two regions: Rτ (y) =

R(y) on [τ , τ ′], and y(τ) = y(τ ′) on (τ ′, τ ]. Let YCARA denote the set of approval rules

that are constant regret, constant allocation for some level of regret, R.

Proposition 3. When the regulator is judged on consumer protection and firm approval

costs, a CRCA optimal approval rule exists. If D(τ) < v0, this rule is the unique solution

to the regulator’s problem.

The main step is to show that for any implementable allocation rule, y, there exists

an approval rule y′ ∈ YCARA such that, R(y′) ≤ R(y). For ease of exposition, I will say

hasten and delay approval to refer to increasing and decreasing the extent of approval.

The monotonicity conditions on d and D ensure that the if the regulator could directly

observe effective types, she approve higher types sooner. To minimize firm costs, she

would want to hasten approval for low effective types so long as this does not increase

max regret of the overall contract. This reduces the burden of evidence for higher types

who would only need to show a little more evidence to separate themselves from lower

types and be approved even sooner.

Given any approval rule y with R(y) = R, the regulator can hasten the process for low

effective types up to the point where the regret incurred for each effective type is either

R or the extent of approval is y(τ). This construction begins with the smallest effective

type and builds upwards, since hastening approval for lower effective types reduces the

regret for any level of approval for higher effective types.

Letting ỹ be the solution to the integral equation Rτ (ỹ) = R, the construction defined

earlier is the CRCA approval rule y′ = min{ỹ, y(τ)}, which is non-decreasing under the

assumed conditions.

Consider the regret on the highest effective type. Since Rτ (y) ≤ R, it certainly the

case that Rτ (y
′) ≤ R. This is because y(τ) = y′(τ), but y′ ≥ y on [τ , τ). So under

approval rule y′, the highest effective type gets the same level of approval as in y, but

potentially has to show less evidence for it.

Next note that Rτ (y
′) ≤ R on the portion of the contract where y′ is constant, as

pictured in Figure 5. In this region, regret initially dips in the region where the worst

case error is of type I.18 The size of type I errors is decreasing since l(τ) is increasing.

Thereafter, the worst case error becomes type II, and this increases as m(τ) increases.

This means regret drops below R on this region but never rises above Rτ (y
′), which is

also less than R. The search for optimal rules can be therefore be restricted to the space

of CRCA rules.

18A bulk of the formal proof in Appendix E shows that the worst case error on this region cannot

initially be of type II.
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Figure 5: On the left is an example optimal approval rule y∗, which has constant regret

on the orange portion and is constant on the green portion, as shown on the right. The

optimal rule has the feature that max regret is achieved at τ .

In the space of CRCA approval rules, it is easy to check for further improvements.

If Rτ (y
′) < R, then on the region where y′ was increasing, let y′′ be the solution

to an integral equation Rτ (y
′′) = R − ε, where ε > 0 is small, and let y′′ be constant

afterwards. Rτ (y
′′) may now be higher than Rτ (y

′) while still being below R − ε. This

means R(y′′) < R(y′).

Similarly, we can shift the point where the CRCA switches from being constant regret

to constant allocation to see if this reduces the regret on τ . If it does, this would suggest

again moving to a CRCA contract where the constant regret portion is of lower regret.

In an optimal approval rule, there is typically no slack between the regret on the highest

effective type and the regret over the entire approval rule , as pictured in Figure 5.

A CRCA approval rule pools high effective types. In particular, note that the con-

dition pinning down τ ′, the effective type after which all types are pooled at the same

delay level, does not depend on l(τ), which may be greater than v0. In this case, the best

decision if the regulator could observe effective types would be to approve type τ firms

immediately. But the optimal menu may exclude the option of immediate approval for

any level of evidence: there is inefficient distortion at the top. In such cases, a regulator

who can partially approve innovation for some markets waits for the state of the world

to be exogenously revealed before upgrading the firm to full approval or banning the

product.

5.3 Permissionless Innovation and Strict Precaution

It is often argued that when firms can provide selective evidence, regulators can do little

to determine whether or not an innovation should be approved:

The task of establishing facts about new technology may be made difficult by the

lack of an adequate sample or other reliable data on the effects of new technol-
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ogy[. . . ]other facts may be—to quote Donald Rumsfeld— “unknown unknowns.”

We simply lack the experience or imagination to predict what negative possibilities

may be associated with a piece of new technology. In this respect, the ”relevant

facts” that form the basis of regulation are never going to be obvious or settled.

The regulation of any disruptive new technology is always going to be reactive and

based on an uncertain and politicized factual basis. (Fenwick et al., 2016, p.574)

These arguments are frequently followed up with prescriptions (depending on the

interests of the party) that regulators follow one of two modes. Innovating technology

firms (e.g., Uber) often ask regulators to follow a model of “permissionless innovation”,

meaning that they should only regulate innovations ex-post if they turn out to be harmful

(Thierer, 2016). Other parties (e.g., consumer groups) may instead want regulators to ban

products until evidence guarantees their safety or efficacy. This mode of regulation follows

a strict interpretation of what has come to be known as the “precautionary principle”.

European regulators sometimes appeal to this principle to justify decisions, for example,

like banning sale of food products and crop with GMOs in many member EU countries

until incontrovertible exogenous evidence arises proving their safety.

When ambiguity averse regulators are evaluated on the correctness of their decisions

ex-post and the firm’s incurred regulatory costs, they may voluntarily choose approval

rules that share features of both permissionless innovation and strict precaution. Regula-

tors may award partial approval in the form of regulatory sandboxes even without having

seen prior evidence; and they may wait for the arrival of incontrovertible evidence before

providing full approval, even if firms have the ability to credibly signal their superiority

to the status quo at the time of evidence provision.

6 Discussion

Section 6.1 clarifies the role of partial approval in the regret minimizing approval rules

by considering regulators who either do not face ambiguity or are unconcerned with type

II errors. Section 6.2 discusses why the setting of screening through costly manipulable

evidence might be a reasonable model of many regulatory agencies.

6.1 Role of Partial Approval

Partial approval, in the form of delays or regulatory sandboxes, can occur for many

reasons outside of the scope of this model. For example, partial approval may hasten the

arrival of information about innovation quality.

However, as discussed in Section 2.3, regulator incentives can account for partial

approval or delay when alternative explanations are inadequate, or may reinforce delays

stemming from information considerations in other cases.
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Section 2 showed that when the only form of communication between firms and the

regulator was cheap talk, both ambiguity over product characteristics and concern for

type II errors (which Carpenter (2004) argues have become more visible and a bigger

concern for regulators than in the past19) were necessary features for explaining partial

approval. Here, I show that the same is true in the model with costly evidence generation

and selective disclosure.

To this end, define a cutoff policy as an approval rule y for which there exists a τ ∗

such that y(τ) = 1 for τ ∈ (τ ∗, τ) and y(τ) = 0 for τ ∈ (τ , τ ∗).

