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Abstract

Patents grant an inventor temporary monopoly rights in exchange for the disclosure of
the patented invention. However, if only those inventions that are otherwise already visible
are patented (and others kept secret), then the bargain fails. We use exogenous variation in
the strength of trade secrets protection from the Uniform Trade Secrets Act to show that
a relative weakening of patents (compared to trade secrets) adversely affects patenting of
processes more than that of products. Arguing that processes are on average less visible (or
self-disclosing) than products, stronger trade secrets have thus a disproportionately negative
effect on the disclosure of inventions that are not otherwise visible to society. We develop
a structural model of initial and follow-on innovation to determine the effects of such a
shift in disclosure on overall welfare in industries characterized by cumulative innovation. In
counterfactual analyses, we find that while stronger trade secrets encourage more investment
in R&D, they may have negative effects on overall welfare – the result of a significant decline
in follow-on innovation. This is especially the case in industries with relatively profitable
R&D.
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“[S]ociety is giving something for nothing . . . [when] concealable inventions
remain concealed and only unconcealable inventions are patented.”

Machlup and Penrose (1950)

1 Introduction1

When better protection of intellectual property improves the appropriability of R&D2

investment returns, firms are expected to invest and innovate more. The fruits of such3

innovation serve as the proverbial shoulders on which future innovators can stand, thus4

fostering technological progress through more follow-on (or cumulative) innovation.15

However, granting the inventor a temporary monopoly through a patent can have6

negative, “anticommons” effects on follow-on innovation when exclusivity renders the7

shoulders less accessible (Heller and Eisenberg, 1998). A negative effect on follow-8

on innovation also arises when inventors decide to disclose fewer of their inventions9

through patents, instead keeping them secret. With stronger protection of such trade10

secrets (or with weaker patents), fewer of the proverbial shoulders become visible11

and therefore available for others to stand on. This effect is particularly prevalent in12

industries with technologies that are per se less visible or “self disclosing” (Strandburg,13

2004). In those industries, the diffusion of knowledge relies on the disclosure function14

of patents. In this paper, we ask how a change in the attractiveness of secrecy15

relative to patents affects the diffusion of knowledge through the decision to invest in16

innovation, the disclosure of inventions, and the ability to build on these inventions.17

Secrecy is an important tool in a firm’s intellectual property management toolbox.18

Generally speaking, a trade secret is information (“a customer list, a business plan,19

or a manufacturing process”) that has commercial value the secret holder wants to20

conceal from others (Friedman et al., 1991:61). There is ample survey-based evidence21

that (trade) secrets are widely used and often more important as an appropriability22

mechanism than patents (e.g., Levin et al., 1987; Cohen et al., 2000; Arundel, 2001).23

Mansfield (1986) reports survey results suggesting that one out of three patentable24

inventions is kept secret when inventors have a choice between secrecy and patenting.25

Importantly, choosing secrecy does not mean that the invention is without any pro-26

tection. Trade secrets laws offer protection against misappropriation of secrets – that27

is, the acquisition of a trade secret by improper means (for instance, theft, bribery,28

misrepresentation, breach of contract, or espionage) or the disclosure of a trade secret29

without consent. However, unlike patents, trade secrets laws generally do not grant30

exclusivity.2 This means, a trade secret is not protected if it accidentally leaks or31

1In February 1675, Sir Issac Newton wrote in a letter to Robert Hooke: “If I have seen further,
it is by standing upon the shoulders of giants.” See Scotchmer (1991) for the economics of giants’
shoulders.

2Codified trade secrets laws in the U.S. go back to the Restatement (First) of Torts of 1939. The
Uniform Trade Secrets Act of 1979/1985 was recommended for state-level adoption to clarify and
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is uncovered through independent discovery or reverse engineering (Friedman et al.,32

1991).333

Stronger trade secrets protection renders trade secrets more attractive relative34

to patents (Png, 2017b). In this paper, we use exogenous variation of trade secrets35

protection across states and time from the staggered adoption of the Uniform Trade36

Secrets Act (UTSA) of 1979/1985 to study the trade-off between secrecy and disclo-37

sure through patenting for different technology types.4 Using new data on the type of38

a patented invention – product or process – to capture how visible or self-disclosing39

an invention is (Ganglmair et al., 2019), we show that stronger trade secrets protec-40

tion results in a disproportionate decrease of process patents. We then estimate the41

parameters of a structural model of sequential innovation that takes both ex-ante and42

follow-on innovation incentives into account. We find that total welfare may in fact43

decline as trade secrets protection grows stronger. This negative welfare effect is due44

to the reduced patenting of less visible inventions – processes – for which disclosure45

is essential to allow for follow-on innovation.46

The paper proceeds in four steps. In Section 2, we develop a simple model of47

an inventor’s decision to disclose a new technology through a patent. The value48

of the invention from a patent increases with the underlying invention’s visibility:49

visibility allows for easier enforcement of the patent – guaranteeing exclusive access50

to the technology. The value of the invention that is kept secret, however, decreases in51

visibility, because secrecy (and therefore exclusive access) is more difficult to maintain.52

We assume that processes are on average less visible than products. The assumption53

implies that, on average, inventors of processes value secrecy more than those of54

products – consistent with survey evidence (Levin et al., 1987; Cohen et al., 2000;55

Arundel, 2001; Hall et al., 2013). For a given baseline share of process inventions, our56

model predicts that, as trade secrets protection improves, the share of process patents57

decreases. This theoretical prediction serves as the basis for the empirical analysis in58

the rest of the paper.59

In Section 3, we discuss our two main datasets that we merge with basic biblio-60

graphic patent information. First, we use an index constructed by Png (2017a) that61

harmonize trade secrets protection at the state level. With the passing of the Economic Espionage
Act of 1996 (criminal) and the Defend Trade Secrets Act of 2016 (civil), the U.S. now has two
federal law bodies governing trade secrets. In Europe, before the adoption of the EU Trade Secrets
Directive (2016/943), trade secrets laws were fragmented, and relevant provisions found in labor law
(France), law of unfair competition (Germany), or considered breach of confidence (UK).

3The Uniform Trade Secrets Act of 1979/1985, for instance, lists as such proper means: “discovery
by independent invention; discovery by reverse engineering [. . . ]; discovery under a license from the
owern of the trade secret; observation of the item in public use or on public display; obtaining the
trade secret from published literature.”

4We do not consider the joint use of patents and secrecy (Arora, 1997; Crass et al., 2019) or
disclosure without patenting (for instance, through academic publishing (Thursby et al., 2018) or
corporate technical journals, such as the IBM Technical Disclosure Bulletin or the Xerox Disclosure
Journal). Our assumption of the choice between secrecy and patents comes without loss of generality
as long as there is some degree of substitutability between these two options.
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measures the strength of legal protection of trade secrets before and after a state’s62

adoption of the UTSA. It reflects the trade secrets protection to which an inventor63

in a given state was exposed at the time of her disclosure decision. Second, we use64

data compiled by Ganglmair et al. (2019) to construct process and product patent65

indicators.66

In Section 4, we use these data to test the model implications. We use exogenous67

variation across locations and time in the level of trade secrets protection due to68

the staggered adoption of the UTSA by various U.S. states to estimate the effect of69

stronger trade secrets protection on the likelihood that a patent covers a process in70

a differences-in-differences estimation. Consistent with results from our theoretical71

model, we find that better legal protection of trade secrets leads to a disproportionate72

decrease of patenting of processes. Our estimated effects are largest among individual73

inventors (compared to large firms). We confirm our baseline results and the identify-74

ing assumptions in a number of robustness checks, including an instrumental variables75

strategy that uses state-specific adoption of other, unrelated policies to estimate a76

state’s UTSA adoption (Png, 2017b).77

In Section 5, we estimate the parameters of a dynamic model of sequential inno-78

vation and use these estimates to establish our welfare results. In addition to the79

disclosure decision from Section 2, we now take both an inventor’s ex ante R&D de-80

cision and the effect of disclosure on follow-on innovation into account. We model81

follow-on innovation consistent with stylized facts: more disclosure of technical infor-82

mation boosts follow-on innovation (Williams, 2013; Gross, 2019), patents on early83

ideas raise the costs of creating future ideas (Scotchmer, 1991; Heller and Eisenberg,84

1998; Galasso and Schankerman, 2015), and the information disclosed in patents is85

of sufficient quality and useful (Furman et al., 2018).86

Our structural model provides estimates for the ex ante distributions of each in-87

vention type as well as their visibilities. These allow us to calculate the R&D intensity88

and the share and characteristics of trade secrets (over all realized inventions). The89

counterfactual analyses show that stronger trade secrets protection has a negative90

overall welfare effect in industries with relatively profitable R&D. When the benefits91

of trade secrets protection are inframarginal to an inventor, stronger legal protection92

of trade secrets has the unintended consequence of lowering total welfare by impeding93

follow-on innovation. This pattern is reversed for R&D projects that are relatively94

less profitable. In this case, the benefits are marginal and stronger legal protection95

improves welfare by encouraging initial R&D. We further show that the negative ef-96

fects are more pronounced as the differences of the invention types in terms of their97

average visibilities increase.98

This study contributes to several streams of literature. Beyond a number of studies99

based on survey data (e.g., Levin et al., 1987; Cohen et al., 2000; Arundel, 2001),100

there is limited empirical work on trade secrets – for the obvious data limitations.101

A small literature presents indirect evidence on secrecy. Moser (2012) documents a102

shift toward patenting (and away from secrecy) in the chemical industry as reverse103
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engineering became easier with the publication of the periodic table of elements. Gross104

(2019) finds that a policy during World War II to keep certain patent applications105

secret resulted in fewer citations and slower dissemination of the patented technologies106

into product markets. Hegde and Luo (2018) show that a reduction of the duration of107

temporary secrecy of patent applications (implying more rapid knowledge diffusion)108

had a mitigating effect on licensing delays.109

A related strand of literature studies the effect of changes in legal trade secrets110

protection on innovation and patenting behavior. Png (2017a) finds that stronger111

trade secrets protection has a positive effect on firms’ investment in R&D, at least112

in the high-tech industry and for large companies. Similarly, Png (2017b) finds that113

strengthening trade secrets protection renders patenting relatively less attractive.114

Related to this line of work, Contigiani et al. (2018) find that more employer-friendly115

trade secrets protection has a dampening effect on innovation. Angenendt (2018) finds116

that patent applicants respond to stronger trade secrets protection through the UTSA117

by reducing the number patent claims and decreasing the amount of information118

disclosed. We add to this body of literature by analyzing the role of an invention’s119

visibility in measuring the effect of an increase in trade secrets protection on the120

patenting and innovation decisions.121

We explicitly model and estimate an inventor’s behavioral response to stronger122

trade secrets (or weaker patents) and the subsequent decline in disclosure of inven-123

tions. Such a general equilibrium approach is critical to assessing the full welfare124

consequences of recent U.S. Supreme Court rulings that have narrowed the scope of125

what is and what is not patentable (see Sampat and Williams, 2018). Our welfare126

results provide new insights for the evaluation of these rulings. Moreover, to our127

knowledge, this is the first paper presenting welfare results explicitly for changes in128

trade secrets laws. This is particularly interesting in light of the EU Trade Secrets129

Directive 2016/943 adopted in June 2016 for which impact evaluations are not yet130

available. Results from the U.S. can thus inform an ongoing policy debate in Europe.131

2 A Model of Trade Secrets and Disclosure132

For our welfare analyses in a later section, we consider a 3-stage model of sequential133

innovation. Stage 1 describes the inventor’s decision to invest in R&D and realize134

the initial invention. At Stage 2 (this section), the inventor decides to disclose the135

(patentable) invention or keep it a secret5. Stage 3 eventually captures the market’s136

decision to engage in follow-on innovation that builds on the initial invention from137

5Given that we use patent data for our empirical analysis, we restrict our model interpretation to
inventions that are patentable. In the U.S., this means it must exhibit patentable subject matter (35
U.S.C. §101), be useful (35 U.S.C. §101), novel (35 U.S.C. §102), and non-obvious (35 U.S.C. §103).
Patentability of the invention in our context implies that the inventor is given a true choice between
disclosure (through a patent) and trade secrecy.
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Stage 1. In this section, we analyze the disclosure decision at Stage 2. We return to138

the full 3-stage augmented model in Section 5 when we present our welfare results.139

2.1 An Inventor’s Decision to Disclose140

An invention i at Stage 2 can be described by a tuple (φ,Θ, v) and is characterized141

by its visibility φ, its type Θ, and its private commercial value v (from exclusive use).142

Visibility is the parties’ ability to observe an invention or its use. We discuss each of143

the invention’s characteristics below.144

An inventor is given the choice to disclose an invention in a patent (π̃ = D) or145

keep the invention secret (π̃ = S). We set the inventor’s private returns Vπ̃ equal146

to the exclusivity-weighted commercial value v, where we interpret v as the rents the147

inventor is able to appropriate from exclusive use of the invention. A lower degree of148

exclusivity thus means the inventor reaps a smaller fraction of these rents. In both149

disclosure states π̃, the probability of exclusive use depends on the visibility of the150

invention.6151

Once the inventor has disclosed the invention in a patent, she can accumulate152

profits only if that patent is enforceable and other firms can be excluded from its use.153

In order to enforce a patent, the patent holder must be able to detect the use of an154

invention by a potential infringer. A more visible invention with higher observability155

of its use is therefore easier to enforce (and exclusivity prevails). Patents for non-156

visible inventions, on the other hand, are not enforceable and of zero value because157

rents dissipate once the invention is freely available. The expected commercial value158

the inventor is able to materialize is therefore φ · v. In addition, the inventor receives159

a patent premium λ.7 It captures the benefits from patenting over trade secrets.8 We160

define the inventor’s private value of disclosing the invention as161

VD(φ) = φ (1 + λ) v. (1)

While a patent needs visibility to be of value, a trade secret’s value decreases162

in the visibility of the underlying invention. Moreover, the value of trade secrecy163

increases with the level of trade secrets protection. We denote the exogenous proba-164

6In certain applications, higher visibility can also be interpreted as a higher probability that
the invention can be reverse-engineered. Scotchmer and Green (1990) show that an inventor of a
patentable technology might not want to patent and keep the technology off the market to avoid
reverse engineering. For a general treatment of reverse engineering, see Samuelson and Scotchmer
(2002).

7Patents are of additional value because, for instance, they signal the quality of the invention
(Hsu and Ziedonis, 2013), convey reputation (Graham et al., 2009; Sichelman and Graham, 2010),
or simply improve an inventor’s bargaining position in license negotiations. Webster and Jensen
(2011) further provide evidence for premium from commercialization, showing that being refused a
patent has a significant negative effect on a firm’s decision to launch and mass produce a product.

8For simplification, the patent premium λ captures these benefits in excess of what the inventor,
if anything, could earn, for instance, from licensing the invention as a trade secret.
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bility that a trade secret is protected by τ . Even with perfect trade secrets protection165

(τ = 1), an invention is of little value to the inventor if it is visible and can easily166

be copied by others without the inventor’s ability to police such use.9 Moreover,167

weaker trade secrets protection reduces deterrence and results in more unsanctioned168

misappropriation (or unprotected use) of trade secrets (e.g., Friedman et al., 1991:68).169

We therefore assume that, without any trade secrets protection, the value of trade170

secrecy is zero even for non-visible inventions. This is because of disclosure through171

misappropriation.10 We define the private value of a trade secret as172

VS(φ, τ) = τ (1− φ) v. (2)

That is, inventor of (φ,Θ, v) chooses disclosure if, and only if, VD(φ) ≥ VS(φ, τ).173

This condition can be rearranged to read174

φ ≥ τ

1 + λ+ τ
.

The inventor chooses disclosure through patenting if, and only if, visibility of the175

invention is sufficiently high (or trade secrets protection and the patent premium are176

sufficiently low). For a given φ, we can summarize the decision to disclose and patent,177

π̃ ∈ {D,S}, as178

π̃ =

{
D if φ ≥ τ

1 + λ+ τ
S if otherwise.

(3)

Observe that in our model, the inventor’s decision to patent an invention is not a179

function of the potential commercial value of the invention but rather of the effec-180

tive value (given the invention’s visibility).11 The following lemma summarizes basic181

comparative statics of the inventor’s decision to disclose. The proofs of this and all182

other results are relegated to the Appendix.183

Lemma 1. An inventor is more likely to disclose her invention by filing for a patent184

as the degree of visibility φ and the patent premium λ increase; she is less likely to185

patent as the degree of trade secrets protection τ increases.186

9Note that in our model we do not allow for independent discovery (that is independent of
visibility φ). We also assume that if a competitor has rightfully acquired the invention, she cannot
take out a patent.

