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Abstract

People are embedded in multiple social relations. These relationships are not iso-

lated from each other. This paper provides a framework to analyze the multiplex of

networks. We present a model in which each pair of agents may form more than one

relationship. Each relationship is captured by an infinitely repeated prisoner’s dilemma

with variable stakes of cooperation. We show that multiplexity, i.e. having more than

one relationship on a link, boosters incentives as different relationships serve as social

collateral for each other. We then endogenize the network formation and ask: when

an agent has a new link to add, will she multiplex with a current neighbor, or link

with a stranger? We find the following: (1) There is a strong tendency to multiplex,

and “multiplexity trap” can occur. That is, agents may keep adding relationships with

current neighbor(s), even if it is more compatible to cooperate with a stranger. (2)

Individuals tend to multiplex when the current network (a) has a low degree dispersion

(i.e., all individuals have similar numbers of friends), or (b) is positively assortative. We

also find that when relationships differ in their importance, agents tend to multiplex

when the new relationship is less important, and link with a stranger when it’s more

important. Lastly, we find empirical evidence that supports our theoretical findings.
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1 Introduction

People are embedded in multiple social relations. We dine out together, collaborate on

research, borrow and lend money, etc. These relationships are not isolated from each other:

the existence of one relationship is likely to affect the formation and the incentives in another.

Natural questions arise: What is the relationship of multiple social relations? Do different

networks overlap, when and why? Without understanding above questions, our analysis

about network formation might be fundamentally flawed.1

However, despite a few empirical and case studies in the anthropology and sociology

literature (e.g., Kaplan et al. (1985), Uzzi (1997)), the theoretical probing of the interdepen-

dence of multiple relations is still in its early stages. As McPherson, Smith-Lovin and Cook

(2001) put it: “It is striking that 20 years after Fischer (1982) classic study of networks in

North California communities, so few large-scale studies investigate the multiple, overlapping

networks of different types of relationships that his research so admirably chronicled.”

This paper studies the interaction of multiple social relations. We treat the formation

of multiple relations as strategic decisions. And we ask the following question: given the

existing relations, when a new relationship arises, will people link with a current friend (i.e.,

current neighbor in the network), or a stranger? In the paper, we call the tendency to link

with a friend multiplexity.

Specifically, we model relationship as repeated prisoner’s dilemma with variable stakes.

In each relationship, cooperation opportunities arise sequentially over time with Poisson

arrival rate λ, independent across relationships. In each cooperation, a pair of agents first

choose the stakes of cooperation, say the quality of the co-authored paper, and the minimum

of which will be enforced; they then choose to cooperate or defect. We examine equilibria

with the maximal stakes of cooperation, which gives each agent their highest payoffs, and

always exist in our structure. We compare the maximal stakes of cooperation across different

network structures.

To see how multiplexity affects people’s incentives, we first fix network structure, and

find the following: Multiplexity enhances cooperation because different relationships serve

as social collateral for each other. By having additional relationship with the same people,

incentives on every existing relations get improved. This multiplex effect provides incentive

spillover across different relations, and, without any assumed interdependence ex ante, makes

different relations complementary to each other. Due to the large benefits of multiplexity

in sustaining cooperation, sometimes “multiplexity trap” can occur. That is, agents may

keep adding relationships with current friends, even when it is more efficient to link with a

1As Atkisson et al. (2019) write: “There has been relatively little work on multilayer and multiplex

networks to date, · · · , without a method · · · , we are unlikely to recover the true effect of each network on

the outcome of interest, possibly leading to incorrect conclusions.”
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stranger.

We also compare multiplexity with another more examined way of enforcing coopera-

tion – community enforcement. We show that in a complete network in which everyone

is connected, multiplexity and community enforcement have the same effect on cooperat-

ing incentives. However, since cooperation size is determined by the incentive-weak link,

community enforcement relies more on the rest of the network structure than multiplexity.

We then proceed to endogenize network formation. When a new relationship arises, the

agent can choose to link with current friend or a stranger.2 The agent form the relationship

to maximize her equilibrium payoff in the resulting network. Agents are myopic in the sense

that they ignore future link dynamics.3 Such tractable network allows us to explore the

following question: When do people multiplex, when not? How network patterns of the

existing networks will affect this choice?

We find the following: Individuals tend to multiplex either when the current network

has low degree dispersion (i.e., all individuals have similar numbers of friends), or when the

network has a large degree dispersion, but exhibits positive assortativity (i.e., agents are

linked with those who have similar number of friends). In other words, agents tend to link

with a stranger in networks that exhibit negative assortativity.

When networks exhibit low degree dispersion or positive assortativity, the multiplex effect

dominates; whereas in negative assortative networks, the size of cooperation in the new link

with a stranger could be pretty large, which may dominate the multiplex effect. The lesson

is that, asymmetry in degree not only in society at large, but among neighbors, is key for

agents to jump out of the multiplexity trap, and link with strangers.

Based on our theoretical analysis, we also conduct empirical analysis using the Indian

Village Survey Data collected by Banerjee et al. (2013). The dataset contains network in-

formation of multiple types of relationships for each of the 75 Indian rural villages. Our

empirical analysis shows strong evidence of multiplexity, and is consistent with our predic-

tions regarding how network patterns affect the multiplexity choice. Specifically, we present

evidence that supports the following testable hypotheses:

• Multiplexity prevails in networks (Hypothesis 1)

• Multiplexity is more likely to prevail in societies that have

� low degree dispersion (Hypothesis 2a)

� positive assortativity (Hypothesis 2b)

2The recipient of the relationship always accepts, because in our setting, having additional relationship

is always beneficial. We can add linking costs and the analysis is essentially the same.
3We also discuss the relax of the assumption in Section 5.
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Given the importance of caste system in Indian culture (e.g., Hsu (1963)), we provide a

robustness check utilizing the caste information in the dataset. Specifically, we assume that

the cooperation for villagers in the same subcastes is mainly driven by unmodelled factors

such as religion, but incentives matter more for villagers that are not in the same subcastes.

This shall imply that our predictions applies more to villagers in different subcastes, but

should be insignificant for those who are in the same subcastes. The empirical result also

supports above hypothesis.

We also extend our theory in the various directions. Most importantly, by allowing

the importance of different relationships to vary, we could explore the impact of asymmetric

relationships on multiplexity. And we find that people tend to link with current friends when

the new relationship is less important, but link with a stranger when the new relationship is

more important.4 This echoes the old adage that “do not borrow money from your friends”.

And we provide a new rationale: when the new relationship is more important, the existing

ones become less important, which renders the multiplex effect to be smaller, hence agents

are more willing to link with a stranger rather than to multiplex with current friends.

The rest of the paper is organized as follows. We review the literature below. Section 2

sets up the baseline model which focuses on the incentives to cooperate given the network

structure: we analyze the incentive effects of multiplexity in Section 2.2, and compare it

with community enforcement in Section 2.3. Section 3 presents a simple model of network

formation and explores our main question: “when to multiplex, when not”; we show multi-

plexity trap could occur in Section 3.1. Section 4 explores how network features affect the

multiplexity choice. Section 6 conducts empirical analysis. Section 5 extends our theory in

various directions. And Section 7 concludes.