6.1.1 Innovation Approval Without Ambiguity

Consider the case where the regulator a prior F over Θ and is again risk neutral.

Suppose that the marginal distribution of F over T admits a continuous density

function, fτ . Let E[g(θ)|τ ] denote
∫
θ∈Θτ

g(θ)dF (θ|τ) for any function g : Θ → R. The

objective of the Bayesian regulator is given by:

VB(y, n) =

∫ τ

τ

(E[v(θ)|τ ]y(τ) + v0(1− y(τ))− E[h(θ)|τ ]n(τ))dFτ (τ),

and she chooses y ∈ Y and an ny that implements it with ny(τ) = 0 to solve:

max
y∈I

VB(y, ny).

The next proposition shows that a Bayesian regulator never strictly benefits from

using partial approval.

Proposition 4. The Bayesian regulator’s optimal approval rule can be implemented as

a cutoff policy.

The intuition for the result is similar to why an optimal auction to a single buyer can

be implemented as a fixed price mechanism.

6.1.2 Innovation Approval Without Concern For Type II Errors

Suppose now that the regulator faces ambiguity over types θ but is never punished for

type II errors. That is, she behaves as if she maximizes minimum absolute payoffs instead:

19“Before the 1980s it was rare for anyone outside of clinical or academic circles to criticize the FDA

for delay. Put differently, few in the media or in Congress were complaining of the agency’s Type II

errors.

Today the situation is much different, and the political power of patients matters as much as or more

than the political power of firms. The best evidence for this proposition comes in two strategies that

are now widely adopted by pharmaceutical firms: (1) Firms themselves have in the past six to eight

years created, fostered, and subsidized a number of patient advocacy groups; and (2) firms regularly seek

alliances with patient advocates in pressing the case for priority status, accelerated approval, or simply

approval before the FDA.” (Carpenter, 2004).
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max
y∈I

VM(y) ≡ max
y∈I

min
θ∈Θ

y(τ(θ))v(θ) + (1− y(τ(θ)))v0 − h(θ)n(θ)

≡ max
y∈I

min
θ∈Θ

J(y, θ)

Proposition 5. An optimal, undominated approval rule of a max-min regulator who

faces ambiguity over Θ and internalizes the firm’s welfare is the following cutoff policy:

y∗(τ) =

0, for τ < τ ∗

1, for τ ≥ τ ∗

where τ ∗ = inf{t ∈ T |l(t′) ≥ v0,∀t′ ≥ t}. If the regulator is judged on consumer protection

and firm costs, this optimal approval rule is unique.

The difficulty of the approval threshold is chosen so that even the worst type of firm

that finds it worthwhile to submit evidence is at least as good as the status quo from the

regulator’s standpoint.

6.2 Costly Standards of Proof as a Second-Best Solution

The main model assumes that (1) firms communicate their private information by choos-

ing how much evidence to generate and what to show20, and (2) that the main tool of the

regulator is the ability to choose the extent of approval to award. Section 2.3 discussed

direct suggestive evidence that this is a reasonable model of the FDA review process.

But ideally, a regulator would be able to circumvent the issues of manipulation al-

together by learning about an innovation through direct testing or by inducing truthful

reporting by punishing misreporting. Here I consider some reasons why these first best

solutions may not be feasible in practice.

I use automated vehicles and new drug approval as key examples in discussing these

issues, though they arise with other innovations as well (e.g., medical devices or new

fin-tech products).

Direct Testing Regulators need no solicit information if it is easy for them to run

tests directly. In the case of drug approval, it is well known that tests are costly and

sophisticated.

It also turns out that testing the safety standards of an automated vehicle is sig-

nificantly more challenging than testing non-automated vehicles.21 Currently, new car

20Appendix C considers a model of communication in which evidence is directly informative, which

may be more realistic in cases where the firm is limited in its ability to hide negative evidence.
21One alternative is to have manufacturers pay third-party auditors to conduct these tests on their

behalf and present results to the relevant regulatory agency. However, delegating data collection to

a third party may simply increase the firm’s cost of partial disclosure rather than do away with the
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models are tested with a battery of standardized collision scenarios.22 Gaming these

performance metrics without having a truly safe vehicle is difficult, and conducting these

tests is straightforward for third-parties. Testing the safety of an automated vehicle,

on the other hand, involves checking how the automated decision-making performs in a

plethora of natural driving conditions. Subtle differences in road and traffic conditions

which are imperceptible to human drivers may trigger very different responses by an au-

tomated vehicle. Mistakes made by other human drivers are rare and varied as well. This

makes the data collection task for verifying safety extremely onerous. It takes 11 billion

miles driven, by one estimate, to say with 80% confidence that an automated vehicle

model is 90% safer than human driven cars, and feasible tests to bring this number down

is an active area of research (Zhao, 2016). Currently, it appears infeasible for regulatory

agencies to test vehicle quality directly.

Regulating Product Features When considering new innovations, regulators face dif-

ficulties in applying command-and-control type product design regulations, which consti-

tute many laws aimed at promoting consumer safety and welfare. The U.S. Environmental

Protection Agency, for example, mandates through the Clean Air Act and Clean Water

Act that firms adopt certain technologies to limit emissions, such as scrubbers on smoke

tanks. Or the NHTSA requires cars have seat belts and other safety features to be street

legal.

A regulatory body would likely not have the specialized knowledge required to make

appropriate suggestions regarding what fail-safes to include in the algorithm of an auto-

mated vehicle, what hardware specifications should be met, etc. (And of course, suggest-

ing changes to chemical compositions of drugs is wholly inappropriate.)

Formalizing Experimentation Process Another suggestion is to put in place various

formal requirements, like pre-registration of experiments, that limit the ability of a firm

to manipulate evidence.

It is first important to note that the process of drug approval is now fairly formalized,

and hiding trials is significantly more difficult for a pharmaceutical company today than

ever before. Still, other types of manipulation are still possible and difficult to catch.

Examples include ending trial too early when positive results are recorded, using favor-

able surrogate end-points, and selecting samples that inflate experimental success rates.

Appendix C shows that the forces studied in this model are still applicable in a setting

with limited manipulation.

agency problem entirely. Moreover, it is unlikely that auditing services with the narrow expertise in

testing automated vehicles would be around at the time manufacturers seek approval. For one, given the

difficulty of predicting when and how many firm would develop a mature driverless technology, it makes

little business sense to invest in testing capabilities for a currently nonexistent product.
22To understand the scale of these tests, the “Pre-Crash Typology” developed by the Department of

Transportation, for example, consists of 66 crash scenarios testing how vehicles behave prior to crashes;

General Motors developed an additional 44 scenarios testing crash behavior (Zhao (2016)).
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Next, a quick study of the long and painful path to establishing modern experimen-

tation standards in FDA clinical trials should temper any optimism about the prospects

of properly enforcing information disclosure. The first federal requirement of trial regis-

tration did not come until 1997 and many types of clinical trials were not included in its

purview until the passage of the FDA Amendments Act (FDAAA) in 2007. The process

of expanding coverage to most types of trials was a slow one, with significant legislative

updates happening as recently as 2016.