10This is not as strong an assumption as it appears to be. Generally, the threat of legal sanctions
will deter (at least some) misappropriation, and the lack of such a threat will encourage it. Friedman
et al. (1991) and also Lemley (2008) have argued that if trade secrets protection is weak, firms erect
often inefficient safeguards. The costs of these is expected to increase in v and decrease in τ . Without
trade secrets protection, the effective commercial value may in fact fully dissipate.

11While the theoretical literature is divided (e.g., Anton and Yao, 2004; Jansen, 2011), most
empirical studies find a positive relationship between the value of an invention and the propensity
to patent (e.g., Moser, 2012; Sampat and Williams, 2018).
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External sources provide corroborating evidence for our prediction. Moser (2012)187

provides empirical evidence for more patenting as visibility increases (captured by188

the ease of reverse engineering an invention), and Png (2017b) shows that patenting189

decreases as trade secrets protection increases.190

2.2 Value of Trade Secrecy by Invention Type191

We assume that an invention’s visibility φ is unobservable but distributed on the unit192

support with cdf GΘ. What is observable is an invention’s type Θ that is correlated193

with its visibility. More specifically, an invention is either a process (or method),194

Θ = M , or a product, Θ = P . Invention types are Bernoulli distributed where195

θ = Pr(Θ = M) is the probability that the realized invention is a process. We denote196

this distribution by G. Note that these distributions (GΘ for Θ = M,P and G) are197

conditional distributions given the inventor’s positive R&D decision at Stage 1 of the198

augmented model.199

We assume that processes are on average less visible than products (e.g., Strand-200

burg, 2004).12 We formally capture this by assuming first-order stochastic dominance:201

GP first-order stochastically dominates GM so that GM ≥ GP for all φ. One impli-202

cation of this assumption is a higher value of secrecy for processes than for products,203

given v. Conversely, the value of disclosure is lower for processes than for products.204

The (expected) value of secrecy of an invention of type Θ is205

EVS|Θ(τ) =

∫ 1

0

τ (1− φ) vdGΘ(φ); (4)

the expected value of disclosure is206

EVD|Θ(τ) =

∫ 1

0

φ (1 + λ) vdGΘ(φ). (5)

We show the claim in207

Proposition 1. Let GP (φ) ≤ GM(φ) for all φ. For a given level of trade secrets208

protection τ , the value of secrecy is higher for processes than for products, EVS|M(τ) >209

EVS|P (τ). Conversely, the value of disclosure is lower for processes than for products,210

EVD|M(τ) < EVD|P (τ).211

Empirical evidence comports with this theoretical finding. Using survey data,212

Levin et al. (1987), Cohen et al. (2000), Arundel (2001), or Hall et al. (2013) find213

that the propensity to patent is higher for products than processes, suggesting a214

higher value of secrecy for processes. In the Appendix, we present empirical evidence215

for the same. We exploit a change of the publication policy of pending U.S. utility216

12We find support for this assumption both among legal practitioners (Goldstein, 2013:65–66) and
managers (Federal Trade Commission, 2003:ch. 3, p. 32).
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patent applications through the American Inventors Protection Act of 1999. Eligible217

patent applicants were given the option to delay the disclosure of their inventions (i.e.,218

publication of their applications) and thus extend the period of temporary secrecy.219

While the baseline probability of opting out of disclosure is somewhat low (Graham220

and Hegde, 2015), we find strong evidence that applicants of process patents are more221

eager to extend the temporary secrecy of their inventions.222

2.3 Probability to Disclose for Different Invention Types223

For our main theoretical result and prediction, we derive the probability ρ that a given224

patent covers a process invention. We first establish three simple auxiliary results. In225

Lemma 2, we show that the probability that a process is patented is weakly smaller226

than the probability that a product is patented. For this, let π(φ, τ) = 1 if π̃ = D227

and π(φ, τ) = 0 if π̃ = S. The probability that an invention of type Θ is patented228

and disclosed is229

πΘ(τ) =

∫ 1

0

π(φ, τ)dGΘ(φ). (6)

Lemma 2. For a given level of trade secrets protection τ , πM(τ) ≤ πP (τ).230

In Lemmas 3 and 4, we show that patenting probabilities are decreasing in trade231

secrets protection for both invention types, and that the patenting probability for232

products is decreasing at a lower rate than that for processes.233

Lemma 3. The patenting probabilities for products πP (τ) and processes πM(τ) are234

decreasing in τ .235

Lemma 4. The difference between the patenting probabilities for products πP (τ) and236

processes πM(τ) is increasing in trade secrets protection τ .237

The patenting probability πΘ(τ) captures the probability that an invention of type238

Θ is disclosed through patenting. We do not observe, however, the characteristics of239

the underlying invention. Instead, we assume distributions GΘ. Given the distribu-240

tion G of invention types with θ = Pr(Θ = M), the probability that a given patent241

covers a process is242

ρ(τ) =
θπM(τ)

θπM(τ) + (1− θ) πP (τ)
. (7)

The expression in (7) can be interpreted as the share of process patents in a sample243

of patents (where patents are either process or product patents). It is decreasing as244

trade secrets protection increases. We show this in245

Proposition 2. The share of process patents (patents covering a process or method246

invention) is decreasing as trade secrets protection increases.247
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In other words, Proposition 2 predicts that, in response to an (exogenous) increase248

in trade secrets protection, the probability that a given patent is a process patent249

decreases. In Section 4, we take this prediction to the data, using the staggered250

introduction of the Uniform Trade Secrets Act to identify the effect of trade secrets251

protection on patenting behavior.252

3 Institutional Background and Data253

We examine the effects of a state-specific change in the strength of trade secrets254

protection to determine the role of an invention’s visibility for the decision to disclose.255

Below, we provide institutional background and discuss our measure of trade secrets256

protection (Png, 2017a). We then introduce a dataset to identify process and product257

patents (Ganglmair et al., 2019) and discuss further data sources and definitions of258

additional control variables.13
259

3.1 Uniform Trade Secrets Act (1979/1985)260

As our source of identification, we use the introduction of the Uniform Trade Secrets261

Act (UTSA). The UTSA is a body of laws relating to the protection of trade secrets.262

It was published and recommended to the individual U.S. states for adoption in 1979263

(with a revision in 1985) by the National Conference of Commissions on Uniform264

State Laws. Since 1979, 47 states, the District of Columbia, Puerto Rico, and the265

U.S. Virgin Islands have adopted the UTSA, with adoption dates ranging from 1981266

(5 states) to 2013 (Texas).14 Using information on the level of trade secrets protection267

before and after a state’s adoption of the UTSA, Png (2017a) constructs an index that268

measures the change in legal protection of trade secrets. We observe a strengthening269

of trade secrets protection if, for instance, the UTSA introduces a broader definition270

of what is a trade secret or a wider list of circumstances under which trade secrets271

law has been violated.15
272

Figure 1 illustrates the change in this index in individual states as they adopted273

the UTSA in a given year, with higher values implying larger increases in protection.274

In most states, the UTSA resulted in a strengthening of trade secrets protection, with275

the exception of Michigan, Nebraska, and Wyoming, where the UTSA had no effect,276

and Arkansas and Pennsylvania, where pre-UTSA trade secrets protection (under277

common law) was stronger. There is no obvious pattern in the size of these changes278

13For more detailed information, see the Online Appendix.
14The list of adopting states includes all states except New York, Massachusetts, and North

Carolina (Sandeen and Rowe, 2013).
15The index summarizes the inclusion of six different factors. On substantive law: continuous use

requirement, requirement to take reasonable effort to protect trade secrets, and mere acquisition
as misappropriation. On civil procedure: limitations on when a trade secret owner can take legal
action. On remedies: limitations of injunctions, and availability of a punitive damages multiplier.
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Figure 1: Change in Legal Protection of Trade Secrets (Png, 2017a)
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Notes: This figure presents data from Table 1 in Png (2017a). For the states that adopted the UTSA between 1981
and 2006, it depicts the change in legal protection of trade secrets across states as a result of the UTSA.

over time and across states, and anecdotal evidence suggests that passing of the bills279

often happened for “whimsical” reasons.16
280

We use annual data of Png’s trade secrets protection index for all 50 states (plus281

the District of Columbia) for the years 1976 through 2008. Previous literature has282

shown that a change in trade secrets protection can have meaningful effects on firm283

innovation and patenting behavior (Png, 2017a,b; Contigiani et al., 2018; Angenendt,284

2018).17
285

3.2 Timing of the Disclosure Decision and Patent Location286

For a clean assignment of the level of trade secrets protection to which the patent287

applicant was exposed at the timeof the disclosure (and patenting) decision, we must288

identify the timing of the patenting decision as well as the invention’s location (i.e.,289

state of origin). We use the earliest priority date of the respective granted patent290

to determine the timing of the disclosure decision. The earliest priority date reflects291

the application date of the first patent application (i.e., the parent application) from292

which a patent’s ultimate application draws. The priority date therefore accounts for293

16See Pooley and Westman (1997) for more detail on trade secrets and the adoption of the UTSA.
17For a change in trade secrets protection in a given state to have an effect on innovation and

patenting in that state, trade secrets protection must be determined by the state where the secret
was developed and not where it was misappropriated. In Paolino v. Channel Home Centers, 668
F.2d 721 724 n.2 (3d Cir. 1982), the court argues in support of this identifying assumption, finding
that “the law of the state of residence of the person who initially developed and protected the secret
appears to be the obvious starting point for its protection.”
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an earlier disclosure decision for continuation or divisional applications.18 We believe294

that the relevant disclosure decision was made at the time of the parent application,295

and we use that application’s priority date as date for all related patents.19
296

For the location of the patent, we consider only patents for which both all U.S. in-297

ventors and U.S. assignees are from the same state and use that state as the patent’s298

location.20 While a significant number of patents list multiple inventors and assignees,299

oftentimes located in different states, our approach allows us to unambiguously iden-300

tify a patent’s location. It also ensures that the patent applicant’s decision was driven301

by only that state’s level of trade secrets protection, and not contaminated by changes302

in other states.303

With our assumption of single-state patents, we limit our overall sample to 1,487,400304

patents (out of 4,402,480 total), granted between 1976 and 2014 and with priority305

dates between 1976 and 2008.21
306

3.3 Indicators for Process and Product Patents307

To categorize process and product patents, we use data constructed by Ganglmair308

et al. (2019), who employ text-analytical methods to identify the invention type of an309

independent claim in a given patent.22 Claims are of one of three distinct types: (1)310

process (or method) claims describe the sequence of steps which together complete311

a task such as making an article; (2) product-by-process claims define a product312

through the process employed in the making of a product; and (3) product claims313

describe an invention in the form of a physical apparatus, a system, or a device.314

We aggregate the claim-level information in Ganglmair et al. (2019) to obtain an315

indicator for the invention type at the patent level. More specifically, we classify a316

patent as a process patent if at least one of its independent claims is either a process317

claim or a product-by-process claim; a patent is a product patent otherwise.23,24
318

18These are applications by the inventor that claim the priority date of a “parent” patent. For
continuations, the applicant may not add new disclosures but may delete claims. Divisions involve
separating a patent application into two or more.

19Our results are robust to using the more commonly used definition of the patent’s application
date.

20We disregard foreign inventors and assignees for this patent-state identification.
21For alternative specifications, we use as patent location the location of the first assignee or the

location of the first inventor listed on the patent. As reported in the Appendix, results are very
similar.

22A patent claim defines the scope of legal protection provided by a patent. It describes what the
applicant claims to be its invention for which the patent grants exclusive rights. Each patent can
hold multiple claims of different types. An independent claim stands on its own whereas a dependent
claim is in reference to an independent claim, further limiting its scope.

23For the purpose of our study, we treat product-by-process claims as process claims. Note that
this assumption does not drive our results. If instead we treat product-by-process claims like product
claims or drop them from the sample, our results follow through (available upon request).

24Our process patent indicator is rather aggressive. In the Appendix, we present robust results
using two alternative and less aggressive definitions for process patents.
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Table 1: Process Patent Indicators

Before UTSA After UTSA

Mean Std. Dev. Mean Std. Dev. T-stat

Process Patent 0.4258 0.4945 0.5173 0.4997 110
Number of Process Claims 0.7562 1.305 0.9637 1.477 89.8
Number of Product Claims 1.817 1.818 1.964 1.933 47.4

Observations 674,186 813,214

Notes: This table provides summary statistics for the process patent indicator and the number of process and product
claims per patent, for all granted utility patents (between 1976 and 2014) with a priority date between 1976 and 2008,
and for which the location can be unambiguously identified. The process patent indicator variable is defined for all
patents for which we can identify the claim type for at least one independent claim (666,131 patents before UTSA
adoption and 808,980 patents after UTSA adoption).

For our final sample, we drop all business method patents.25 Table 1 provides319

summary statistics for our patent indicators for all granted USPTO utility patents320

in our sample (all single-state patents granted between 1976 and 2014, with priority321

dates between 1976 and 2008), distinguishing between patents with priority dates322

before and after the UTSA adoption in the respective applicant’s state. Generally,323

patents disclosed after UTSA adoption are much more likely to cover processes. In324

addition, both the number of process and product claims within a patent increases325

significantly.326

Figure 2 plots the share of process patents in each priority year. The figure327

suggests that the increase in process patenting after the UTSA in Table 1 may simply328

be the result of a general trend toward more process innovation. An analysis of the329

effect of the UTSA therefore must take other factors into account.330

3.4 Additional Variables331

We collect and construct additional patent characteristics to capture the complexity,332

value, and importance of the patented technology. Table 2 summarizes these variables333

across all patents in our dataset of single-state patents. We proxy for a patent’s334

breadth and complexity using the number of independent claims (see Lerner, 1994;335

Lanjouw and Schankerman, 2004) and the length (in words) of the first claim (see336

25We loosely follow Lerner (2006) who identifies business methods patents as patents with a
United States Patent Classification (USPC) main class 705. Our results are robust to this sample
restriction (robustness results upon request). Strandburg (2004) argues that business methods are
“self-disclosing processes” and thus highly visible. Note that this argument does not necessarily
apply to all business-method patents. Boldrin and Levine (2008a:168–9) discuss why Amazon’s
one-click patent (U.S. patent number 5,960,411) may in fact not be as self-disclosing as one may
suspect.
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Figure 2: Process Patents Over Time
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Notes: This figure presents annual data for the percentage of process patents. These numbers represent the annual
share of process patents by the year of the respective patent’s priority date, for our sample period of 1976 through
2008.

Kuhn and Thompson, 2017), where shorter claims are likely broader. As additional337

measures of a patent’s complexity, we include the length (in characters) of the patent’s338

detailed description text.339

To capture the external value (or technological impact) of a patent, we construct340

measures of patent generality and patent originality as proposed by Trajtenberg et al.341

(1997). Patent generality captures the diversity of patents (measured by their respec-342

tive patent classes) in which a given patent is (forward)-cited. A higher generality343

score implies a higher widespread impact, influencing subsequent innovation in more344

fields (Hall et al., 2001). Patent originality, on the other hand, captures the diver-345

sity of technologies from which a given patent draws – measured by the diversity346

of patent classes the patent (backward)-cites. A higher originality score means that347

the patented invention is combing ideas from different areas to create some new (or348

“original”). We construct these measures for each patent using the first USPC main349

class listed on the patent.26 As a measure of internal or private value of a patent, we350

use information on whether the patent holder paid the patent maintenance fees dur-351

ing the 4th year of the patent term (see, e.g., Pakes, 1986; Schankerman and Pakes,352

1986).27
353

26There are about 450 main classes and about 150,000 subclasses in the United States Patent Clas-
sification (USPC) system. For more information, see http://www.uspto.gov/patents/resources/
classification/overview.pdf.

27For more information on patent maintenance, including the fee schedule, see https://www.

uspto.gov/patents-maintaining-patent/maintain-your-patent.
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Table 2: Additional Patent Characteristics

N Mean Std. Dev. Min Max

Independent claims 1,477,567 2.876 2.287 0 138
Length of first claim (words) 1,477,563 169.580 107.045 0 7,078
Length of description (characters) 1,487,790 26,260.81 40,089.22 4 3,608,036

Generality 1,120,032 0.638 0.244 0 0.967
Originality 1,308,621 0.626 0.244 0 0.983
4th year renewal 1,393,420 0.825 0.380 0 1

Notes: This table provides summary statistics for all granted utility patents (between 1976 and 2014) with priority
dates between 1976 and 2008 for which all U.S. inventors and assignees are from the same state.