1.1 Literature Review

Anthropologists and sociologists have long recognized the importance of the multilayer or

multiplex networks. For example, some argue that failing to find reciprocal food sharing

means reciprocity could span domains (Kaplan et al. (1985)). Uzzi (1997) finds that em-

bedded ties (i.e., long term partners) primarily develop out of previous personal relations,

“embedding the economic exchange in a multiplex relationship made up of economic in-

vestments, friendship, and altruistic attachments.” In economic literature, Bernheim and

Whinston (1990) provide a nice benchmark that shows in a multimarket context, firms’

cooperative behavior will be improved only when those markets are not identical. Li and

Powell (2017) show that when the environment is non-deterministic, even identical multimar-

4This extension also answers that question that how multiplexity is different from increasing the intensity

of one link. Only by examining multiple relations can we explore the asymmetry of different relations.
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ket context can lead to better cooperation.5 Chen, Zenou and Zhou (2018) examine games in

social network when agents exert effort in two activities. They show how own productivity

affects equilibrium efforts and how network density impacts equilibrium outcomes.

However, none of the above work emphasizes the processes or mechanisms that lead to

the multiplex of networks. That is, we emphasize the network formation process that gives

rise to multiplexity, whereas previously mentioned work does not.

More recently, some theories about network structuring process that lead to multiplexity

are developed (see Atkisson et al. (2019) for an overview). Most of them either posits that

it?s the same feature that attracts people to build ties in several domains, or there is time

(opportunity, etc.) constraint that make expanding the set of people from one domain to

another costly. We assume none of the above, and the multiplexity decision is mainly driven

by the incentive spillover provided by multiple relations.

Banerjee et al. (2018) use also the Indian Village Survey Data,6 they find that the intro-

duction of microfinance not only erodes the relationship among those who are more likely to

get loans, but those who are less likely get loans as well. This potentially suggests correlation

among different relationships, and they use the strategic complementarity across different

relations to explain the empirical finding. We focus more on the question whether people

interact with the same set of people across different relations, i.e., the specific cause of the

correlation among relations. More importantly, neither Banerjee et al. (2018) nor work that

we mentioned in the previous paragraph could explain how network features of the existing

network affect the multiplexity decision, as we establish both theoretically and empirically.

Joshi, Mahmud and Sarangi (2017) study how network feature of a network affect an-

other network’s formation. Our work differs in focus: while they emphasize the impact of

an existing network on the new network’s structure, we focus on the correlation of the two

networks, that is, how network features affect the multiplexity decision. Moreover, we also

reach very different conclusions. For example, they show that starting from a regular net-

work, the new network is either empty or complete. While we show that the new network

could never be complete (when the linking compatibility is the same across pairs), for agents

will keep on multiplexing with friends rather than linking with strangers.

There is also a computer science literature (e.g., Kivelä et al. (2014)) that studies multi-

plexity and they focus on simulation and algorithms, which largely ignores strategic consid-

erations.

Lastly, our paper contributes to the large literature on social capital and cooperation

(e.g., Ghosh and Ray (1996), Karlan et al. (2009), Jackson, Rodriguez-Barraquer and Tan

5In our setting, even when relationships are identical, multiple relations could still enhance cooperation,

and this is because cooperation opportunities arrive sequentially over time rather than simultaneously as in

Bernheim and Whinston (1990) and Li and Powell (2017)
6Their dataset is panel while the one we use is cross-sectional.

4



(2012), Wolitzky (2012), Ali and Miller (2016)). Previous work mostly focus on community

enforcement, and a key lesson there is that a more connected network is beneficial for co-

operation. We focus on another way to enhance cooperation – multiplexity, and discuss the

important difference and tradeoff between multiplexity and community enforcement when

agents form a new link. And we show that the incentives to multiplex might hinder the

completion of the network.

2 Baseline Model with Fixed Networks

Consider a society in which n agents N = {1, ..., n} are interacting in K relationships. So

essentially there are K networks, G = (g1, . . . , gK). All the K networks are undirected and

unweighted, i.e. gkij = gkji ∈ {0, 1}, ∀i, j, k. In particular, gkij = 1 means that agent i and j

has a link in relationship k, and gkij = 0 means otherwise. For the convenience of notation,

we denote ij ∈ Gk iff gkij = 1.

Let Nk
i (G) = {j 6= i | ij ∈ Gk} be the set of neighbors of agent i in relationship k.

Let dki (G) = |Nk
i (G)| is i’s degree (i.e., number of neighbors) in relationship k. We may

simplify the notation as Nk
i and dki , respectively, when there is no confusion. An agent i’s

entire set of neighbors (across all the relationships) is Ni ≡
⋃
kN

k
i , and her total degree is

di =
∑

k d
k
i . We note that di is i’s total number of links, which may not equal to the total

number of her neighbors, since an agent can have more than one link with each neighbor

under multiplexity. We do not distinguish link and relationship in the paper, and will use

the terms interchangebly throughout.

We model each relationship as repeated prisoner’s dilemma with endogenous stakes.7

Specifically, an infinitely repeated game is played on each link/relationship. Cooperation

opportunities (i.e., stage game) arrive randomly over time at a Poission rate λ > 0, indepen-

dent across links/relationships. For example, in the co-authoring relationship, cooperation

opportunities, such as a conference deadline, a revision request, etc., arrive randomly over

time. When each cooperation opportunity arises, the ij pair plays the following extensive

form stage game:

(i) First, agents simultaneously propose the stakes of cooperation, say the intended quality

of the paper, φkij,i, φ
k
ij,j ≥ 0; the minimum of the two, φkij = min{φkij,i, φkij,j}, is selected.

7This approach, following Ghosh and Ray (1996) and Ali and Miller (2016), allows for a transparent

comparison across different equilibria with a fixed discount factor.
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(ii) Then, they play the following prisoner’s dilemma:

ckij

 Cooperate Defect

Cooperate φkij, φ
k
ij −V (φkij), T (φkij)

Defect T (φkij),−V (φkij) 0, 0


in which V (φ) > 0 and T (φ) > φ,∀φ > 0, and T (0) = V (0) = 0. Also T ′(0) = 1 and

limφ→∞ T
′(φ) = ∞. This implies T (φ)/φ increases from close to 1 when φ is small without

bound. Throughout the paper, we assume that V (φ) = φ, and T (φ) = φ+ φ2.

Agents are allowed to choose different stakes, φ, on different pairs ij and different rela-

tionship k. Nevertheless, to simplify notations we will omit the subscripts and superscript

when there is no ambiguity.

In the above matrix, the parameter ckij > 0 is called the “compatibility index”. It

captures the cases that some pairs can be more compatible than others for certain tasks,

and/or different relationships can vary in their importance.

All agents discount the future with a common factor r. Therefore, the discounted payoff

of future cooperation with stake φ between two agents in a single relationship is:

cφ

∫ ∞
0

e−rtλdt =
cφλ

r

The society of the K networks and the compatibilities are common knowledge among all

agents.

2.1 Equilibrium and Maximal Stakes of Cooperation (MSC)

We now define equilibria. To focus on network formation that will be discussed in later

sections, we assume perfect monitoring across the entire society and relations, so that any

deviation is detected immediately by the entire society. Consider the grim-trigger strate-

gies: if agent i ever deviated in any relationship/link, all her neighbors punish her by not

cooperating in every link/relationship with her, so that i’s future payoff becomes zero.