Regulators will likely have to contend with regulating automated vehicle manufactur-

ers who have considerable leeway in selectively reporting those trips where a driver did

not have to intervene with a corrective action.

Post-Market Oversight and Penalties A very frequent proposal for regulatory agen-

cies is to strengthen their post-market oversight of product performance and regulate on

the basis of real world impact. This is certainly a good thing, but the issue of course is

that regulatory agencies frequently do not have the budget or firm cooperation to carry

out adequate post-approval review of products.

This has been a problem for the FDA and caused a backlog of unreviewed cases.

Indeed, a 2016 study by the Government Accountability Office showed a backlog of over

1,400 overdue post-market analyses (Kaplan, 2018). Weak post approval oversight has

had its impact on compliance: only 13% of clinical trials followed the FDA Amendments

Act’s timely disclosure requirements following drug approval, and 38% of trials were not

reported even 5 years after completion (Richardson, 2016). While there is supposed to a

$10,000 daily fine for not reporting results within a year, Richardson (2016) writes that

not once has a fine been levied. Finally, the most suggestive recent evidence of weak

post-market oversight is found in the decades of regulatory failure in recognizing and

stymieing the prescription of opioids. Heyward et al. (2020) show that opioid manufac-

turers collected non-representative data that left the FDA incapable of assessing whether

a newly required safety program reduced the number of physicians making inappropriate

prescriptions.

Even in the cases where regulators review product safety or efficacy after approval,

they may face difficulty penalizing firms or pulling their technologies from the market.

Courts rather than regulators control the outcomes from prosecuting delinquent firms,

and the desired penalties are not always meted out. While the FDA can suggest drug

companies to recall their products, it needs to sue them in court in cases where the

companies refuse to comply. This is exceedingly rare given the regulatory body’s limited

resources.

There certainly exist regulatory bodies with richer sets of tools. But the ubiquity of

the limitations discussed in this section motivates the focus on weak regulators, whose

main levers are partial approval and costly standards of proof.
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7 Concluding Remarks

I have explored the features of an approval process that arise when a regulator is concerned

with avoiding mistakes and faces ambiguity over product quality about which a firm

gives one-sided evidence. The combination of bureaucratic reputational concerns and

ambiguity make regulators behave as if they minimize max regret. This gives a new

explanation for why regulators may choose to drag their feet with approval decisions,

how they tune their behavior to the evidence given, and why they may create regulatory

sandboxes.

Here I studied the behavior of regulators who primarily control approval processes by

choosing some form of partial approval. A natural continuation is to consider regulators

with other effective levers like those described in Section 6.2. For example, an interesting

extension is to allow the rate of information arrival to depend on the extent of approval

awarded, which is possible if the regulator or third-parties can actively monitor post-

approval product performance.

Another direction is to study how a social planner should influence a regulator’s

incentives. Such an extension is possible if the current model is enriched to allow the

regulator’s approval rule to influence firms’ decisions to innovate.

Note that the regulator’s concern with type II errors is that the true qualities of an

already created innovation would eventually be revealed, despite her approval decision.

In the current model, the regulator does not understand the innovation process; she

entertains the possibility that despite her choice of approval rule, a product of any type

can arise in practice. Still, if an onerous regulatory process were to dissuade a firm from

innovating in the first place, the regulator would not be held accountable. Therefore if

the regulator (were to believe she) could partially influence the innovation process, the

interests of the regulator and a social planner may diverge. The regulator, for example,

may try to stifle innovation to influence the distribution of innovating firms. A useful

direction for future work is to consider how a planner would design a regulator’s incentives,

when the latter’s choices affect the innovation process.

While the paper focuses on explaining the behavior of regulators, similar forces of

ambiguity, screening and evidence manipulation may arise between a venture capitalist

and startups seeking funding. The desire to minimize regret here may come from the fact

that VCs find themselves in a competitive environment where a common pool of investor

funds and deal flow depend on a venture capitalist’s past performance. Adapting the

current model to this setting may shed light on VC investment behavior and contract

design.
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A Appendix: Regret Minimization Representation

with Stochastic Outcomes

A firm’s type θ might not pin down its private benefit or the regulator’s outcome. In

the notation introduced in Section 2, b(θ) and ṽ(θ) may be non-degenerate random-

variables. Since the firm is risk neutral, its choice of evidence provision only depends

on E[b(θ)]. Here I show that a risk neutral regulator who is evaluated on the basis of

consumer protection behaves as if she minimizes worst-case expected regret even when

the outcomes to approval are stochastic. Define v : Θ→ ∆R such that

v(θ) ≡

ṽ0 + C − E[f(ṽ0 − ṽ(θ))|ṽ(θ) ≤ ṽ0], if ṽ(θ) ≤ ṽ0

ṽ0 + C + E[g(ṽ(θ)− ṽ0)|ṽ(θ) > ṽ0], if ṽ(θ) > ṽ0

where I suppose, without loss of generality, that C > 0 is a constant chosen so that v ≥ 0.

Let v0 ≡ ṽ0 + C. Note that v(θ) is a binary random variable with v(θ) > v0 if and only

if ṽ(θ) > ṽ0.

A regulator who minimizes expected worst case losses from type I and type II errors

chooses y ∈ [0, 1] to solve

inf
y∈[0,1]

sup
θ∈Θ

E[f(ṽ0 − ṽ(θ))y1ṽ0≥ṽ(θ) + g(ṽ(θ)− ṽ0)(1− y)1ṽ0<ṽ(θ)]

= inf
y∈[0,1]

sup
θ∈Θ

yE[f(ṽ0 − ṽ(θ))|ṽ0 ≥ ṽ(θ)]Pr(ṽ0 ≥ ṽ(θ)) + (1− y)E[g(ṽ(θ)− ṽ0)|ṽ0 < ṽ(θ)]Pr(ṽ0 < ṽ(θ))

= inf
y∈[0,1]

sup
θ∈Θ

yE[v0 − v(θ)|v0 ≥ v(θ)]Pr(v0 ≥ v(θ)) + (1− y)E[v(θ)− v0|v0 < v(θ)]Pr(v0 < v(θ))

= inf
y∈[0,1]

sup
θ∈Θ

E[(v0 − v(θ))y1v0≥v(θ) + (v(θ)− v0)(1− y)1v0<v(θ)]

= inf
y∈[0,1]

sup
θ∈Θ

E[max{v0, v(θ)} − (1− y)v0 − yv(θ)].
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B Appendix: Characterizing all Optimal Approval

Rules in the Consumer Protection Problem

I state a generalized version of Proposition 1 that characterizes all optimal rules in the

consumer protection problem.

