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Abstract

We study social learning in networks with agents who may share information se-
lectively. This creates echo chambers with heterogeneous news diets across agents.
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results—if (and only if) agents hold even minor misperceptions about selective shar-
ing and information quality is sufficiently low. This belief polarization is exacerbated
by abundant information. Specifically, when quantity of external information grows
indefinitely different agents can hold extreme opposite beliefs. Polarization can also
worsen when the echo chambers become larger, despite providing the agents with more
information. We show how information aggregation can mitigate polarization—even if
it involves losing some information.
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1 Introduction

Polarization has been linked to negative economic outcomes, including, political gridlock,
low legislative quality, economic inequality, and a reduction in security of property rights,
trust, investment, and growth (Bishop, 2009; Barber and McCarty, 2015; McCarty et al.,
2009; Bartels, 2008; Gilens, 2012; Zak and Knack, 2001; Keefer and Knack, 2002). In recent
decades, authors have noted increasing polarization in policymaking, media, and in public
opinions (Pew Research Center (2014, 2020); Tucker et al. (2019); Desmet and Wacziarg
(2018)). According to Alesina et al. (2020) “Evidence is growing that Americans are polarized
not only in their views on policy issues and attitudes towards government and society, but
also about their perceptions of the same, factual reality.” Economists have, thus, been
concerned with understanding the determinants of belief polarization.

Several authors have made a connection between increasing polarization of the American
public and growing use of the Internet as a source of information (Periser, 2011; Sunstein,
2017; Azzimonti and Fernandes, 2018; Tucker et al., 2019). Some of these studies have
highlighted the role of fake news, bots, and bad actors in driving polarization, leading to
discussions about regulating social media to minimize these elements.1 This raises the ques-
tion of whether such regulation will completely alleviate the problem of polarization, even
if successful. More generally, even in the absence of misinformation, can the way in which
people consume and share information on networks lead to polarization? In addition, can
the preponderance of information introduced by the expansion of such networks lead to more
polarization? This paper provides a theoretical framework to answer these questions.

Evidence shows that information flows on social networks in specific ways. First, people
tend to share information selectively in networks (Shin and Thorson, 2017; Weeks et al.,
2017; Shin et al., 2018; Pogorelskiy and Shum, 2019). For example, people share only the
information that favors their preferred political candidate, or their preferred views on the
importance of protecting the environment. Second, agents are likely to have friends who
select different kinds of information to share. Nonetheless, there is a wealth of evidence on
the existence of echo chambers or media bubbles (see Levy and Razin, 2019a), which feature
some imbalance in the kind of information provided by friends.

It seems intuitive that unbalanced selective sharing of information may lead to polar-
ization. After all, if a person takes at face value what her friends say and they selectively
support one view on an issue, her opinion can be swayed accordingly. However, if a person
is fully aware of how her friends select what to share, she will adjust for this selection (or ig-
nore the information received altogether) and her belief will not be distorted. Thus, what we
assume about how aware people are about the selectivity of shared news is crucial. Pogorel-
skiy and Shum (2019) study experimentally how people exchange and perceive information
in networks and find that people do share information selectively. They also find that agents
often fail to fully account for the selective nature of received information. It is unrealistic

1See, for example, “Should the Government Regulate Social Media?”, Wall Street Journal, June 25, 2019
and “Facebook Throws More Money at Wiping Out Hate Speech and Bad Actors”, Wall Street Journal,
May 15, 2018.
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to expect agents to be completely naive about selective sharing, but they also seem to not
fully take it into account either. Thus, our model allows for some misperception of selective
sharing consistent with this evidence.

We consider a simple model of learning from shared information on a network. Agents
learn about some underlying state of the world, which can take one of two values. The state
realizes once and for all in the first period. In every subsequent period, each agent receives
an independent signal about the state. She can then either share it with her neighbors in
the network (hereafter, called friends) or remain silent. This rules out fake news in the form
of fabricated signals. The choice of when to remain silent gives rise to selective sharing as
follows. While some agents—called normal—share every signal, others share only signals
that favor a specific state. We call these types of agents dogmatic. To fix ideas, consider the
issue of whether or not to vaccinate children. Some individuals (possibly a tiny minority)
may dogmatically support a particular view and share only favorable information about that
view, while other agents simply share any information they have. When receiving signals
from friends, the agents are aware of selective sharing, but misperceive its degree. We model
such misperceptions in a way that renders agents partially unresponsive to selective sharing
(as found in Pogorelskiy and Shum (2019)), prevent it from unraveling, and is inspired
by the psychology literature on “illusory superiority” and the “better-than-average” effect
(Cross, 1977; Svenson, 1981; Odean, 1998; Zuckerman and Jost, 2001). In a nutshell, while
agents correctly interpret the signals they received, they misinterpret their friends’ silence
by allowing for the possibility that they simply have not received information. This is akin
to an agent assuming that her friends do not read the newspaper as often as they do. While
agents in our model update priors according to Bayes’ rule, they do so with a (common)
misspecified model of selective sharing.

We are interested in how agents learn in this environment and the overall effects on
their belief polarization. Consider any agent and suppose her network has an imbalance—
however small—in the composition of her dogmatic friends. That is, besides possibly many
normal friends, she has more dogmatic friends who favor one state over the other. We
refer to this composition as the agent’s echo chamber. To examine short-run learning (i.e.,
with little information), we consider the agent’s expected posterior belief after one period
of signals. We find that this expected posterior differs from the agent’s prior in the same
direction of the imbalance in her echo chamber, at least when the quality of the original
signals is sufficiently low (i.e., they are sufficiently uninformative about the state). Note
that this departs from correctly specified Bayesian updating, under which the expected
posterior always equals the prior. Intuitively, rather than correctly interpreting her friends’
silence as suppressing information against their view, the agent incorrectly assumes that her
friends may be uninformed. Thus, perhaps counterintuitively, it is the agent’s misperception
that her friends are less informed that gives them the power to distort her belief. Note that
the imbalance in echo chambers can be arbitrarily small, yet counteract the impact of many
unbiased signals depending on the quality of information. This demonstrates the role of
information quality in generating belief polarization: If external information is very precise,
it would be impossible for friends to bias an agent’s beliefs.
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We also examine long-run learning (i.e., with abundant information). We find that if the
quality of external information is sufficiently low, then with certainty an agent’s asymptotic
belief assigns probability one to the state corresponding to the direction of imbalance in her
echo chamber, irrespective of the true state. That is, the agent is essentially guaranteed to
be pulled towards the preferred state of her echo chamber. This conclusion may be counter-
intuitive, as more information does not alleviate, but rather exacerbates incorrect learning.
We also show that greater misperception and more unbalanced networks can exacerbate
incorrect learning. To the extent that the Internet has served to increase the frequency of
information arrival where (as a result) each bit of information may be of low quality, our
analysis suggests that this may be a driver of incorrect learning, even without misinforma-
tion (i.e., false information). In turn, to the extent that agents live in echo chambers with
imbalances favoring different states, the previous results suggest mechanisms that can lead
people’s beliefs to diverge, thus giving rise to polarization.

We build on the link between unbalanced selective sharing and misperception thereof to
further understand how networks interact with information to drive polarization. A natural
question is whether both aspects are necessary for polarization to appear. We show that if
either there is no imbalance in the network or there is no misperception, beliefs converge to
the true state and the expected posterior is equal to the prior after every round of updating.

Next we show that the expansion of connections as networks grow can be another driver
of polarization. We identify sharp conditions of the growth rates of the different types of
friends under which network expansion curbs or exacerbates polarization. For instance, we
find that by simply scaling any agent’s network while keeping the proportions of her normal
and dogmatic friends raises the threshold of information quality below which polarization
occurs. That is, for a fixed level of information quality, it is possible that a person whose
belief is not polarized in a smaller network become polarized when her network expands.

Finally, we explore interventions that may reduce polarization in our networks. We
find that allowing signals to be aggregated before being released to the agents can alleviate
polarization. Despite losing information relative to the set of original signals, the aggregated
signal has higher quality than each original signal. Thus, for each level of misperception,
there exists a level of aggregation which ensures that all agents learn correctly, thereby
eliminating polarization. This result suggests a rationale for public information aggregators
or for committing to releasing information only rarely to ensure that it is of high quality.

Related Literature

The economics literature discusses at least three possible causes for belief polarization. One
strand of papers that is most closely related (e.g., Levy and Razin, 2019b; Hoffmann et al.,
2019; Enke et al., 2019) has studied polarization arising from behavioral biases. Our main
contribution to this literature is to highlight the importance of the network structure cou-
pled with selective sharing and misperception in generating polarization. Another strand
studies polarization arising as a result of heterogeneity in preferences (see Dixit and Weibull
(2007) and Pogorelskiy and Shum (2019)). Such heterogeneity of preferences would exac-
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erbate the polarization we find, but is not required for generating our preliminary results
about polarization. Finally, another reason for polarization that has been studied is biased or
multidimensional information sources (e.g. Mullainathan and Shleifer, 2005; ?; Levendusky,
2013; Conroy-Krutz and Moehler, 2015; Reeves et al., 2016; Perego and Yuksel, 2018), where
bias usually comes from media competition over viewers. In our model, the external informa-
tion sources are assumed to be unbiased when reporting information and bias is generated
in the network. ? show that one-dimensional opinions can diverge with two-dimensional
information. We provide conditions under which one-dimensional opinions diverge with one-
dimensional information, based on selective sharing and misperception.

This project also fits into the growing literature on the effects of model misspecification
on social learning. Bohren (2016), Bohren and Hauser (2018), and Frick et al. (2019) analyze
how model misspecification impacts long-term learning in environments where agents learn
from private signals and the actions of other agents. In particular, Bohren and Hauser
(2018) study when agents with different, yet reasonable, models have no limit beliefs (i.e.
beliefs cycle) or have different limit beliefs (disagreement). The result about disagreement is
close in spirit to what we find, but the driving mechanism is fundamentally different: In our
model, all agents have the same misspecified model of the world and polarization results from
exposure to selectively shared information through the social network. We also emphasize
the important role played by the quality of information, which may suggest a simple way to
alleviate polarization by aggregating signals. Molavi et al. (2018) study long-run learning
on social networks when non-Bayesian agents exhibit imperfect recall. They show that such
agents may overweigh evidence encountered early on relative to later information, which can
lead to mislearning in the limit. Again, while this conclusion is related to ours, unlike these
authors, we assume that agents update beliefs via Bayes’ rule, albeit with a misspecified
model of the world.

A key element of our model is the network structure. There is a large literature on
both Bayesian (Acemoglu et al., 2010; Pogorelskiy and Shum, 2019; Spiegler, 2019) and non-
Bayesian learning in networks (Golub and Jackson, 2010; DeMarzo et al., 2003; Azzimonti
and Fernandes, 2018; Eyster and Rabin, 2010). One closely related paper in this literature
is Levy and Razin (2019a), which considers the effect of what they call a “Bayesian Peer
Influence” updating heuristic on the limit beliefs in the network. One of the main results
shows how beliefs in society can become polarized as a result of agents using this updating
rule. However, the meaning of polarization in that paper is different from ours: Instead of
groups in society becoming polarized, it is the entire society’s consensus that shifts towards
extreme beliefs, whereas we provide conditions under which beliefs of agents in society diverge
upon arrival of new information.

Recent empirical studies show that social media is an important source of news for people
and can lead to divergence of beliefs and attitudes (e.g. Allcott and Gentzkow, 2017; Bursztyn
et al., 2019; Mosquera et al., 2019; Levy, 2020). Still other empirical evidence by Boxell et al.
(2018) suggests that the Internet does not drive polarization. Our model can predict in which
environments we expect to see the Internet drive polarization. We, thus, contribute to this
literature by providing a theoretical framework to better understand how social media can
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contribute to polarization and to guide future empirical investigations of this phenomenon.

The remainder of the paper is organized as follows. Section 2 presents our stylized model
of information sharing in a network. Section 3 presents the main results on learning in the
short and long run. Section 4 considers what happens when the network expands. Section
5 considers the polarization in the entire network. Section 6 demonstrates how aggregating
signals can mitigate polarization. We conclude with a discussion of the results in Section 7.

