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Motivation

Motivation

Rents due to agency problems is key determinant of economic welfare

Determinants of these frictions are usually part of model description

In adverse selection models, distribution of types typically exogenous

In moral hazard models, production technology taken as given

If an agent’s payoff depends on agency frictions, then he is likely to

take actions to generate these frictions optimally.

This Paper.

Revisit standard principal-agent model under moral hazard to understand

how an agent might gain by designing the production technology optimally.
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Framework

Model

Players. Risk-neutral principal & agent, and latter is cash-constrained

Timing.

i. Agent chooses a “project” c ∶ ∆([0,1]) → R+; i.e., a map from every

output distribution with support on [0,1] to a (nonnegative) cost.

ii. Principal offers a wage scheme w ∶ [0,1] → R+

iii. Agent chooses an “action” F ∈ ∆([0,1])

iv. Output x ∼ F and payoffs are realized

Payoffs.

Agent: EF [w(x)] − c(F)

Principal: EF [x −w(x)]

Both players have outside option 0
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Framework

Applications

An entrepreneur (agent) seeks funding from a VC (principal)

Before contracting, the entrepreneur must develop a business plan,

specifying various aspects of his production function

Conceivable he has at least some flexibility in choosing the biz plan.

If VC has a lot of bargaining power, the entrepreneur benefits from

putting forward a biz plan that exacerbates moral hazard problem.

Remark: Abstract away from constraints in the agent’s flexibility.

More broadly, employees can often influence aspects of production

function (e.g., assignment of projects, goals, evaluation metrics, etc),

which provides an opportunity to shape their production technology.
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Framework

Some Intuition

First Best.

Agent sets c(F) = 0 for all F

Principal responds by offering wage 0 and implementing F(x) = I{x=1}

Outcome is efficient but the agent is left with no rents!

Mechanism. Agent chooses the project to make the moral hazard

problem severe, which will enable him to extract rents.
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Framework

Problem Formulation

Principal. Given project c, she solves:

max
w(⋅),F

EF [x −w(x)]

s.t. EF [w(x)] − c(F) ≥ EF̃ [w(x)] − c(F̃) for all F̃

w(x) ≥ 0 for all x

F ∈ ∆([0,1])

Denote the optimal contract by w c and implemented action by F c .

Agent. Chooses the optimal project by solving:

max EF c [w c(x)] − c(F c)
s.t. c ∶ ∆([0,1]) → R+
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Framework

Main Results

1 Optimal project is coarse: all feasible actions generate binary output

Binary projects effectively restrict the contracting space, making it

more expensive for the principal to motivate the agent.

2 Action space is rich: Optimal (binary) project comprises

continuum of zero-cost actions where project succeeds with some prob.

a high cost action which guarantees success

a spectrum of actions in between.

3 Inefficiency: Maximal output realized in equilibrium at bloated costs

4 Rents: The agent extracts all rents

5 Characterization of payoff allocations for any production technology
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Framework

A Simple Example

Suppose the agent is restricted to choosing a project comprising

two actions, FL and FH , with binary output; i.e., supp(Fi) = {0,1}

Easy to solve analytically and show that:

FL costs 0 and leads to x = 1 with probability 1/2 (otherwise x = 0)

FH costs 1/4 and leads to x = 1 with probability 1

Principal sets w(0) = 0 and w(1) = 1/2, implementing FH

Remarks:

Clearly, c(FL) = 0: otherwise, agent can uniformly decrease costs

Cost c(FH) = 1/4: just enough for principal to prefer to implement FH

Deviation action FL determines w(1), enabling agent to earn rents
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Framework

Simple Example Continued

Can the agent benefit from choosing a 3rd action?

YES!

In the optimal project:

Fi leads to x = 1 w.p pi , where pL < pM < pH & c(FL) < c(FM) < c(FH)

Principal implements FH , wherein x = 1 with probability 1

Conditional on implementing FH , intermediate action FM is useful for

the agent because it determines the optimal bonus.

FL determines if implementing FH is optimal for principal.

Absent this action, FM would be implementable with bonus = c(FM),

which could be preferable for the principal (reducing rents to 0).

Actions support each other, enabling agent to extract rents
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Main Results

Plan of Attack

Theorem 1: Show it suffices to restrict attention to binary projects

Given an arbitrary project, we construct a new project such that

c(F) < 1 iff supp(F) = {0,1}, and the agent is (weakly) better off.

This dramatically reduces the dimensionality of the problem so that:

In Stage 1, the agent assigns a cost C(p) ≥ 0 to each p = Pr{x = 1}

In Stage 2, the principal offers a bonus contract w(x) = bI{x=1}

In Stage 3, agent chooses p at a cost C (p)

Theorem 2: Characterize the optimal project (in closed form)
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Results

Properties of an Optimal Project

Theorem 1.