Let y(τ) ≡ min{1, R
C(y∗)

v0−l(τ)
} and y(τ) ≡ max{0, 1− RC(y∗)

m(τ)−v0}.
23

Let Y be the set of all admissible, nondecreasing approval rules τ → [0, 1] that have

the property that for all τ such that l(τ) < v0 < m(τ), y(τ) ∈ [y(τ), y(τ)]. Note that

y∗ ∈ Y .

Proposition 6 (Proposition 1: Generalized). Suppose that either

1. l(·),m(·) are nondecreasing, or

2. l(·),m(·) are differentiable and m′(τ)(v0 − l(τ)) + l′(τ)(m(τ)− v0) ≥ 0 for all τ .

Then Y is the set of approval rules which minimize regret among all undominated and

implementable approval rules. In particular, y∗ ∈ Y.

We can similarly characterize all optimal rules when y∗ is not monotonic.

Fix some R ∈ R+. Let YR be the set of all admissible, nondecreasing approval

rules τ → [0, 1] that have the property that for all τ such that l(τ) < v0 < m(τ),

y(τ) ∈ [y(τ)R, y(τ)R], where y(τ) = min{1, R
v0−l(τ)

} and y(τ) = max{0, 1− R
m(τ)−v0}.

The next corollary (the proof of which closely follows the characterization of all opti-

mal rules in case where y∗ is monotonic) suggests a procedure for finding approximately

optimal regret minimization schemes akin to the example shown in Figure 4: increment

the regret level R until there exists a nondecreasing selection in the area between y(·)R
and y(·)R.

Corollary 1. R ∈ R+ is the minimum regret achievable by an admissible, imple-

mentable approval rule if for all R′ < R, YR′ is empty but YR is nonempty. A regret

minimizing approval rule exists.

23Notice that for every τ such that l(τ) < v0 < m(τ), y(τ) ≥ y(τ): By Lemma 1, RCτ (y∗) =
(m(τ)−v0)(v0−l(τ))

m(τ)−l(τ) , so RC(y∗) ≥ (m(τ)−v0)(v0−l(τ))
m(τ)−l(τ) =⇒ RC(y∗)(m(τ) − v0) + RC(y∗)(v0 − l(τ)) ≥

(m(τ)− v0)(v0 − l(τ)) =⇒ RC(y∗)
v0−l(τ) ≥ 1− RC(y∗)

m(τ)−v0 .
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C Appendix: Limited Manipulation

While there are instances of egregious manipulations of evidence in the past, outright

nondisclosure of failed experiments are less likely to occur in the present-day FDA’s more

formal clinical trial approval process. Still, pharmaceutical companies may still have

some limited room to costlessly inflate the realized efficacy and safety metrics in trials.

For example, they may halt trials prematurely the moment positive results are recorded.

In this section, I consider a model where the firm cannot hide negative trials, but can

design experiments in such a way as to artificially boost its in-trial success rate. I solve

for an optimal approval rule in a simple example.

In this model, letting 0 < ε < 1, the firm’s type is effectively three dimensional:

(q, k, ψ) ∈ Θ ≡ [q, q]×[k, k]×[0, ε]. The efficacy of the drug in question is q ∈ [q, q] ⊂ (0, 1)

(e.g., cures an illness with probability q) and the cost of running a trial is k ∈ [k, k]. The

new term ψ ∈ [0, ε] captures the firm’s capacity for manipulation. In particular, the

firm of type (q, k, ψ) can design a trial so that it returns a success with probability

q′ ∈ [0, q + ψ].

It is convenient to collapse the experimentation and reporting stage of the firm’s action

and modify its action space as follows. Assume that a firm with type (q, k, ψ) has an

action space given by [0, q + ψ] × R+, where the first dimension represents the success

rate of firm’s trials and the second dimension is the number of trials the firm runs.24 The

regulator commits to a decision rule t : [0, 1]×R+ → R+, mapping the firm’s action to a

date of approval. In my example here, the regulator’s benefit of approving a type (q, k, ψ)

only depends on q, with v(q, k, ψ) = q for some nondecreasing f . If the regulator does

not approve the firm, her payoff is v0. With an experiment of size n and a test of efficacy

q′ ∈ [0, q + ψ], the firm gets a payoff of e−t(q
′,n)b(q, q′) − kn, where b(q, q′) is the firm’s

benefit of immediate approval. In this example, the firm’s benefits do not depend on its

costs of trial k.

Note that the firm can choose actions of the kind (q′, 0) ∈ [0, q + ψ] × R+: the firm

can display its type without producing a positive mass of trials. Under the small costs

interpretation, this means that the total cost of producing the number of trials to confirm

the firm’s chosen success rate with high confidence is negligible, at least compared to the

benefits of approval.

In particular, if a firm had a drug of efficacy q > q0 + ε, then it can “costlessly”

24This is meant to capture the fact that the firm can run small trials at little cost, which side steps

the complication that realized outcomes may differ from the firm’s chosen success rate in small samples.

A game closer in description to the one analyzed earlier would be as follows. While the second period

(experimentation stage) of the earlier game would be the same as before, one could modify the firm’s

action space in the third period (reporting stage). Suppose that a firm that has generated x0 failures and

x1 successes must report (x0, x1) ∈ R2
+. But to easily show existence of equilibria, it is also be helpful

to assume that the firm can run an infinitesimal experiment at no cost to reveal its chosen success rate

q′ ∈ [0, q + ψ]. The firm could then run very small trials in sequence to approximately reach its desired

success rate.
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prove to the regulator that its drug is superior to the existing standard. Even if it

was manipulating evidence, its type would have to be greater than q0 to produce an

experiment with success rate q.

Unlike the cases addressed in the previous section, the firm now has a two dimensional

action space which changes the nature of the regulator’s design problem. Let h ≡ q + ψ

be the firm’s largest possible experimental success rate (LPESR).

Case 1: b(q, q′) = q. In this case, the private benefit of approval of the firm depends

only on the true efficacy of its drug.

Note that any two types with the same LPESR have the same action space.

By Assumption 1, we can restrict search for regret minimizing mechanisms to IC

approval rules which give the same delay to all firm types with the same effective type,

τ , and LPESR, h (call the set of such types Θτ,h).

Only types with efficacy in the range [q − ε, q] can have an LPESR of q. Since

the bounds of this interval are increasing in q, for any given τ , l(τ, h) ≡ infθ∈Θτ,h v(θ)

and m(τ, h) ≡ supθ∈Θτ,h
v(θ) are nondecreasing in h (when Θτ,h is non-empty and non-

singleton). Therefore the pointwise regret minimizing approval rule y∗(τ, h) is nonde-

creasing in both arguments. To extend the definition of y∗ on the range where Θτ,h = ∅,
let y∗(τ, h) = 0 if h − ε > τk and y∗(τ, h) = 0 if h < τk. If y∗ is implementable, then it

is clearly the optimal solution.