4 Empirical Estimation and Results354

In this section, we examine whether stronger trade secrets protection has a dispro-355

portionate negative effect on process patenting. To do this, we take advantage of the356

staggered adoption of the UTSA across U.S. states over the course of more than 20357

years. Providing evidence that the state-specific timing of the adoption was random358

for the purposes of this study, we estimate the likelihood that a patent includes a359

process (Proposition 2) in a difference-in-differences setting.360

4.1 The Impact of Trade Secrets Policy361

In our main specification, we estimate the probability that a patent covers a process362

invention as a function of the patent’s characteristics as well as the state’s trade363

secrets protection index. Formally, we estimate:364

processjst = β1 protectionst + β2Xjt + νs + µt + ηj + εjst, (8)

where the dependent variable is an indicator that is 1 if patent i filed in year t by365

an entity in state s is a process patent. protectionst is the value of the trade secrets366

protection index relative to the state’s base year. To control for any events that367

occur in all states simultaneously (such as the AIPA) and for an state- and USPC368

class-specific characteristics that do not vary over time, we include location-state (νs)369

and priority-year (µt) fixed effects, as well as dummy variables for patent j’s first370

USPC main class (ηj). Further, Xjst includes patent-specific measures of complexity371

and value, as described in Section 3.28 Thus, our coefficient of interest β1 captures372

the effect of the change of protection. Finally, we cluster standard errors by the first373

USPC main class listed on the patent and the patent’s state to allow for common374

28While some of these variables are likely endogenous, we control for them regardless because we
are interested in the impact of protectionst on the probability of a patent including a process claim,
and these covariates are likely correlated with this probability.
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Table 3: Baseline Results – Impact of Trade Secrets Protection

(1) (2) (3) (4)

Trade secrets protection -0.018∗ -0.021∗∗ -0.026∗∗∗ -0.026∗∗∗

(0.009) (0.009) (0.009) (0.008)

Log(indep. claims) 0.233∗∗∗ 0.231∗∗∗

(0.003) (0.003)

Log(length of first claim) -0.044∗∗∗ -0.051∗∗∗

(0.004) (0.003)

Log(length of description) -0.002 0.001
(0.002) (0.002)

Originality 0.025∗∗∗ 0.010∗∗

(0.005) (0.005)

Generality 0.061∗∗∗ 0.038∗∗∗

(0.004) (0.004)

4th year renewal 0.044∗∗∗ 0.025∗∗∗

(0.002) (0.002)

Observations 1475058 1465095 907867 899932

R2 0.300 0.345 0.289 0.337

Notes: Linear probability model with 1[process patent] as the dependent variable, and the index of trade secrets
protection (Png, 2017a) as the independent variable of interest. Robust standard errors, clustered by USPC main
class and state, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls include indicator variables
for the patent’s first listed USPC main class, the location state, and the priority year.

trends within these classes and states.375

Table 3 shows the coefficients from the baseline specification for all granted single-376

state patents (between 1976 and 2014) with priority dates between 1976 and 2008,377

including different sets of control variables.29 All specifications estimate a negative378

impact of a UTSA-related strengthening of trade secrets protection on the probability379

that a patent is a process patent. The specification including control variables on380

measures of patent complexity and measures of the patent’s value (column (4)) finds381

that a patent is 2.5 percentage points less likely to be a process patent if the trade382

secrets protection index rises by a full point. At a baseline of 42.8% of process patents383

before UTSA adoption (see Table 1), and with a mean increase in trade secrets384

protection of 0.36 points across all patents, this corresponds to a mean decrease385

of 2.2% in the probability that a patent is a process patent when a state adopts386

the UTSA. This impact corresponds to economically significant changes in patenting387

decisions and is statistically significant and robust to various specifications.388

29We report results of a linear probability model for ease of interpretation.
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4.2 Identification and Instrumental Variables389

Our identification strategy relies on two assumptions. First, the adoption of the390

UTSA is not affected by an expectation that certain types of innovation will be391

more prevalent in the future. To that end, Png (2017a) provides evidence of the392

exogeneity of the UTSA with regard to firms’ decisions to invest in R&D. Second,393

the relative number of process and product inventions (rather than patents) does not394

vary systematically in response to the implementation of the UTSA. Below, we first395

explain that our results are inconsistent with changes in innovation behavior due to396

the strengthening of trade secrets protection. We then implement an instrumental397

variables estimation similar to Png (2017b) to address concerns about the causal398

relationship between trade secrets protection and patenting.30
399

4.2.1 Innovation of Products and Processes400

It is possible that overall innovative activity increases as trade secrets protection401

increases at the margin. More specifically, it is possible that more creators of process402

inventions are affected – those that benefit the most from trade secrecy. This may403

be the direct result of an increase in the expected returns to an invention, or an404

indirect result of firms and inventors moving to locations with stronger trade secrets405

protection.31 If that were indeed the case, then we would see a relative increase in406

the number of process inventions. Thus, if a strengthening of trade secrets protection407

affected the creation of different types of innovation differently, then stronger trade408

secrets protection would likely lead to a relative increase in process patents absent409

changes in patenting behavior of existing inventions.32 However, we observe a relative410

decrease. Our results can therefore be interpreted as a lower bound of the effect of411

trade secrets protection.412

4.2.2 Instrumental Variables413

Our analysis utilizes exogenous variation in trade secrets protection dues to the UTSA.414

Despite anecdotal evidence that the UTSA was introduced in individual states for415

“whimsical” reasons, one might still be concerned that states chose to adopt the416

UTSA when firms were particularly interested in process innovation, compared to417

other states and years. To address this concern, we follow Png (2017b) and in-418

strument for a state’s adoption decision using four other state-level uniform laws as419

30In the Appendix, we provide further evidence of exogeneity using Propensity Score Matching as
well as a placebo test.

31Estimating the effects of changes in IP laws on firm location and market concentration is beyond
the scope of this paper.

32Formally, consider the expression for the share (or probability) of process patents in equation (7).
Assume for a moment that πM and πP do not change with τ ; but let θ = θ(τ) be a function of τ .

Then ρ′(τ) = πMπP θ
′(τ)

(πP +(πM−πP )θ(τ))2
. If θ′(τ) > 0, then the share of process patents increases.
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instruments. In particular, the Uniform Determination of Death Act (UDDA), the420

Uniform Federal Lien Registration Act (UFLRA), the Uniform Durable Power of421

Attorney Act (UDPAA), and the Uniform Fraudulent Transfer Act (UFTA) were in-422

troduced in 1978, 1978, 1979, and 1984, respectively. These four acts are not related423

to innovation or patenting behavior, but they are related to the UTSA as all were424

introduced by the Uniform Law Commission to harmonize state regulation around425

the same time. The identifying assumption is that states which adopted one uniform426

law early may have also been more likely to adopt other uniform laws early. Png427

(2017b) provides evidence that this assumption holds.428

We therefore create four sets of instruments for a state’s level of trade secrets429

protection. For each uniform law, we introduce a dummy variable that is 1 in state430

s if the state has implemented the law at the time of a patent’s priority date. The431

first-stage results are strong: the coefficients on all four acts are highly statistically432

significant, for a first-stage F-statistic of 591.6.33
433

The second-stage results in this instrumental variables regression are shown in434

Table 4. They support our findings from the baseline estimation, as the coefficients435

on the trade secrets protection are negative and statistically significant in all four436

specifications. We continue in the following analyses without instruments to pro-437

vide more precise estimates, noting that all qualitative results hold if we include the438

instruments.439

4.3 Heterogeneity Effects440

Trade secrets have been found to be more important as a means to protect intellectual441

property for small firms than large firms. A similar degree of heterogeneity is found442

with respect to technology. We find analogous patterns for the effect of trade secrets443

protection.34 As for applicant size, the estimated decrease in the probability that a444

patent is a process patent is largest for individuals. At the means of the change in445

trade secrets protection and the initial share of process patents for individuals, the446

effect corresponds to an average decrease in the probability of a process patent of447

6.0% (compared to an average effect of 2.1%). The (negative) impact is smaller for448

small firms, and no longer statistically significant for large firms. Moreover, much of449

the effect reported in Table 3 seems to be driven by innovation in the “chemical”,450

“electrical and electronic”, “mechanical”, and “other” technology categories – that451

is, NBER categories (Hall et al., 2001). At odds with our theoretical predictions,452

however, we find a positive effect of trade secrets protection on the probability that453

a patent is a process patent in the “computers and communications” technology454

category.455

33We present the first-stage results in the Appendix.
34Detailed estimation results are presented in the Appendix.
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Table 4: Impact of Trade Secrets Protection – Instrumental Variables Regressions

(1) (2) (3) (4)

Trade secrets protection -0.101∗∗∗ -0.077∗ -0.118∗∗∗ -0.110∗∗

(0.037) (0.042) (0.042) (0.054)

Log(indep. claims) 0.232∗∗∗ 0.231∗∗∗

(0.004) (0.004)

Log(length of first claim) -0.042∗∗∗ -0.055∗∗∗

(0.005) (0.005)

Log(length of description) -0.002 0.003
(0.002) (0.002)

Originality 0.026∗∗∗ 0.010∗∗

(0.005) (0.005)

Generality 0.068∗∗∗ 0.038∗∗∗

(0.008) (0.007)

4th year renewal 0.050∗∗∗ 0.029∗∗∗

(0.006) (0.004)

Observations 1475058 1465095 907867 899932

Notes: Linear probability model with 1[process patent] as the dependent variable, and instrumenting for trade secrets
protection with indicators for UDDA, UDPAA, UFTA, and UFLRA adoption. Robust standard errors, clustered by
USPC main class and state, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls include indicator
variables for the patent’s first listed USPC main class, the location state, and the priority year.

4.4 The Number of Patents456

Our above results indicate a relative decrease in process patents compared to product457

patents. But the impact on the absolute number of patents of each type is still458

unclear. We create a panel at the state-year level to estimate the effect of trade secrets459

protection on the number of process and product patents. Formally, we estimate460

patentsst = β1protectionst + γs + µt + εst, (9)

where patentsst is the number of (process or product) patents in state s in year t,461

protectionst is the trade secrets protection index, and γs and µt denote state and462

priority-year fixed effects, respectively.463

Table 5 displays the results of this specification, for process patents (column (1)),464

product patents (column (2)), and all patents (column (3)). We find that an increase465

in trade secrets protection decreases the number of both process and product patents.466

We see an (imprecisely estimated) UTSA-related decrease of 613 process patents per467

state and year per point increase in the trade secrets protection index. At an average468
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Table 5: Effect of Trade Secrets Protection on the Number of Patents

(1) (2) (3)
Process Product All

Trade secrets protection -613.337∗∗ -179.248∗ -787.421∗

(299.346) (106.004) (395.774)

Observations 1683 1683 1683

R2 0.109 0.119 0.107

Notes: Fixed effects models with the number of patents as the dependent variables, and the trade secrets protection
index as the independent variable of interest. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01. Fixed effects for the location state and priority year included.

of 358 process patents per state and year before UTSA adoption, and with an average469

trade secrets protection index change of 0.44 points across states, the point estimate470

suggests a decrease in patenting of process inventions by 75% on average. The number471

of product patents decreases with a strenghtening of trade secrets protection as well,472

albeit less dramatically. At the mean pre-UTSA number of product patents (483),473

the mean change in trade secrets protection implies a decrease in patenting of product474

patents of 16%.475

5 Welfare Implications476

In the previous section, we showed a negative effect (as claimed in Proposition 2)477

of trade secrets protection on the patenting of processes. Because of a reduction of478

disclosure of less visible invention, strengthening trade secrets protection can retard479

knowledge diffusion. In what follows, we evaluate the total welfare effects of stronger480

trade secrets. We first introduce an augmented three-stage model that endogenizes an481

inventor’s initial R&D decision (Stage 1) and accounts for the effect of the inventor’s482

disclosure decision (Stage 2) on the intensity of follow-on innovation (Stage 3). We483

then estimate and calibrate the parameters of this three-stage model before simulating484

the effect of trade secrets protection on total welfare.485

5.1 An Augmented Model of Cumulative Innovation486

5.1.1 Stage 1 (Initial R&D)487

An inventor observes a potential invention or R&D project i with characteristics488

(φ,Θ), where φ denotes the invention’s visibility and Θ its type. Visibility φ is drawn489

from an invention-type specific distribution with cdf FΘ. The invention type Θ is490

drawn from a (Bernoulli) distribution F where θF = Pr(Θ = M). The commercial491
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value vi of the invention is not yet observed. We assume the inventor forms expecta-492

tions based on the known distribution of vi.
35 The inventor further observes costs Ci493

and undertakes the R&D project if the expected payoffs from the invention outweigh494

its cost. We refer to both FΘ and F as unconditional distributions, that means, before495

the R&D decision is taken.496

5.1.2 Stage 2 (Disclosure or Trade Secret)497

The second stage of our augmented model is the model in Section 2. Given the real-498

ized invention (upon a positive R&D decision in Stage 1) and observing commercial499

value vi, the inventor takes her disclosure decision. The invention is either patented500

(disclosed) or kept as a trade secret. The expected value of the potential invention in501

Stage 1 is a function of this disclosure decision in Stage 2. We refer to the type-specific502

distribution of visibilities and types, GΘ and G, as conditional distributions.503

5.1.3 Stage 3 (Follow-on Innovation)504

For any potential initial invention i, there is a potential follow-on invention iF with505

random value viF and cost CiF , to be realized by another inventor. The realization506

depends on how much of the initial invention i is visible after the inventor’s disclosure507

decision. We denote the effective visibility of initial invention i by φ̃i. It is equal to508

φ̃i =


0 if no R&D in Stage 1;
φi if R&D in Stage 1 and trade secret in Stage 2;
1 if R&D in Stage 1 and patent in Stage 2.

(10)

Effective visibility is equal to zero if the invention has not been realized and equal509

to the invention’s visibility φi if the invention is realized but kept as a trade secret.510

We assume the disclosure function of patents is working, that means, the invention is511

fully disclosed through patenting. This implies that if the inventor decides to patent512

her invention in Stage 1, then effective visibility is equal to 1.513

We assume that follow-on innovation is probabilistic and depends on the disclo-514

sure state of the realized initial invention. Given the effective visibility, the success515

probability of follow-on innovation is β̃iF ,π̃ = βπ̃φ̃i where βπ̃ is the baseline success516

probability of follow-on innovation following a realized initial invention with disclosure517

state π̃. For the remainder of our analysis, we assume βS = 1 and βD < βS.36
518

5.1.4 Modeling Follow-On Innovation: Discussion519

Our model for follow-on innovation at Stage 3 is simple but nonetheless consistent520

with stylized facts and other models proposed in the literature. We make four main521

35We do not estimate this distribution and therefore, for brevity, refrain from introducing more
notation.

36We discuss the motivation for this assumption below.
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assumptions: First, follow-on innovation is by other firms rather than the inventor of522

the initial innovation. Consistent with this assumption, Sampat and Williams (2018)523

document that, for their sample of genome patents, most of follow-on research is done524

by firms other than the patent assignee. Second, disclosure has a positive effect on525

follow-on innovation. In line with this, Williams (2013) documents that a restriction526

of access to human genome data leads to a 20–40% reduction in follow-on research.527

Similarly, Gross (2019) finds that a policy during World War II to keep certain patent528

applications secret resulted in fewer citations and slower dissemination of the patented529

technologies into product markets.530

Third, given the effective visibility, the baseline probability of follow-on innovation531

following a trade secret is higher than that following a patent. This assumption532

reflects the “anticommons” effect (Heller and Eisenberg, 1998) where technologies533

are underused because patents on early ideas raise the costs of creating future ideas534

by creating frictions in the bargaining process over licenses (Scotchmer, 1991; Boldrin535

and Levine, 2004, 2008b; Green and Scotchmer, 1995; Bessen and Maskin, 2009;536

Galasso and Schankerman, 2010).37 For our welfare analysis, we set βD = 2/3, a537

number consistent with empirical findings in Galasso and Schankerman (2015).38
538

Fourth, we assume that disclosure through patenting is perfect. By law, patent539

applicants are required to provide a written description of the invention in sufficient540

detail to allow any person of skill in the field to make and use the invention (35541

U.S.C. §112(a)). While the quality of such disclosures has been called into ques-542

tion (Roin, 2005; Fromer, 2009), Furman et al. (2018), for instance, document that543

the opening of patent libraries (during the pre-internet era) had a positive effect on544

patenting by local firms.39
545

5.2 Welfare Measure546

We use the expected total value added of a given invention, denoted by W (τ), as our547

welfare measure. It is calculated as the sum of the aggregate surplus from the initial548

invention, Wi, and the aggregate surplus from realized follow-on innovation, WiF .549

To construct this expected total value added, let an indicator variable Ri(τ) = 1550

if the inventor makes the initial invention, and Ri(τ) = 0 if otherwise. The inventor551

decides to undertake the initial R&D project if EVi ≥ Ci. We denote by EVi the552

expected gross value of the invention to the inventor; that is, the expected value553

37Of course, if the need for licensing is not given, the issue does not arise. See Sampat and
Williams (2018:227–228) for a discussion of this point. (Robust) results for a model without the
anticommons effects so that βS = βD = 1 are available upon request.