For any project c, there exists another project, c̃, such that

i. c̃(F) < 1 if and only if supp(F) = {0,1} (i.e., output is binary), and

ii. the principal optimally implements F(x) = I{x=1} (i.e., x = 1 w.p 1),

which gives the agent a (weakly) larger expected payoff.

The principal optimally rewards those outputs which are indicative of

the target action, and punishes those indicative of a deviation.

Binary projects restrict the contracting space, limiting the principal’s

screening ability, and increasing the expected payment to the agent.
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Results

Binary Projects: Proof

Fix a c & suppose principal offers w∗, implementing F ∗ (w/ mean µ∗)

Construct a new project c̃: For each µ ∈ [0,1], define

Bµ = (1 − µ) + µI{x=1} and

c̃(Bµ) = inf {c(F) ∶ EF [x] = µ}

i.e., Bµ is a distribution with support {0,1} and mean µ, and we

assign it the cost of the cheapest distribution in c with same mean.

Given c̃, wolog, the principal offers a bonus contract w(x) = bI{x=1},

or equivalently, a linear contract w(x) = bx .
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Results

Binary Projects: Proof

Consider the problem of implementing any action at max profit

Π(F) = sup
w(⋅)≥0

{EF [x −w(x)] ∶ F is IC} , and

Π̃(Bµ) = sup
b∈[0,1)

{(1 − b)µ ∶ Bµ is IC} ,

in the original and the new project, c and c̃, respectively.

Lemma 1: For any F such that EF [x] = µ, Π̃(Bµ) ≤ Π(F).

i.e., implementing Bµ is less profitable than an F with same mean.

Suppose the principal were restricted to linear contracts in c. Then:

Πlin(F) = Π̃(Bµ) for all F with mean µ.

Absent this restriction, her profit is weakly larger; i.e., Π(F) ≥ Πlin(F).
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Results

Binary Projects: Proof

Define B∗ = Bµ∗ and b∗ = EF∗[w∗(x)]/µ∗ < 1

If w(x) = b∗I{x=1} implements B∗, then:

1 It makes the same expected payment to the agent as w∗.

2 It generates profit equal to Π(F ∗) for the principal.

If b∗ does not implement B∗, adjust cost c̃(B∗) = infµ {b∗µ − c(Bµ)}

Lemma 2: Principal cannot implement B∗ with any b < b∗.

Suppose B∗ can be implemented by some b < b∗

If c̃(B∗) was adjusted, this contradicts the above definition of c̃(B∗).

If c̃(B∗) was not, then the premise contradicts Lemma 1.
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Results

Binary Projects: Proof

By assumption, F ∗ is optimal in c; i.e., Π(F ∗) ≥ Π(F) for all F

By Lemma 1, Π̃(Bµ) ≤ Π(F) for any F with mean µ

By construction, Π̃(B∗) = Π(F ∗), and therefore,

Π̃(B∗) ≥ Π̃(Bµ) for all µ

i.e., the principal optimally implements B∗ in c̃.

Also by construction, agent is weakly better off relative to {c,w∗}.

If µ∗ = 1, then the proof is complete.
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Results

Binary Projects: Proof

Suppose µ∗ < 1. Since b∗ implements B∗, the following IC is satisfied

b∗µ∗ − c̃(B∗) ≥ b∗µ − c̃(Bµ) for all µ.

Observation: This constraint is slack for all µ > µ∗.

If not, b∗ implements Bµ′ for some µ′ > µ∗ giving principal bigger profit

Therefore, wolog, we can adjust c̃(Bµ) = ∞ for all µ > µ∗.

Multiply bonus b∗, costs and success prob. Pr{x = 1} by 1/µ∗ > 1.

Payoffs are scaled up and IC constraints are unchanged.

Summary: New project comprises only actions with support {0,1},

principal optimally implements x = 1 w.p. 1, and agent is better off.
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Results

Implication

By Theorem 1, it suffices to restrict attention to:

Actions such that

x =
⎧⎪⎪⎨⎪⎪⎩

1 with probability p

0 with probability 1 − p

Cost function C(p) ≥ 0 such that principal optimally implements p = 1

Bonus contracts w(x) = bI{x=1} for some b ≥ 0 to be chosen.

We will solve the problem using backward induction
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Results

Heuristic Characterization – Stage 2

Fix a cost function C(⋅). Then the principal solves

max p(1 − b)
s.t. pb − C(p) ≥ p̃b − C(p̃) for all p̃ ∈ [0,1]

p ∈ [0,1] and b ≥ 0

Guess that C is twice differentiable and convex. Then we can replace

the agent’s IC constraint with its first-order condition:

b = C ′(p)

and rewrite the principal’s problem as

π ∶= max
p

p [1 − C ′(p)]
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Results

Heuristic Characterization – Stage 1

The agent solves

max
C(⋅)≥0

p∗b − C(p∗)

s.t p∗ [1 − C ′(p∗)] ≥ p [1 − C ′(p)] for all p (ICP)

where p∗ = 1 by Theorem 1, and b = C ′(p∗) from the agent’s FOC.