2 Model

We provide a stylized model of information sharing in a network. Time is discrete and
denoted by t = 0, . . . , T, where T may be infinite. There are two possible states of the
world, ω ∈ {L, R}, and the state is determined by nature in period 0. For example, the
state could represent whether the preservation of the environment requires lower or higher
national spending than the current level, or whether vaccinations can be harmful. There is
an exogenously fixed network of agents who seek to match the state. Each period t ≥ 1,
each agent privately receives a signal sit ∈ {l, r} about the state, which is i.i.d. across agents
and time.2 The information quality of sit is denoted by q, namely, the probability that the
signal matches the true state. Formally,

P(sit = l|ω = L) = P(sit = r|ω = R) = q,
P(sit = r|ω = L) = P(sit = l|ω = R) = 1− q.

We assume that q > 1
2 , so that the signals are at least partially informative. As q increases

the signal becomes more precise, so we refer to q as the information quality.

Once an agent receives a signal, she can either stay silent or share the signal with her
neighbors in the network, which we will call her friends. She cannot lie when sharing a signal,
which rules out fake news. For example, an agent can choose to share a news article or not,
but cannot edit the article’s contents. In addition, she cannot choose with whom to share
her information, i.e. no targeting: She either shares it with all her friends, or with none.
By ruling out fake news and targeted sharing, we highlight the role of selective sharing in a
baseline model to which these other effects can be added.

Our model aims to capture the evidence of selective sharing that Pogorelskiy and Shum
(2019) and others find. To this end, we introduce three types of agents. We will call an
agent dogmatic left if she shares only signals sit = l and dogmatic right if she only shares
signals sit = r. One interpretation is that such agents choose to share only information that
supports the state they dogmatically believe in.3 We will call an agent normal if she shares

2In reality, people receive news that are correlated. However, strong evidence suggests that people often
neglect correlation, especially in network environments (Enke and Zimmermann (2017); Eyster et al. (2018);
Pogorelskiy and Shum (2019)). Under correlation neglect, we can allow for arbitrary correlation between the
agents’ signals within each period without qualitatively changing the results.

3Dogmatic agents can be thought of as having degenerate beliefs that do not change with new informa-
tion.They can be thought of as stubborn, narrow minded, individuals who blindly follow and promote their
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any signal she receives. Each agent’s type is fixed and exogenous. Formally, each period the
left and right dogmatic types will transmit signals as follows:

aL(sit) =

{
transmit, if sit = l
stay silent, if sit = r

aR(sit) =

{
stay silent, if sit = l
transmit, if sit = r .

The timing of period t ≥ 1 is as follows: (1) signals sit are independently realized; (2)
agent i observes sit privately; (3) agent i shares sit with her friends according to her type
and transmission strategy; (4) agents update beliefs based on all signals they have received,
including their own signal.

We are interested in studying the beliefs of normal agents. We will assume that all
normal agents have a common prior that assigns probability π ∈ (0, 1) to state L. Although
our results can be adjusted to allow for different priors, this assumption helps emphasize
the drivers of polarization that we discover. Let i be any normal agent. The composition
of her friends will play a key role. Suppose i has dLi ≥ 0 dogmatic-left friends, dRi ≥ 0
dogmatic-right friends, and ni ≥ 0 normal friends. We will refer to i’s composition of
friends (dLi, dRi, ni) as her echo chamber, since the behavior of dogmatic friends to reinforce
a particular view is similar to the common understanding of how echo chambers work on
social networks. Our results will show that the composition of i’s echo chamber has a crucial
effect on her posterior beliefs.

We argued that, besides selective sharing, a key part of our analysis is to allow for misper-
ceptions about it. Selective sharing involves suppressing some information that one receives
and replacing it with silence. Thus, one plausible way to misperceive selective sharing in
our setting is to misinterpret the silence of a friend as the possibility that she genuinely re-
ceived no information (i.e., no signal). This form of misperception has another interpretation
that is consistent with our analysis. A manifestation of the so-called “illusory superiority”
or “better-than-average” heuristic is thinking that other people may be less informed than
they actually are (see, for example, Cross, 1977; Svenson, 1981; Odean, 1998; Zuckerman
and Jost, 2001). People often have unjustifiably favorable views of themselves relative to the
population average or even in person-to-person comparisons on various characteristics, which
may include how well informed they are or how good they are at getting and understanding
information.

We model such misperceptions as follows. Each period, agent i observes her signal sit and
the signals shared by her friends. When updating, i knows the types of her friends and is
aware of their transmission strategies. However, she thinks that they are less informed than
they are: In her view, in every period each friend observes a signal only with probability
γ < 1 and no signal with probability 1− γ. Thus, from i’s perspective, each of her friends
faces the following timing in period t ≥ 1: (1) signals sit are independently realized; (2)

convictions.
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friend i privately observes sit with probability γ; (3) if sit is observed, it is either shared
or not according to i’s type and strategy; (4) the agents update beliefs. Note that γ is the
same for all normal agents. This way of modeling misperceptions of selective news sharing
may be viewed as a minimal departure from a standard Bayesian model, where the agents
continue to be Bayesian but relative to a slightly misspecified model of the world. This
way of modeling misperceception also ensures that selective sharing does not unravel, which
would prevent it from having any effect on beliefs.

3 Learning in the short and long run

To examine the effects of selective sharing and misperceptions in the short run, our first result
looks at the expected posterior belief of agent i that results from one round of updating (i.e.,
T = 1). Since the focus of this section is normal agent i, we drop all i subscripts. Let
µ(s1) be normal agent i’s Bayesian posterior probability assigned to state L given all the
information she obtains after one period, which we denote by s1 (i.e., her signal, her friends’
signals, and their silence). We show that whenever there is an imbalance in i’s echo chamber,
i’s expected posterior conditional on any state will be distorted towards the state preferred
by the majority of her dogmatic friends when the signal quality q is sufficiently low.

Proposition 1. Fix an agent such that dL > dR. There exists q̄1(dL, dR, n, γ) > 1
2 such

that, if q < q̄1(dL, dR, n, γ), then for ω ∈ {L, R}

E
[
µ(s1)|ω

]
> π.

The proof of Proposition 1, and henceforth all omitted proofs, can be found in the Appendix.

An immediate implication of this result is that a defining property of Bayesian updating
no longer holds in our setting. Since the expected posterior is distorted conditional on any
true state of the world, the unconditional expected posterior will also be distorted in the
same direction. This is in contrast to Bayesian updating with a correctly specified model of
the world, where the expected posterior would be equal to the prior.

We provide some intuition for the result by first deriving agent i’s posterior after one
period. Consider that agent i has echo chamber (dL, dR, n). Let `L denote the number of left
signals that dogmatic-left friends of i have received, and `R denote the number of left signals
that dogmatic-right friends of i have received. Since there are dL left-dogmatic and dR right-
dogmatic friends (and they all receive independent signals), `L is distributed as a Binomial
random variable with probability 1− q and sample size dL, whereas `R is distributed as a
Binomial random variable with probability 1− q and sample size dR. Note that i also receives
a private signal and n independent signals from her normal friends. This is equivalent to
receiving n + 1 independent private signals. Letting `N denote the number of signals s = l
that are contained within them, `N is a Binomial random variable with probability 1− q
and sample size N = n + 1. Note that agent i’s information s is summarized by (`L, `R, `N).

Given a fixed realization (`L, `R, `N), by Baye’s rule agent i’s posterior belief is given by
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µ1(ω = L|`L, `R, `N) =
π

π + (1− π)QMΓS , (1)

where

Q ≡ 1− q
q

M ≡ `L − (dR − `R) + 2`N − N

Γ ≡ γ(1− q) + (1− γ)

γq + (1− γ)

S ≡ `R − (dL − `L).

Note that QM captures the correct interpretation of signals received. Agent i receives
`L + `N left signals from dogmatic left and normal friends. She receives (dR− `R) + (N− `N)
right signals from dogmatic right and normal friends which counteract the left signals (and
hence enter negatively in the exponent).

In addition to signals received, agent i observes silence from dogmatic left and right
friends, which is incorrectly interpreted. This is captured by ΓS. Agent i observes silence
from `R dogmatic right friends, each of which agent i (incorrectly) attributes either to a left
signal with probability γ or to no signal with probability 1− γ. Similarly, agent i observes
silence from dL − `L dogmatic left friends and (incorrectly) attributes these to either a right
signal or no signal. Counterintuitively, the incorrectly interpreted silence captured by ΓS

provides a “boost” to the correctly interpreted signals QM. Note also that if γ = 1 then
Γ = (1− q)/q so the boost disappears and silence is correctly interpreted.

Although the term ΓS distorts the posterior, it is still unclear that the average distortion
goes in any specific direction. For instance, they could inflate or deflate updating but still be
correct on average. Intuitively, if i’s echo chamber has more dogmatic-left than dogmatic-
right friends (dL > dR), she tends to receive more signals that support L than R as the true
state due to their selective sharing. However, i is fully aware of this and would be able to
fully unravel the effect of selective sharing, except that her misperception complicates this.
When hearing silence from a dogmatic friend, i could either (correctly) assume her friend
is censoring, or (incorrectly) assume that friend simply received no signal. It is this later
incorrect assumption that allows i’s belief to be biased. Clearly, the quality of the signals
cannot be perfect (i.e., q = 1) for i’s expected posterior to deviate from her prior. Yet,
the result shows that the imbalance between dogmatic friends—however small—can always
overcome the unbiased information coming from normal friends and i’s own signal when
the agents get signals of sufficiently low quality. Put differently, the misperceived selective
sharing dominates even though dogmatic friends’ signals become almost uninformative.

Proposition 1 has immediate consequences for belief polarization in societies. If i has more
dogmatic-left than dogmatic-right friends and i′ has more dogmatic-right than dogmatic-left
friends—where again the imbalances can be small—then in expectation their posteriors will
move apart, at least if the quality of signals is small. Thus, our result suggests that the
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composition of one’s echo chamber can be a driver of belief polarization. This is consistent
with the narrative that social media can give rise to “echo chambers” where people are
exposed to an unbalanced diet of opinions and as a result develop polarized beliefs. However,
our result qualifies this narrative in two ways: First, it does not require the presence of fake
news; second, it stresses that echo chambers also require low quality information in order to
distort beliefs from the truth.

Our first result showed that one round of information arrival is enough to give rise to
polarization, at least in expectation. However, it leaves open the possibility that when infor-
mation becomes abundant (i.e., in the long run after many signals) polarization disappears.
In fact, the opposite can occur. As long as information quality is sufficiently low, abundant
information can exacerbate the effect of misperceived selective sharing and cause i’s beliefs
to be incorrect with probability 1. To show this, we consider the limit in probability of the
posterior belief µ(sT) as T → ∞, which we denote by plimT→∞ µ(sT). If q is sufficiently
small, i’s posterior belief is pushed towards the degenerate belief on the state that is favored
by the majority of her dogmatic friends, with probability 1 and irrespective of the true state.
Denote, I{ω=L} as the indicator function that equals 1 if ω = L and 0 otherwise.

Proposition 2. Fix an agent such that dL > dR.

1. There exists a unique 1 > q̄2(dL, dR, n, γ) > 1
2 such that

plim
T→∞

µ(sT) =

{
1 if q < q̄2(dL, dR, n, γ)

I{ω=L} if q > q̄2(dL, dR, n, γ)

2. q̄2(dL, dR, n, γ) is increasing in dL − dR and decreasing in n and γ.

Consider the first part of Proposition 2. Intuitively, with many rounds of information
arrival agent i’s own signals provide a more accurate estimate of the state, which would
result in perfect learning in a standard setting. However, i combines her signals with the
signals from her friends, which provide more information, but this information is biased in
ways she does not correctly take into account. Once again, the outcome of this race between
the two kinds of information is a priori not clear. Yet, with low quality signals, the distortion
introduced in each step of updating unveiled in Proposition 2.1 accumulates over time leading
the posterior astray with certainty.