In particular, for agent i to cooperate with j in relationship k, the next incentive con-

straints must hold:

ckij
(
φkij + (φkij)

2
)
≤ ckijφ

k
ij +

∫ ∞
0

e−rtλdt
∑
j′,k′

ck
′

ij′φ
k′

ij′1{ij′∈Gk′},

which simplifies as

ckij(φ
k
ij)

2 ≤ λ

r

∑
j′,k′

ck
′

ij′φ
k′

ij′g
k
ij (IC)
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Definition 1 (Equilibrium). Given the society (networks) G, an equilibrium (with grim-

trigger strategies) is a profile of the stakes of cooperations, {φkij}gkij=1, such that φkij = φkji and

(IC) holds for all i, j, k s.t. gkij = 1.

On equilibrium path, all agents on all relationships/links always choose to cooperate, and

off-path, if any agent ever deviated in any relationship/link, all her neighbors punish her by

not cooperating in every link/relationship with her.

It is easy to see that the grim-trigger strategies support the largest possible stakes of

cooperation on equilibrium path, and therefore focusing on equilibria with such strategies

characterizes the payoff frontier for the society.

Proposition 1 (Existence of equilibria). Equilibrium exists. In addition, the set of equi-

libria form a complete lattice. Consequently, there exists a largest equilibrium, in which all

links/relationships achieve the highest stakes of cooperations across all equilibria.

The key is that stakes of cooperations are complements: a larger stake on any rela-

tionship/link makes not cooperating on that link a larger threat to everyone, and therefore

provides the society more incentives to cooperate on all links. Then the proposition holds

by a standard application of Tarski’s fixed point theorem.

This proposition illustrates the important observation that the largest equilibrium stakes

of cooperation for all relationships/links can be achieved simultaneously. Such an equilibrium

gives all agents their highest possible equilibrium payoffs.

Definition 2 (Maximal stakes of cooperation (MSC)). The stakes of cooperation in the

largest equilibrium, {φkij}gkij=1, are called the maximal stakes of cooperations, or MSC.

From now on, we will focus on equilibrium with maximal stakes of cooperation. We will

first characterize the MSC’s of a given network structure, then endogenize network formation

and explore the impact of adding relationships/links on MSC.

The case of uniform compatibility.

In this case,ckij = const > 0,∀i, j, k. The compatibility index, as long as positive, does

not affect the equilibrium stakes of cooperation and can be dropped. In addition, the stakes

in all relationships of the same link are the same: φkij = φk
′
ij , ∀i, j, k, k′ s.t. gkij = gk

′
ij = 1.

The networks G can be represented by a weighted network, such that wij ≡
∑

k g
k
ij counts

the number of relationships between agents i and j.

The incentive constraints become

(φij)
2 ≤ λ

r

∑
j′ 6=i

wij′φij′ (IC ′)

Throughout the paper, without further specification, we work with uniform compatibility

so that we can focus on the implications of network structure.
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A simple algorithm for identifying the maximal stakes of cooperation.

To simplify notations we present the algorithm for the case of uniform compatibility.

At step t of the algorithm, let φij,t be the stake of cooperation in each relationship on

pair ij. Initialize φij,0 = min{di, dj}λr , which is an upper bound of the equilibrium stake.8

At step t ≥ 1:

(i) For each ij s.t. wij > 0, define φij,t be the supremum of φij such that the incentive

constraint (IC ′) holds for ij, given φ−ij,t−1. That is, φij,t solves the following equation

(φij,t)
2 =

λ

r

[
φij,t + min{

∑
j′ 6=j

wij′φij′,t−1,
∑
i′ 6=i

wi′jφi′j,t−1}

]

(ii) Terminate if φij,t ≡ φij,t−1 for all ij. Otherwise return to step (i).

When the algorithm terminates, it finds the maximal stakes of cooperations in the largest

equilibrium.

2.2 Multiplexity as Social Collateral

Before we endogenize network formation, we first examine how multiplexity, i.e., having

more than one relationship between two agents, affects cooperating incentives. We show

that multiplexity supports larger stakes of cooperation (compared to the single relationship

case), as different relationships serve as social collateral for each other. Having additional

relationship enhances incentives on not only the new relation, but reinforces incentives on

every existing relationships. In this sense, having multiple relationships provides incentive

spillover, and they work as complements to each other in boosting incentives.

We then compare multiplexity with another more examined way of enforcing cooperation,

community enforcement. Both mechanisms, multiplexity and community enforcement, en-

hances cooperation. In this sense, they are only different kinds of social collateral. However,

the two differ significantly in that community enforcement relies more heavily on the rest of

the network structure, whereas multiplexity does not.

We illustrate above ideas via the following examples.

Example 1 (One pair of agents, single relationship). Consider a two-agent society with a

single link 12, i.e., only one relationship. In this case, the maximal stake of cooperation,

MSC, is

φ =
λ

r
8This upper bound is directly implied by the incentive constraints (IC).
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Figure 1: One pair, single relationship

We note that in this single link/relation example, the compatibility index c has no effect

on the stake of cooperation. As we will see later (e.g., in Section 3.1), it may shape agents’

incentives when more than one link or relation are involved. Throughout this section, we

assume c = 1 on all relationships/links, so that we can focus on the differences of the network

structures.

Now we illustrates the forces of multiplexity: having more than one relationships between

a pair of agents.

Example 2 (Multiplexity on a single pair). Consider a two-agent society with not only one,

but k > 1 relationships. In this case, the maximal stake of cooperation, MSC, is

φ = k
λ

r
.

Figure 2: Multiplexity between one pair, k = 4

We see that having k relationships increases maximal stake of cooperation by k times

compared to the one relationship case. Multiplexity boosters cooperating incentives because

k relationships serve as social collateral for each other – once an agent deviates on one

relationship, he loses all k relationships.

Moreover, the above MSC is the stake of cooperation on every relationship. So multi-

plexity with k relationships makes the maximal stake on every relationship k-times larger.

As a result, the equilibrium payoff with k relationships is k2 times bigger than it was in the

single relationship case. In this sense, multiplexity provides incentive spillover: not only the

additional relationship benefits, but all existing ones get enhanced. We call this reinforcing

effect the multiplex effect.

2.3 Multiplexity vs. Community Enforcement

We just illustrated how multiplexity affects cooperating incentives. Another more studied

mechanism to enforce cooperation is community enforcement. We show below that in a
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complete network, when all agents have the same degree k, community enforcement and

multiplexity have the same effect in bolstering incentives.

Example 3 (Community enforcement in a complete network). Consider a complete network

with k+1 agents, with one relationship on each link. Each agent has a total degree of di ≡ k.

Since all agents have the same (total) degree, it can be shown that MSC’s are the same on

all links, and the MSC’s supported by community enforcement is

φ = k
λ

r

It follows from the comparison between Examples 2 and 3 that multiplexity provides the

same strength of incentives as the community enforcement does, given the same total degree.

In this sense, multiplexity and community enforcement both enhances cooperation, and they

are simply different types of social collateral.

However, as we will see in the next example, the effectiveness of community enforcement

relies more heavily on the rest of the network, whereas multiplexity relies less.

Example 4 (Network structure matters for community enforcement). Consider a star net-

work with k+ 1 agents, such that the central agent has one relationship with each of the rest

k agents, and there is no relationship among the peripheral agents.

In this case, although the central agent has strong(er) incentives to cooperate, the pe-

ripheral agents’ incentives are more binding and determine the maximal stakes on every

relationship. It turns out the MSC in this example on every relationship/link is

φ =
λ

r
.

So the MSC in the star network equals to that in the single link, single relationship case as

shown in Example 1 .