38Using data for U.S. patents, Galasso and Schankerman (2015) find an average increase in forward
citations of 50% in response to the invalidation of the cited patent. Gaessler et al. (2018) find an
increase of 20% using data for European patents. Related results on the effect of patents rights
on follow-on innovation from historical episodes of compulsory licensing can be found in Moser and
Voena (2012) and Watzinger et al. (2019).

39See Ouellette (2012, 2017) for more evidence on the value of disclosure in patents.
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of secrecy, EVS|Θ(τ), or of disclosure through patenting, EVD|Θ(τ). Moreover, let554

an indicator variable RiF = 1 if (conditional on being observed with probability555

β̃iF ,π̃) the follow-on invention is realized (when the commercial value covers the costs,556

viF ≥ CiF ), and RiF = 0 otherwise. The expected total value added of an invention557

i is thus equal to558

W (τ) = E(Θi,φi,π̃i,vi,viF )

[
Ri(τ)

(
Wi + β̃iF ,π̃iRiFWiF

)]
(11)

where expectations E [·] are over the invention type Θ, visibility φ, disclosure state559

π̃, and commercial values v for initial and follow-on innovation.560

For the measures of aggregate surplus, we assume that 2v is the potential aggre-561

gate surplus that materializes when there are no barriers to access to the invention.562

Because the barriers to access depend on the inventor’s disclosure decision, the real-563

ized aggregate surplus (at Stage 1) is the potential surplus aggregate surplus net of564

the disclosure-state specific deadweight loss. The maximum deadweight loss from a565

scenario with full barriers to access (and certain exclusive use) is v/2.40
566

For patented inventions, barriers to access increase in visibility φ, and the aggre-567

gate surplus, WD, as a function of visibility is equal to568

WD(φ) = 2v − φv

2
− C, (12)

where Ci is the cost of research and development of the potential idea. For inventions569

kept as trade secrets, barriers to access decrease in φ and increase in trade secrets570

protection τ . As discussed in Section 2, the probability that the inventor has exclusive571

access, implying full monopolistic deadweight loss, is equal to τ (1− φ). Aggregate572

surplus, WS, as a function of visibility and trade secrets protection is equal to573

WS(φ, τ) = 2v − τ (1− φ) v

2
− C. (13)

In a world with perfect legal protection of trade secrets, τ = 1, the aggregate surplus574

from trade secrets is a mirror image of the aggregate surplus from a patent, with575

visibility playing the reverse role. In a world without trade secrets protection, τ = 0,576

access to the technology is always free (implying a zero deadweight loss) because of577

disclosure through misappropriation.578

40For instance, in the textbook case of linear demand with unit market size (and zero marginal
cost), non-price discriminating monopoly profits (=v) are one half of the aggregate surplus (=2v),
and consumer surplus and deadweight loss are each one quarter (=v/2). In the Online Appendix, we
provide a simple competition model to derive the reduced-form aggregate surplus from invention i.
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For the aggregate surplus of the initial invention we use579

Wi =

{
WD(φ) if φ ≥ τ

1 + λ+ τ
,

WS(φ, τ) if otherwise.
(14)

For the aggregate surplus of follow-on innovation, conditional on initial invention i580

being realized, we assume free access, so that WiF = 2viF − CiF .581

We will for the remainder of the paper assume that the patent premium λ ≤ 1/2,582

so that the private returns do not exceed the social returns from R&D (both when583

kept as trade secret and when patented), Wπ̃i ≥ Vπ̃i −Ci. With this assumption, the584

implications from our model are in line with results shown by Bloom et al. (2013).41
585

5.3 Estimation586

We use the state- and year-specific trade secrets protection index along with infor-587

mation on the type of U.S. patents to estimate the parameters of our model. We588

proceed in two steps:589

Step 1: We begin by examining the second stage of our augmented model. We use590

our sample of U.S. utility patents and the trade secrets index in Png (2017a)591

to estimate the conditional distributions G of invention type Θ, and GΘ of their592

type-specific visibilities φi. These distributions are conditional on the inventor593

having (successfully) invested in R&D at Stage 1.594

Step 2: We then look at the inventor’s decision at the first stage. Applying a595

simulated-method-of-moments approach, we estimate the unconditional distri-596

butions FΘ (of visibility φi) and F (of invention type Θ), of potential inventions597

(φ,Θ) given R&D costs Ci.598

5.3.1 Estimation of Stage-2 Disclosure Decision (Step 1)599

We estimate the conditional distributions GΘ and G by maximizing a log-likelihood600

function. We observe a patent’s type and use Mj ≡ Mj(Θ = M |patent) = 1 to601

denote if a given patent j is a process patent, and Mj = 0 if the patent is a product602

patent. Moreover, for each patent j, we observe the level of trade secrets protection τj603

41Higher social returns to R&D are typically linked to knowledge spillovers and the public goods
aspect of research (Nelson, 1959; Arrow, 1962). The inventor’s disclosure decision is socially optimal
(with aggregate surplus Wπ̃ as benchmark) only for intermediate values of visibility. The inventor
discloses for φ ≥ τ

1+λ+τ . Disclosure is socially optimal and WD(φ) ≥ WS(φ, τ) if φ ≤ τ
1+τ . For

intermediate values of φ, the inventor’s decision to disclose is socially optimal. For high values of
φ, the inventor discloses when it is optimal to keep the invention a secret; for low values of φ, the
inventor keeps the invention a secret when it is optimal to disclose.
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to which the applicant was subject at the time the decision to disclose the invention604

was made. The log-likelihood of the data is given by605

LL(GM , GP ,G, λ) =
∑
j

Mj log ρ(τj) + (1−Mj) log(1− ρ(τj)) (15)

with ρ(τj) the probability that a patent is a process patent, subject to trade secrets606

protection τj, as derived in equation (7).607

The log-likelihood is a function of the (conditional) distributions of visibilities GΘ,608

the invention type G, and the patent premium λ. Given data limitations, we estimate609

our model parameters making a number of assumptions:610

1. Visibility φ follows a triangular distribution with support [0, 1] and mode γΘ.611

We hold the mode for products constant at γP = 1/2 and estimate the mode γM612

for processes. Note that GP first-order stochastically dominates GM (as is our613

working assumption) if γM ≤ 1/2 = γP .614

2. The patent premium λ is a fixed parameter in our model, and we use values615

between 0 and 1/2, based on values estimated in previous literature.42
616

3. We assume a time-variant distribution of invention types. The probability that617

invention i is a process is denoted by θt, t = 1, . . . T . We assume T = 3 with θ1618

for all inventions with disclosure decisions from 1976 through 1989, θ2 for 1990619

through 1999, and θ3 for 2000 through 2008.43
620

We estimate the model on the sample of single-state patents with priority dates621

between 1976 to 2008.44 The value for τk is the value of the trade secrets protection622

index in the patent’s state in the year of its priority date. We report the results for623

the conditional distributions from Step 1 in Table 6.624

In all models in Table 6, we keep the mode for products constant at γP = 0.5625

and estimate the mode for processes γM . We therefore obtain the distribution for the626

visibility of processes relative to the distribution for the visibility of products. This627

value for γP provides for a flexible specification without imposing our theoretical628

assumption of first-order stochastic dominance. For λ = 0 in model (1), we find our629

assumption of first-order stochastic dominance violated. The assumption is satisfied,630

however, for λ = 0.1, our preferred value based on existing literature (Schankerman631

and Schuett, 2017), and λ = 0.5, the highest value for which the social benefits from632

R&D outweigh the private benefits (Bloom et al., 2013).633

42Schankerman and Schuett (2017) estimate a patent premium of approximately 0.1. Similar
values are obtained by Lanjouw (1998) and Schankerman (1998) who estimate the patent premium
to be an R&D subsidy of 10% and 15–25%, respectively. Arora et al. (2008) further document that
for firms with a positive premium, the average patent premium is 50%.

43We present results with alternative assumptions about T in the Online Appendix.
44For states that have adopted the UTSA, we exclude all patents with priority dates in the year

of adoption.
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Table 6: Estimates for Conditional Distributions at Stage 2 (Step 1)

(1) (2) (3)

License revenues [fixed] λ 0.0 0.1 0.5

Mode for processes (GM ) γM 0.572 0.374 0.249
[0.539, 0.616] [0.374, 0.391] [0.222, 0.312]

Mode for products (GP ) [fixed] γP 0.5 0.5 0.5

Share of process inventions (1976–1989) θ1 0.327 0.331 0.331
[0.325, 0.329] [0.328, 0.333] [0.329, 0.336]

Share of process inventions (1990–1999) θ2 0.475 0.490 0.489
[0.473, 0.478] [0.487, 0.491] [0.486, 0.507]

Share of process inventions (2000–2008) θ3 0.575 0.591 0.590
[0.573, 0.577] [0.588, 0.593] [0.586, 0.612]

Observations N (no. of patents) 1,465,351 1,465,351 1,465,351
Log-likelihood/N -0.672 -0.672 -0.672

Notes: We report the parameter estimates for the conditional distribution from Stage 2 of the augmented model.
We estimate our structural model on the sample of single-state patents filed between 1976 and 2008. For states that
have adopted the UTSA, we exclude patents from the year the UTSA was adopted. We estimate the mode γM (of
the triangular distribution over support [0, 1]) for processes and fix the mode γP for products. Invention types are
Bernoulli distributed (G) with parameter θt, where t = 1 for patents with priority dates in 1976–1989 [N = 383,020],
t = 2 for 1990–1999 [N = 523,704], and t = 3 for 2000–2008 [N = 558,627]. We report in brackets the 99% confidence
interval from 800 bootstrap replications. The reported point estimates are from one single model using the full sample.

We use model (2) as our preferred model, both finding support in external sources634

and comporting with theory. With the parameters in this model, patenting probabili-635

ties for processes are lower than products (Lemma 2), decreasing in τ (Lemma 3), and636

decreasing at different rates so that πP (τ)−πM(τ) is increasing (Lemma 4). Stronger637

trade secrets protection has a relatively stronger (positive) effect on the value of trade638

secrets when the invention is a process. This implies a decreasing share of process639

patents as trade secrets protection increases – as predicted in Proposition 2 and shown640

empirically in Section 4.45
641

Together with the empirical distribution τ̂ of the trade secrets protection index,642

the estimates of the time-variant innovation type distributions with parameters θt such643

that θ1 < θ2 < θ3 imply that the share of process patents, ρt ≡ ρ(τ̂ |θt), is increasing644

over time. The implied process shares are ρ1 = 0.327, ρ2 = 0.469, and ρ3 = 0.580.645

Our estimates and implied shares closely trace the empirical time series.46
646

45Figure E.1 in the Online Appendix illustrates these patterns. In panel (a), we provide a graphical
illustration of first-order stochastic dominance, plotting the density (top) and distribution functions
(bottom) for GM (dashed line) and GP (solid line). We illustrate the effect of τ on πΘ(τ) and ρ(τ)
in panels (b) and (c) of the figure.

46We show this in panel (d) of Figure E.1 in the Online Appendix. Note that the estimates for θt
are robust to the models reported in Table 6.
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5.3.2 Estimation of Unconditional Stage-1 Distributions (Step 2)647

In the second step of our procedure, we estimate the unconditional distributions FΘ648

of visibilities and F of invention types, using as input the conditional distributions649

GΘ and G estimated in Step 1. We use the specification and results of our preferred650

model (2) from Table 6. For this second step, we follow a simulated-method-of-651

moments approach to find FΘ and F that yield (in simulations of Stage 2 of the652

augmented model) the estimated distributions GΘ and G. We proceed as follows:653

1. For given unconditional distributions (FM , FP ,F) and some R&D cost C, we654

simulate a dataset of N potential inventions and solve Stage 1 of our augmented655

model to obtain the simulated conditional distributions, δ ∈
{
ĜM , ĜP , Ĝ

}
.656

2. We calculate the simulated conditional moments µ̂m(δ|FM , FP ,F) for the sim-657

ulated data. We also calculate the estimated moments µm(δ) based on the658

estimated conditional distributions GΘ and G in Table 6.659

3. We define the quadratic score function660

S(FM , FP ,F) =
∑
δ

∑
m∈M

(
µ̂m(δ|FM , FP ,F)− µm(δ)

)2
(16)

whereM is the set of moments. We minimize this score function over (FM , FP ,F)661

to obtain the optimal unconditional distributions.662

In Table 7, we report the parameters of unconditional distributions for no R&D663

costs (C = 0), low costs (C = 2), and high costs (C = 4).47 Note that, unlike664

in Step 1, where we hold GP constant, in Step 2 we explicitly estimate FP (i.e.,665

the mode γP ). Our assumption of first-order stochastic dominance (verified for the666

conditional distributions) continues to hold. Moreover, for both inventions types,667

we observe a selection of higher-visibility inventions into development at Stage 2.668

The average visibility is between 0.368 and 0.445 (compared to 0.458 in Stage 2) for669

processes, and between 0.397 and 0.486 (compared to 0.500) for products.670

The bottom panel of Table 7 shows decisions at all three stages that are implied671

by the estimated parameters. Our estimates imply relatively large R&D intensities672

– ranging from 0.592 for high R&D costs to 0.998 without any costs – in Stage 1.673

In Stage 2, over 79% of realized inventions are indeed patented, and the fraction is674

larger for lower R&D costs. Finally, at Stage 3, for the no-cost scenario, a bit more675

47We provide graphical illustrations of these results in the Online Appendix. In panel (a) of Fig-
ure E.2, we plot the distribution functions for the estimated conditional distributions GM (top) and
GP (bottom) as solid lines and the distribution functions for the simulated conditional distributions
ĜM and ĜP as dashed lines. The graphs illustrate that the simulated conditional distributions well
match the estimated distributions. In panel (b), we plot the density functions (top) and probability
functions (bottom) of the unconditional distributions FM and FP .
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Table 7: Estimates for Unconditional Distributions at Stage 1 (Step 2)

(1) (2) (3)

Stage 1: FΘ, F

Stage 2: GΘ, G no cost low cost high cost

Mode for processes γM 0.374 0.370 0.335 0.103
Mode for products γP 0.5 0.497 0.458 0.191

Share of processes (1976–1989) θ1 0.331 0.329 0.339 0.352
Share of processes (1990–1999) θ2 0.490 0.489 0.491 0.501
Share of processes (2000–2008) θ3 0.591 0.596 0.595 0.596

R&D intensity (Stage 1) 0.998 0.954 0.592
Patents (Stage 2) 0.858 0.850 0.796
R&D intensity (Stage 3) 0.553 0.465 0.357

Notes: We report the parameter estimates for the unconditional distribution from Stage 1 of the augmented model.
For the simulated-method-of-moments approach, we use the first two moments (mean and variance) for GM and GP

and the first moment (mean) for Gt. For the costs of the initial invention as well as the follow-on invention, we assume
that Ci = C + εi and CiF = C + εiF where εi and εiF are (independently) logistically distributed with zero mean
and scale 1/2. We set C = 0 = Ci (no cost) in column (1), C = 2 (low cost) in column (2), and C = 4 (high cost) in
column (3). We further assume that the value of the initial invention and follow-on innovation are (independently)
drawn from the same distribution, vi, viF ∼ Exp(1/10). At the bottom of the table, we report R&D intensities at
Stage 1 (share of inventions i that are developed) and Stage 3 (share of inventions iF that are developed, conditional
on Stage-1 R&D) and the share of patented inventions i (conditional on Stage-1 R&D) at Stage 2.