Let n∗(τ, h) ≡ y∗(τ, h)τ−
∫ τ
τ
y∗(s, h)ds for all τ ∈ T and h ∈ [q, q+ε]. Let θ ≡ (q, k, ψ)

and θ̃ ≡ (q̃, k̃, ψ̃). Let τ ≡ q
k

and τ̃ ≡ q̃

k̃
, and h ≡ q+ψ and h̃ ≡ q̃+ ψ̃. Supposing h̃ ≤ h,

to prove that n∗ implements y∗, it suffices to show

y∗(τ, h)τ − n∗(τ, h) ≥ y∗(τ̃ , h̃)τ − n∗(τ̃ , h̃).

This is true if and only if ∫ τ

τ

y∗(s, h)ds ≥ y∗(τ̃ , h̃)(τ − τ̃) +

∫ τ̃

τ

y∗(s, h̃)ds

⇐⇒
∫ τ

τ

y∗(s, h)− y∗(s, h̃)ds ≥ y∗(τ̃ , h̃)(τ − τ̃) +

∫ τ̃

τ

y∗(s, h̃)ds

Since y∗ is nondecreasing in both arguments, the left side is always non-negative and the

right side is always non-positive. Therefore y∗ is the optimal implementable mechanism.

Reverting back to the original action space, where the firm chooses a level of manip-

ulation and size of experiment, the firm always inflates its experimental success rate as

much as possible under the regulator’s optimal approval rule.

Case 2: b(q, q′) = g(q′), where g is some nondecreasing function. In this case, the private

benefit of the firm is only a function of its perceived efficacy in clinical trials. Note that

a special case is that g is constant, so the private value of approval is same for all types.

This would happen in a regime with little market regulation, where the company’s ability

to promote its drug is independent of its true or perceived efficacy.
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In this case, note that Θh = {(q, k, ψ)|q + ψ = h} consists of types with identical

action spaces and preferences over actions and outcomes. This means that l(τ, h) = h− ε
and m(τ, h) = h, i.e., y∗(·, h) does not depend on its first argument.

Letting q′ be the firm’s chosen experimental success rate, this implies that an optimal

mechanism is as follows: approve the firm immediately if q′ − ε > v0, never allocate

if q′ < v0, and otherwise delay the firm so that they are left with a fraction q′−v0
ε

of

their private values.25 Moreover, since the allocation depends entirely on the firm’s

experimental success rate, there is no screening through experiment size, so the standard

of proof that implements the optimal mechanism is n = 0. The firm’s optimal response

is to always inflate their experimental success rate to their LPESR.

25The arguments are unchanged if the regulator’s payoff to approving a firm of type q is f(q), where

f is increasing and non-negative
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D Appendix: Example of Non-Monotonicities in Con-

sumer Protection Problem

Non-monotonicities can naturally arise in the regulator’s problem when the regulator’s

interests and consumer interests are divergent. Here I consider an example where the

regulator is evaluated purely based on the average quality of products used in the market,

whereas consumers care about both quality and price.

For illustration, recall the example in Section 4.1 where the regulator knows only that

the firm’s success rate q falls in an interval [q, q] and the cost of trials k ∈ [k, k]. Where

I assumed before that the firm’s benefit of approval is identical across types, I now allow

benefits to vary.

In particular, suppose there is a unit mass of consumers in the market who vary by

how much they value a product’s efficacy. If a firm prices its product at p, a consumer

of type ω ∈ Ω values the product at ω · q − p. There is an existing product with success

rate q0 produced in a perfectly competitive market at price p0.

The firm enters this market as a monopolist. I assume that it has no fixed costs of

production and that its marginal cost is precisely its cost of running trials, k. Upon

approval, the firm chooses its price p∗(q, k) optimally, given its product quality q and

cost of production k. A consumer of type ω will purchase the firm’s product only if

ω · q − p ≥ ω · q0 − p0. By the assumption of perfect competition in the existing market,

the price of the existing product will remain at p0 (industry marginal cost) regardless

of the monopolist’s behavior. It is easy to see that the firm’s demand for its product,

D(p, q) is nondecreasing in q and D(p∗(q, k), q) is nonincreasing in k.

Suppose that the regulator’s payoff is the expected quality of consumed products,

D(p∗(q, k), q)q+ (1−D(p∗(q, k), q))q0. For example, the regulator might only care about

minimizing the expected accident rates while drivers themselves are willing to trade-off

safety for low prices.

Consider different product safety levels q′ < q′′ < q0. While a firm with success rate q′′

may seem to be preferable to a firm with success rate q′, it may actually be less desirable

for the regulator to approve if D(p∗(q′′, k), q′′) is sufficiently larger than D(p∗(q′, k), q′).

The intuition is the same as in the imperfect markets case: an inferior product with

greater market penetration may end up doing more damage on the whole than a low

quality product.

Indeed, when the firm can hide evidence, Figure D gives a numerical example where

l(·) is decreasing in some range of effective types.
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Figure 6: Following the ‘Misaligned Preferences’ example, these graphs depict effective

types and regulator preferences when consumer types, ω ∈ Ω, are uniformly distributed

on [1, 2]; [k, k] = [0.05, 0.15]; and p0 = q0 = 0.3. Types along the contour lines in the

left plot have the same effective type. The contour lines in the plot to the right are

the regulator’s iso-utility curves over the firm’s type space. In both plots, redder lines

represent an increase in value and bluer lines a decrease. Note that as effective types are

increasing, the regulator’s worst case outcome per effective type is initially decreasing.

E Appendix: Omitted Proofs

Proof of Lemma 2. Fix an ñ such that (x̃, ñ) is an incentive compatible menu. IC implies

that,

τ(θ̂)x̃(θ̂)− ñ(θ̂) ≥ τ(θ̂)x̃(θ)− ñ(θ)

τ(θ)x̃(θ)− ñ(θ) ≥ τ(θ)x̃(θ̂)− ñ(θ̂).

Subtracting the first inequality from the second,

(τ(θ)− τ(θ̂))x̃(θ) ≥ (τ(θ)− τ(θ̂))x̃(θ̂),

so x̃(θ) ≥ x̃(θ̂).

Proof of Lemma 3. One direction comes from Lemma 2. For the other direction, suppose

y is nondecreasing. Let n(τ) = τy(τ) − τy(τ) −
∫ τ
τ
y(t)dt. I claim that this choice of n

implements y. Fix τ, τ ′ ∈ T . Since y is nondecreasing,

y(τ ′)(τ ′ − τ) ≥
∫ τ ′

τ

y(t)dt

=⇒ y(τ ′)τ ′ − y(τ)τ ≥
∫ τ ′

τ

y(t)dt+ y(τ ′)τ − y(τ)τ

=⇒ τ(y(τ)− y(τ ′)) ≥ n(τ)− n(τ ′),
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which is the IC condition after multiplying through by c(θ) for any θ such that τ(θ) =

τ .