We use the following figure to conclude this part. From the left to the right, the sub-

figures represent Example 2 – Example 4 respectively. The key messages conveyed here are

that multiplexity (1) provides incentive spillover: it reinforces incentives on every existing

relationship and (2) compared to community enforcement, it relies less on the rest of the

network structure.
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Figure 3: Maximal stakes of cooperation (MSC’s) in some basic examples.

Notes: Each subgraph depicts the network structure as well as the maximal stake of cooperation

(MSC) per link (the numbers, on representative links), with λ/r = 1 and uniform compatibility.

Multiplexity with 4 relationships and community enforcement with a clique of size 5 (so each agent

has a degree of 4) provide the same level of cooperation. Community enforcement does rely on

the rest of networks, as shown in the third (star) network: although the central, green agent has 4

links, the stakes of cooperation are determined by the peripheral agents whose incentives are more

binding. See Examples 2 - 4 for more details.

Now that we see two ways to enforce cooperation, i.e., multiplexity and community

enforcement, when making linking decisions, which way shall an agent make use of? This

provides the basic tradeoff when an agent chooses to link with a friend or a stranger, and

we are now ready to examine network formation in the next section.

3 Multiplex or Link with a Stranger? A Framework of

Network Formation

This section introduces a simple framework of network formation. We ask the following

question: when a new relationship arises, will an agent add it on an existing link (i.e., with

a neighbor/friend), or establish the new link with a stranger? When the agent chooses to

link with a current neighbor, we say she chooses to multiplex.

To answer this question, consider the following network formation process. Start from a

given society G, imagine that there is one agent who has a new relationship to add.9 She

can propose to establish the relationship with any other agent in the society.

We note that a more connected network always benefits everyone, as illustrated in the

following lemma. It follows from it that the agent, when having an opportunity, always

9For example, consider an agent being an economist and she has a new research idea. She can choose to

coauthor with a current neighbor, who may be working on other projects with her or having other types of

relationsihps, or to coauthor with a “stranger”.

11



wants to add a relationship to someone, and the chosen receipient would always accept that

new link. This observation allows us to focus on whom to link with”.

Lemma 1 (Monotonicity). Consider two societies G2 ⊃ G1, then the “super” network G2

have (weakly) larger maximal stakes of cooperation:

φkij(G2) ≥ φkij(G1), ∀i, j, k.

Since G2 ⊃ G1, incentive constraints (IC) for all i, j, k are more restrictive under G1.

Then ~φ(G2) would violate some incentive constraints under G1. Actually, one can identify
~φ(G1) by running the algorithm in Section 2.1 (for G1) and Initializing φij,0 = φij(G2).

We assume the agent is sophisticated in that she chooses with whom to link to maximize

her equilibrium payoff in the resulting network structure. But she is myopic in the sense that

she only considers one-step-ahead in network formation, i.e., the consequences of adding the

new link, but does not consider further links that might be added later (by other agents

or herself). This myopic assumption applies when there is large uncertainty regarding link

dynamics, or when the advent of a new relationship is rare.10

We start with simple network structures and show that the multiplex effect is so strong

that may lead to “multiplexity trap”. That is, agents prefer to link with a current friend even

when its more efficient to link with a stranger. We then explore more complicated network

structures, and see how patterns of existing networks affect the choice between friend vs.

stranger (or multiplexity or linking with a stranger).

3.1 Multiplexity trap

As a start, in this subsection we illustrate that the insight that the incentives for multiplexity

can be very strong. Consider a simple example with three agents. As shown in Figure 4,

agent 1 and 2 already has one relationship at stake, and agent 3 does not link with anyone

in the society. Agent 1 now has new relationship to add, say she has a new research idea,

will she write the paper with her friend agent 2, or a stranger agent 3?

10For more justifications for the myopic assumption, we refer the readers to Jackson (2005) for example.

However, agents need not be completely myopic for our results to hold. We relax this assumption in Section

5.
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Figure 4: Multiplexity vs. stranger: a three-agent example

Notes: Agent 1 and 2 already has one relationship (black line). When agent 1 has a new relationship

to add, will she link with a current friend 2 (red dashed line), or with a stranger 3 (blue dashed

line)?

As it turns out in this simple example, agent 1 will strictly prefer to multiplex with agent

2 rather than link with agent 3. If she link with agent 2, all of the two relationships between

them will get enhanced – the multiplex effect. Specifically, the maximal stake of cooperation

between agent 1 and 2, φ12, will become 2λ/r. Since there are two relationships at hand,

agent 1’s total payoff when she chooses to multiplex is 4λ/r.

However, when agent 1 chooses to add the new relationship with agent 3, although she

still has two links at hand compared to the multiplex case, agent 2 and 3 only has one

relationship each, so their incentives will be binding rather than agent 1’s. Therefore, the

maximal stakes of cooperation on each link, φ12 and φ13, will be determined by agent 2 and

3’s incentive constraint respectively. Since agent 2 and 3 each only has one relationship, we

have φ12 = φ13 = λ/r, and agent 1’s total payoff in this case is 2λ/r.

Efficient vs. Equilibrium Network Formation In the above example, it’s equally

compatible for agent 1 to link with 2 and 3. That is, the stage game payoff when both

agents cooperate is the same for the 12 pair and 13 pair. In this sense, the efficient network

and equilibrium network formation coincide – it’s both an efficient and equilibrium choice

for agent 1 to link with agent 3.

In the following, we show that when we allow the “compatibility index”, c’s, to vary

across pairs and relationships, efficient network and equilibrium network could differ. We

call this the “multiplex trap” – agents keeps on multiplexing with each other even when it’s

more efficient to link with strangers. More specifically, see the next example.

Example 5. A river runs through a village. Each side has two agents (see Figure 5a). Each

agent has two types of relationships that need to establish: babysit and trade. Each agent

needs to find one partner for each relationship. Naturally, it’s more convenient to babysit on

the same side of the river, whereas the gain from trade is larger across the river. For the

compatibility index, let cbabysame = ctradecross = h, whereas cbabycross = ctradesame = l, with h > l > 0.
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Suppose each agent already has the babysit relationship established, and the optimal part-

nerships are formed such that agents link with the partner on the same side of the river.

This is shown by black solid lines in Figure 5b.

How would agents form the new trade relationship?

The efficient linking decision for trade is across the river (as shown by Figure 5b). How-

ever, in equilibrium, every agent strictly prefers to multiplex with the partner on the same

side rather than linking across the river (as shown by Figure 5c), as long as h
l
< 9/4 = 2.25.

This threshold is calculated in the proof of Proposition 2.

(a) Two villages (b) Efficient network (c) Equilibrium network (when
h
l < 2.25)

Figure 5: Efficient vs. Equilibrium Networks.

Notes: Blue band represents the river. Solid lines represent relationship 1 (babysitting), and

dashed lines represent relationship 2 (trade).

Source of inefficiency. The source of inefficiency comes from agents’ myopia/uncertainty

toward how others will form links. If the villager knew for sure that the villager in the

other village will form the trade relationship efficiently and immediately, he would make the

efficient choice as well. However, since agents cannot foresee future link dynamics, either it’s

because of large network or the advent of new relationship is too rare, the multiplex effect

would dominate the benefits of linking with a stranger, as long as the gap of compatibility

is not too large. We discuss the relax of the myopia assumption in Section 5.11

The above observation can be extended to a society consisted of isolated pair.