than one half of all realized initial inventions lead to follow-on innovation, and this676

intensity is decreasing in R&D costs.677

Our estimated values are in line with survey evidence. Mansfield (1986), for678

instance, finds (for a small sample of innovators for 1981–1983) that in industries in679

which patenting is relatively important, 84% of patentable inventions are patented,680

whereas the share is only 66% in other industries.48
681

5.4 Welfare Results682

In this section, we vary the level of trade secrets protection to simulate its impact683

on welfare. We use the estimates for unconditional distributions from Table 7 (with684

patent premium λ = 0.1) to simulate a sample of initial inventions i and respec-685

tive follow-on inventions iF for each set of parameters, and we calculate our welfare686

measure W (τ) in equation (11) based on these.687

48Mansfield’s results suggest that patenting is relatively more important in pharmaceuticals, chem-
icals, petroleum, machinery, and fabricated metal products, whereas it is of less importance in
primary metals, electrical equipment, office equipment, instruments, motor vehicles, rubber, and
textiles.
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5.4.1 Effect of Trade Secrets Protection688

Figure 3 illustrates the simulated welfare impacts under varying levels of trade se-689

crets protection. Panel (a) plots the value of W (τ) in percent of the value of W (0)690

for varying levels of R&D costs. For no or low R&D costs, stronger trade secrets691

protection has an unambiguously negative effect on total welfare. Only for higher692

R&D costs do we see a positive effect and a welfare improvement from stronger trade693

secrets protection. This effect comes through various channels. To illustrate these694

channels, panel (b) of Figure 3 separately depicts the surplus from initial R&D and695

from follow-on innovation for varying levels of τ , in percent of the value for τ = 0.696

First, conditional on the distributions of patents and trade secrets, stronger trade697

secrets protection results in an anticompetitive effect. This manifests itself in a larger698

deadweight loss from a trade secret, as captured by the aggregate surplus WS(φ, τ)699

in equation (13). We can see this effect in the solid-line graph in the top panel of700

panel (b). Without R&D costs, all R&D projects are realized regardless of τ . The701

negative effect of higher τ is thus the result of a decrease in WS(φ, τ).702

Second, conditional on innovation taking place, higher trade secrets protection703

leads to fewer inventions being disclosed through a patent. This has a negative effect704

on overall welfare W (τ) in equation (11) through β̃iF ,π̃. The overall effective visibility705

decreases, which in return reduces the probability of follow-on innovation. We observe706

this negative effect on follow-on innovation in the dashed graphs in panel (b). As τ707

increases, the value of follow-on innovation decreases unambiguously.708

Third, τ also affects the decision to innovate. Trade secrets protection has a posi-709

tive effect on initial R&D by increasing the expected value of realized R&D projects.710

This in turn has a positive effect on W (τ) in equation (11) through Ri(τ). We observe711

this effect in panel (b) for positive R&D costs. For high R&D costs in particular, the712

positive effect through higher investment incentives more than offsets the negative713

effect on WS.714

Finally, the increased R&D activity implies there is more initial R&D to build715

on. This should counteract the negative effect on follow-on innovation laid out above,716

especially when R&D costs are high. We can observe this when we compare the dashed717

graph in panel (b) for the value of follow-on innovation for high costs with that for718

low costs. For higher costs, trade secrets protection has a stronger incentivizing effect719

on initial R&D. As a consequence, the decrease in the value of follow-on innovation720

is smaller for high costs than for low costs.721

5.4.2 Different Distributions of Visibilities722

We next use counterfactual distributions for the visibilities of process and products723

to better understand the role that differences in distributions for invention type play.724

Setting θt = 0.5 for all t for convenience, we illustrate the results of this exercise725

in Figure 4. We compare the results from three scenarios to the total value from726

the estimated distributions from Table 7. In scenario 1 (solid line), we assume equal727
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Figure 3: Effect of Trade Secrets Protection on Welfare

(a) Total Welfare (b) Initial and Follow-On

Notes: This figure presents our welfare results. In panel (a), we plot the welfare function W (τ) (in % of W (0)).
For values of τ ∈ [0, 1], we simulate a sample of N = 1,000,000 inventions, using the estimates for unconditional
distributions from Step 2 and assuming baseline success probabilities of βS = 1 and βD = 2/3. We show the total
value for our entire sample period (where a proportional number of simulated inventions have θt) as well as for the
three subsample periods (for no cost). In panel (b), we plot the social value of initial R&D (solid) and follow-on
innovation (dashed), again in % of the value for τ = 0. For the top panels, we use the estimates for C = 0 (no cost);
for the center panels, we use the estimates for C = 2 (low cost); and for the bottom panels, we use the estimates for
C = 4 (high cost).
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Figure 4: Visibility and the Effect of Trade Secrets Protection

Notes: In this figure, we illustrate the effect of visibilities of different invention types on total welfare for the no-cost
scenario (C = 0) from Figure 3. We plot total welfare for equal distributions for the two invention types (solid) line and
maximally different distributions (dashed line) while keep the overall mean of visibility constant. More specifically,
for Same Visibilities, we set θt = 0.5 for all t and γM = γP = γ̂ where γ̂ is such that the mean of the triangular
distribution with model γ̂ is equal to the mean of estimated unconditional distribution. For Maximally Different we
set γM ≥ 0 as low as possible and γP ≤ 1 as high as possible such that the overall mean is equal to the mean of
estimated unconditional distribution. The estimated values are based on simulated data with N = 1,000,000.

distributions that imply the same mean visibilities as the estimated model (we cal-728

culate the mean value of visibilities from the estimated unconditional distribution in729

Table 7). In scenario 2 (dotted line), we assume equal distributions but increase the730

modes of the visibilities γM = γP by 0.1. In scenario 3 (dashed line), we assume731

maximally different distributions, setting γM = 0 and γP < 1 so that, again, the732

mean is equal to the mean in the estimated model.733

Comparing scenarios 1 and 2, we find that higher visibilities are associated with734

higher welfare. Higher visibilities enter the welfare function in three ways. Higher735

visibility implies more patenting (Lemma 1), and with higher patenting comes a736

higher deadweight loss (equation (12)). At the same time, higher patenting as well as737

higher visibilities increase effective visibility φ̃i and thus increase follow-on innovation738

(equation (10)). Our results in Figure 4 show that the latter effect prevails.739

By comparing scenarios 1 and 3, we can see what happens when the distributions of740

visibilites become more diverse – and products become on average more visible than741

processes, while overall average visibility remains constant. We find that stronger742

distributional differences have negative welfare effects. Welfare is consistently lower743

for the scenario with the maximally different distributions. This is evidence for a744

central role of visibilities in the welfare calculations.745
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Figure 5: Average Welfare Effect of the UTSA

Notes: In this figure, we show the average welfare effect of the introduction of the Uniform Trade Secrets Act. We plot
∆W in equation (17), that is, the difference between total welfare (as fraction of pre-UTSA total welfare) evaluated at
the average post-UTSA value of the trade secrecy index, τpost = 0.394, and the total welfare evaluated at the average
pre-UTSA value, τpre = 0.071. On the horizontal axis, we use R&D costs as fraction of the expected R&D project
value (given expectations of invention type, visibility, commercial value, and the inventor’s patenting decision). We
mark the values of no cost, low costs, and high cost used in Figure 3.

5.4.3 Average Welfare Effect of the UTSA746

We have shown the effect of hypothetical levels of trade secrets protection, τ ∈ [0, 1].747

Last, we calculate the average effect of the Uniform Trade Secrets Act as predicted748

by our model. We simulate data from our augmented model for the average value of749

trade secrets protection before the adoption of the UTSA, τpre = 0.071, and after the750

adoption, τpost = 0.394. We then calculate the difference between the post-UTSA751

and pre-UTSA total welfare as fraction of pre-UTSA total welfare,752

∆W =
W (τpost)−W (τpre)

W (τpre)
, (17)

so that negative values of ∆W imply that the Uniform Trade Secrets Act had, on753

average, a negative effect on total welfare. We plot this average effect for varying754

values of R&D costs in Figure 5.755

We find a negative effect of the UTSA for no R&D costs, a zero effect for low costs,756

and a positive for higher costs (as fraction of the expected R&D project value). More757

specifically, our model predicts a welfare loss of 7% for no R&D costs and a gain of758

8% with high costs. These result suggest that in industries with relatively profitable759

R&D (that is, where R&D costs are very low), stronger trade secrets protection as760

implemented by the UTSA has negative effects on total welfare. In other words,761
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when the benefits of trade secrets protection are inframarginal to an inventor who is762

deciding whether to invest in R&D, stronger legal protection of trade secrets has the763

unintended consequence of lowering total welfare by impeding follow-on innovation.764

This pattern is reversed for R&D projects that are relatively less profitable (when765

R&D costs are higher). In this case, that is, when the benefits are marginal, stronger766

legal protection improves welfare by encouraging initial R&D.49
767

The survey findings in Mansfield (1986) and our own estimates give some indica-768

tion about which industries are more likely to have benefitted from increased trade769

secrets protection (pharmaceuticals and chemicals, and to a lower degree petroleum,770

machinery, and fabricated metal products) and in which industries the UTSA is likely771

to have resulted in welfare losses (electrical equipment, office equipment, motor vehi-772

cles, instruments, primary metals, rubber, and textiles).50
773

6 Conclusion774

Intellectual property law tries to find a balance between encouraging initial innovation775

by granting monopoly rights to one’s invention, and facilitating follow-on innovation776

by limiting these rights. While the effects of intellectual property rights on incentives777

to innovate in the first place are relatively well-understood, the incentives to use and778

build upon existing innovation have received less attention. The value of a patent in779

facilitating follow-on innovation depends largely on the original idea’s visibility. For780

less visible innovations, a patent implies disclosure of an idea that may have otherwise781

not been accessible by others. On the other hand, patents for visible inventions782

limit the ability of others to use said innovation, which could otherwise be easily783

re-engineered.784

This paper examines the role of intellectual property law in facilitating follow-on785

innovation by distinguishing between (less visible) process and (more visible) product786

inventions. We find that a strengthening of trade secrets protection leads to relatively787

fewer process invention, leading to a patenting culture that is less conducive to follow-788

on innovation. These results are promising, however: if relatively stronger trade789

secrets protection can lead to fewer process patents, then a relative weakening of790

trade secrets protection may lead to more process invention being patented and thus791

disclosed. Our results suggest that there is an optimal level of trade secrecy protection792

– depending on the costs of R&D – that encourages initial innovation and disclosure793

of the “right” inventions.794

49Note that as R&D costs increase further, the average welfare effect converges to zero. This is
because, as costs increase, few realized projects are kept as trade secrets, and stronger trade secrets
protection becomes ineffective.

50Our estimates for the share of patented inventions that would not have been developed without
any patent protection are increasing in R&D costs. Mansfield (1986) finds the highest share (30%)
in pharmaceuticals and chemicals, a lower share (10–20%) in petroleum, machinery, and fabricated
metal products, and the lowest share in the remaining industries.
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Appendix963

A Formal Proofs of Theoretical Results964

Proof of Lemma 1965

Proof. The proof follows from the disclosure decision in equation (3).966

Proof of Proposition 1967

Proof. For the proof of this claim and later results, it will be useful to first state a more968

general property of first-order stochastic dominance. Let u(x) be a non-decreasing969

function in x ∈ [0, 1]. Then970 ∫
u(x)dGP (x) ≥

∫
u(x)dGM(x) ⇐⇒ GP (x)

FOSD
� GM(x). (A.1)

Integrating by parts, we obtain971 ∫
u(x)dGP (x) = [u(x)GP (x)]10 −

∫
u′(x)GP (x)dx

and972 ∫
u(x)dGM(x) = [u(x)GM(x)]10 −

∫
u′(x)GM(x)dx

Because GP (0) = GM(0) = 0 and GP (1) = GM(1) = 1, the two first RHS terms in973

these expression are equal. We can thus rewrite the condition in the claim as974 ∫
u(x)dGP (x)−

∫
u(x)dGM(x) =

∫
u′(x) [GM(x)−GP (x)] dx ≥ 0.

Because GP (x) ≤ GM(x) by first-order stochastic dominance, the condition holds for975

any non-decreasing function so that u′(x) ≥ 0. Note that if u(x) is strictly increasing976

and GP (x) < GM(x) for some x, then the inequality is strict.977

For the first claim, EVS|M(τ) > EVS|P (τ), note that τ (1− φ) v is a strictly de-978

creasing function in φ. The above general property applies because we can simply979

write −EVS|M(τ) < −EVS|P (τ). We obtain a strict inequality by the implicit assump-980

tion that GM(φ) and GP (φ) are not identical so that GP (φ) < GM(φ) for some φ. For981
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the second claim, EVD|M(τ) < EVD|P (τ), note that φ (1 + λ) v is strictly increasing982

in φ, and the above general property applies.983

Proof of Lemma 2984

Proof. Because π(φ, τ) is a non-decreasing function in φ, the general property in985

equation (A.1) in the proof of Proposition 1 applies.986

Proof of Lemma 3987

Proof. Because π(φ, τ) is (weakly) decreasing in τ for all φ, the first derivative of988

πΘ(τ) with respect to τ ,989

dπΘ(τ)

dτ
=

∫ 1

0

∂π(φ, τ)

∂τ
dGΘ(φ), (A.2)

is non-positive for Θ = M,P .990

Proof of Lemma 4991

Proof. What is to be shown is992

dπP (τ)

dτ
− dπM(τ)

dτ
=

∫ 1

0

∂π(φ, τ)

∂τ
dGP (φ)−

∫ 1

0

∂π(φ, τ)

∂τ
dGM(φ) ≥ 0.

The cross-derivative of π(φ, τ) is negative, ∂2π(φ,τ)
∂τ∂φ

< 0. As φ increases, ∂π(φ,τ)
∂τ

is less993

negative and ∂π(φ,τ)
∂τ

increasing in φ. The general property in equation (A.1) in the994

proof of Proposition 1 applies.995

Proof of Proposition 2996

Proof. The proof follows from the result in Lemma 4 and the expression for the share997

of process patents in equation (7).998
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B Evidence from the American Inventors Protec-999

tion Act (1999)1000

The analysis in the main text relies on the assumption that processes are less visible1001

and patents covering processes are more difficult to enforce. Given this assumption,1002

Proposition 1 implies that inventors of processes should be more likely to keep their1003

inventions a secret. When they are given the choice, we expect process inventors to1004

opt for secrecy more often – even if secrecy is only temporary.1005

We can test this implication of our working assumption by exploiting the enact-1006

ment of the American Inventors Protection Act of 1999 (AIPA). The AIPA went into1007

effect for all patent applications filed on or after November 29, 2000. It came with two1008

important changes. First, all pending patent applications filed on or after the cutoff1009

date are by default published 18 months after the filing date. This marks a significant1010

change in policy as until the USPTO did not publish pending patent applications,1011

but published only granted patents. Second, U.S.-only patents, for which applicants1012

do not seek foreign protection, can opt out of automatic pre-grant publication.51
1013

Because all patented inventions are (trade) secrets until the application is pub-1014

lished, opting out of pre-grant publication represents a temporary extension of secrecy1015

– until the granting of the patent. In 2001, the lag between filing a patent applica-1016

tion and grant averaged about 38 months (Graham and Hegde, 2015), implying that1017

opting out of pre-grant publication extended temporary secrecy by about 20 months.1018

Graham and Hegde (2015) find that about 15% of all eligible patent applicants (filing1019

after the effective date of the AIPA and asserting U.S.-only patent protection) opt1020

out of pre-grant publication and choose temporary secrecy.52
1021

We extend Graham and Hegde’s data and analysis by adding our process patent1022

51There was a third, yet arguably ineffective, change. This last provision provision grants patent
applicants provisional rights during the pendency of the patent (35 U.S.C. §154(d)). The provision
adds (once the patent is granted) an applicant’s right to collect reasonable royalties for infringement
that occurred during the pendency of its application. This time window of pre-grant infringement
damages begins with the pre-grant publication of the patent application. Pre-grant infringement
damages, however, are limited. First, an applicant has provisional rights conditional on the patent
being granted. This means, an applicant cannot sue for infringement damages while the application
is still pending. Second, the provision requires actual notice of the alleged infringer, and the as-
serted claim must not substantially change in the examination process (between publication of the
application and the granted patent) (Naqi, 2012; Dowd and Crotty, 2016).