To see this more precisely, consider updating at each period t. Dogmatic friends tend
to provide more left than right signals. Normal friends provide unbiased signals. Who wins
the race as T → ∞? Recall the correct updating term QM and incorrect updating term ΓS.
When q is close to 1

2 (low informativeness), the correct updating term QM is close to 1 and

thus the misperception boost to informativeness ΓS dominates. By contrast, when q is close
to 1 (maximal informativeness), the correct updating term QM is close to zero and hence
the misperception boost to informativeness ΓS is curtailed.

The second part of Proposition 2 provides important comparative statics on the lower
bound of informativeness that avoids polarization. This lower bound increases with the
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absolute difference between the number of dogmatic left and right friends, or the magnitude
of the echo chamber imbalance, and increases with the degree of misperception. The lower
bound decreases with number of normal friends. Therefore, given q, it is possible that if an
agent belongs to a social group with a large number of normal friends, she learns correctly as
information becomes abundant. By contrast, if the agent belongs to a smaller social group
with fewer normal friends, the effect of dogmatic friends may prevail for the same q, causing
her belief to polarize relative to other agents.

With regard to polarization, Propositions 1 and 2 can shed further light on the role of
“echo chambers.” In sum, they highlight the importance of the composition of an echo
chamber, rather than its size. To the extent that interacting online promotes the formation
of more unbalanced social groups, it may contribute to belief polarization even when the
quality of information is unchanged.

Propositions 1 and 2 show that imbalance in selective sharing and misperception are
sufficient for polarization to arise. But are they necessary? The answer is yes.

Proposition 3. If either dL = dR or γ = 1, then

E[µ(s1)] = π and plim
T→∞

µ(sT) = I{ω=L}.

Intuitively, if i has an equal number of dogmatic-left and dogmatic-right friends, they off-
set each other when sharing information selectively, even in the presence of misperception.
Alternatively, if i fully understands their selective sharing—always interpreting their silence
as the arrival of unfavorable signals—she fully unravels its effects even if there are more
dogmatic friends on one side. Note that even a minor degree of misperceptions (γ close to
but strictly less than 1) will make polarization possible.

4 Network expansion

Consider agent i once again and suppose that due to advances in technology (e.g. development
of social media), the agent is now connected with more agents of all types, while still receiving
the same quantity of information on her own. Specifically, assume that the number of normal,
dogmatic-left and dogmatic-right friends expands according to proportions (λL, λR, λN),
respectively. Proposition 4 characterizes the impact on the informativeness required to avoid
polarization.

Proposition 4. Fix an agent such that dL > dR, then q̄2(λLdL, λRdR, λNn, γ) ≥ q̄2(dL, dR, n, γ)
if and only if

(λN − 1) ≤
(

λLdL − λRdR

dL − dR
− 1
)
·
(

1 +
1
n

)
Proposition 4 states that the range of information quality q leading to incorrect learning

shrinks if and only if normal friends grow sufficiently fast. Intuitively, there is a trade-off
between access to information and the scope for echo-chambers to bias beliefs. Note that
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if scaling is proportional (i.e. λL = λR = λN) then 1 < 1 + 1
n and hence the range of

information quality leading to incorrect beliefs expands. Thus a proportional scaling of the
network leads to more opportunities for polarization.

This result suggests that when there are changes in the network environment that increase
connectivity of people (keeping proportions of different types of friends the same), but do
not increase the amount of information people get on their own, it can contribute to belief
polarization. For a fixed information quality q, it is possible that a person whose beliefs are
not biased in a smaller network becomes polarized when the network expands.

The previous proposition deals with how large λN needs to be in order to decrease an
individual’s q̄2. This reduces the range of q in which the individual gets biased, but may
still not be enough if the true q is far lower. The next proposition explores how large λN
needs to be in order to drop q̄2 below any given value of q, so as to un-bias a given agent.
Put another way: Given some q̂, what λN suffices to ensure correct learning?

Proposition 5. Fix dL > dR and q̂ ∈
(

1
2 , q̄2(dL, dR, n, γ)

)
. Then q̄2(λdL, λdR, λNn, γ) < q̂

if

λN >
dL − q̂(dL + dR)

(2q̂− 1)n
λ− 1

n
.

Given echo chamber (dL, dR, n) and growth rates of friends (which may be determined by
data or algorithms), this result predicts if and when q̄2 crosses q̂. This points to how
link-formation algorithms may possibly be designed to minimize polarization. i.e. the result
suggests the growth rate of normal friends required. Note that the right side of the inequality
is increasing in dL and λ, decreasing in dR and q̂. Moreover, the right side of the inequality
is decreasing in n when it is positive (when q̂ < q̄2).

5 Network polarization

In this section, we move from the analysis of individual agents to the analysis of the network
as a whole. Our focus is the set of normal agents in the network (i.e., excluding dogmatic
ones). Interpreting dogmatic agents as those whose beliefs are degenerate implies that only
the beliefs of normal agents respond to arriving information. Let the set of all normal agents
be denoted by N .

Before proceeding, we define a measure of polarization for our network. Without loss
of generality, we will define it for beliefs in state L. Define polarization in period t as the
average sum of differences of beliefs across all agents in N :

Πt =
2
|N |2 ∑

i,j∈N

∣∣∣µi(st
i)− µj(st

j)
∣∣∣ .

This expression captures the extent to which disagreement is present in the network. The
scaling factor of 2 is introduced in order to ensure Πt ∈ [0, 1].
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We focus on asymptotic polarization of beliefs (as T → ∞), when all normal agents’
beliefs have already converged. Let NR and NL denote the sets of normal agents whose
asymptotic beliefs put probability 1 on states R and L, respectively. We will also refer
to these sets as “eventually incorrect” and “eventually correct” populations, depending on
which state is true.4 Define the limit polarization Π as

Π ≡ plim
t→∞

Πt =
2
|N |2 · 2|NR||NL| · |1− 0| = 4|NR||NL|

|N |2

The value of Π varies from 0 to 1, attaining its maximum when NR and NL have the same
cardinality.

The first result in this section concerns the dynamics of NR and NL as q increases from
1/2 to 1. Assume the true state is R and fix some q ∈ (1/2, 1). Then, NR consists of
two sets of agents: (1) all agents for whom q̄2i is below q (these agents learn correctly),
and (2) all agents for whom dogmatic-right friends dominate dogmatic-left friends and q̄2i is
above q (these agents place probability 0 on ω = L in the long run irrespective of true state).
Meanwhile, NL consists of all agents for whom dogmatic-left friends dominate dogmatic-right
friends and whose q̄2i is above q.

As q increases, all agents that are already in NR will remain there. Each agent for whom
q̄2i is below q will continue to be below q, and other agents for whom dogmatic-right friends
dominate dogmatic-left friends may remain in that category or pass into the first category
and still remain in NR. However, agents in NL may switch to the other set. When q becomes
larger than q̄2i for an agent in NL, he or she is no longer biased by dogmatic-left friends,
and thus will place probability 0 on ω = L in the limit instead of 1, passing into NR. This
argument is formalized in the following lemma.

Lemma 1. As q increases, the set of “eventually correct” agents is weakly expanding and
the set of “eventually incorrect” agents is weakly contracting.

What implications does this have for network polarization? A common intuition would
suggest that as people receive better information, disagreements should decline. Lemma 1
places some limits on this intuition: if for low q the set of “eventually incorrect” agents is
sufficiently large, polarization in society will be low. However, as q increases, it will cause
a gradual shift into the set of “eventually correct” agents, and polarization in society will
actually increase initially. Once the set of “eventually correct” agents outnumbers the set
of “eventually incorrect” ones, polarization will start to decline as q increases. This implies
that polarization in a social network may temporarily increase as quality of information is
slowly improving.

The following proposition summarizes the intuition above and provides a necessary and
sufficient condition for such non-monotonicity of network polarization to take place. Let
NR(q) and NL(q) denote the sets of agents whose beliefs converge to state R and L, respec-
tively, for a given value of q. Additionally, let DR and DL denote sets of agents who have a

4If R is the true state, then NR is the “eventually correct” population, whereas NL is the “eventually
incorrect” population—vice versa if the true state is L.
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right- and left-slanted echo chambers, respectively. The remaining agents do not have any
imbalance in their echo chamber.

Proposition 6. Fix network with q̄2i 6= q̄2j for all i, j and ω. Π is decreasing in q over(
1
2 , 1
)

iff |D−ω| ≤ 1
2 (|N |+ 1). Otherwise, Π is single peaked.

Intuitively, if |D−ω| > 1
2 (|N |+ 1), more than half of normal agents are initially biased

towards the wrong state. As q increases, this set of “eventually incorrect” agents will lose
agents in favor of the “eventually correct” set. This will increase polarization in the network
at first. It will achieve its maximum when the sets of “eventually incorrect” and “eventually
correct” agents are equal in size, and will start decreasing afterwards.

6 Mitigating polarization

We have shown that selective sharing and misperceptions are enough to generate polarization
of beliefs in a network of agents. How could a social planner combat this polarization,
if he or she could affect only the information the agents receive (taking selective sharing
and misperception as given)? That is, we want to see whether it is possible to eliminate
polarization by changing only the external information structure of the agents. One obvious
way to do this is to directly increase the quality of information q at the source. However,
this may not be feasible due to technological or economic reasons. For example, this may
involve forcing newspapers to spend more on reporters, data gathering, and fact checking.
However, it is possible to increase the quality of information that the agents receive without
changing the quality of the primitive signals sit. This involves signal aggregation.

Signal aggregation consists in summarizing a set of signals into a single message. This
summary can, of course, be done in many ways, emphasizing some aspects of the original
signals and omitting others. It is important to note, however, that signal aggregation involves
some loss of information relative to the totality of the aggregated signals. Nonetheless, the
resulting message can have higher quality than each aggregated signal individually. It is
this distinction that renders signal aggregation useful for our goal of reducing polarization,
despite the loss of information. As such, signal aggregation involves a trade-off between
slowing short-run learning and debiasing long-run learning, which is a novel aspect of our
learning environment.

Consider the following form of signal aggregation. Let M be an odd number and divide
time into blocks of M periods. Define ŝi

Mt as the aggregated signal that is released to agent
i at the end of each time block and reports whether more left or more right signals realized
over the previous M periods:

ŝi
Mt =

{
0, if ∑tM

k=(t−1)M+1 1{sik=L} <
M
2

1, if ∑tM
k=(t−1)M+1 1{sik=L} >

M
2 .

A natural question is why a social planner would prefer to coarsen each agent’s informa-
tion structure in such a way. Clearly, ŝi

Mt conveys less information than do the aggregated
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M signals together. However, on the one hand, if all agents observe only ŝi
Mt every other

M periods, they have fewer opportunities to selectively share information with their friends.
But this is irrelevant in the long run. On the other hand—and more importantly—ŝi

Mt has
higher quality than each individual sit. As a result, by substituting sit information structure
with ŝi

Mt for each agent, we are worsening information quality for each agent individually,
but we are also reducing the influence of selective sharing on agents’ beliefs. Hence, this
might restore the standard result of convergence to the truth in asymptotic learning. To see
this, suppose M = 3, consider the first block of three periods, and assume ω = L. We have

P(ŝi
3 = 0|ω = L) = P

(
3

∑
t=1

sit ≤ 1
∣∣∣∣ω = L

)
= q3 + 3q2(1− q)

= q ·
(

q2 + 2q(1− q) + q(1− q)
)

> q ·
(

q2 + 2q(1− q) + (1− q)2
)

= q = P(sit = l|ω = L).

Thus, ŝi
3 is more informative than each sit of quality q. In contrast to standard models

where the quality of information does not matter in the long run, we saw that in our model
a sufficiently high quality of information can allow all agents to learn correctly, thereby
removing polarization. The remaining question is then whether aggregating signals according
to ŝi

Mt can achieve that quality level. The next proposition shows that this is always possible.

Proposition 7. Fix any network and q such that Π > 0. There exists M such that, if each
agent i observes signals ŝi

Mt, then the resulting limit polarization Π̂ equals zero.