Proof of Lemma 4. It is straightforward to check that if y is undominated, then it is

admissible. For the other direction, suppose y is admissible, and take any other approval

rule ŷ.

If l(τ) = m(τ) = v0, then for every θ ∈ Θτ , y(θ)v(θ) + (1− y(θ))v0 = ŷ(θ)v(θ) + (1−
ŷ(θ))v0.

If l(τ) ≥ v0 and m(τ) > v0, then v(θ) ≥ v0 for all θ ∈ Θτ , so y(θ)v(θ) + (1− y(θ))v0 =

v(θ) ≥ ŷ(θ)v(θ) + (1 − ŷ(θ))v0. The case where m(τ) ≤ v0 and l(τ) < v0 is handled

similarly.

If l(τ) < v0 < m(τ) and y(τ) > ŷ(τ), then there exists some θ ∈ Θτ such that v(θ) >

v0, so y(θ)v(θ) + (1− y(θ))v0 > ŷ(θ)v(θ) + (1− ŷ(θ))v0. And if y(τ) < ŷ(τ), there exists

some θ ∈ Θτ such that v(θ) < v0, so again y(θ)v(θ)+(1−y(θ))v0 > ŷ(θ)v(θ)+(1−ŷ(θ))v0.

Therefore no ŷ dominates y.

Proof of Proposition 6. Conditions 1 and 2, along with Lemma 1 ensure that y∗ is non-

decreasing. Then by Lemma 3, y∗ is implementable. By Lemma 4, y∗ is undominated.

Therefore y∗ ∈ Y .

If y ∈ Y , then

RC
τ (y(τ)) = max{y(τ)(v0 − l(τ)), (1− y(τ))(m(τ)− v0)}

≤ max{y(τ)(v0 − l(τ)), (1− y(τ))(m(τ)− v0)}
≤ RC(y∗).

Since y∗ minimizes RC
τ (·) for every τ , it also minimizes RC(·) in the space of admissible

approval rules. The same is then true for y.

If y /∈ Y is undominated and nondecreasing, then there is a τ ∈ T such that

RC
τ (y(τ)) > RC(y∗).

Proof of Proposition 3. The proof proceeds in three steps.

Step 1: Approval rules can be improved to a CRCA rule with less regret.
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First note that,

sup
τ

max
θ∈Θτ

max{v0, v(θ)} − [y(τ)v(θ) + (1− y(τ))v0)] + c(θ)n(τ)

= sup
τ

max
θ∈Θτ

s∈[−d(τ),D(τ)]

max{v0, b(θ) + s} − [y(τ)(b(θ) + s) + (1− y(τ))v0)] + c(θ)n(τ)

= sup
τ

max
c∈[c,c]

s∈[−d(τ),D(τ)]

max{y(τ)(v0 − cτ − s), (1− y(τ))(cτ + s− v0)}+ cn(τ)

= sup
τ

max
c∈[c,c]

s∈[−d(τ),D(τ)]

max{y(τ)(v0 − cτ − s), (1− y(τ))(cτ + s− v0)}+ c(y(τ)τ − y(τ)τ −
∫ τ

τ

y(t)dt)

= sup
τ

max
c∈[c,c]

s∈[−d(τ),D(τ)]

max{y(τ)(v0 − s), cτ + (1− y(τ))(s− v0)} − c(y(τ)τ +

∫ τ

τ

y(t)dt)

= sup
τ

max
c∈[c,c]

max{y(τ)(v0 + d(τ)), cτ + (1− y(τ))(D(τ)− v0)} − c(y(τ)τ +

∫ τ

τ

y(t)dt)

= sup
τ

max

y(τ)(v0 + d(τ))− c(y(τ)τ +
∫ τ
τ
y(t)dt)

(1− y(τ))(D(τ)− v0) + c(τ − y(τ)τ −
∫ τ
τ
y(t)dt)

≡ sup
τ

max{Rτ,v0(y), Rτ,v1(y)}

Let R ≡ R(y). Consider the largest p such that p(v0 +d(τ)− cτ) ≤ R. Such a p exists

by assumption that R(y) = R (e.g., p ≥ y(τ)).

Case 1: If p ≥ y(τ), consider y′ = y(τ).

For τ ∈ T where Rτ,v0(y
′) ≥ Rτ,v1(y

′), Rτ (y
′) ≤ Rτ (y

′) ≤ R. The first inequality is

because y′ is constant and Rτ,v0(y
′) is decreasing in τ ; the second inequality is because

y(τ) ≤ y(τ) ≤ p, and Rτ (y) ≤ R and Rτ (p) ≤ R, and the range of allocation probabilities

for which Rτ (y) ≤ R is convex.

For τ where Rτ,v0(y
′) ≤ Rτ,v1(y

′), Rτ (y
′) ≤ Rτ (y

′) ≤ Rτ (y) ≤ R. The first inequality

is because, first, y′ is constant and Rt,v1(y
′) is nondecreasing in t since c and v are; and

moreover, Rt,v1(y
′) ≥ Rt,v0(y

′) for all t > τ , since the latter is decreasing in τ . The second

inequality follows from the fact that n′(τ) = 0 ≤ n(τ) while y′(τ) = y(τ).

Case 2: If p < y(τ), let ỹ be the solution to the integral equation R = Rτ,v0(y), with

ỹ(τ) = p.

Note that it is easy to verify that ỹ is continuous, and rearranging the terms shows

that ỹ is a function of differentiable terms and is therefore differentiable. Next, Picard’s

theorem says that the solution to the differential equation with the given boundary con-

dition is unique, so the solution to the initial integral equation is also unique. Finally,

its easy to see that ỹ is strictly increasing by rearranging the differential equation and

seeing the derivative of ỹ is positive everywhere. There are two cases to consider.

Subcase 1 : ỹ(τ ′) = y(τ) at some τ ′ such that on [τ , t′], Rv0,τ (ỹ) ≥ Rv1,τ (ỹ). Then

setting y′ = ỹ on [τ , τ ′] and y′ = y(τ) on [τ ′, τ ] satisfies the properties required by the

proposition (verifying that R(y′) = R is by same arguments as before).
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Subcase 2 : There is a τ ′ and d > 0 such that 1) Rv0,τ (ỹ) ≥ Rv1,τ (ỹ) on [τ , τ ′], 2)

Rv0,τ (ỹ) < Rv1,τ (ỹ) for τ ∈ (τ ′, τ ′ + d], 3) ỹ(τ ′) < y(τ).

Consider any nondecreasing extension of ỹ, ŷ : [τ , τ ′ + ε) → [0, 1]. That is to say,

ŷ = ỹ on [τ , τ ′] and is nondecreasing over its full domain. I want to show that Rτ (ŷ) > R

at some τ ∈ (τ ′, τ ′ + ε).