Using that C ′(1) = 1−π, we can rewrite this maximization program as

max 1 − π − ∫
1

0
C ′(q)dq

s.t. C ′(p) ≥ 1 − π
p

for all p < 1

C(⋅) ≥ 0 and π ∈ [0,1]
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Results

Heuristic Characterization – Stage 1 (Continued)

Step 1: For (any) fixed π, we solve

max
C(⋅)≥0

1 − π − ∫
1

0
C ′(p)dp

s.t. C ′(p) ≥ 1 − π
p

for all p < 1

Objective decreases in C ′(p) and constraint imposes lower bound. So

C ′(p) = [1 − π
p
]
+

Step 2: Plugging C ′(⋅) into the agent’s objective, we solve

max
π∈[0,1]

{−π lnπ} = 1

e
and π∗ = 1

e
;

i.e., the principal’s, as well as the agent’s payoff is 1/e.
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Results

Characterization

Theorem 2. Optimal Project

There exists an optimal project in which the agent chooses

C ′(p) =
⎧⎪⎪⎨⎪⎪⎩

0 if p ≤ 1/e

1 − 1
pe if p > 1/e

The principal offers bonus contract with b = 1 − 1/e

Each player obtains payoff equal to 1/e

The agent chooses a convex cost function s.t any p ≤ 1/e is costless,

while larger p’s are progressively more expensive and the principal is

is indifferent across any bonus contract with b ∈ [0, 1 − 1/e].

Principal’s profit π = 1/e, and agent captures all rents for p > 1/e.
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Results

Graphically
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To capture rents, agent commits to rent seeking activity costing C(p).
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Extensions

Payoff pairs implementable by an arbitrary binary project

Insofar, we have assumed the agent can choose any cost function

c ∶ ∆([0,1]) → R+

Suppose the agent is constrained and must choose among a subset of

these cost functions.

Q: Can we make any predictions regarding surplus allocation?

Let V (c) = {π∗,U∗} be the set of equilibrium payoffs for given c,

and define the payoff possibility set:

P = ∪
c ∶∆([0,1])→R+

V (c) .
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Extensions

Payoff pairs implementable by an arbitrary binary project

Theorem 3. Payoff Possibility Set

The payoff possibility set is

P = co ({π,−π logπ} ∶ π ∈ [0,1]) .
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Extensions

Bounded Project Complexity

Suppose the agent can choose a project with at most N actions.

By Theorem 1, wolog, he chooses pi ∈ [0,1] and C(pi) ≥ 0 for each i
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Extensions

Negative Payoffs

Suppose agent can choose output distributions with support [−M,1].

Suffices to focus on binary projects s.t F(x) = I{x=1} is implemented.

When M = 0, C(⋅) and b are given in Theorem 2.
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Extensions

Negative Payoffs

Suppose agent can choose output distributions with support [−M,1].

Suffices to focus on binary projects s.t F(x) = I{x=1} is implemented.

As M ↑, both C(⋅) and b are shifted upwards.
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Extensions

Negative Payoffs

Suppose agent can choose output distributions with support [−M,1].

Suffices to focus on binary projects s.t F(x) = I{x=1} is implemented.

For M sufficiently large, b = 1, and agent extracts all surplus.
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Extensions

Negative Payoffs

Suppose agent can choose output distributions with support [−M,1].

Suffices to focus on binary projects s.t F(x) = I{x=1} is implemented.

As M ↑ further, C(⋅) is shifted downwards, decreasing distortion.
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Extensions

Negative Payoffs

Suppose agent can choose output distributions with support [−M,1].

Suffices to focus on binary projects s.t F(x) = I{x=1} is implemented.

As M →∞, b = 1 and C(⋅) → 0 leading to efficiency.
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Extensions

Risk-averse Agent

Theorem 1 holds if the agent is not too risk-averse.

Corollary 1. Risk-averse Agent

Let uk(⋅) be a sequence of functions satisfying u′′k < 0 < u′k for each k,

and limk→∞ uk(ω) = ω uniformly.

There exists a K such that a binary project optimal whenever k ≥ K .

Theorem 2 — the characterization of the optimal binary project is

straightforward for any concave utility function.
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Discussion
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Sequential mechanism design:

Krähmer and Kovác (2016)

Bhaskar et al. (2019)

Condorelli and Szentes (2020)
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Discussion

Discussion

We consider an agency model of moral hazard in which production

technology is endogenous and chosen by the agent.

The agent optimally designs a project with binary output such that

the principal is indifferent between b∗ and any smaller bonus, enabling

him to extract all rents.

Potential implication. Promoting more flexibility for workers to design

their job as an alternative to regulation (e.g., minimum wages)
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