7 Discussion

We explored conditions under which learning from shared news may lead to belief polariza-
tion. We develop a model reflecting two important facts about news sharing in networks:
unbalanced selective transmission of information and misperception. We include mispercep-
tion to account for the evidence that people are neither completely naive nor fully aware
of selective sharing. We found that with these features polarization occurs if (and only if)
information quality is sufficiently low. Thus, our results emphasize the importance of dis-
tinguishing between quality and quantity of information, a distinction that is irrelevant in
standard models.

With this understanding, we also investigated ways to mitigate polarization. On the one
hand, our analysis of the effects of network expansion suggests ways to influence network
dynamics so as to limit the scope for polarization to occur. On the other hand, we show that
aggregating the signals that agents receive may mitigate polarization. A benevolent authority
may use this insight to stop the effects of misperceived selective sharing and debias beliefs.
In practice, one way to achieve this is to create institutional intermediaries or platforms

15



that aggregate news, namely, that provide people with information in larger “digested”
batches rather than many raw bits. Even if these less frequent news reports lose some of the
information in the summarized news, they can mitigate polarization by reducing the scope
for echo chambers to cause people’s beliefs to go awry.

Our analysis goes to the heart of why new technologies and formats of communication
enabled by the Internet may increase polarization. Tweets and social-media posts tend to
be short and hence of low quality. Moreover, overwhelmed by the abundance of information,
people may spread their limited attention across more sources, thereby absorbing less accu-
rate information from each of them. Finally, we also shed new light on two ways in which
malevolent actors who thrive on social polarization benefit from how news is shared in social
networks. One obvious way is to use fake news to directly lower the information quality
or bias echo chambers in a particular direction so as to exacerbate their effects. A more
subtle way is to release bits of news with high frequency so as to leverage the biasing power
of misperceived selective sharing that we uncover and to draw attention away from high-
quality information sources. Even though removing fake news is important for addressing
polarization, our analysis suggests that it is not sufficient.

Our analysis opens several directions for future research. So far, we have exogenously
assumed selective sharing by having dogmatic agents who do not update their beliefs and so
do not change how they selectively transmit their signals. However, in reality people often
choose what information to share so as to promote their views or beliefs, which are not set in
stone. One can interpret the current model as describing situations where dogmatic agents
can change their beliefs, yet they do so much more slowly than normal agents. As a result,
how they selectively share information is very persistent, which should leave the insights of
our results unchanged.

Our results about the beliefs of a single agent can be used to further examine the dis-
tribution of beliefs in the network as a whole. We conjecture that there is a relationship
between how the composition of echo chambers is distributed in the network and how be-
liefs are distributed across agents. For instance, if half the population has a majority of
dogmatic-right friends, half a majority of dogmatic-left friends, and information quality is
sufficiently low, then the beliefs of each half should move apart as information arrives. This
is consistent with evidence showing that people on the left and on the right of the political
spectrum tend to have more like-minded friends than not, and with the view that this may
be a cause of the ongoing polarization (e.g., see Pew Research Center (2014)). Note that,
according to our analysis, such polarization does not require that people look at the world in
fundamentally incompatible ways, but only that they have different news diets—which may
be easier to address.

Finally, the role of the network structure in our analysis begs the question of what
would change if we allowed for endogenous network formation. On the one hand, people
may tend to form more links with like-minded friends, which may enlarge the imbalance in
their echo chambers. This would reinforce and magnify the effects of selective sharing and
misperceptions we highlight. On the other hand, people may be more likely to link with
normal friends than dogmatic friends, which would have opposite implications. Either way,
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this is ultimately an empirical question: Once we measure the rates of link formation with
different types of friends, we can use our model to predict their consequences. Nonetheless,
understanding the incentives to form links so as to obtain information is also important to
answer these questions and guide further empirical investigations of polarization.
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Appendix

A Proof of Proposition 1

We consider agent i who has dL dogmatic-left friends, dR dogmatic-right friends and n normal
friends. We drop all subscripts since we are focusing on a single agent.

Proof of Proposition 1. First, assume that the true state is ω = R. As we noted in Equation
2, given fixed realizations of `L, `R and `N, agent i’s posterior belief is given by the following
expression:

µi(ω = L|`L, `R, `N) =
π

π + (1− π)QMΓS , (2)

where

Q ≡ 1− q
q

M ≡ `L − (dR − `R) + 2`N − N = `L + `R − dR + 2`N − N

Γ ≡ γ(1− q) + (1− γ)

γq + (1− γ)

S ≡ `R − (dL − `L) = `L + `R − dL.

In terms of random variables, µi(ω = L|`L, `R, `N) depends only on the sum of `L and `R
and on `N. Let `D = `L + `R and note that due to independence of individual signals, `D is
a Binomial r.v. with probability (1− q) and sample size (dL + dR).

Agent i’s posterior belief, given fixed realizations of `D and `N, is then given by:

µi(ω = L|`D, `N) =
π

π + (1− π)Q`D−dR+2`N−NΓ`D−dL

Recall that `D has Binomial distribution with parameters (1− q) and (dL + dR). There-
fore, i’s expected posterior belief, conditional on `N and ω = R, is given by the following
expression:

E [µi(ω = L) | `N, ω = R] =
dL+dR

∑
k=0

[
(dL + dR)!

k!(dL + dR − k)!
· (1− q)kqdL+dR−k

· π

π + (1− π)Qk−dR+2`N−NΓk−dL

]
.

Recall that `N is a Binomial r.v. with parameters (1 − q) and N. Hence, the expected
posterior belief conditional on ω = R is given by

E [µi(ω = L) | ω = R] =
N

∑
k=0

N!
k!(N − k)!

(1− q)kqN−kE (µi(ω = L)|k, ω = R) .
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We will prove that there exists q̄1 > 1
2 such that if q ∈

(
1
2 , q̄1

)
, E [µi(ω = L)|ω = R] >

π. For that, we will first find the derivative of E [µi(ω = L)|`N, ω = R] with respect to q
at q = 1

2 for any `N ≥ 0, and then show that the derivative of E [µi(ω = L)|ω = R] w.r.t. q
at q = 1

2 is positive. Then, using continuity of the expected posterior in q and the fact that

at q = 1
2 we have E [µi(ω = L)|ω = R] = π, this will imply the desired statement.

If dL + dR is odd5, we can rewrite one of the sums above as follows:

E [µi(ω = L)|`N, ω = R] =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
f (k, q, `N) + f (dL + dR − k, q, `N)

)
,

where

f (k, q, `N) = (1− q)kqdL+dR−k π

π + (1− π)
(

1−q
q

)k−dR+2`N−N (γ(1−q)+(1−γ)
γq+(1−γ)

)k−dL

For simplifying subsequent algebra, define a function z(q, γ) as

z(q, γ) = ln(Γ) [ln(Q)]−1 = ln
(

γ(1− q) + (1− γ)

γq + (1− γ)

) [
ln
(

1− q
q

)]−1

.

Consider the derivative of f (k, q, `N) w.r.t. q at q = 1
2 :

∂

∂q
f (k, q, `N) =

(
(dL + dR − k)(1− q)kqdL+dR−k−1 − k(1− q)k−1qdL+dR−k

)
·

π

π + (1− π)
(

1−q
q

)k−dR+2`N−N+(k−dL)z(q,γ)

+(1− q)kqdL+dR−k · π(1− π) ·
[

(k− dR + 2`N − N)Qk−dR+2`N−N−1+(k−dL)z(q,γ) 1
q2(

π + (1− π)Qk−dR+2`N−NΓk−dL
)2

+
(k− dL)Qk−dR+2`N−N+(k−dL−1)z(q,γ) (2−γ)γ

(γq+(1−γ))2(
π + (1− π)Qk−dR+2`N−NΓk−dL

)2

]
(q= 1

2 )
=

(
1
2

)dL+dR−1

(dL + dR − 2k)
π

π + (1− π)
+

(
1
2

)dL+dR

4π(1− π) ·

·
(k− dR + 2`N − N) + (k− dL) γ

2−γ

(π + (1− π))2

=

(
1
2

)dL+dR−1

·
(

(dL + dR − 2k)π + 2π(1− π)
(

(k− dR + 2`N − N) + (k− dL)
γ

2− γ

))
.

5We consider the case of dLi + dRi being even at the end of the proof.
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Therefore, at q = 1
2 we have

∂

∂q
E [µi(ω = L)|`N, ω = R] =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
∂

∂q
f (k, q, `N) +

∂

∂q
f (dL + dR − k, q, `N)

)

=

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) ·

·
(

2(2`N − N) + (dL − dR)− (k− dLi)
γ

2− γ

)
= 4π(1− π)(2`N − N) +

+

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) (dL − dR) 2−2γ
2−γ .

Note that the second term (a sum) in the expression above is strictly positive for any
`N ≥ 0, since dL > dR and γ ∈ (0, 1) hold. Thus, when we compute the derivative of
E [µi(ω = L)|ω = R], this part of the sum will remain strictly positive. The only term to
be concerned about is the one with (2`N − N) in it.

Let

H =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) (dL − dR)
2− 2γ

2− γ
.

Then the derivative of the conditional expected posterior at q = 1
2 is equal to

∂

∂q
E [µi(ω = L)|ω = R] =

N

∑
k=0

N!
k!(N − k)!

(
1
2

)N−1

(−k + (N − k)) E

[
µi(ω = L)|k, ω = R, q =

1
2

]
+

+
N

∑
k=0

N!
k!(N − k)!

(
1
2

)N [
H + 4π(1− π)(2k− N)

]
.

We know E
[
µi(ω = L)|k, ω = R, q = 1

2

]
= π > 0 and H > 0. Thus,

∂

∂q
E
[
µ1

i (ω = L)|ω = R
]

= H +
N

∑
k=0

N!
k!(N − k)!

(
1
2

)N−1

(π − 2π(1− π)) (N − 2k)

= H + (π − 2π(1− π))

(
1
2

)N−1 N

∑
k=0

N!
k!(N − k)!

(N − 2k)

Note that the sum ∑N
k=0

N!
k!(N−k)! (N − 2k) is symmetric around k = N

2 . Specifically, for

k ≤ N
2 there is exactly identical term with an opposite sign for j = N− k. This implies that

the sum will annihilate itself into zero. This will mean that the derivative is simply equal to
H, which is positive, i.e. the conditional expected posterior is increasing at q = 1

2 .
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Now consider the case ω = L. The updating rule of the agent will be the same as in
the previous case. What changes is the distribution of `L, `R and `N, as they now follow
Binomial distributions with probability parameter q (rather than 1− q). Hence,

E [µi(ω = L) | `N, ω = L] =
dL+dR

∑
k=0

[
(dL + dR)!

k!(dL + dR − k)!
· qk(1− q)dL+dR−k

· π

π + (1− π)Qk−dR+2`N−NΓk−dL

]
.

Recall that `N is a Binomial r.v. with parameters q and N. Hence, the expected posterior
belief conditional on ω = R is given by

E [µi(ω = L) | ω = L] =
N

∑
k=0

N!
k!(N − k)!

qk(1− q)N−kE (µi(ω = L)|k, ω = L) .