Proposition 2 (Multiplexity Trap: Isolated Pairs). Starting from a society G0 of (isolated)

pairs such that each pair has at least one existing relation with h. Every agent strictly prefers

to multiplex, and the network will remain forever as a series of isolated pairs, as long as the

compatibilities do not differ too much, such that

max ckij
min ckij

< 9/4 = 2.25.

11We show there that even when agents can perfectly foresee future link dynamics, as long as links are

realized sequentially, multliplexity trap can still occur when agents have high discounting.
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Proof of Proposition 2. The calculate the threshold, if sufficies to have two levels of

compatibilities, cH > cL = 1. Consider an example of n = 4 agents, such that G1 = {12, 34},
and G2 = ∅. Suppose agent 1 is to add a link in G2, either 12 or 13. The tendency of

multiplexing is minimized when c112 = c134 = cL, c212 = cL, and c213 = cH ; that is, both existing

relationships are of low compatibility, and the compatibility of the potential new relationship

is high if 1 multiplex, and low if 1 links to the stranger (agent 3).

If 1 adds link 12: φ1
34 = 1, and φ1

12 = φ2
12 = 2. So π1(G+ 12) = φ1

12 + φ2
12 = 4.

If 1 adds link 13: φ1
12 = φ1

34 = 1 (determined by the incentives of agents 2 and 4),

and φ2
13 = 1

2
+
√

1
4

+ 1
cH

, which solves cHφ
2 = cHφ + 1. So π1(G + 13) = φ1

12 + cHφ
2
12 =

1 + cH(1
2

+
√

1
4

+ 1
cH

), which increases in cH .

Let cH be the threshold such that π1(G + 12) = π1(G + 13); that is, cH solves 4 =

1 + cH(1
2

+
√

1
4

+ 1
cH

). Then cH = 9/4 = 2.25.

Therefore, agent 1 strictly prefers to multiplex (on 12) if and only if cH < c̄ = 2.25.

To complete the proof, we observe that having more relationships on isolated pairs only

make everyone (weakly) more willing to multiplex. In particular, suppose there are k > 1

relationships (with low compatibility cL = 1) to begin with on both pairs 12 and 34. Using

a similar argument as in above, adding link 13 leads to a stake of φ13 = 1
2

+
√

1
4

+ k
cH

,

and the threshold cH at which agent 1 is indifferent between adding 12 and 13 solves

2k + 1 = cH(1
2

+
√

1
4

+ k
cH

). Then cH = (2k+1)2

3k+1
. Easy to see cH increases in k.

When agents form new links, there is a tradeoff between strong incentive provision (by

multiplexity) and high compatibility. The above proposition highlights the fact that the

incentive benefits can be large enough so that agents keep on multiplexing, even when the

current neighbor is not suitable for any of the new relation(s). This effect can be fairly strong:

agents prefer to multiplex and ignore the (in)compatibility as long as the compatibility with

existing neighbor is at least about 38% of that from the most compatible strangers!

A pair of agents have incentives to add more relations between the two of them, to utilize

their existing relations. Such incentives become even stronger as the pair of agents have more

relations. This is the reason we call it a “multiplex trap”: once the process of multiplexity

starts, agents have more incentives to do so and can hardly escape from it.

However, not all societies start from isolated pairs. How would agents choose between

multiplexing and linking with a stranger in more complicated network structures? We explore

this question in the next section.
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4 Multiplex or Not: General Network Structures

Now we extend our analysis to more complicated network structures. Again we are after the

key question: When agents have a new relationship to add, will they multiplex or link with

a stranger? If they choose to multiplex, they benefit from the multiplex effect so that every

existing relationships get enhanced; if they link with a stranger, they could potentially make

use of community enforcement to enhance cooperation. We show next that such a tradeoff

is heavily affect by two network features: degree dispersion and assortativity.

4.1 Multiplexity Dominants When Degree Dispersion is Low

We first note that degree plays a prominent role in shaping agents’ cooperation incentives.

Lemma 2 (MSC in regular networks). Consider any society G0 that is regular with degree d,

that is, every agent’s total degree di ≡ d > 0. Then the maximal stake of cooperation (MSC)

on every link/relationship is:

φ(d) = d
λ

r
.

Proof of Lemma 2. Again we normalize λ
r

= 1 to simplify notations.

Recall the incentive constraint (IC ′) is

(φij)
2 ≤

∑
j′

wij′φij′ ,

in which the weights
∑

j′ wij′ ≡ di = d,∀i by assumption. Therefore, the largest equilibrium

features the same stake on every link φij ≡ φ(d), which solves φ(d)2 ≤ dφ(d)λ
r
. Then φ(d) =

dλ
r
.

In regular networks, every agent, if deviates, is punished by the same number of link/relationships

and hence have the same level of incentives to cooperate. MSC becomes φ = dλ
r
, which is

one’s total degree times the MSC supported by one single link/relation.

Now we show that starting with any regular network, when an agent is to add a new

link, she strictly prefers to multiplex.

Proposition 3 (Multiplexity dominates in regular networks). Starting with any society G0

that is regular with di = d > 0 for all i, when a new relationship arises, every agent strictly

prefers to multiplex.

Proof of Proposition 3. (To simplify notations we assume λ
r

= 1 so the term can be

dropped.) Consider agent 1’s decision of adding a new relationship to an agent 2. Suppose

w12(G0) = k. In particular, 2 is a neighbor of 1 in G0 if k > 0, and a stranger if k = 0.
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By assumption, after the newly added link agent 1 and either 2 will both have a degree

of d + 1, and all the other agents still have a degree of d. Therefore, agents other than 1

and 2 have binding incentive constraints on all links/relationships, whose equilibrium stakes

remain the same as φij = d, (∀ij 6= 12).

Now we calculate the stake on link 12. w12(G0 + 12) = k + 1. Then all relationships on

pair 12 will have a stake of φ12 which solves

(φ12)
2 = (k + 1)φ12 + (d− k)× d.

Easy to see φ12 > d, and it increases in k: intuitively, there are more relationships between

the two high-degree agents (1 and 2) and these high-powered relationships support each

other. The more of them, larger the stake on each.

In addition, it follows from the fact φ12 > d that an increase in k also directly benefits

agent 1 by having more high-stake links – this is reflected in her payoff function

π1(G0 + 12) = (k + 1)φ12 + (d− k)× d.

In sum, π1(G0 + 12) increases in k, the number of existing relationships on pair 12. The

same calculation applies to adding any other link. Therefore, agent 1’s best choice is to add

a link to a neighbor that has most links with her in G0.

When a new link ij is added, the two agents i and j each have a total degree of d + 1,

and hence a larger size of cooperation can be supported between them. If i and j are already

linked (i.e., ij is a multiplex link), such an increase in incentives benefit all relations between

i and j: not only the newly added one, but also the existing ones. In contrast, if i and j

were strangers and have no relationship to start with, the strong incentive only benefits one

relationship (the newly added one). More importantly, since agents have the same degree

before adding the new link, the size of cooperation on the new link between the stranger-pair

will not be large enough to outperform the multiplex effect between a friend-pair.

As an example, consider the following regular network with N = 4 and d = 2 (Figure

6). Before a new relationship arises, everyone in the network has degree of 2. According to

Lemma 2, the MSC on each link is 2λ
r
. When the green agent has a new link to add, he

can either choose to multiplex, represented by the red dashed line, or link with a stranger,

represented by the blue dashed line. Either way, the MSC on the new link will be larger

than the 2λ
r
. If the green agent links with a stranger, the new link will be supported by two

links with MSC of 2λ
r

– the other two agents in the society are the incentive short points.