52See Graham and Hegde (2012) for an extended version with additional results and details on
the AIPA.
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indicator and compare the applicants’ choices of opting out of pre-grant publication1023

across patent types. Our Proposition 1 implies that applicants of process patents will1024

opt out of disclosure via pre-grant publication of their applications more often than1025

those of product patents. Although opting out of publication grants the inventor only1026

temporary secrecy, it is secrecy nonetheless. Results should therefore only give us a1027

lower bound.1028

Our results comport with the prediction in Proposition 1 and provide support for1029

our working assumption. Applicants of eligible patents with at least one process claim1030

choose to keep their applications secret 16.1 percent of the time, whereas applicants of1031

patents without any process claims choose secrecy only 13.5 percent of the time. The1032

difference is highly statistically significant with a t-value of 25.8.53 Figure B.1 plots1033

the monthly shares of patent applications (of granted patents) that were opted out of1034

pre-grant publication, distinguishing between applications with and without process1035

claims. At any time in the five-year period after the AIPA (December 2000 through1036

December 2005), a larger fraction of applicants of process patents (relative to product1037

patents) decided to (temporarily) extend the secrecy of their patent applications.1038

More formal regression analyses, in which we estimate the probability that appli-1039

cants of eligible patents opt out of pre-grant publication, controlling for patent and1040

applicant characteristics, support these trends. In particular, we estimate the prob-1041

ability that a patent application (after passing of the AIPA) is kept secret until the1042

patent’s issuance. We estimate1043

secrecy jt = β1processjt + β2Xjt + λu + µt + εjat, (B.1)

where the dependent variable is 1 if patent application j in year t is kept secret until1044

the patent is granted. The independent variable of interest, processjt, is 1 if the1045

patent includes at least one process claim, Xjt includes patent-specific measures of1046

complexity (the number of individual claims and the length of the first claim) and ex-1047

post value (measures of the invention’s originality and generality as well as indicators1048

for whether the maintenance fee was paid after four, eight, and twelve years). We1049

further include dummy variables for the patent’s USPC class (λu) and the year of1050

application (µt). Finally, we cluster standard errors by USPC main class to allow for1051

53The differences in means are similar when using our two alternative patent type indicator, that
means, when comparing applications by predominantly product or process patents and and by first
claim only.
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Figure B.1: Probability of Extending Temporary Secrecy of Patent Applications
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Notes: This figure plots monthly shares of applicants (of eligible patents) who opted out of pre-grant publication, by
patent type (process or product), for granted patents whose applications were filed within the first five years after
the AIPA went into effect. Note that for this picture (and analysis in this Appendix), we follow Graham and Hegde
(2015) and use the application date (which is the relevant date for the option to opt out of publication).

common trends within these classes.1052

Table B.1 reports results of a linear probability model. It confirms what Figure1053

B.1 suggests: even after controlling for patent specific characteristics, applicants of1054

process patents are more likely to opt out of application disclosure when given the1055

choice. The estimated decrease of 0.9 percentage points (column (5)) implies a de-1056

crease of 5.8% at the mean of 15.4% of patent applicants choosing secrecy. Overall,1057

this evidence confirms the first proposition and thus also the identifying assumption1058

that (on average) process inventions are less visible than product inventions.1059

C Heterogeneity Effects1060

The observation that the impact of stronger trade secrets protection depends on the1061

invention’s visibility informs an important policy debate. Trade secrets have been1062

found to be more important as a means to protect intellectual property for small1063

firms than large firms. A similar degree of heterogeneity is found with respect to1064

technology. Hall et al. (2014) provide a comprehensive survey of the literature. We1065

analyze the effect of stronger trade secrets protection on applicants of different size1066

as well as on inventions in different technology classes.1067
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Table B.1: Secrecy/Disclosure of Patent Applications After the AIPA

(1) (2) (3) (4)

Process patent (= 1) 0.015∗∗∗ 0.010∗∗∗ 0.015∗∗∗ 0.011∗∗∗

(0.003) (0.003) (0.004) (0.003)

Log(indep. claims) 0.024∗∗∗ 0.021∗∗∗

(0.003) (0.003)

Log(length of first claim) 0.009∗∗∗ 0.013∗∗∗

(0.003) (0.003)

Log(length of description) -0.023∗∗∗ -0.026∗∗∗

(0.002) (0.002)

Originality -0.016∗∗ -0.009
(0.008) (0.008)

Generality 0.051∗∗∗ 0.059∗∗∗

(0.005) (0.005)

4th year renewal -0.004 -0.000
(0.007) (0.006)

Observations 479379 479379 270839 270839

R2 0.055 0.058 0.058 0.062

Notes: Linear probability model with 1[application is kept secret] as the dependent variable, and 1[process patent] as
the independent variable of interest. Robust standard errors, clustered by USPC main class, in parentheses. * p < 0.1,
** p < 0.05, *** p < 0.01. Additional controls include indicator variables for the patent’s first listed USPC main class
and the year of application.

C.1 Firm Size1068

We consider three different sizes of patent applicants: individuals (=1), small firms (=1069

2), and large firms (=3).54 We interact each of these with the trade secrets protection1070

index, and we re-estimate equation (8) with these interactions. Table C.1 shows the1071

coefficients of interest from these regressions without control variables (column (1)),1072

with controls for the patent’s complexity (column (2)), with controls for the patent’s1073

value (column (3)), and with all control variables (column (4)). Individuals are the1074

omitted category. The estimated decrease in the probability that a patent is a process1075

patent is largest for individuals, with an estimated decrease of 4.6 percentage points1076

if the trade secrets protection index increases by 1 full point in column (4). At the1077

means of the change in trade secrets protection and the initial share of process patents1078

54For more details on how we construct our size index, see the Online Appendix.
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Table C.1: Effect of Trade Secrets Protection by Applicant Size

(1) (2) (3) (4)

Small firm 0.050∗∗∗ 0.027∗∗∗ 0.043∗∗∗ 0.021∗∗∗

(0.003) (0.003) (0.003) (0.003)

Large firm 0.062∗∗∗ 0.038∗∗∗ 0.055∗∗∗ 0.035∗∗∗

(0.004) (0.003) (0.004) (0.004)

Individual × Trade secrets protection -0.037∗∗∗ -0.041∗∗∗ -0.051∗∗∗ -0.046∗∗∗

(0.009) (0.008) (0.009) (0.009)

Small firm × Trade secrets protection -0.022∗∗ -0.019∗∗ -0.024∗∗ -0.020∗∗

(0.009) (0.009) (0.010) (0.009)

Large firm × Trade secrets protection -0.002 -0.007 -0.008 -0.012
(0.012) (0.011) (0.011) (0.011)

Control variables: complexity N Y N Y
Control variables: value N N Y Y

Observations 1460358 1450434 905492 897578

R2 0.301 0.345 0.291 0.337

Notes: Linear probability model with 1[process patent] as the dependent variable. Firm size = 1 if applicant is an
individual, =2 if applicant is a small firm, and =3 if applicant is a large firm. Omitted category: individuals before
UTSA adoption. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Control variables as
in Table 3. Additional controls include indicator variables for the patent’s first listed USPC main class, the location
state, and the priority year.

for individuals, this corresponds to an average decrease in the probability of a process1079

patent of 6.0% (compared to an average effect of 2.1%). The (negative) impact is1080

smaller for small firms, and no longer statistically significant for large firms.1081

C.2 Technology Classes1082

We examine the variation of the effect of trade secrets protection across different1083

technologies by estimating equation (8) with interactions of the trade secrets pro-1084

tection index with each NBER technology category.55 Table C.2 shows the results1085

from these regressions. Much of the impact reported in Table 3 seems to be driven1086

by innovation in the “Chemical” (1), “Electrical and Electronic” (4), “Mechanical”1087

(5), and “Other” (6) categories, while a stronger trade secrets protection increases1088

55Hall et al. (2001) construct six broad technology categories based on USPC main classes. These
categories are Chemical (1), Computers & Communications (2), Drugs & Medical (3), Electrical &
Electronic (4), Mechanical (5), and Others (6).
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Table C.2: Effect of Trade Secrecy Protection by Technology Class

(1) (2) (3) (4)

Chemicals × TS protection -0.064∗∗∗ -0.060∗∗∗ -0.059∗∗∗ -0.053∗∗∗

(0.014) (0.013) (0.015) (0.014)

Computers × TS protection 0.065∗∗∗ 0.061∗∗∗ 0.053∗∗∗ 0.046∗∗∗

(0.014) (0.013) (0.015) (0.013)

Drugs × TS protection -0.027 -0.020 -0.019 -0.017
(0.021) (0.020) (0.020) (0.019)

Electronics × TS protection -0.010 -0.016 -0.033∗∗ -0.036∗∗

(0.015) (0.014) (0.015) (0.014)

Mechanics × TS protection -0.031∗∗ -0.036∗∗∗ -0.040∗∗∗ -0.038∗∗∗

(0.015) (0.014) (0.014) (0.014)

Other × TS protection -0.033∗∗∗ -0.039∗∗∗ -0.038∗∗∗ -0.037∗∗∗

(0.010) (0.010) (0.010) (0.010)

Control variables: complexity N Y N Y
Control variables: value N N Y Y

Observations 1475039 1465093 907858 899931

R2 0.300 0.345 0.289 0.337

Notes: Linear probability model with 1[process patent] as the dependent variable. We report interaction terms of the
trade secrets protection index with NBER technology categories (Hall et al., 2001). These categories are Chemical
(=1), Computers & Communications (=2), Drugs & Medical (=3), Electrical & Electronic (=4), Mechanical (=5),
and Others (= 6). Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls
include indicator variables for the patent’s first listed USPC main class, the location state, and the priority year.

the probability that a patent in the “Computers and Communications” (2) category1089

covers a process. Accordingly, a technology-specific patenting and trade secrets policy1090

may facilitate follow-on innovation.1091

D Additional Robustness Checks1092

The main analysis makes several assumptions. First, we focus our analysis on single-1093

state patents, that means, patents for which all assignees and inventors are from the1094

same U.S. state. We take this conservative approach to avoid assigning patents to the1095

“wrong” states. Second, we define a patent as a process patent if it includes at least1096

one process claim, although the invention itself may still exhibit characteristics of a1097

product. Third, we assume that states that adopted the UTSA early and states that1098
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adopted the UTSA later or not at all are similar and their patent portfolios would1099

have evolved in the same way, were it not for the UTSA.1100

Here, we test the robustness of our results to these assumptions. First, we examine1101

the strength of the instruments on the instrumental variables regressions by reporting1102

the first stage results. Next, we use different definitions for a patent applicant’s1103

location, for the process patent variable, and for the level of trade secrecy protection.1104

Finally, we use propensity score matching to choose the most appropriate control1105

groups, and we test the exogeneity assumption in a Placebo exercise.1106

D.1 First Stage Results1107

Our instrument variables estimation relies on two assumptions. First, the instru-1108

ments are unrelated to the dependent variable in the second stage. Second, they1109

are strongly related with the endogenous variable. The former assumption is likely1110

to hold because the laws we utilize as instruments do not concern innovation and1111

patenting decisions. The latter is also likely to hold: bureaucratic red tape that slows1112

down the state-specific implementation of one law may also affect the implementation1113

of another state-specific law. Here, we provide further evidence that this assumption1114

holds. Table D.1 shows the coefficients and partial F-statistic of the first stage. The1115

coefficients on all instruments are strongly statistically significant, and the F-statistic1116

is well beyond any critical value at 591.6.1117

D.2 Alternative Definitions of Process Patents and Location1118

The main analysis uses rather conservative definitions of both a process invention and1119

the innovator’s location. We define a patent as a process patent if at least one claim1120

describes a process, and we consider only those patents for which all U.S. entities1121

are located in the same state. Here, we relax these definitions. First, we utilize two1122

alternatives measures of a process patent: (1) a patent is a process patent if the first1123

claim is a process claim, and (2) a patent is a process patent if at least 50% of all1124

independent claims are process claims. Second, we assign as the patent’s location1125

the location of the assignee who is listed first, and if no assignee is listed, we use the1126

location of the first listed inventor.1127

Table D.3 shows the coefficients on the change in trade secrecy protection due to1128

the UTSA, replicating the specification from column (4) of Table 3. The first three1129
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Table D.1: First Stage Results of IV Regression (Trade Secrets Protection)

(1)
DV: UTSA Index

UDDA 0.0180***
(0.0052)

UDPAA -0.0975***
(0.0035)

UFTA 0.0740***
(0.0034)

UFLRA 0.0396***
(0.0052)

Observations 1,487,739

R2 0.7911

F-stat for all instruments 591.58***

Notes: Dependent variable is the effective trade secrets protection index. Robust standard errors, clustered by USPC
main class and state, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls include the complexity
and value variables from the main analysis, as well as indicator variables for the patent’s first listed USPC main class,
the state, and the priority year.

columns use the same location definition as the main text, whereas the last three1130

columns define the invention’s location as the state of the first listed U.S. assignee,1131

or the first U.S. inventor if no U.S. assignee is listed. For each location definition, we1132

use three definitions for a process patent: (1) at least one claim is a process claim,1133

(2) the first claim is a process claim, and (3) at least half of all claims are process1134

claims. Column (1) of Table D.3 therefore exactly replicates column (4) of Table 3.1135

The results are robust to most definitions. While the location definition does not1136

affect the qualitative results (and the quantitative results are similar as well), the1137

estimated effect disappears when we define a patent as a process patent only if at1138

least half of its claims describe a process – the most restrictive definition. Importantly,1139

previous literature leads us to believe that the most appropriate definition of a process1140

patent is either the first or the second. For instance, Kuhn and Thompson (2017)1141

argue that under U.S. law the broadest claim should be listed first, suggesting the1142

second definition should be used. Our main analysis uses the first definition because1143

we are interested in disclosure of any process – regardless of the its role in the patent.1144
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Table D.2: Alternative Process Patent Indicators

Before UTSA After UTSA

Mean Std. Dev. Mean Std. Dev. T-stat

Process Patent [‘First’] 0.2592 0.4382 0.3098 0.4624 67.5
Process Patent [‘Most’] 0.2208 0.4148 0.2505 0.4333 42.1

Observations 674,186 813,214

Notes: This table provides summary statistics for the alternative patent indicators for all granted utility patents
(between 1976 and 2014) with a priority date between 1976 and 2008, and for which the location can be unambiguously
identified. The indicator variable ‘Most’ is defined for all patents for which we can identify the claim type for at least
one independent claim (666,131 patents before UTSA adoption and 808,980 patents after UTSA adoption). The
‘First’ indicator is defined only for patents for which we can identify the claim type of the first claim: 660,720 patents
before the UTSA and 804,217 patents after the UTSA.

Table D.3: Effect of the UTSA Using Different Definitions

Single-State Patents Broader U.S. Patents

(1) (2) (3) (4) (5) (6)
‘Any’ ‘First’ ‘Most’ ‘Any’ ‘First’ ‘Most’

Trade secrets protection -0.026∗∗∗ -0.022∗∗∗ -0.008 -0.028∗∗∗ -0.029∗∗∗ -0.005
(0.008) (0.007) (0.006) (0.008) (0.007) (0.006)

Control vars: Complexity Y Y Y Y Y Y
Control vars: Value Y Y Y Y Y Y

Observations 899932 894030 899932 1446801 1436218 1446801

R2 0.337 0.307 0.278 0.336 0.303 0.268

Notes: Linear probability model with 1[process patent] as the dependent variable and the trade secrets protection
index as the independent variable of interest. Column (1) is the same as column (4) of Table 3. Columns (1) through
(3) look only at single-state patents. Columns (4) through (6) consider the location-state of the first assignee (if
present) as the patent’s location, and the first inventor if no assignee is listed. Columns (1) and (4) consider all
patents with any process claims as process patents. Columns (2) and (5) define a patent’s type by its first claim.
Columns (3) and (6) consider a patent as a process patent if it has more process than product claims. Robust standard
errors, clustered by USPC main class and state, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional
controls are identical to the main analysis.
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Table D.4: Effect of UTSA (Binary Indicator)

(1) (2) (3) (4)

After UTSA adoption -0.008∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.013∗∗∗

(0.004) (0.004) (0.004) (0.004)

Control vars: Complexity N Y N Y
Control vars: Value N N Y Y

Observations 1475058 1465095 907867 899932

R2 0.300 0.345 0.289 0.337

Notes: Linear probability model with 1[process patent] as the dependent variable and a binary variable that is 1 if
the state has adopted the UTSA as the independent variable of interest. Robust standard errors, clustered by USPC
main class and state, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls are identical to the
main analysis.