Following a similar proof method, suppose dL + dR is odd and rewrite one of the condi-
tional expected posteriors above as follows:

E [µi(ω = L)|`N, ω = L] =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
f̂ (k, q, `N) + f̂ (dL + dR − k, q, `N)

)
,

where

f̂ (k, q, `N) = qk(1− q)dL+dR−k π

π + (1− π)Qk−dR+2`N−ni Γk−dL

Consider the derivative of f̂ (k, q, `N) w.r.t. q at q = 1
2 :

∂

∂q
f̂ (k, q, `N) =

(
−(dL + dR − k)qk(1− q)dLi+dR−k−1 + kqk−1(1− q)dL+dR−k

)
·

π

π + (1− π)Qk−dR+2`N−N+(k−dL)z(q,γ)

+qk(1− q)dL+dR−k · π(1− π) ·
[

(k− dR + 2`N − N)Qk−dR+2`N−N−1+(k−dL)z(q,γ) 1
q2(

π + (1− π)Qk−dR+2`N−NΓk−dL
)2

+
(k− dL)Qk−dR+2`N−N+(k−dL−1)z(q,γ) (2−γ)γ

(γq+(1−γ))2(
π + (1− π)Qk−dR+2`N−NΓk−dL

)2

]
(q= 1

2 )
=

(
1
2

)dL+dR−1

(2k− dL − dR)
π

π + (1− π)
+

(
1
2

)dL+dR

4π(1− π) ·

·
(k− dR + 2`N − N) + (k− dL) γ

2−γ

(π + (1− π))2

=

(
1
2

)dL+dR−1

·
(

(2k− dL − dR)π + 2π(1− π)
(

(k− dR + 2`N − N) + (k− dL)
γ

2− γ

))
.
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Therefore, at q = 1
2 we have

∂

∂q
E [µi(ω = L)|`N, ω = L] =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
∂

∂q
f̂ (k, q, `N) +

∂

∂q
f̂ (dL + dR − k, q, `N)

)

=

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) ·

·
(

2(2`N − N) + (dL − dR)− (k− dL)
γ

2− γ

)
= 4π(1− π)(2`N − N) +

+

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) (dL − dR) 2−2γ
2−γ .

Note that the second term (a sum) in the expression above is strictly positive for any
`N ≥ 0, since dL > dR and γ ∈ (0, 1) hold. Thus, when we compute the derivative of
E [µi(ω = L)|ω = L], this part of the sum will remain strictly positive. The only term to
be concerned about is the one with (2`N − N) in it.

Let

H =

dL+dR−1
2

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
1
2

)dL+dR−1

2π(1− π) (dL − dR)
2− 2γ

2− γ
.

Then the derivative of the conditional expected posterior at q = 1
2 is equal to

∂

∂q
E [µi(ω = L)|ω = L] =

N

∑
k=0

N!
k!(N − k)!

(
1
2

)N−1

(k− (N − k)) E

[
µi(ω = L)|k, ω = L, q =

1
2

]
+

+
N

∑
k=0

N!
k!(N − k)!

(
1
2

)N [
H + 4π(1− π)(2k− N)

]
= H +

N

∑
k=0

N!
k!(N − k)!

(
1
2

)N−1

[2π + 4π(1− π)] (2k− N)

We know that H > 0, whereas the second sum is symmetric around k = N
2 and will therefore

annihilate to 0. Thus, the derivative of the expected posterior is positive at q = 1
2 , which

then implies that the expected posterior is bigger than prior for some range above q = 1
2 .

In fact, given that ω = L is the true state, it is reasonable to expect that it is bigger than
prior for all q > 1

2 , as both the received information and the dogmatic-friends bias work in
the same direction.

We have proved that both conditional expected posteriors will be larger than the prior

π in some range
(

1
2 , q̄1

)
. This also implies that the unconditional expected posterior belief

of i in state ω = L must be strictly higher than π for any q ∈
(

1
2 , q̄1

)
.
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The final part of the proof will touch on the case where dL + dR is even. We will do it
for the case ω = R, with ω = L being completely analogous. When dL + dR is even, we can
rewrite the expression for E [µi(ω = L)|ω = R] as follows:

E [µi(ω = L)|`N, ω = R] =
dL+dR

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

· (1− q)kqdL+dR−k ·

· π

π + (1− π)Qk−dR+2`N−NΓk−dL

=

dL+dR
2 −1

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
f (k, q, `N) + f (dL + dR − k, q, `N)

)
+

+
(dL + dR)!(

dL+dR
2

)
!
(

dL+dR
2

)
!

(
f
(

dL+dR
2 , q, `N

)
+ f

(
dL+dR

2 , q, `N

))
The derivative of the first sum at q = 1

2 will be positive, as we showed above. As for the

second term, note that at q = 1
2 we have

∂

∂q
f
(

dL + dR

2
, q, `N

) ∣∣∣∣
q= 1

2

=

(
1
2

)dL+dR−1

·
(

0 + 2π(1− π)
((

dL+dR
2 − dR + 2`N − N

)
+
(

dL+dR
2 − dL

)
γ

2−γ

))
= 2π(1− π)

(
1
2

)dL+dR−1

·
(

2`N − N + dL−dR
2

(
1− γ

2−γ

))
.

Note that the term (2`N − N) is symmetric around `N = N
2 , and so will annihilate to zero

when we compute expectation over `N. The second term is positive for all `N ≥ 0. Hence,
∂
∂qE [µi(ω = L)] > 0 still holds at q = 1

2 , and the argument follows exactly as in the case of

dL + dR being odd. We will omit it here for brevity.

This completes the proof. �

B Proof of Proposition 2

Proof of Proposition 2. Suppose that the true state is ω = R. Recall that i has dLi dogmatic-
left friends, dRi dogmatic-right friends, and ni “normal” friends. Suppose that T periods have
passed; this means that S has sent T time-independent and individual-independent signals
to all agents in the network. Denote the number of signals s = l received by:

• agent i as li

• dogmatic-left friends of agent j as lL
j , j ∈ {1, 2, . . . , dL}

• dogmatic-right friends of agent j as lR
j , j ∈ {1, 2, . . . , dR}
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• normal friends of agent i as ln
j , j ∈ {1, 2, . . . , n}

Then the number of signals s = r received by the same agents will be given by:

• agent i – it is (T − li)

• dogmatic-left friends of agent i – it is (T − lL
j ), j ∈ {1, 2, . . . , ni}

• dogmatic-right friends of agent i – it is (T − lR
j ), j ∈ {1, 2, . . . , m}

• normal friends of agent i – it is (T − ln
j ), j ∈ {1, 2, . . . , k}

Additionally, a dogmatic-left friend j has stayed silent exactly (T − lL
j ) times, and a right-

leaning friend k has stayed silent exactly lR
k times. Thus, agent i’s posterior beliefs at the

end of period T is given by the following:

µi(ω = L|sT
i ) = π·

[
π + (1− π) ·Q(2li−T)+∑n

j=1(2ln
j −T)+∑

dL
j=1 lL

j −∑
dR
j=1(T−lR

j )

·Γ∑
dR
j=1 lR

j −∑
dL
j=1(T−lL

j )
]−1

,

where Q = 1−q
q and Γ = γ(1−q)+(1−γ)

γq+(1−γ)
.

This posterior belief converges to 1 with probability 1 as T → ∞ if and only if(
1− q

q

)(2li−T)+∑n
j=1(2ln

j −T)+∑
dL
j=1 lL

j −∑
dR
j=1(T−lR

j )

·
(

γ(1− q) + (1− γ)

γq + (1− γ)

)∑
dR
j=1 lR

j −∑
dL
j=1(T−lL

j )

converges to zero with probability 1 as T → ∞. This is equivalent to requiring that the
natural log of this expression converges to −∞ with probability 1 as T → ∞, where the

natural log equals ln
(

1−q
q

)
K(x, T; q, γ), where

K(x, T; q, γ) = (2li − T) +
n

∑
j=1

(2ln
j − T) +

dL

∑
i=1

lL
j −

dR

∑
j=1

(T − lR
j )

+

(
dR

∑
j=1

lR
j −

dL

∑
j=1

(T − lL
j )

)
z(q, γ),

after we define

x = (li, (lni
j )n

j=1, (lL
j )dL

j=1, (lR
j )dR

j=1)

and

z(q, γ) = ln
(

γ(1− q) + (1− γ)

γq + (1− γ)

) [
ln
(

1− q
q

)]−1

.
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Given ln
(

1−q
q

)
< 0, we require that K(x, T; q, γ) converges to +∞ with probability 1 as

T → ∞. Now note that

lim
T→∞

K(x, T; q, γ) = lim
T→∞

T
(

K(x, T; q, γ)

T

)
.

By the Law of Large Numbers, we have that

plim
T→∞

K(x, T; q, γ)

T
= (2(1− q)− 1) +

n

∑
j=1

(2(1− q)− 1)

+
dL

∑
j=1

(1− q)−
dR

∑
j=1

(1− (1− q)) +

+

(
dR

∑
j=1

(1− q)−
dL

∑
j=1

(1− (1− q))

)
z(q, γ)

= (dL + 2n + 2)(1− q)− (n + 1)− dRq
+ (dR(1− q)− dLq) z(q, γ).

Given this, plimT→∞ K(x, T; q, γ) = +∞ if and only if

(dL + 2n + 2)(1− q)− (n + 1)− dRq + (dR(1− q)− dLiq) z(q, γ) > 0,

which is equivalent to

q < q̄2(q) ≡ 1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
.

To check whether there are values of q ∈ (1
2 ; 1) for which the last inequality holds, let us

check whether it holds strictly for q = 1
2 . If it does, then due to continuity of q̄2(q), there

will be a range of values of q for which the inequality must hold.

Before we proceed, note the following:

lim
q→ 1

2
+

z(q, γ) = lim
q→ 1

2
+

ln (γ(1− q) + (1− γ))− ln (γq + (1− γ))

ln (1− q)− ln (q)

= lim
q→ 1

2
+

− γ
γ(1−q)+(1−γ)

− γ
γq+(1−γ)

− 1
1−q −

1
q

=
− γ

1
2 γ+(1−γ)

− γ
1
2 γ+(1−γ)

− 1
1− 1

2
− 1

1
2

=
2γ

4 ·
(

1
2 γ + (1− γ)

) =
γ

2− γ

28



Thus,

lim
q→ 1

2

q̄2 (q) =
1 + dL + n + dR · γ

2−γ

2 + 2n + (dL + dR)(1 + γ
2−γ )

=
(1 + dL + n)(2− γ) + dRγ

2(2− γ)(1 + n) + 2(dL + dR)

=
(2− γ)(1 + n) + (2− γ)dL + dRiγ

2(2− γ)(1 + n) + 2(dL + dR)

=
(2− γ)(1 + n) + (dL + dR) + (dL − dR)(1− γ)

2(2− γ)(1 + ni) + 2(dL + dR)

=
1
2

+
(dL − dR)(1− γ)

2(2− γ)(1 + n) + 2(dL + dR)

This is strictly bigger than 1
2 in any situation where dL > dR and γ < 1. Thus, q < q̄2(q)

holds at q = 1
2 , and, due to continuity of q̄2(q), it holds for an interval to the right of q = 1

2 .
Defining q̄2 through the implicit equation q = q̄2(q), we can conclude that the posterior

belief of agent i converges to 1 with probability 1 as T → ∞ for any q in the range
(

1
2 , q̄2

)
.

Note that

lim
q→1−

z(q, γ) = lim
q→1−

ln (γ(1− q) + (1− γ))− ln (γq + (1− γ))

ln (1− q)− ln (q)

= lim
q→1−

− γ
γ(1−q)+(1−γ)

− γ
γq+(1−γ)

− 1
1−q −

1
q

= 0

Thus,

lim
q→1−

q̄2 (q) =
1 + dL + n

2 + 2n + dL + dR

=
1 + dL + n

1 + dL + n + 1 + dR + n
∈
(

1
2

, 1
)

,

because dL > dR by assumption. By continuity of q̄2(q), this implies that there is an interval
to the left of q = 1 such that q > q̄2(q). Note that if q > q̄2, we have plimT→∞ K(x, T; q, γ) =
∞, which means that plimT→∞ µi(ω = L|sT

i ) = 0 and therefore agent i learns the state
ω = R correctly.

When q = q̄2, the limit plimT→∞ K(x, T; q, γ) is indeterminate, but we can ignore this
knife-edge case.

In the last part of the proof, we will touch on the case ω = L. This only affects
distribution of `L, `R and `N in their probability parameter, which changes from 1− q to q.
Therefore, the proof above still applies up to the application of the Law of Large numbers.