If ŷ is discontinuous at τ ′, it is clear that limτ→τ ′+ Rv0,τ (ŷ) > R so Rτ (ŷ) > R for τ

sufficiently close to τ ′. Suppose then that ŷ is continuous at τ ′.

If ŷ = ỹ on (τ ′, τ ′+ ε) for some ε > 0, by assumption of Subcase 2, Rτ (ỹ) = Rv1,τ (ỹ) >

R for some τ in this region.

Suppose now that ŷ > ỹ on some (τ ′, τ ′ + ε). If Rτ (ŷ) < R on this region, then of

course Rτ,v0(ŷ) < R as well. This implies that there exists another ŷ′ such that ŷ′ = y′ on

[τ , τ ′] and ŷ′ ≥ ŷ on (τ ′, τ+ε], with Rτ,v0(ŷ
′) = R on [τ , τ ′+ε]. But this is a contradiction

since ŷ′ 6= ỹ, and I showed that the latter is the unique solution to the integral equation

R = Rτ,v0 on this region.

Next suppose that ŷ < ỹ and that D(τ) ≥ v0 on an interval [τ ′, τ ′ + ε). Then

Rv1,τ (ŷ) ≥ Rv1,τ (ỹ) > Rv0,τ (ỹ) = R on [τ ′, τ ′ + ε).

Finally, suppose that ŷ < ỹ and that D(τ) < v0 on an interval (τ ′, τ ′ + ε]. Let

ŷ(τ ′ + ε) = ŷ(τ ′) + x, for some x ≥ 0.

Rτ ′+ε(ŷ) ≥ Rτ ′+ε,v1(ŷ)

= (1− ŷ(τ ′ + ε))(D(τ ′ + ε)− v0) + c(τ ′ + ε− ŷ(τ)τ −
∫ τ ′+ε

τ

ŷ(t)dt)

≥ (1− ŷ(τ ′)− x)(D(τ ′ + ε)− v0) + c(τ ′ + ε− ŷ(τ)τ −
∫ τ ′

τ

ŷ(t)dt−
∫ τ ′+ε

τ ′
(ŷ(τ ′) + x)dt)

= (1− ŷ(τ ′)− x)(D(τ ′ + ε)− v0) + c(τ ′ + ε− ŷ(τ)τ −
∫ τ ′

τ

ŷ(t)dt− ε(ŷ(τ ′) + x))

= [(1− ŷ(τ ′))(D(τ ′ + ε)− v0) + c(τ ′ − ŷ(τ)τ −
∫ τ ′

τ

ŷ(t)dt)]− x(D(τ ′ + ε)− v0) + cε(1− ŷ(τ ′)− x)

≥ [(1− ŷ(τ ′))(D(τ ′)− v0) + c(τ ′ − ŷ(τ)τ −
∫ τ ′

τ

ŷ(t)dt)]− x(D(τ ′ + ε)− v0) + cε(1− ŷ(τ ′)− x)

= R− x(D(τ ′ + ε)− v0) + cε(1− ŷ(τ ′)− x)

> R

Now let y′ = ỹ on [τ , τ ′] and y′ = y′(τ ′) on (τ ′, τ ], and let τ ∗ = inf{τ ∈ T |y(τ) >

y′(τ)}.
I first consider the case where τ ∗ ∈ [τ , τ ′]. Suppose first that y(τ) = y′(τ) for all

τ < τ ∗. If y jumped discontinuously at τ ′, Rτ ,v0(y) would jump at τ from R, contradicting

R(y) = R. If y is continuous at τ , I would get the contradiction that Rτ (y) > R for some

τ close to τ ∗, by construction of y′ (appealing to the fact that I would then be able to

construct another y′′ 6= y′ that also solves Rv0,τ (y
′) = R, contradicting the uniqueness

of the solution). Suppose now that y(τ) < y′(τ) for some τ < τ ∗. Since y is increasing
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and y′ is continuous, this implies that y < y in some interval (τ − ε, τ). But then

limτ→τ∗+ Rτ (y) ≥ limτ→τ∗+ Rτ∗,v0(y) > Rτ∗,v0(y
′) = R, another contradiction.

Next, suppose τ ∗ ∈ (τ , τ ′). If y = y′ for all τ < τ∗, I know that since every extension

of ỹ past τ ′ has regret greater than R at some point, this would contradict R(y) = R.

But the case where y(τ) < y′(τ) for some τ < τ ∗ gives the same contradiction as before.

I have shown that subcase 2 is an impossibility, given the assumptions of case 2,

proving step 1.

Step 2: Existence of Optimal Rule. First I restrict search for optimal approval rules

to the space of continuous approval rules. Since the adversary’s action space is compact,

for every continuous rule y, the adversary has an optimal choice of θ ∈ Θ.

Now Rτ,v0(y) and Rτ,v1(y) are both continuous in τ and y (under the infinity norm

metric), so maxτ∈T Rτ,v0(y) and maxτ∈T Rτ,v1(y) are continuous in y. Since the space of

continuous approval rules is compact under the infinity norm, the regulator’s problem

restricted to this space admits a solution.

But by the earlier proposition, for any y, there is a y′ ∈ Y with R(y′) = R(y), and

since y′ is continuous, the earlier restriction was without loss of generality.

Step 3: Uniqueness of Optimal Rule Let ỹ be the solution to R = Rτ,v0(y). Note

that d
dτ
Rτ,v1(ỹ) = −( d

dτ
ỹ)(D(τ)− v0) + (1− ỹ(τ)) d

dτ
D(τ) + c(1− ỹ(τ)) ≥ 0. On the other

hand, if y is a constant approval rule, d
dτ
Rτ,v1(y) = (1 − y(τ)) d

dτ
D(τ) + c(1 − y(τ)) ≥ 0

(with equality only if y = 1). Notice moreover that Rτ,v0(y) for any y ∈ Y is initially

constant and then decreasing. Therefore, for any y ∈ Y , Rτ,v0(y) and Rτ,v1(y) cross only

once, if at all.

Now let R be the value of the regulator’s problem under an optimal approval rule.

Take some y ∈ Y with R(y) = R and with τ ′ being the cutoff effective type at which y

becomes constant. Suppose that the Rτ (y) < R. Then I can consider another approval

rule y′ ∈ Y with Rτ ,v0(y
′) = R − ε, which has the same cutoff effective type τ ′ as y.

If ε is small enough, by continuity and the fact that Rτ (y) < R at any τ at which

Rτ,v0(y) = Rτ,v1(y), Rτ ,v1(y
′) < R, so R(y′) < R, contradicting the fact that y was

assumed to be optimal.

Therefore, R(y) = Rτ (y). Since Rτ,v0(y) is decreasing on the portion of y where it is

flat, the preceding also implies Rτ (y) = Rτ ,v1(y).