D.3 UTSA as a Binary Variable1145

The main analysis uses the trade secrets protection index derived by Png (2017a)1146

as the dependent variable of interest. One might instead be interested in the effect1147

of the UTSA adoption itself, as it created well-defined rules and norms regarding1148

trade secrecy protection, which may not have previously been present regardless of1149

the initial strength of the law.1150

We examine the impact of the UTSA adoption here, repeating the analysis from1151

Table 3 but using an indicator variable that is 1 if the state has adopted the UTSA1152

(and zero otherwise), rather than the trade secrets protection index. Table D.4 reports1153

the coefficients of interest from these regressions, controlling for the same variables1154

as the main analysis. The estimated effect is even larger than that in the main esti-1155

mation, with an average decrease in the probability that a patent includes a process1156

claim of 1.05 percentage points, or 2.6% at the mean.1157

D.4 Propensity Score Matching1158

Our main analysis compares patents across all U.S. states, regardless of previous1159

patenting trends and other demographic patterns. However, it is possible that some1160

states are more closely related to each other than others. For instance, innovators in1161

Nebraska may have more in common with innovators from Wyoming than with those1162

from California. To account for this possibility, we match states that adopted the1163
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UTSA before 1990 (“treated” states) with those adopting the UTSA later or not at1164

all (“control” states) based on their propensity to adopt the UTSA early.1165

In particular, we estimate the probability of early adoption as a logistic function of1166

several variables describing each state in 1980 – before any state adopted the UTSA:1167

the number of patents per population, the share of process patents, the governor’s1168

party affiliation and the percent of the population voting for Ronald Reagan in the1169

1980 presidential election, and the state capital’s latitude and longitude. In addition,1170

we control for the year of the state’s UDDA adoption. Our logit estimation provides1171

a reasonably good fit, with a pseudo R-squared of 0.21. We match the states based1172

on their estimated propensity scores, dropping those states that do not have a close1173

neighbor.1174

Importantly, our matching approach allows us to illustrate the annual effect of1175

the UTSA on the likelihood that a patent includes a process. Figure D.1 depicts the1176

average share of process patents for treated and control states, in each year before1177

and after the treated state’s UTSA adoption.56 The share of process patents increases1178

for all states – and the trends for treated and control states are similar prior to the1179

treated state’s UTSA adoption. However, there is a small dip among treated states1180

(solid line) just after UTSA adoption that is not seen among the control states.1181

This dip is also seen in a regression that mirrors the analysis from Table 3, using1182

a binary variable for UTSA adoption instead of the trade secrets protection index1183

used in the main analysis to allow for a more direct interpretation of the results.1184

This regression, using both complexity and value controls (similar to column (4) of1185

Table 3), estimates a decrease in the probability that a patent includes a process1186

invention of 1.05 percentage points (significant at the 1 percent level) due to the1187

UTSA.1188

D.5 Placebo Test – Earlier UTSA Adoption1189

One might still be concerned that each state’s decision to adopt the UTSA was1190

motivated by changes in innovation and patenting behavior, rather than the other1191

way around. In that case, we might see a significant change in the likelihood that a1192

patent covers a process invention before a state adopts the UTSA. We examine this1193

possibility in a Placebo test. Instead of the true UTSA adoption date, we set that1194

56For each matched pair, we assign the year of UTSA adoption by the “treated” state, and we
count the years before and after that date accordingly for both states.
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Figure D.1: Average Share of Process Patents Around UTSA Adoption
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Notes: The figure shows the average share of process patents among all patents for the propensity score matched
states. The solid line denotes the treated states (states that adopted the UTSA before 1980), and the dashed line
shows the matched control states. For the treated states, year 0.5 denotes the year of the state’s UTSA adoption,
1.5 is the year after that, etc. For the control states, the year of adoption is assigned as that of its matched treated
counterpart. State pairs for which UTSA adoption is less than 5 years apart are dropped.

date two years earlier, dropping all patents that were applied for after the true UTSA1195

adoption.57 We then estimate the effect of the fake UTSA adoption on the likelihood1196

that a patent is a process patent.1197

Table D.5 shows the coefficients of interest for specifications that mirror those in1198

Table 3. While all specifications return a negative point estimate for the coefficient1199

on the fake UTSA adoption, these estimates are smaller than those using the true1200

UTSA adoption, and they are statistically insignificant throughout. These results1201

provide evidence that the states adopted the UTSA exogenously with respect to the1202

distribution of product and process patents.1203

57We also drop all patents that were applied for more than ten years before the state’s true UTSA
adoption to create a closer comparison group.
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Table D.5: Placebo Test: Effect of (Fake) UTSA

(1) (2) (3) (4)

After placebo UTSA adoption -0.005 -0.004 -0.007 -0.007
(0.004) (0.004) (0.004) (0.004)

Control vars: Complexity N Y N Y
Control vars: Value N N Y Y

Observations 213024 209045 141063 137744

R2 0.282 0.325 0.273 0.318

Notes: Linear probability model with 1[process patent] as the dependent variable and a binary variable that is 1 in
the two years before the state adopted the UTSA as the independent variable of interest. All observations after the
state’s actual adoption are dropped. Robust standard errors, clustered by USPC group and state, in parentheses. *
p < 0.1, ** p < 0.05, *** p < 0.01. Additional controls are identical to the main analysis.
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Online Appendix1213

E Additional Tables and Figures for Structural Re-1214

sults1215

E.1 Conditional and Unconditional Distributions1216

In Figure E.1, we show the estimated conditional density and probability functions1217

for processes and products (panel (a)); the probability of patenting for processes and1218

products from equation (6) (panel (b)); the share of process patents as function of τ1219

from equation (7) (panel (c)); and the estimated share of process patents over time1220

(panel (d)). Panel (b) depicts the results for Lemmata 2, 3, and 4.1221

In Figure E.2, we juxtapose the estimated conditional distriutions and the simu-1222

lated conditional distributions from simulations using the unconditional distributions1223

(panel (a)) and the estimatedun conditional density and probability functions for1224

processes and products (panel (b)).1225

E.2 Estimated Distributions (by R&D Costs)1226

In Figure E.3, we plot the mode of the estimated unconditional distributions (Step 2)1227

of visibilities for processes (dashed line) and products (dotted line). Analogous to the1228

graph in Figure 5, we vary R&D costs and plot the outcome against R&D in % of1229

Expected R&D Project Value.1230

As R&D costs increase and fewer initial ideas are realized, inventions become on1231

average less visible. For no R&D costs, the conditional and unconditional distribu-1232

tions are the same as all initial inventions (unconditional) are realized (conditional).1233

With higher R&D costs, we observe selection. In order for the conditional distribu-1234

tions to be realized (recall: the conditional distribution is constant, not dependent1235

on the counterfactual value of C), the initial distributions must change with C. For1236

sufficiently high costs, we hit the lower bound of γΘ = 0.1237

In Figure E.4, we plot the implied patent propensity against R&D costs, for all1238

realized inventions (solid line) and separately for processes (dashed line) and products1239

(dotted line). First, observe that process inventions are less likely patented than1240

product inventions. This is true across all values of R&D costs. Second, the implied1241
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Figure E.1: Results from Structural Model (Conditional Distributions)

(a) PDF and CDF (b) Patenting Probability

(c) Share of Process Patents (by τ) (d) Share of Process Patents (by year)

Notes: We depict the estimation results (Step 1) for model (2) in Table 6. In panel (a), we plot the density and
probability functions of visibilities for products and processes. For panel (b), we plot the patenting probabilities
πΘ(τ) (by invention type Θ) as function of trade secrets protection τ . For panel (c), we plot the share of process
patents ρ(τ) as function of trade secrets protection (τ) for three different estimates of θt. For panel (d), we plot the
share of process patents ρ(τ) over time (see Figure 2). The solid line depicts annual process shares from the data, the
dash-dotted line depicts the estimated values given θt and the empirical distribution of τ for the respective t. Panels
(b) through (d) are based on simulated data with N = 1,000,000.
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Figure E.2: Results from Structural Model (Unconditional Distributions)

(a) Conditional CDFs (b) Unconditional PDF and CDF

Notes: We depict the estimation results from Step 2 of our estimation procedure for C = 2 (low cost). In panel
(a), we plot the conditional distributions of visibilities for process (top panel) and products (bottom panel) from
Step 1 (“estimated;” solid line) and the implied conditional distributions from simulations using the unconditional
distributions from Step 2 (“simulated;” dashed line). In panel (b), we plot the density and probability functions of
visibilities for products and processes for the unconditional distributions (Step 2).

patent propensities initially decrease as costs increase but increase (and converge to1242

one) for higher R&D costs.1243

E.3 Time-Varying Distribution of Invention Types1244

For the specification of the structural model in the main text, we use a time-varying1245

distribution of invention types with T = 3 different values for the share of process1246

inventions, θt for t = 1, 2, 3. In Tables E.1 and E.2, we present estimation results for1247

T = 6 and T = 7 with θt for t = 1, . . . , 6 and t = 1, . . . , 7. Our results are robust.1248

First, our estimates of γM satisfy our assumption of first-order stochastic dominance1249

(now also for λ = 0). Second, our estimates for the distribution of invention types1250

imply an increasing share of realized process inventions. In Figures E.5 and E.6, we1251

also plot the empirical and implied share of process patents. The solid line depicts1252

annual process shares from the data, the dash-dotted line depicts the estimated values1253

given θt and the empirical distribution of τ for the respective t.1254
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Figure E.3: Unconditional Distributions (Modes of Triangular Distribution)

Notes: In this figure, we plot the estimated modes of the triangular distribution for visibilities of processes (dashed
line) and products (dotted line). On the horizontal axis, we use R&D costs as fraction of the expected R&D project
value (given expectations of invention type, visibility, commercial value, and the inventor’s patenting decision).

Figure E.4: Implied Patent Propensities

Notes: In this figure, we plot the implied patent propensities for all realized inventions (solid line), processes (dashed
line), and products (solid line). On the horizontal axis, we use R&D costs as fraction of the expected R&D project
value (given expectations of invention type, visibility, commercial value, and the inventor’s patenting decision).
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Figure E.5: Share of Process Patents (T = 6)

Notes: In this figure, we plot the share of process patents ρ(τ) over time (see Figure 2). The solid line depicts annual
process shares from the data, the dash-dotted line depicts the estimated values given θt and the empirical distribution
of τ for the respective t, where t = 1, . . . , 6. The parameter estimates are reported in Table E.1, the estimated values
are based on simulated data with N = 1,000,000.

Figure E.6: Share of Process Patents (T = 7)

Notes: In this figure, we plot the share of process patents ρ(τ) over time (see Figure 2). The solid line depicts annual
process shares from the data, the dash-dotted line depicts the estimated values given θt and the empirical distribution
of τ for the respective t, where t = 1, . . . , 7. The parameter estimates are reported in Table E.2, the estimated values
are based on simulated data with N = 1,000,000.

A5



Table E.1: Estimates for Conditional Distributions (T = 6)

(1) (2) (3)

License revenues [fixed] λ 0.0 0.1 0.5

Mode for processes (GM ) γM 0.463 0.374 0.266
Mode for products (GP ) [fixed] γP 0.5 0.5 0.5

Share of process inventions (1976–1984) θ1 0.305 0.306 0.308
Share of process inventions (1985–1989) θ2 0.365 0.369 0.368
Share of process inventions (1990–1994) θ3 0.425 0.433 0.435
Share of process inventions (1995–1999) θ4 0.520 0.530 0.530
Share of process inventions (2000–2004) θ5 0.571 0.581 0.581
Share of process inventions (2005–2008) θ6 0.596 0.606 0.608

Observations N (no. of patents) 1,465,351 1,465,351 1,465,351
Log-likelihood/N -0.67 -0.67 -0.67

Notes: We report the parameter estimates for the conditional distribution from Stage 2 of the augmented model with
six time periods. We estimate our structural model on the sample of single-state patents filed between 1976 and 2008.
For states that have adopted the UTSA, we exclude patents from the year the UTSA was adopted. We estimate
the mode γM (of the triangular distribution over support [0, 1]) for processes and fix the mode γP for products.
Invention types are Bernoulli distributed (G) with parameter θt, where t = 1 for patents with priority dates in 1976–
1984 [N = 232,450], t = 2 for 1985–1989 [N = 127,825], t = 3 for 1990–1994 [N = 177,685], t = 4 for 1995–1999
[N = 253,815], t = 5 for 2000–2004 [N = 261,483], and t = 6 for 2005–2008 [N = 166,751]. The reported parameter
estimates maximize the log-likelihood in equation (15).

E.4 Results from Subsample Excluding Software Patents1255

We rerun our analysis of Step 1 with a subsample that excludes software patents.1256

Following Chung et al. (2015:Table 2), we identify software patents as patents with1257

United States Patent Classification (USPC) main classes 341, 345, 370, 380, 382, 700–1258

707, 710, 711, 713–715, 717, 726, and 902. For the sample used in the analysis in the1259

text, we have already excluded business methods patents with USPC main class 7051260

(e.g. Lerner, 2006). We report the results from the sample without software patents1261

in Table E.3. In Figure E.7, we also plot the empirical and implied share of process1262

patents. The solid line depicts annual process shares from the data (without software1263

patents – the dotted line depcits the annual shares including software patents), the1264

dash-dotted line depicts the estimated values given θt and the empirical distribution1265

of τ for the respective t.1266
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Table E.2: Estimates for Conditional Distributions (T = 7)

(1) (2) (3)

License revenues [fixed] λ 0.0 0.1 0.5

Mode for processes (GM ) γM 0.436 0.367 0.249
Mode for products (GP ) [fixed] γP 0.5 0.5 0.5

Share of process inventions (1976–1979) θ1 0.277 0.276 0.274
Share of process inventions (1980–1984) θ2 0.331 0.333 0.333
Share of process inventions (1985–1989) θ3 0.368 0.369 0.366
Share of process inventions (1990–1994) θ4 0.429 0.434 0.434
Share of process inventions (1995–1999) θ5 0.523 0.531 0.530
Share of process inventions (2000–2004) θ6 0.574 0.582 0.580
Share of process inventions (2005–2008) θ7 0.599 0.607 0.607

Observations N (no. of patents) 1,465,351 1,465,351 1,465,351
Log-likelihood/N -0.67 -0.669 -0.67

Notes: We report the parameter estimates for the conditional distribution from Stage 2 of the augmented model with
seven time periods. We estimate our structural model on the sample of single-state patents filed between 1976 and
2008. For states that have adopted the UTSA, we exclude patents from the year the UTSA was adopted. We estimate
the mode γM (of the triangular distribution over support [0, 1]) for processes and fix the mode γP for products.
Invention types are Bernoulli distributed (G) with parameter θt, where t = 1 for patents with priority dates in 1976–
1979 [N = 109,264], t = 3 for 1980–1984 [N = 123,186], t = 3 for 1985–1989 [N = 127,825], t = 4 for 1990–1994
[N = 177,685], t = 5 for 1995–1999 [N = 253,815], t = 6 for 2000–2004 [N = 261,483], and t = 7 for 2005–2008
[N = 166,751]. The reported parameter estimates maximize the log-likelihood in equation (15).

F A Simple Competition Model1267

In this section, we derive the reduced-form social surplus functions in equations (12)1268

and (13) from a simple competition model. We derive the expressions for process1269

inventions; the case for product invention is analogous.1270

Consider a market with linear demand D(p) = 1−p. A firm with a new technology1271

produces a homogeneous good at marginal production costs of cL. This firm has many1272

potential competitors that all produce at marginal costs cH > cL. Competition is in1273

prices. We assume the invention is radical in the sense that the monopoly price (under1274

low costs cL) does not exceed the higher of the marginal costs, pmL ≤ cH . Moreover,1275

for simplicity let cL = 0. The monopoly profits in this case are πmL = 1
4
.1276

Now, suppose the firm has chosen to patent the technology. This means, all1277

potential competitors have (restricted) access to the technology. The patent holder1278

is able to detect infringement of its patent and enforce it with probability φ. This1279

means, with probability 1−φ, there is at least one competitor who can freely use the1280
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Table E.3: Estimates for Conditional Distributions (Step 1) – Excluding Software
Patents

(1) (2) (3)

License revenues [fixed] λ 0.0 0.1 0.5

Mode for processes (GM ) γM 0.537 0.374 0.374
Mode for products (GP ) [fixed] γP 0.5 0.5 0.5

Share of process inventions (1976–1989) θ1 0.322 0.325 0.323
Share of process inventions (1990–1999) θ2 0.448 0.461 0.453
Share of process inventions (2000–2008) θ3 0.523 0.538 0.529

Observations N (no. of patents) 1,328,068 1,328,068 1,328,068
Log-likelihood/N -0.673 -0.673 -0.673

Notes: We report the parameter estimates for the conditional distribution from Stage 2 of the augmented model. We
estimate our structural model on the sample of single-state patents filed between 1976 and 2008. For states that have
adopted the UTSA, we exclude patents from the year the UTSA was adopted. We also exclude software patents, using
the list of USPC main classes in Chung et al. (2015:Table 2) to identify software patents. We estimate the mode γM
(of the triangular distribution over support [0, 1]) for processes and fix the mode γP for products. Invention types are
Bernoulli distributed (G) with parameter θt, where t = 1 for patents with priority dates in 1976–1989 [N = 372,333],
t = 2 for 1990–1999 [N = 480,708], and t = 3 for 2000–2008 [N = 475,027].