Whereas if the green agent multiplexes, the red link will be supported by only one link with

MSC equals 2λ
r

and one with MSC larger than 2λ
r
. It’s not hard to see that the MSC on the

red link with be larger than that on the blue link.
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Figure 6: Multiplexity vs. Stranger in a Regular Network

Notes: This is a regular network with d = 2. The MSC on each link in this network is 2λr . We

ignore λ
r in the graph. The green agent has a new link to add. He can either choose to link with

a current friend, represented by the red dashed line, or with a stranger, represented by the blue

dashed line.

Regular network is an extreme version of low degree dispersion – there is no degree

dispersion at all. We can further generalize the above intuition to networks with low degree

dispersion. When agents in a society have similar degrees, the benefits of linking with a

stranger would not be that much most of the cases, but linking with a friend could reinforce

all existing relationships.

4.2 Multiplexity and Assortativity

We have seen that agents tend to multiplex in networks with low degree dispersion. How

about networks with large degree dispersion? We show below that when agents have very

different degrees, their multiplex incentives depend on whether people with similar degrees

are linked together. In other words, in networks with large degree dispersion, the multiplex

incentives depend on the assortativity of a network.

For illustrative purposes, consider networks in which agents have two levels of total

degrees. That is, di = d or D ∀i, with D > d. In addition, suppose the fraction of agents

having degree d is D/(D + d), so that it is feasible for agents to only match with others of

different degrees. There are two (extreme) cases:

(a) Positively assortative: all links are between agents with the same degree;

(b) Negatively assortative: all links are between agents with different degrees.

An example is depicted in Figure 7.
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(a) Positive assortativity (b) Negative assortativity

Figure 7: Networks with different assortativity

Notes: This figure plots two networks with different assortativity: positive assortativity in panel

7a, and negative assortativity in panel 7b. In both networks, an agent has either high degree D or

low degree d = 2. When an agent (colored in green) has a new relationship to add, multiplexity

dominates in panel 7a, whereas she prefers to link with a stranger (colored in purple) in panel 7a

when D is large enough (≥ 6).

We begin with the positive assortativity case, as in Figure 7a. We show below that agents

strictly prefer to multiplex when networks exhibit positive assortativity.

Proposition 4 (Multiplexity dominates in positive assortative networks). Starting with

any (extremely) positive assortative society G0, every agent strictly prefers to multiplex.

This proposition is one step further from Proposition 3: an extremely positive assortative

network G can be viewed as having two separate components Gd and GD, in which all agents

in each subcomponent have the same degree d and D, respectively. Proposition 3 suggests

that every agent prefers to multiplex than to link with a stranger within the same (degree)

group. The proposition further states that agents also prefer to multiplex than to link with

someone in the different group.

It’s important to note that the agents with a low degree d also strictly prefers to multiplex

rather than linking with someone with a higher degree. To see this, suppose a degree-d agent

establishes a new link with a degree-D agent. Adding this link is inferior to multiplexing

due to two reasons: (1) the MSC on the new link is limited by the lower-degree agent,

whose incentives are more binding; and (2) MSC’s on all existing links do not benefit from

the newly added link. This serves as an interesting separating point between our paper

and the literature which usually predicts that people always prefer to link with agents with

large/higher degree (e.g., see Joshi, Mahmud and Sarangi (2017)).

One implication of the above proposition is that multiplexity and assortativity reinforce

each other: multiplexity is very likely in a (positively) assortative network, so more relation-

ships are added between agents with similar degrees, and hence the network becomes more

assortative.
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However, when networks exhibit negative assortativity, there are situations in which

agents are willing to link with a stranger rather than multiplexing, as we see in the next

example.

Proposition 5. Consider the network depicted in Figure 7b. The green agent, who has a

current degree of D, only have low degree (d = 2) neighbors. When she has a new relationship

to add, she prefers to link to a stranger with degree-D rather than to multiplex, if D ≥ 6.

Proof of Proposition 5. Denote the current society G0. Let the green agent be agent 1,

one of her neighbors (white) be agent 2, and the purple agent be agent 3. We compare 1’s

payoff between adding a relationship to link 12 (to multiplex) and adding link 13.

Adding 12: The network becomes G0 + 12, in which d2 = w12 + w13 = 2 + 1 = 3, and

agents d1, d3 ≥ 3. Therefore, agent 2’s incentives determines the stakes on pairs 12 and 13.

Then φ12 = φ13 = 3. All other links have a stake of 2 in the society. Thus agent 1’s payoff

π1(G0 + 12) = 2φ12 + 2(D − 1) = 2D + 4.

Adding 13: The network becomes G0+13. All links other than 13 have a stake of 2 in the

society. The stake on the new link 13, φ13, solves the incentive constraint φ2 = φ + 2D. So

φ13 = 0.5+0.5
√

1 + 8D. Thus agent 1’s payoff π1(G0+13) = φ13+2D = 0.5+0.5
√

1 + 8D+

2D.

The threshold D̄ that makes 1 indifferent between 12 and 13 solves 2D + 4 = 0.5 +

0.5
√

1 + 8D + 2D, hence D̄ = 6.

In sum, agent 1 prefers to link with a stranger (adding 13) if D ≥ D̄ = 6.

In this society which is negatively assortative, all the current neighbors of the high-

degree agents have a lower degree (of 2), and hence can support relatively small stakes of

cooperation. Although multiplexity does help increase the stake of cooperation, a new link

with stranger who has a high degree can be very powerful in providing a high MSC. When

D is large enough (≥ 6 in this case), having one large-stake link is more beneficial than

multiplexity.12

Summary. In this section, we explored more complicated network structures and find two

network features that determine the multiplexity-incentive: degree dispersion and assortativ-

ity. Multiplexity is more preferred when all agents have similar degrees (low dispersion), or

when agents of similar degrees mostly link with each other (positive assortativity). The key

12It’s worth noting that in the above example, it’s not essential for the low-degree agents to be common

friends with the two high-degree agents. And the incentives of the high-degree agents to link with each other

is not driven by completing the triangle. This is because information is complete in our setting, so there is

no issue of information transmission.
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lesson is that for agents to jump out of the multiplexity trap, asymmetry in degree among

neighbors, not only in the society at a whole, is important.

In Section 6, we will present a series of empirical results that support the above theoretical

predictions.

5 Discussion and Extensions

In this section, we discuss several key assumptions and extensions of our paper.

5.1 Relationships with Varying Importance

In this part, we explore the implications when different relationships vary in their importance.

For instance, people might value friendship more than other relationships such as advice-

giving. Once we allow for asymmetry among relationships, we could explore the following

question: given existing relationships, will people link with current friends on more or less

important relationships?

We model this by letting the compatibility index to vary across relationships. Specifically,

recall agents’ cooperation payoff is ckijφij. Let ckij change with relationship k, which shows

that different relationships vary in their importance. When cx > cy, we say relationship x is

more important than relationship y.

We have shown in Proposition 5 that agents prefer to linking with a stranger rather than

multiplexing when networks exhibit negative assortativity, if the number of friends of the

stranger exceed certain threshold D̄. We show below that the threshold D decreases in the

importance index c.