Now suppose y satisfies this property and has its cutoff point at τ ′ < τ . If v0−D(τ)−
c(τ − τ ′) < 0, then an approval rule ŷ with regret R(y) on [τ , τ ′] but cutoff at τ ′ + ε

for small ε will have the property that Rτ (ŷ) < R, which by the preceding paragraph,

contradicts the optimality of y. 26 Similarly, if v0 − D(τ) − c(τ − τ ′) < 0, an approval

rule ŷ with the same regret on [τ , τ ′] but cutoff at τ ′− ε for small ε will produce the same

contradiction.

26The regret at τ of the constant regret, constant allocation policy with cutoff at τ ′ is (1−ỹ(τ ′))(D(τ)−
v0) + c̄(τ − y(τ)τ −

∫ τ ′
τ
ỹ(t)dt − ỹ(τ ′)(τ − τ ′)). Taking the derivative of this expression with respect to

the cutoff τ ′ gives d
dτ ′

˜y(τ)(v0 −D(τ)− c(τ − τ ′)).
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Let τ ′ solve v0 − D(τ) − c(τ − τ ′) = 0, and let y∗ ∈ Y be the approval rule with

minimum regret among those with cutoff τ . By the preceding arguments, this is the only

rule which cannot be improved (within Y , and therefore in the space of all rules), and

since an optimal rule exists, it must be y∗.

Proof of Proposition 4. First consider the case where h = 0, i.e., the case where the

regulator is judged only on the basis of consumer protection.

Let y be a solution to the regulator’s problem. Suppose y(τ) ∈ (0, 1) for τ ∈ (c, d),

and y = 0 for τ < c, and y = 1 for τ > d.

Take a finite partition, discrete approximation yd to y such that VB(yd) is within ε of

VB(y). Note this is possible since there are no atoms and y, being increasing, is continuous

almost everywhere. Let (p0, . . . , pn) be the partition P such that yd is constant on the

sub-intervals (pi, pi+1), taking on the value I denote by zi, with p0 = c and pn = d.

Consider the following construction:

1. If yd is already a cutoff policy, that gives the desired result.

2. Otherwise, consider the interval (pn−1, pn).

If
∫ pn
pn−1

(E[v(θ)|τ ] − v0)yd(
1
2
(pn−1 + pn)) ≥ 0, let y1

d = 1 on (pn−1, pn) and y1
d = yd

outside of this interval.

If
∫ pn
pn−1

(E[v(θ)|τ ]− v0)yd(
1
2
(pn−1 + pn)) < 0, let y1

d = zn−2 on (pn−1, pn) and y1
d = yd

outside of this interval.

3. Define a new partition P 1 = (p1
0, . . . , p

1
n−1), where p1

n−1 = d, p1
n−2 = pn−1, and

p1
j = pj for all other j. That is, P 1 is the same as P , but with (pn−1, pn) and

(pn−2, pn−1) merged.

4. Relabel y1
d as yd and P ′ as P

It is clear that iterating these steps, with y1
d and P 1 in place of yd and P respectively,

one arrives at a a cutoff policy. Moreover, VB(y1
d) ≥ VB(yd) by construction, so VB

evaluated at the terminal cutoff policy is greater than VB(yd). The latter was within ε of

VB(y) and the choice of ε was arbitrary, completing the proof for the case of consumer

protection.

Returning to the case where the regulator is judged on consumer protection and firm

costs, note:

∫ τ

τ

n(τ)E[h(θ)|τ ]dFτ (τ) =

∫ τ

τ

(y(τ)τ + n(τ)− τy(τ)−
∫ τ

τ

y(t)dt)E[h(θ)|τ ]dFτ (τ),

so

VB(y, n) =

∫ τ

τ

y(τ)(E[v(θ)|τ ]− v0)− (y(τ)τ + n(τ)− τy(τ))E[h(θ)|τ ])dFτ (τ)

+

∫ τ

τ

∫ τ

τ

y(t)E[h(θ)|τ ]dtdFτ (τ) + v0
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Setting n(τ) = 0 is optimal. Now∫ τ

τ

∫ τ

τ

y(t)E[h(θ)|τ ]dtdFτ (τ) =

∫ τ

τ

∫ τ

t

y(t)E[h(θ)|τ ]dFτ (τ)dt

=

∫ τ

τ

y(t)g(t)dFτ (t),

where g(t) ≡ 1
fτ (t)

∫ τ
t
E[h(θ)|τ ]dFτ (τ). This means

VB(y, n) =

∫ τ

τ

y(τ)r(τ)dFτ (τ) + τy(τ)E[c(θ)] + v0,

where r(τ) ≡ E[v(θ)|τ ]− v0 − τE[h(θ)|τ ] + g(τ).

Now the remainder of the proof follows the same steps as in the case where the

regulator is judged only on consumer protection.

Proof of Proposition 5. First consider the case where h = 0. For all t < τ ∗, there exists

θ ∈ Θt with v(θ) < v0, so minθ∈Θt y(t)v(θ) + (1 − y(t))v0 is maximized at y(t) = 0.

Similarly, if t > τ ∗, then v(θ) ≥ v0 for all θ ∈ Θt, so setting y(t) = 1 is optimal.

When the regulator is judged on consumer protection and firm costs, consider an

approval rule y that gives some positive extent of approval to an effective type τ ≤ τ ∗.

Then there exists t ≥ τ such that l(t) < v0, so VM(y) < y(t)l(t) + (1 − y(t))v0 < v0.

Since the policy which always rejects the firm achieves a payoff of v0, such a y cannot be

optimal.

Now fix an implementable approval rule y for which y(τ) = 0 for all τ < τ ∗. Note

that there is a unique n which implements this y since n(τ) = 0 by IR and Assumption

2. For any θ such that τ(θ) ≥ τ ∗, consider y′ where

y′ =

y, for t < τ(θ)

1 for t ≥ τ(θ)

and let n′ be such that (y′, n′) is implementable. Now y(t) = y′(t) and n(t) = n′(t)

are identical for t < τ(θ). But by the envelope condition, y(τ(θ))b(θ) − c(θ)n(τ(θ)) =

y′(τ(θ))b(θ) − c(θ)n′(τ(θ)). The preceding establishes that J(y, θ′) ≤ J(y′, θ′) for all θ′

such that τ(θ′) ≤ τ(θ). Since preferences exhibit strictly increasing differences, note that

for θ′ such that τ(θ′) > τ(θ), y(τ(θ))b(θ) − c(θ)n(τ(θ)) ≤ y′(τ(θ))b(θ) − c(θ)n′(τ(θ)).

Therefore J(y, θ′) ≤ J(′y, θ′) for every θ′. Since the choice of y and θ was arbitrary, this

establishes that J(y, θ′) ≤ J(y∗, θ′) everywhere, i.e., y∗ is the unique optimal undominated

strategy.
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