The posterior belief of the agent will converge to 1 with probability 1 as T → ∞ if and
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only if

K(x, T; q, γ) = (2li − T) +
n

∑
j=1

(2ln
j − T) +

dL

∑
j=1

lL
j −

dR

∑
j=1

(T − lR
j )

+

(
dR

∑
j=1

lR
j −

dL

∑
j=1

(T − lL
j )

)
z(q, γ)

converges to +∞ with probability 1 as T → ∞. Similarly to before, note

K(x, T; q, γ) = T · K(x, T; q, γ)

T
and apply the Law of Large Numbers to the fraction:

plim
T→∞

K(x, T; q, γ)

T
= (2q− 1) +

n

∑
j=1

(2q− 1) +
dL

∑
j=1

q−
dR

∑
j=1

(1− q) +

(
dR

∑
j=1

q−
dL

∑
j=1

(1− q)

)
z(q, γ)

= (dL + 2n + 2)q− (n + 1)− dR(1− q) + (dRq− dL(1− q)) z(q, γ).

Given this, plimT→∞ K(x, T; q, γ) = +∞ if and only if

(dL + 2n + 2)q− (n + 1)− dR(1− q) + (dRq− dLi(1− q)) z(q, γ) > 0,

which is equivalent to

1 + n + dR + dLz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
< q.

Note

1 + n + dR + dLz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
=

1
2
−

(
1− 1+z(q,γ)

2

)
(dL − dR)

2 + 2n + (dL + dR)(1 + z(q, γ))
<

1
2

,

which implies that the desired inequality on q holds for any q > 1
2 . Thus, given ω = L,

dL > dR and γ ∈ (0, 1), the agent’s posterior belief converges to probability 1 on state

ω = L as T → ∞ with probability 1 for any q ∈
(

1
2 , 1
)

.

Therefore, provided that q ∈
(

1
2 , q̄2

)
, the posterior belief will converge to µ∞

i (ω = L) = 1
with probability 1 as T → ∞ irrespective of what the true state is.

�

Moreover, as Lemmas 2 and 3 show below, the function q̄2(q) is increasing in q, which
implies that we can put a lower bound on the value of q̄2. As it is defined by the equation

q = q̄2(q), we can conclude that q̄2 ≥ q̄2

(
1
2

)
, i.e.

q̄2 ≥
1
2

+
(dL − dR)(1− γ)

2(2− γ)(1 + n) + 2(dL + dR)
.

Lemma 2. q̄2(q) is increasing in q.
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Proof. To prove Lemma 2 we first establish the following intermediate result.

Lemma 3. z(q, γ) is weakly decreasing for any q ∈
(

1
2 ; 1
)

.

Proof. Note:

∂z
∂q

=
∂

∂q

ln
(

γ(1−q)+(1−γ)
γq+(1−γ)

)
ln
(

1−q
q

)
=

γq+(1−γ)
γ(1−q)+(1−γ)

· −γ(γq+(1−γ))−γ(γ(1−q)+(1−γ))
(γq+(1−γ))2 · ln

(
1−q

q

)
− ln

(
γ(1−q)+(1−γ)

γq+(1−γ)

)
· q

1−q ·
(
− 1

q2

)
ln2
(

1−q
q

)
=
−γ2q+γ(1−γ)+γ2(1−q)+γ(1−γ)

(γ(1−q)+(1−γ))(γq+(1−γ))
· ln
(

1−q
q

)
+ ln

(
γ(1−q)+(1−γ)

γq+(1−γ)

)
· 1

q(1−q)

ln2
(

1−q
q

)
=
− γ(2−γ)

(γ(1−q)+(1−γ))(γq+(1−γ))
· ln
(

1−q
q

)
+ ln

(
γ(1−q)+(1−γ)

γq+(1−γ)

)
· 1

q(1−q)

ln2
(

1−q
q

)
=
− γ(2−γ)

γ2q(1−q)+(1−γ)
· ln
(

1−q
q

)
+ ln

(
γ(1−q)+(1−γ)

γq+(1−γ)

)
· 1

q(1−q)

ln2
(

1−q
q

)
=
− γ(2−γ)

γ2q(1−q)+(1−γ)
· ln
(

1−q
q

)
+ ln

(
1−q

q

)
· z(q,γ)

q(1−q)

ln2
(

1−q
q

)
=
−γ(2− γ)q(1− q) + γ2q(1− q)z(q, γ) + (1− γ)z(q, γ)

ln
(

1−q
q

)
· (γ2q(1− q) + (1− γ)) q(1− q)

=
(1− γ + γ2q(1− q))z(q, γ)− (2− γ)γq(1− q)

ln
(

1−q
q

)
· (γ2q(1− q) + (1− γ)) q(1− q)

=

(
1−γ

q(1−q)
+ γ2

)
z(q, γ)− (2− γ)γ

ln
(

1−q
q

)
· (γ2q(1− q) + (1− γ))

Note that z
(

1
2 , γ
)

= γ
2−γ > 0 = z(1, γ). As z(q, γ) is continuously differentiable for

q ∈
(

1
2 , 1
)

, it is enough to prove that there are no local maxima on that interval in order to

show that ∂z
∂q ≤ 0 holds on that interval. At an intermediate local maximum, ∂z

∂q = 0 must

hold. Consider:
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∂z
∂q

= 0 ⇒
(

1− γ

q(1− q)
+ γ2

)
z(q, γ)− (2− γ)γ = 0

z(q, γ) =
γ(2− γ)

γ2 + 1−γ
q(1−q)

≤ γ(2− γ)

γ2 + 1−γ
1
4

=
γ(2− γ)

(2− γ)2

=
γ

2− γ

Hence, z(q, γ) ≤ γ
2−γ must hold at any intermediate local maximum in

(
1
2 , 1
)

. This imme-

diately rules our the possibility that z(q, γ) is increasing at q = 1
2 , since otherwise it would

need to achieve a local maximum with value above γ
2−γ .

Consider again the implication of ∂z
∂q = 0:

z(q, γ) =
γ(2− γ)

γ2 + 1−γ
q(1−q)

Note that the right-hand side is strictly decreasing in q for q ∈
(

1
2 ; 1
)

. If z(q, γ) was to

decrease at first (as q rises from 1
2) and then increase before going down to 0, the value of

z(q, γ) at the corresponding local maximum would be necessarily above the right-hand side.

This is a contradiction, and thus z(q, γ) cannot be strictly increasing for any q ∈
(

1
2 ; 1
)

.

One final case to rule out is that z(q, γ) is decreasing at first, passing through a local
minimum, and then is increasing all the way until q = 1. That, however, would mean that
the value at the local minimum is less than z(1, γ), which is equal to 0. Since z(q, γ) > 0
for any q ∈ (1

2 ; 1) and γ ∈ (0; 1), this case is also impossible.

These considerations prove that z(q, γ) is weakly decreasing for any q ∈
(

1
2 ; 1
)

. �
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To complete the proof of Lemma 2, note that

∂q̄2(q)

∂q
=

dR
∂z
∂q (2 + 2n + (dL + dR)(1 + z(q, γ)))− (1 + dL + n + dRz(q, γ))(dL + dR) ∂z

∂q

(2 + 2n + (dL + dR)(1 + z(q, γ)))2

=
∂z
∂q (2dR+2dRk+(dLdR+d2

R)(1+z(q,γ))−((1+dL+n)(dL+dR)+(dL+dR)dRz(q,γ)))
(2+2n+(dL+dR)(1+z(q,γ)))2

=

∂z
∂q (2dR(1 + n) + dR(dL + dR)− (1 + dL + n)(dL + dR))

(2 + 2n + (dL + dR)(1 + z(q, γ)))2

=

∂z
∂q (dR − dL)(1 + dR + ni)

(2 + 2n + (dL + dR)(1 + z(q, γ)))2 ≥ 0,

since (dR − dL) < 0 and, ∂z
∂q ≤ 0 by Lemma 3 we have the result.

�

Proof that q̄2 is unique.

We would like to prove that q̄2(q) is convex in q. This, along with q̄2(1
2) > 1

2 and q̄2(1) < 1,
will imply that q̄2(q) = q has a unique solution. For the purposes of this argument, we will
still assume dL > dR and a corresponding functional form of q̄2(q).

Note that

q̄2(q) =
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
=

A + B · z(q, γ)

C + D · z(q, γ)
,

where

A = 1 + dL + n, B = dR, C = 2 + 2n + dL + dR, D = dL + dR.

Therefore, we can represent

q̄2(q) =
B
D

+
A− BC

D
C + D · z(q, γ)

=
B
D

+
AD− BC

D(C + Dz(q, γ))
.

Note that

AD− BC = (1 + dL + n)(dL + dR)− dR(2 + 2n + dL + dR)

= (dL − dR)(dL + dR) + (1 + n)(dL + dR)− 2dR(1 + n)

= (dL − dR)(dL + dR) + (1 + n)(dL − dR)

= (dL − dR)(1 + n + dL + dR) > 0.

q̄2(q) is convex in q if and only if AD−BC
D(C+Dz(q,γ))

is convex in q. Since AD− BC > 0 and

D > 0, it follows that q̄2(q) is convex in q if and only if

g(q) =
1

C + Dz(q, γ))
is convex in q.
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Note:

g′(q) = − D

(C + Dz(q, γ))2 · zq(q, γ)

g′′(q) =
2D2

(C + Dz(q, γ))3 ·
(
zq(q, γ)

)2 − D

(C + Dz(q, γ))2 · zqq(q, γ)

=
2D2 (zq(q, γ)

)2 − D(C + Dz(q, γ))zqq(q, γ)

(C + Dz(q, γ))3

If we are able to prove that zqq(q, γ) < 0 for all q ∈
(

1
2 , 1
)

, then we will have proven that

g′′(q) > 0, implying that q̄2(q) is convex for all q ∈
(

1
2 , 1
)

.

Recall from Lemma 3:

zq(q, γ) =

(
1−γ

q(1−q)
+ γ2

)
z(q, γ)− γ(2− γ)

ln
(

1−q
q

)
(γ2q(1− q) + (1− γ))

Let K(q) = 1
ln2
(

1−q
q

)
(γ2q(1−q)+(1−γ))

2 . Then:

zqq(q, γ) = K(q)

[(
− (1− γ)(1− 2q)

q2(1− q)2 +

(
1− γ

q(1− q)
+ γ2

)
zq(q, γ)

)
ln
(

1− q
q

)(
γ2q(1− q) + (1− γ)

)
−
((

1− γ

q(1− q)
+ γ2

)
z(q, γ)− γ(2− γ)

)(
−1

q(1− q)

(
γ2q(1− q) + (1− γ)

)
+ ln

(
1− q

q

)
γ2(1− 2q)

)]

= K(q)

[(
(1− γ)(2q− 1)

q2(1− q)2 +

(
1− γ

q(1− q)
+ γ2

)
zq(q, γ)

)
ln
(

1− q
q

)(
γ2q(1− q) + (1− γ)

)
+

+

((
1− γ

q(1− q)
+ γ2

)
z(q, γ)− γ(2− γ)

)(
1

q(1− q)

(
γ2q(1− q) + (1− γ)

)
+ ln

(
1− q

q

)
γ2(2q− 1)

)]
Let

C1(q) =
(1− γ)(2q− 1)

q2(1− q)2 +

(
1− γ

q(1− q)
+ γ2

)
zq(q, γ)

C2(q) =

(
1− γ

q(1− q)
+ γ2

)
z(q, γ)− γ(2− γ)

C3(q) =
1

q(1− q)

(
γ2q(1− q) + (1− γ)

)
+ ln

(
1− q

q

)
γ2(2q− 1)

Then we can write

zqq(q, γ) = K(q)

[
C1(q) ln

(
1− q

q

)(
γ2q(1− q) + (1− γ)

)
+ C2(q)C3(q)

]
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Consider C1(q):

C1(q) =
(1− γ)(2q− 1)

q2(1− q)2 +

(
1− γ

q(1− q)
+ γ2

)
zq(q, γ)

=
(1− γ)(2q− 1)

q2(1− q)2 +
γ2q(1− q) + (1− γ)

q(1− q)
·

(
1−γ

q(1−q)
+ γ2

)
z(q, γ)− γ(2− γ)

ln
(

1−q
q

)
(γ2q(1− q) + (1− γ))

=
(1− γ)(2q− 1) ln

(
1−q

q

)
+
(
γ2q(1− q) + (1− γ)