Proposition 6. Recall the negative assortativity example (Figure 8a). D̄ represents the

threshold beyond which linking with a stranger is preferred. When different relationships

vary in their importance, i.e., the compatibility index ckij changes for relationship k, the

threshold D̄ decreases with ck (Figure 8b). That is, agents are more willing to link with a

stranger on more important relationships.
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(a) Negative Assortative Network
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(b) Threshold D̄ decreases in c

Figure 8: Threshold of linking with a stranger decreasing in c, the compatibility (importance)

of the new relationship.

Proof of Proposition 6. To simplify notations we again normalize λ
r

= 1.

We repeat the proof of Proposition 5 by introducing the additional parameter c. The

existing relationships in soceity G0 all have a compatibility normalized to c0 = 1. Again, let

the green agent be agent 1, one of her neighbors (white) be agent 2, and the purple agent

be agent 3. We compare 1’s payoff between adding a relationship to link 12 (to multiplex)

and adding link 13.

Adding 12: The network becomes G0 + 12. Agent 2’s incentives determines the stakes

on pairs 12 and 13. Let φ0 be the stake in each of 2 relationships with compatibility c0 = 1

(those in G0), and φc be the stake in the new relationship with compatibility c = 1. φ0 and

φc solve the following equations:

(φ0)
2 = 2φ0 + cφc;

c(φc)
2 = 2φ0 + cφc;

Easy to see φ0 =
√
cφc, so φ0 = 2 +

√
c and φc = 1√

c
+ 1. All other links have a stake of 2 in

the society.

Thus agent 1’s payoff π1(G0 + 12) = cφc + φ0 + 2(D − 1) = 2D + 1 + 2
√
c.

Adding 13: The network becomes G0 + 13. All links other than 13 have a stake of

2 in the society. The new link 13 has a compatibility of c, and its stake φ13 solves the

incentive constraint cφ2 = cφ + 2D. So φ13 = 0.5 + 0.5
√

1 + 8D/c. Thus agent 1’s payoff

π1(G0 + 13) = cφ13 + 2D = 0.5c+ 0.5c
√

1 + 8D/c+ 2D.

The threshold D̄ that makes 1 indifferent between 12 and 13 solves 2D + 1 + 2
√
c =

0.5c+ 0.5c
√

1 + 8D/c+ 2D, hence D̄ = 4+16
√
c+15c−2c

√
c

8c
.

The above finding shows that the more important the new relationship is, the green agent

is more willing to link with the purple agent (who is a stranger before the new link estab-
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lishes). In other words, people tend to multiplex with friends on relatively less important

relationships.

The rationale behind Proposition 6 is as following: since the benefits of multiplexity

mainly come from the multiplex effect, i.e., all existing relationships get enhanced, then the

more important the new relationship is, the less important the existing relationships are,

the smaller the multiplex effect. As a result, agents are more willing to link with a stranger

rather than multiplex when the new relationship is more important.

One might link the above finding with the old adage that “do not borrow money from

your friends”. The conventional wisdom for the above adage is that people do not want to

risk losing friendship due to some irresistible noise in other relationships. Our finding shows

that people may still avoid certain relationships with friends even if there is no noise.

5.2 Self-Enhencing Multiplex

Multiplex is self-enhencing: agents would continue to prefer to multiplex, in a more “multi-

plexed” network. This is illustrated in the following proposition.

Proposition 7. Starting with any given society G, suppose an agent i prefers to multiplex

by adding some relationship ijk. Then in the resulting society G + ijk, this agent i still

prefers to multiplex than to link with a stranger.

5.3 Myopic vs. Farsighted Agents

In our previous sections, we assume that agents are myopic in that they ignore future link

dynamics. This myopia does not have to reflect agents’ irrationality – it could completely

come from physical constraints such as uncertainty in a large network. We showed in Section

3.1 that such myopia could cause inefficient network formation. However, for the inefficiency

result to hold, we do not have to assume complete myopia. As long as new relationships

arrive randomly over time, and agents are not sufficiently patient, network formation could

still be inefficient, i.e., when it’s socially efficient to link with a stranger, agents may still

prefer to multiplex with current friends. Such inefficient patterns become more likely as the

opportunities of new relationships become less frequent and/or agents are more impatient.

6 Empirical Analysis

So far, we have shown that multiplexity could enhance cooperation and the incentive benefits

could be so large that we may see multiplexity trap. We further show that agents prefer to

multiplex more likely in networks that exhibit low degree dispersion or positive assortativity.

We summarize the above theoretical findings as the following three testable hypotheses:
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Testable hypotheses

• Multiplexity prevails in networks (Hypothesis 1)

• Multiplexity is more likely in societies that have:

� low degree dispersion (Hypothesis 2a)

� positive assortativity (Hypothesis 2b)

Data description. The data we use is the Indian Village Survey data from Banerjee et al.

(2013) and Jackson, Rodriguez-Barraquer and Tan (2012). It covers 75 rural villages in

Karnataka, an area of southern India within a few hours of Bangalore. The survey contains

information about multiple relationships among individuals and households in the same

village, which serves as a good starting point to test our theory about multiplexity.

Specifically, we use five types of relationships among households in our study: (1) going

to temple together; (2) visits during free time; (3) advice giving/receiving; (4) rice/kerosene

borrowing/lending ; (5) money borrowing/lending. We treat households as nodes in the

network.13 We say a pair of households are connected, if at least one member in one household

has any of the above relationships with any member in the other household. Accordingly,

there are five types of connections. When two households have at least two different types

of connections, we say they multiplex with each other.

Testing Hypothesis 1: The Prevalence of Multiplexity.

Our first, and the baseline, theoretical prediction is that multiplexity trap can occur.

That is, agents tend to build new relationships on top of old ones, even when it’s not

efficient. One implication of this prediction is that multiplexity should be prevalent.

This prevalence can be illustrated in Figure 9, which compares the histogram of the num-

ber of other relationships conditional on having a given relationship k or not. For example,

Panel 9a shows that conditional on the household pair ij do not have the relationship on

advice, the probability that they do not have any other relationship is 95%; whereas this

probability drops to 18% when the pair do have the relationship on advice.

13The empirical results are the same if we use individuals as nodes.
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Figure 9: Prevalence of Multiplexity

Notes: Each panel compares the histograms of the number of other relationships, conditional on

having a given relationship k (left) or not (right). The panels share the same pattern: when a pair

of households do not have the given relationship, it is highly likely (above 90% that they do not

have any other relationships; while when they have the given relationship, it is highly likely (above

80%) that they also have at least one of the other relationships.

We use the following baseline regression to see how prevalent multiplexity is:

Relation−kij = α0 + α1Relation
k
ij + εij (1)

The key independent variable Relationkij is an indicator variable whether there is a re-

lationship k between the household i and household j in village v, Relationkij = 1 if the

answer is yes, and 0 otherwise. The dependent variable Relation−kij indicates whether
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there is any relationship other than k between the two households, Relation−kij = 1 if

the answer is yes, and 0 otherwise. There are five types relationships, and we let k =

temple, visit, advice,money, rice. We can also let Relation−kij to represent the number of

relationships between households i and j other than k, and the result is similar.

The following Table 1 summarizes our result.