)
z(q, γ)− γ(2− γ)q(1− q)

q2(1− q)2 ln
(

1−q
q

)
=

(1− γ)(2q− 1) ln
(

q
1−q

)
+ γ(2− γ)q(1− q)−

(
γ2q(1− q) + (1− γ)

)
z(q, γ)

q2(1− q)2 ln
(

q
1−q

)
Therefore,

C1(q) ln
(

1− q
q

)(
γ2q(1− q) + (1− γ)

)
= −

(
γ2q(1− q) + (1− γ)

)
·

·
(1− γ)(2q− 1) ln

(
q

1−q

)
+ γ(2− γ)q(1− q)−

(
γ2q(1− q) + (1− γ)

)
z(q, γ)

q2(1− q)2

Similarly, consider:

C2(q)C3(q) =

(
γ2q(1− q) + (1− γ)

)
z(q, γ) ·

[(
γ2q(1− q) + (1− γ)

)
+ ln

(
1−q

q

)
γ2(2q− 1)q(1− q)

]
q2(1− q)2

− γ(2− γ)

(
γ2q(1− q) + (1− γ)

)
q(1− q) + ln

(
1−q

q

)
γ2(2q− 1)q2(1− q)2

q2(1− q)2
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Therefore, we can write:

zqq(q, γ)q2(1− q)2

K(q)
=

(
2
(

γ2q(1− q) + (1− γ)
)

+ ln
(

1− q
q

)
γ2(2q− 1)(1− q)

)
·

·
(

γ2q(1− q) + (1− γ)
)

z(q, γ)

+
(

γ2q(1− q) + (1− γ)
) [

(1− γ)(2q− 1) ln
(

1− q
q

)
− 2γ(2− γ)q(1− q)

]
+ ln

(
q

1− q

)
γ3(2− γ)(2q− 1)q2(1− q)2

= 2
(

γ2q(1− q) + (1− γ)
)2

z(q, γ) + ln
(

q
1− q

)
γ3(2− γ)(2q− 1)q2(1− q)2

−
(

γ2q(1− q) + (1− γ)
)

ln
(

q
1− q

)
(2q− 1)

[
γ2(1− q)z(q, γ) + (1− γ)

]
− 2

(
γ2q(1− q) + (1− γ)

)
γ(2− γ)q(1− q)

Let

D1(q) = 2
(

γ2q(1− q) + (1− γ)
)

z(q, γ)− ln
(

q
1− q

)
(2q− 1)(1−γ)− 2γ(2−γ)q(1− q)

and

D2(q) = γ3(2− γ)q2(1− q)2 −
(

γ2q(1− q) + (1− γ)
)

γ2(1− q)z(q, γ)

Then we have

zqq(q, γ)q2(1− q)2

K(q)
=
(

γ2q(1− q) + (1− γ)
)

D1(q) + ln
(

q
1− q

)
(2q− 1)D2(q).

Note:

D1(q) ≤ 2
(

γ2q(1− q) + (1− γ)
) γ

2− γ
− ln

(
q

1− q

)
(2q− 1)(1− γ)− 2γ(2− γ)q(1− q)

=
1

2− γ

[
2γ3q(1− q) + 2γ(1− γ)− ln

(
q

1− q

)
(2q− 1)(1− γ)(2− γ)− 2γ(2− γ)2q(1− q)

]
=

1
2− γ

[
2γq(1− q)

(
γ2 − (2− γ)2

)
+ 2γ(1− γ)− ln

(
q

1− q

)
(2q− 1)(1− γ)(2− γ)

]
=

1
2− γ

[
−8q(1− q)γ(1− γ) + 2γ(1− γ)− ln

(
q

1− q

)
(2q− 1)(1− γ)(2− γ)

]
=

1− γ

2− γ

[
2γ(1− 4q(1− q))− ln

(
q

1− q

)
(2q− 1)(2− γ)

]
=

1− γ

2− γ
E(q)
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for E(q) = 2γ(1− 4q(1− q))− ln
(

q
1−q

)
(2q − 1)(2− γ). Differentiating this expression

with respect to q, observe:

E′(q) = 2γ · 4(2q− 1)− 1
q(1− q)

(2q− 1)(2− γ)− 2 ln
(

q
1− q

)
(2− γ)

= (2q− 1)

(
4γ− 2− γ

q(1− q)

)
− 2 ln

(
q

1− q

)
(2− γ)

< (2q− 1) (4γ− 4(2− γ))− 2 ln
(

q
1− q

)
(2− γ)

< 0 for any q ∈
(

1
2

, 1
)

Therefore, E(q) < E
(

1
2

)
for any q ∈

(
1
2 , 1
)

. Note that

E
(

1
2

)
= 2γ

(
1− 4 · 1

4

)
− ln(1)

(
2 · 1

2
− 1
)

(2− γ) = 0.

Therefore, we can conclude

D1(q) ≤ 1− γ

2− γ
E(q) < 0 for any q ∈

(
1
2

, 1
)

.

Returning to D2(q), note:

D2(q) = γ2(1− q)
[
γ(2− γ)q2(1− q)−

(
γ2q(1− q) + (1− γ)

)
z(q, γ)

]
< γ2(1− q)

[
γ(2− γ)q(1− q)−

(
γ2q(1− q) + (1− γ)

)
z(q, γ)

]
The expression in the brackets is the negative of the numerator in zq(q, γ). Given that

zq(q, γ) is negative and that it includes ln
(

1−q
q

)
, it follows that the numerator has to be

positive. This implies that the expression above is negative, and therefore, D2(q) must be
negative as well.

Combining D1(q) < 0 and D2(q) < 0 (for any q ∈
(

1
2 , 1
)

and recalling

zqq(q, γ)q2(1− q)2

K(q)
=
(

γ2q(1− q) + (1− γ)
)

D1(q) + ln
(

q
1− q

)
(2q− 1)D2(q),

we can conclude that zqq(q, γ) < 0 for any q ∈
(

1
2 , 1
)

.6

Returning to the function q̄2(q), recall that we showed it is convex in q if z(q, γ) is
concave. Given that zqq(q, γ) < 0, it follows that q̄2(q) is convex. Combining this result
with the inequalities

q̄2

(
1
2

)
>

1
2

and q̄2 (1) < 1,

6This is due to the fact that K(q) > 0.
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we can finally conclude that the equality q̄2(q) = q is satisfied only once, which implies that
q̄2 is unique.

Comparative statics of q̄2.

Here we will prove that q̄2 is increasing in dL and decreasingi in dR, n and γ. The value of
q̄2 is determined by the equation

q =
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
.

We can rewrite it as

q− 1
2

=
(dL − dR)1−z(q,γ)

2
2 + 2n + (dL + dR)(1 + z(q, γ))

The right-hand side is strictly decreasing in dR and n (while the left-hand side is unaffected),
which implies that the fixed point of this equation, q̄2, is decreasing in these two variables.

For γ, recall that we can rewrite the equation as

q− B
D

=
AD− BC

D(C + Dz(q, γ))
,

where

A = 1 + dL + n, B = dR, C = 2 + 2n + dL + dR, D = dL + dR.

We will show that z(q, γ) is increasing in γ, which will imply7 that the right-hand side is
decreasing in γ. This, in turn, will imply that q̄2 is decreasing in γ. Consider:

∂

∂γ
z(q, γ) =

[
ln
(

1− q
q

)]−1

· −(1 + q)(γq + (1− γ)) + (1− q)(γ(1− q) + (1− γ))

(γ(1− q) + (1− γ))(γq + (1− γ))

=

[
ln
(

1− q
q

)]−1

· −2q(1− γ)− (1 + q)γq + γ(1− q)2

(γ(1− q) + (1− γ))(γq + (1− γ))

=

[
ln
(

1− q
q

)]−1

· −2q + γ(1− q)

(γ(1− q) + (1− γ))(γq + (1− γ))
> 0,

where the last inequality holds because (1− q) < q, γ < 2 and ln
(

1−q
q

)
< 0.

Finally, consider dL. Return to the equation

q =
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
.

7Recall that AD− BC is positive.
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Denote the right-hand side by h and take the derivative w.r.t. dL:

∂h
∂dL

=
2 + 2n + (dL + dR)(1 + z(q, γ))− (1 + z(q, γ))(1 + dL + n + dRz(q, γ))

(2 + 2n + (dL + dR)(1 + z(q, γ)))2

=
(1− z(q, γ)) (1 + n + dR(1 + z(q, γ)))

(2 + 2n + (dL + dR)(1 + z(q, γ)))2 > 0,

since z(q, γ) ≤ γ
2−γ < 1 for any γ ∈ (0, 1) and q ∈ (1

2 , 1).

C Proof of Proposition 3

Proof of Proposition 3. First, consider Proposition 2, since it is simpler. To prove that there
is no polarization, it is sufficient to prove that q̄2 becomes 1

2 , because that will mean that the

range (1
2 , q̄2) collapses to nothing. The value of q̄2 is implicitly determined by the equation

q = q̄2(q), where

q̄2(q) =
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))

Note that

q̄2

(
1
2

)
=

1
2

+
(dL − dR)(1− γ)

2(2− γ)(1 + n) + 2(dL + dR)
,

which collapses to q̄2

(
1
2

)
= 1

2 iff either dL = dR or γ = 1. Thus, if either of these conditions

holds, the fixed point of the equation q = q̄2(q) is achieved at q = 1
2 , which means that

q̄2 = 1
2 .

Now consider Proposition 1. Assume that i initially holds a correct prior: P(ω = L) =
µ0

i (ω = L) = π.

If γ = 1, then the situation is equivalent to agent i having n + dL + dR normal neighbors,
since she is able to completely unravel selective sharing. In that case, i’s expected posterior
belief E[µi(ω = L)] must be equal to her prior π due to a standard argument about a fully
Bayesian agent who is correctly specified with respect to her information structure.

Now suppose γ < 1 and dL = dR. Using the conditional expected posterior beliefs from
the proof of Proposition 1, we can show that i’s unconditional expected posterior belief from
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ex-ante perspective (before ω is determined) is given by

E [µi(ω = L)] = (1− π)E
[
µ1

i (ω = L) | ω = R
]

+ πE[µ1
i (ω = R) | ω = L]

= (1− π)

[ dL+dR
2 −1

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
f (k, q) + f (dL + dR − k, q)

)
+

+
(dL + dR)!(

dL+dR
2

)
!
(

dL+dR
2

)
!

f
(

dL + dR

2
, q
)]

+

+ π

[ dL+dR
2 −1

∑
k=0

(dL + dR)!
k!(dL + dR − k)!

(
f̂ (k, q) + f̂ (dL + dR − k, q)

)
+

+
(dL + dR)!(

dL+dR
2

)
!
(

dL+dR
2

)
!

f̂
(

dL + dR

2
, q
)]

,

where

f (k, q) =
π(1− q)kqdL+dR−k

π + (1− π)
(

1−q
q

)k−dR
(

γ(1−q)+(1−γ)
γq+(1−γ)

)k−dL

and

f̂ (k, q) =
πqk(1− q)dL+dR−k

π + (1− π)
(

1−q
q

)k−dR
(

γ(1−q)+(1−γ)
γq+(1−γ)

)k−dL
.

Note that the expected belief in ω = L is completely symmetric to the expected belief
in ω = R with respect to numbers of friends and priors. That is, if we were to let π̂ =
1− π, d̂L = dRi and d̂R = dLi, we would get the same expression for E[µ1

i (ω = R)] as for
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E[µ1
i (ω = L)] above:

E [µi(ω = R)] = (1− π̂)E [µi(ω = R) | ω = L] + π̂E[µi(ω = L) | ω = R]

= (1− π̂)

[ d̂R+d̂L
2 −1

∑
k=0

(d̂R + d̂L)!
k!(d̂R + d̂L − k)!

(
f (k, q) + f (d̂R + d̂L − k, q)

)
+

+
(d̂R + d̂L)!(

d̂R+d̂L
2

)
!
(

d̂R+d̂L
2

)
!

f

(
d̂R + d̂L

2
, q

)]
+

+ π̂

[ d̂R+d̂L
2 −1

∑
k=0

(d̂R + d̂L)!
k!(d̂R + d̂L − k)!

(
f̂ (k, q) + f̂ (d̂R + d̂L − k, q)

)
+

+
(d̂R + d̂L)!(

d̂R+d̂L
2

)
!
(

d̂R+d̂L
2

)
!

f̂

(
d̂R + d̂L

2
, q

)]
,

where

f (k, q) =
π̂(1− q)kqd̂R+d̂L−k

π̂ + (1− π̂)
(

1−q
q

)k−d̂L
(

γ(1−q)+(1−γ)
γq+(1−γ)

)k−d̂R

and

f̂ (k, q) =
π̂qk(1− q)d̂R+d̂L−k

π̂ + (1− π̂)
(

1−q
q

)k−d̂L
(

γ(1−q)+(1−γ)
γq+(1−γ)

)k−d̂R
.

This symmetry implies the following conclusion. Suppose that for some dL and dR the
expected belief E[µi(ω = L)] is biased in some direction; for the sake of argument, assume
E[µi(ω = L)] > π. Because of the symmetry above, it then follows that for d̂L = dR and
d̂R = dL (swapping the number of friends), we will have E[µi(ω = R)] > π̂ = 1− π. In
other words, if dogmatic-left friends are able to bias i’s expected belief towards state ω = L,
dogmatic-right friends would be able to do the same with state ω = R under symmetric
circumstances.

This implies that, when dL = dR holds, if E[µi(ω = L)] > π, then E[µi(ω = R)] >
1− π should also hold. However, this means that the expected posterior probabilities do
not sum up to 1, which is a contradiction. Therefore, when dL = dR holds, it must be the
case that E[µi(ω = L)] = π and E[µi(ω = R)] = 1− π. This finishes the proof of the
proposition. �
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D Proof of Proposition 4

Proof of Proposition 4. To prove the result, we need to consider the implicit equation that
defines q̄2(dL, dR, n, γ):

q = q̄2(q) ⇔ q =
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))
=

1
2

+
dL

(
1− 1+z(q,γ)

2

)
+ dR

(
z(q, γ)− 1+z(q,γ)

2

)
2 + 2n + (dL + dR)(1 + z(q, γ))

Consider the right-hand side of this equation when dL, dR and ni increase by a factor of
λ > 1:

1
2

+
λdL

(
1− 1+z(q,γ)

2

)
+ λdR

(
z(q, γ)− 1+z(q,γ)

2

)
2 + λ (2n + (dL + dR)(1 + z(q, γ)))

>
1
2

+
λdL

(
1− 1+z(q,γ)

2

)
+ λdR

(
z(q, γ)− 1+z(q,γ)

2

)
2λ + λ (2n + (dL + dR)(1 + z(q, γ)))

=
1
2

+
dL

(
1− 1+z(q,γ)

2

)
+ dR

(
z(q, γ)− 1+z(q,γ)

2

)
2 + 2n + (dL + dR)(1 + z(q, γ))

=
1 + dL + n + dRz(q, γ)

2 + 2n + (dL + dR)(1 + z(q, γ))

= q̄2(q)

Hence, the right-hand side of the equation q = q̄2(q) increases when dL, dR and n all increase
by a factor of λ > 1, which means that we need a higher q on the left-hand side to satisfy
the equation. Therefore, if q̄2(dL, dR, n, γ) solves q = q̄2(q), then

q̄2(λdL, λdR, λn, γ) > q̄2(dL, dR, n, γ).

Consider arbitrary λL > 1, λR > 1 and λN > 1 and look at the expression for
q̄2(λdL, λdR, λNn, γ):

q̄2(λLdL, λRdR, λNn, γ) =
1
2

+
λLdL

(
1− 1+z(q,γ)

2

)
+ λRdR

(
z(q, γ)− 1+z(q,γ)

2

)
2 + 2λNn + (λLdL + λRdR)(1 + z(q, γ))

The inequality q̄2(dL, dR, n, γ) ≤ q̄2(λLdL, λRdR, λNn, γ) will hold if and only if the
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following holds:

(λLdL − λRdR)
(

1− 1+z(q,γ)
2

)
2 + 2λNn + (λLdL + λRdR)(1 + z(q, γ))

≥
(dL − dR)

(
1− 1+z(q,γ)

2

)
2 + 2n + (dL + dR)(1 + z(q, γ))

(λLdL − λRdR)

2 + 2λNn + (λLdL + λRdR)(1 + z(q, γ))
≥ (dL − dR)

2 + 2n + (dL + dR)(1 + z(q, γ))

(λLdL − λRdR) (2 + 2n + (dL + dR)(1 + z(q, γ))) ≥ (dL − dR)×
(2 + 2λNn + (λLdL + λRdR)(1 + z(q, γ)))

(λLdL − λRdR) (2 + 2n) ≥ (dL − dR) (2 + 2λNn)

(λLdL − λRdR) (1 + ni) ≥ (dL − dR) (1 + λNn)

((λL − 1)dL − (λR − 1)dR) + n (λLdL − λRdR) ≥ (dL − dR)λNn
((λL − 1)dL − (λR − 1)dR) + n (λLdLi − λRdR)

(dL − dR)n
≥ λN

((λL−1)dL−(λR−1)dR)+n((λL−1)dL−(λR−1)dR)
(dL−dR)n ≥ λN − 1

((λL − 1)dL − (λR − 1)dR) (1 + n)

(dL − dR)n
≥ λN − 1

(λL − 1)dL − (λR − 1)dR

(dL − dR)
·
(

1 +
1
n

)
≥ λN − 1

�

E Proof of Proposition 5

Proof of Proposition 5. Recall that q = q̄2(dLi, dRi, ni, γ) is defined by

q =
1 + dLi + ni + dRiz(q, γ)

2 + 2n + (dLi + dRi)(1 + z(q, γ))

Fix dLi, dRi, ni, λ and q̂. We need to find λN such that

q̂ ≥ 1 + λdLi + λNni + λdRiz(q, γ)

2 + 2λNni + λ(dLi + dRi)(1 + z(q, γ))
=

1
2

+
λ(dLi − dRi)

1−z(q,γ)
2

2 + 2λNni + λ(dLi + dRi)(1 + z(q, γ))

Note that the right-hand side is decreasing in z(q, γ). So a sufficient condition would be to
impose the inequality for the lowest value of z(q, γ), which is 0. This gives us the following
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inequality:

q̂ ≥ 1
2

+
1
2 λ(dLi − dRi)

2 + 2λNni + λ(dLi + dRi)

2q̂− 1 ≥ λ(dLi − dRi)

2 + 2λNni + λ(dLi + dRi)

λ(dLi − dRi) ≤ (2q̂− 1)(2 + 2λNni + λ(dLi + dRi))

λ(dLi − dRi) ≤ (2q̂− 1)(2 + λ(dLi + dRi)) + 2(2q̂− 1)λNni

λN ≥
2(1− q̂)λdLi − 2(2q̂− 1)− 2q̂λdRi

2(2q̂− 1)ni

λN ≥
(1− q̂)λdLi − q̂λdRi − (2q̂− 1)

(2q̂− 1)ni

λN ≥
(1− q̂)dLi − q̂dRi

(2q̂− 1)ni
λ− 1

ni

λN ≥
dLi − q̂(dLi + dRi)

(2q̂− 1)ni
λ− 1

ni

�

F Proof of Proposition 6

Proof. First, we will quickly prove Lemma 1. Consider agent i who is “eventually correct” at
a given q = q̂. There are two possibilities: either q̄2i > q̂ or q̄2i < q̂ (we omit the knife-edge
case). If q̄2i > q̂, then the agent must have dogmatic imbalance towards the correct state.
Increasing q beyond q̄2i will lead to the agent learning correctly and having beliefs converge
to the same state as before. Hence, the agent will not leave the set of “eventually correct”
agents as q increases. If q̄2i < q̂, then the agent is already learning correctly, and increasing
q further will not alter her asymptotic beliefs. Thus, she will remain “eventually correct” as
q goes up. All of this implies that the set of “eventually correct” agents is not contracting
as q increases.

Now consider agent j who is “eventually incorrect” at a given q = q̂. This can only occur
if the agent is learning incorrectly, meaning she has a dogmatic imbalance towards the wrong
state that is sufficiently large, i.e. q̄2i > q̂. Increasing q beyond q̄2i will make the agent begin
to learn correctly, which means she will leave the “eventually incorrect” set of agents and
will now be in the “eventually correct” set. This finishes the proof of Lemma 1.

Fix some q = q̂ and considers sets NL(q) and NR(q). For definiteness, let ω = L be the
true state. Let q̄min(q̂) = mini∈N {q̄2i | q̄2i > q̂} be the lowest q̄2i among agents who are
“eventually incorrect” at q = q̂. As q increases and reaches q̄min(q̂), that agent will flip from
being “eventually incorrect” to being “eventually correct”. Since ω = L is the true state,
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this implies

|NL(q̄min(q̂))| = |NL(q̂)|+ 1 and |NR(q̄min(q̂))| = |NR(q̂)| − 1.

Consider the network polarization Π(q) at q = q̂ and q = q̄min(q̂):

Π(q̂) =
4
|N | · |NL(q̂)||NR(q̂)|

Π(q̄min(q̂)) =
4
|N | · (|NL(q̂)|+ 1) (NR(q̂)− 1)

Note that Π(q̂) ≥ Π(q̄min(q̂)) if and only if

|NL(q̂)||NR(q̂)| ≥ (|NL(q̂)|+ 1) (NR(q̂)− 1) ,

which is equivalent to

|NR(q̂)| ≤ |NL(q̂)|+ 1.

Hence, the network polarization weakly decreases with q if and only if the set of “eventually
incorrect” agents initially (at q = q̂) is smaller than the set of “eventually correct” agents
plus one. Since NR(q) is weakly contracting in q, a necessary and sufficient condition for
Π(q) to be always weakly decreasing in q is that |NR(1

2)| = |DR| is weakly smaller than

|N | − |DR|+ 1, which is equivalent to |DR| ≤ 1
2 (|N |+ 1).

Therefore, the network polarization Π(q) is weakly decreasing in q over q ∈
(

1
2 , 1
)

if

and only if |D−ω| ≤ 1
2 (|N |+ 1). �

G Proof of Proposition 7

Proof. The proof of this proposition is short, and requires us to prove that by aggregating
enough signals, we can push quality of information above any given threshold. In other
words, if ŝi

Mt denotes an M-aggregated signal, we need to prove

lim
M→∞

P(ŝi
Mt = l|ω = L) = lim

M→∞
P(ŝi

Mt = r|ω = R) = 1.

Suppose that we aggregate M (odd number) signals together, and offer agents the fol-
lowing information structure:

ŝi
Mt =

{
0, if ∑M

t=1 sit <
M
2

1, if ∑M
t=1 sit >

M
2

45



For simplicity, assume that the true state is ω = L, and consider the quality of signal ŝi
Mt:

P
(

ŝi
Mt = l

∣∣ω = L
)

= P

(
M

∑
t=1

sit <
M
2

∣∣∣∣ω = L

)

= P

(
1
M

M

∑
t=1

sit <
1
2

∣∣∣∣ω = L

)

= P

(
1
M

M

∑
t=1

sit <
1
2

∣∣∣∣ω = L

)

= 1−P

(
1
M

M

∑
t=1

sit ≥
1
2

∣∣∣∣ω = L

)

= 1−P

(
1
M

M

∑
t=1

sit − (1− q) ≥ 1
2
− (1− q)

∣∣∣∣ω = L

)

= 1−P

(
`M − (1− q) ≥ 1

2
− (1− q)

∣∣∣∣ω = L
)

as M→∞→ 1− 0 = 1,

where the last line is due to the weak Law of Large Numbers on a Binomial random variable
`M with parameters M and (1− q). Hence, the limit of signal’s quality as M→ ∞ is equal
to 1, meaning that there must exist a finite number of signals such that the quality surpasses
the bound q̄1. For such aggregated signal, information quality is too high for Proposition 2
to apply, which implies that there is no divergence of beliefs in the network. �
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