(1) (2) (3) (4) (5)

Relationship k Temple Visit Advice Rice Money

Panel A: Dependent variable: Relationship −k (Yes = 1)

Relationship k 0.83*** 0.71*** 0.80*** 0.83*** 0.81***

(Yes = 1) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 718,951 718,951 718,951 718,951 718,951

R-squared 0.04 0.43 0.30 0.39 0.42

Panel B: Dependent variable is the number of relationship −k (0-4)

Relationship k 2.60*** 1.42*** 1.82*** 1.74*** 1.69***

(Yes = 1) (0.05) (0.03) (0.03) (0.03) (0.02)

Observations 718,951 718,951 718,951 718,951 718,951

R-squared 0.067 0.46 0.39 0.46 0.51

Table 1: Prevalence of Multiplexity

We see that the existence of one relationship between households has a significant and

positive impact on whether they have other relationships (Panel A) and the number of other

relationships (Panel B).

The above provides baseline evidence for our Hypothesis 1 : multiplexity is prevalent in

networks. However, there might be many reasons for multiplexity. To further distinguish

our theory from others, we need to test our Hypotheses 2a and 2b. That is, how network

patterns will affect the prevalence of multiplexity.

Testing Hypothesis 2: Determinants of Multiplexity. Our Hypotheses 2a and 2b

concern the determinants of multiplexity. Recall that we have the following theoretical

predictions:

• Multiplexity is more likely to appear in societies that have:
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2a. low degree dispersion;

2b. postive assortativity.

To test the above hypotheses, we treat each village as independent observation, and

follow two steps. First, we measure the level of multiplexity for each village; then, we put

the estimated multiplexity as dependent variable, and the network features (degree dispersion

and assortativity) for each village as independent variables.

Specifically, we first run the following baseline regression at the village level:

Relation−kij = αv0 + αv1Relation
k
ij + εvij (2)

This results in a point estimation for αv1, v = 1, ..., 75, for each village. We use it as the

measure for the level of multiplexity in village v.

We then provide measures for the key independent variables that we are interested in. The

first variable is the degree dispersion. Specifically, for each village, we plot the distribution

of the total degree for all the local households, and then we define the dispersion in degree

of the network by using 75th percentile dividing by the 25th percentile of the degree. The

higher the value is, the more dispersed the network is.

The second variable, assortativity, measures how assortative a village is in terms of degree.

This variable is defined as the inverse of the average absolute difference between degrees of

connected households in the village. The value of assortativity ranges from 0.1 to 0.3 in the

data.

Then we conduct the following regression to investigate the relationship between multi-

plexity and degree dispersion and assortativity.

Multiplexv = β0 + β1Dv + εv (3)

The dependent variable is the multiplexity measure in village v, which is estimated αv1 in

previous equation. Dv denotes degree dispersion or assortativity measure discussed above.

Since we control for the village specific dummies, the main effects of Dv have been absorbed.

The coefficient, β1, is of main interest because it captures how multiplexity is associated

with degree dispersion or assortativity.

Panel A in Figure 10 reports the results.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Relationship k

Panel A: Multiplexity based on all pairs
Dispersion -0.178** -0.0694 -0.135*** -0.0570 -0.117***

(0.0760) (0.0532) (0.0435) (0.0359) (0.0353)

Assortativity 0.849** 0.275 0.131 0.383* 0.459**

(0.423) (0.295) (0.235) (0.206) (0.184)

Observations 75 75 75 75 75 75 75 75 75 75

R-squared 0.071 0.052 0.026 0.013 0.143 0.004 0.036 0.052 0.142 0.070

Dispersion -0.189* -0.0788 -0.0566 -0.0450 -0.0287

(0.0980) (0.0592) (0.0396) (0.0492) (0.0371)

Assortativity 0.661 0.345 0.0453 0.264 0.107

(0.569) (0.303) (0.258) (0.252) (0.208)

Observations 75 75 75 75 75 75 75 75 75 75

R-squared 0.061 0.019 0.032 0.016 0.027 0.000 0.017 0.015 0.010 0.004

Dispersion -0.308*** -0.0621 -0.192*** -0.0628* -0.162***

(0.105) (0.0611) (0.0607) (0.0360) (0.0420)

Assortativity 0.569 0.209 0.209 0.445* 0.570***

(0.524) (0.322) (0.317) (0.231) (0.213)

Observations 75 75 75 75 75 75 75 75 75 75

R-squared 0.147 0.018 0.018 0.007 0.148 0.006 0.036 0.065 0.191 0.085

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel B: Multiplexity based on same subcaste pairs

Panel C: Multiplexity based on different subcaste pairs

Temple company Visit Advice Rice Money

Figure 10

Consistent with our theoretical predictions, we find that degree dispersion is negatively

associated with multiplexity, and assortativity is positively related with multiplexity at vil-

lage level. The following Figure 11 show this more intuitively.
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(b) Assortativity

Figure 11: Determinants of multiplexity, money as the given relationship

Robustness Check. Given the importance of caste in Indian society, we conduct the

parallel investigation for same-subcaste pairs and different-subcaste pairs seperately. We

conjecture that, if cooperation is mostly driven by unmodeled factors among same-subcaste

pairs, our theory applies more to different-subcaste pairs because incentive issue matters

more here. This leads to the following robustness check:

The effects of degree dispersion and assortativity are stronger (and more significant)

for different-subcaste pairs, and are weaker (and less significant) for same-subcaste pairs

(Hypothesis 3).

Figure 12 provides evidence that supports Hypothesis 3. Panels 12a and 12c are for

same-subcaste pairs and Panels 12b and 12d are for different-subcaste pairs. The associations

between multiplexity and degree dispersion/assortativity are only significant among different-

subcaste pairs. Regression results are reported in Panel B and C in Figure 10 respectively.
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(a) Degree dispersion, same-subcaste
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(b) Degree dispersion, different-subcaste
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(c) Assortativity, same-subcaste

1 2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18
19

20

21

23

24
25

26

27

28

29
30

31

32

33
34

35

36

37

38
39

40

41

42

43

44

45

46
4748

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
64

65

66

67
68

69

70

71

72

73

74

75

76
77

1
.2

1
.4

1
.6

1
.8

2
2

.2
A

s
s
o

c
ia

ti
o

n
 o

f 
m

o
n

e
y
 w

it
h

 h
a

v
in

g
 o

th
e

r 
re

la
ti
o

n
s

.05 .1 .15 .2
Assortativity

(d) Assortativity, different-subcaste

Figure 12: Determinants of multiplexity, for same-subcaste or different-subcaste pairs

7 Conclusion

In this paper, we explore the interdependence among multiple relations, and examine when

do people interact with the same set of people across different relations. We contribute to

the literature by endogenizing the network formation process when agents form multiple

relations, and shows how network features of the existing network affects the multiplexity

decision.

We find that multiple relations could enhance cooperation because multiplexity pro-

vides incentive spillover across relations. But also due to this large benefits of multiplexity,

sometimes agents fail to link with a stranger even when it’s more efficient – the so-called

multiplexity trap could occur. Mostly importantly, we find that agents tend to multiplex
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when networks have low degree-dispersion, or when networks exhibit positive assortativity.

This finding distinguishes our theory of multiplexity from other theories, for previous work

does not speak to how network patterns affect the multiplexity choice. Using the Indian

Village Survey Data collected by Banerjee et al. (2013), we are able to test our theories and

find supportive evidence.

Our work is a preliminary step for us to understand why in some societies, people mainly

build up their relations in the familiar-circle, while in others, people could expand their circle

across different domains. The factor that we emphasize is the existing network features. But

definitely there are many other factors that are important and play a role, such as the formal

institutions. The interaction of formal institution and informal ones, such as multiplexity

and community enforcement, will be worth exploring in future work.
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