Figure E.7: Share of Process Patents (Excluding Software Patents)

Notes: In this figure, we plot the share of process patents ρ(τ) over time (see Figure 2) for the model without software
patents. The solid line depicts annual process shares from the data, the dash-dotted line depicts the estimated values
given θt and the empirical distribution of τ for the respective t, where t = 1, 2, 3. The parameter estimates are
reported in Table E.1, the estimated values are based on simulated data with N = 1,000,000.
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low-cost technology. With at least one competitor producing at zero marginal cost,1281

the equilibrium price (and deadweight loss) is equal to zero. The expected social1282

surplus is1283

φ
3

2πmL
+ (1− φ) · 0 = 2πmL −

φπmL
2
. (F.1)

Instead of a patent, let the firm keep the technology a secret. As discussed in the1284

Section 2, the firm has exclusive access to the techology with probability τ (1− φ).1285

This means, that with probability 1− τ (1− φ) there is at least one competitor who1286

can freely use the low-cost technology. With at least one competitor producing at1287

zero marginal cost, the equilibrium price (and deadweight loss) is equal to zero. The1288

expected social surplus is1289

τ (1− φ)
3

2πmL
+ [1− τ (1− φ)] · 2πmL =

2πmL −
τ (1− φ) πmL

2
. (F.2)

Let v denote the commercial value of the invention if the firm has exclusive access.1290

In other words, let v = πmL , then the expressions for expected aggregate surplus are1291

equal to the expression in equations (12) and (13).1292

G Data Appendix1293

We construct our data sample using a number of sources. We obtain basic biblio-1294

graphic information from PatentsView at https://www.patentsview.org/download1295

for bulk download and http://www.patentsview.org/api/doc.html for API queries.1296

We also use data from Ganglmair et al. (2019) for process patent indicators, the1297

USPTO’s Patent Maintenance Fee Events database at https://bulkdata.uspto.1298

gov/data/patent/maintenancefee to calculate our proxies for patent value as well1299

as applicant size, the USPTO’s Patent and Patent Application Claims Research1300

Dataset at https://bulkdata.uspto.gov/data/patent/claims/economics/2014/1301

for proxies of patent scope and complexity, and the Google Patents Research Data at1302

https://console.cloud.google.com/marketplace/partners/patents-public-data1303
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Table G.4: Sample Construction and Sample Size

Sample/Variable Source Obs.

Patents, granted January 1976 – December 2014 PatentsView X
Priority dates: January 1976 – December 2008 Google Patents X
U.S. only location constructed X
Exclude business method patents PatentsView X

Main Estimation Sample: X

Process patent indicator Ganglmair et al. (2019) X
Number of independent claims USPTO Claims X
Length of first claim USPTO Claims X
Length of detailed patent description PatentsView (API) X
Originality constructed X
Generality constructed X
4th year maintenance USPTO Maintenance X

USPC main classes PatentsView X
Applicant size constructed X
NBER technology categories PatentsView X

Notes: Data sources are PatentsView (bulk data download page and API), Google Patents (Google
Patents Research Data), USPTO Claims (USPTO’s Patent and Patent Application Claims Re-
search Dataset), USPTO Maintenance (USPTO’s Patent Maintenance Fee Events database), and
Ganglmair et al. (2019). Constructed means that variables are constructed/calculated by authors.
For more details, see the descriptions below.

to construct data on the timing of disclosure.1 In Table G.4, we provide an overview1304

of the steps of our sample construction. For further details, see the descriptions that1305

follow.1306

G.1 Main Sample1307

For our data sample, we start with the census of U.S. utility patents granted between1308

1976 and 2014. In order to obtain a clean assignment of the level of trade secrets1309

protection to which the patent applicant was exposed at the time of the disclosure1310

decision, we limit our sample to patents with disclosure timing between 1976 and1311

2008 and a location within the United States.1312

Timing: Priority Dates To identify the timing of the disclosure decision, we use1313

a patent’s priority date. More specifically, we use the priority date of the head1314

1We thank Jeffrey Kuhn for his support with Google’s Big Query.
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of a simple patent family (i.e., all patents that share the same priority claims).1315

We implement this by using the earliest priority date for all patents from a1316

given simple patent family. Information on simple patent family assignment1317

and priority dates we obtain from the Google Patents Research Data.1318

Location: U.S.-only Patents To identify the location (i.e., U.S. state) of the dis-1319

closure decision, we use information on the location of patent assignees and1320

inventors. PatentsView provides data on disambiguated location, assignee, and1321

inventor names. For each patent, we consider only assignees and inventors1322

within the United States. Out of this subsample of names, we further consider1323

only those patents for which all U.S. assignees and all U.S. inventors are located1324

in the same state. We use this state as the respective state of the disclosure1325

decision (and, by assumption, the relevant U.S. state for the UTSA adoption1326

and trade secrets protection).1327

For a set of robustness results in the Appendix, we use a more aggressive location1328

definition. There, we define the location of a patent by the location of the first1329

assignee listed on the granted patent. If no assignee is listed, we use the location1330

of the first inventor listed on the granted patent.1331

G.2 Patent Classification1332

For basic information on patent classification, we use the current United States Patent1333

Classification (USPC) main classes (applied to all patents retrospectively) obtained1334

from PatentsView. Where multiple main classes are listed on a patent, we use the1335

first (by sequence).1336

For our main estimation sample, we exclude all business methods patents. We1337

follow Lerner (2006) and define such patents as those with USPC main class 7051338

(i.e., the first main class listed on the patent). For a set of robustness results in this1339

Online Appendix, we also rerun our analysis for a subsample that excludes software1340

patents. Following Chung et al. (2015:Table 2), we identify software patents as those1341

with USPC main classes 341, 345, 370, 380, 382, 700–707, 710, 711, 713–715, 717,1342

726, and 902. We list the descriptions of these main classes in Table G.5.1343

Our main sample comprises patents covering XXX distinct main classes. The five1344

most frequent main classes are XXX.1345
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Table G.5: USPC Main Classes for Software Patents

Class Description

341 Coded data generation or conversion
345 Computer graphics processing and selective visual display systems
370 Multiplex communications
380 Cryptography
382 Image analysis
700 Data processing: generic control systems or specific applications
701 Data processing: vehicles, navigation, and relative location
702 Data processing: measuring, calibrating, or testing
703 Data processing: structural design, modeling, simulation, and emulation
704 Data processing: speech signal processing, linguistics, language translation, and

audio compression/decompression
705 Data processing: financial, business practice, management, or cost/price deter-

mination
706 Data processing: artificial intelligence
707 Data processing: database and file management or data structures
710 Electrical computers and digital data processing systems: input/output
711 Electrical computers and digital processing systems: memory
713 Electrical computers and digital processing systems: support
714 Error detection/correction and fault detection/recovery
715 Data processing: presentation processing of document, operator interface pro-

cessing, and screen saver display processing
717 Data processing: software development, installation, and management
726 Information security
902 Electronic funds transfer

Source: https://www.uspto.gov/web/patents/classification/selectnumwithtitle.htm and
Chung et al. (2015:Table 2).

Note that for our structural estimates, we use an extended sample that includes1346

all granted patent through 2016. We discuss the reasons for this extension below.1347

G.3 Construction of Additional Variables1348

We further collect and construct three sets of variables to proxy a patent’s “patent1349

scope and complexity,” its “external impact,” and its “internal value.” For our het-1350

erogeneity results, we also collect and construct variables capturing the size of the1351

patent applicant and the broader technology class of the patent.1352
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G.3.1 Patent Scope and Complexity1353

We follow Lerner (1994) and Lanjouw and Schankerman (2004) and measure patent1354

breadth and scope using the number of independent claims in a patent. Kuhn and1355

Thompson (2017), however, argue that a simple count of (independent) claims may1356

be a poor measure for patent scope.2 They propose the length of the first patent1357

claim as an alternative measure for patent scope, where shorter claims are broader.1358

They use the first claim for their measure because under U.S. law the broadest claim1359

should be listed first. We adopt their measure (length of the first claim in number of1360

words) alongside the number of independent claims.1361

We collect the number of independent claims of a paper and the length of the first1362

claim from the USPTO’s Patent and Patent Application Claims Research Dataset1363

at https://bulkdata.uspto.gov/data/patent/claims/economics/2014. This re-1364

search dataset provides information on claims from patents granted between January1365

1976 and December 2014. For more details on the data, see Marco et al. (2016).1366

We further collect the length (in characters) of the detailed description of each1367

patent from PatentsView through API queries (the data are not available for bulk1368

data download at http://www.patentsview.org/download).1369

G.3.2 External Impact1370

We construct measures of patent generality and patent originality as proposed by1371

Trajtenberg et al. (1997). See also Hall et al. (2001).1372

Patent Originality: Patent originality of a patent j is defined as1373

1−
n∑
k=1

(
backward citationsjk∑n
m=1 backward citationsjm

)2

(G.3)

where sjk =
backward citationsjk∑n

m=1 backward citationsjm
is the share of backward citations that patent j1374

makes to patents in patent class k = 1, . . . , n over all backward citations made1375

by patent j. A higher originality score means patent j draws on prior knowledge1376

from a greater variety of fields. We construct this measure using the first listed1377

USPC main class on a patent j. We have classification information for patents1378

2Because each claim beyond 20 claims comes at an additional cost, patents with many claims
may cover more valuable technologies, but need not be broader than patents with fewer claims.
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granted in and after 1976. This means that for patents granted early in our1379

sample period that cite patents granted before 1976, we have little information1380

about the classes of their cited patents. Because of this truncation issue, the1381

originality measure is therefore noisier and coarser for earlier patents than for1382

patents granted later in our sample period.1383

Patent Generality: Patent generality of a patent j is defined as1384

1−
n∑
k=1

(
forward citationsjk∑n
m=1 forward citationsjm

)2

(G.4)

where sjk =
forward citationsjk∑n

m=1 forward citationsjm
is the share of forward citations that patent j1385

receives from patents in patent class k = 1, . . . , n over all forward citations1386

received by patent j. A higher generality score implies a higher widespread1387

impact, influencing subsequent innovation in a broader variety of fields. A large1388

number of patents never receive a patent citation, and our patent generality1389

score is not defined for any patents without forward citations.1390

G.3.3 Internal Value1391

We use information on the applicant’s renewal behavior as a measure of internal (or1392

private) value of a patent (Pakes, 1986; Schankerman and Pakes, 1986). To this end,1393

we construct a dummy variable equal to 1 if the applicant has paid the 4th-year1394

maintenance fees (to be paid in the fourth year after patent grant).1395

We use information from the USPTO’s Patent Maintenance Fee Events database1396

at https://bulkdata.uspto.gov/data/patent/maintenancefee (January 28, 2019).1397

The database contains all recorded events related to the payment of maintenance fees1398

for patents granted from September 1, 1981 and forward. A patent is said to have1399

been maintained if one of the codes listed in Table G.6 is recorded.1400

Because we have information on maintenance events through the end of 2018,1401

covering the full four years after our main sample ends, we do not face any truncation1402

issues for an applicant’s 4th year maintenance decision. Note, however, that because1403

maintenance information is available only for patents granted on or after September 1,1404

1981, we have XXX missing observations for patents granted between January 19761405

and August 1981. Further note that we are not restricted by this truncation issue for1406

our structural estimations and therefore use an extended sample with patents granted1407
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Table G.6: Codes for Maintenance Fee Events

Code Description

F170 Payment of Maintenance Fee, 4th Year
F173 Payment of Maintenance Fee, 4th Year, Undiscounted Entity
F273 Payment of Maintenance Fee, 4th Year, Small Entity
M1551 Payment of Maintenance Fee, 4th Year, Large Entity
M170 Payment of Maintenance Fee, 4th Year, PL 96-517
M173 Payment of Maintenance Fee, 4th Year, PL 97-247
M183 Payment of Maintenance Fee, 4th Year, Large Entity
M2551 Payment of Maintenance Fee, 4th Yr, Small Entity
M273 Payment of Maintenance Fee, 4th Yr, Small Entity, PL 97-247
M283 Payment of Maintenance Fee, 4th Yr, Small Entity
M3551 Payment of Maintenance Fee, 4th Year, Micro Entity

Source: Documentation file for Patent Maintenance Fee Events database at https://bulkdata.

uspto.gov/data/patent/maintenancefee.

through December 2016.1408

G.3.4 Applicant Size1409

For our variable of applicant size (or entity size), we combine information from the1410

USPTO’s Patent Maintenance Fee Events database and bibliographic information on1411

patents from PatentsView. Applicant size takes three values. It is equal to 1 if the1412

applicant is an individual, equal to 2 if the applicant is a small firm (i.e., small entity1413

but not an individual), and equal to 3 if the applicant is a large firm (i.e., large entity1414

but not an individual).1415

The USPTO’s Patent Maintenance Fee Events database provides information on1416

the size of the entity for any recorded maintenance fee event. Entities are either micro1417

or small (“small”) or “large.” This means, if an applicant’s maintenance event for a1418

patent j is recorded in the database, then we know the size of that patent j’s ap-1419

plicant. Using assignee information (from PatentsView), we construct an applicant’s1420

size history (by year), based on recorded maintenance events. We hold the size of an1421

applicant constant at the value of t until the next recorded event at t′ > t where it1422

may or may not change. In addition, we use the size of the first entry for all previous1423

years. With this size history, we can now assign an applicant size for all patents j of1424

an assignee for which no maintenance event is recorded. This gives us size informa-1425
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tion for all patents by assignees that have at least one recorded maintenance event;1426

patents by assignees without any maintenance events are without applicant size.1427

An applicant of a given patent j is an individual (= 1) if the first assignee listed1428

on the patent is of type “individual” or if no assignee is listed on the patent. If the1429

applicant is not an individual, then its size is equal to 2 if it is a small entity and equal1430

to 3 if it is a large entity (as defined above). In our main estimation sample, XXX%1431

of applicants are individuals, XXX are small firms, and XXX% are large firms.1432

G.3.5 Technology Class1433

We obtain NBER technology classifications from PatentsView. The NBER technology1434

categories are constructed by Hall et al. (2001). Patents are assigned to six categories:1435

Chemical (1), Computers & Communications (2), Drugs & Medical (3), Electrical &1436

Electronic (4), Mechanical (5), and Others (6). We provide a list of the categories1437

with their respective 36 sub-categories in Table G.7. Note that software patents1438

(see above) predominantly fall into category Computers & Communications and sub-1439

category Computer Hardware & Software.1440

Filling some gaps in the data, we assign USPC main class 532 to category 1 (Chem-1441

ical) and sub-category 14 (Organic Compounds); and USPC main classes 901 (robots)1442

and 902 (electronic funds transfers) to category 2 (Computers & Communications)1443

and sub-category 22 (Computer Hardware & Software).1444

G.4 Process Patent Indicator1445

G.4.1 Summary of Indicator Construction1446

Ganglmair et al. (2019) employ text-analytical methods to identify the invention type1447

of all independent claims in a given patent. We aggregate their claim-level data to1448

obtain data at the patent level. In the sequel, we summarize their approach. Some1449

of the material is also borrowed from Rosenberg (2012). An additional useful source1450

of further background information is WIPO (2007).1451

The unit of analysis in Ganglmair et al. (2019) is an independent patent claim. A1452

patent claim defines the scope of legal protection provided by a patent. It describes1453

what the applicant claims to be its invention for which the patent grants exclusive1454

rights. Each patent can hold multiple claims of different types. An independent claim1455
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Table G.7: NBER Technology Categories and Sub-Categories

NBER Category NBER Sub-Categories

Chemical (1) Agriculture, Food, Textiles (11); Coating (12);
Gas (13); Organic Compounds (14); Resins (15);
Miscellaneous-chemical (19)

Computers & Communications (2) Communications (21); Computer Hardware & Soft-
ware (22); Computer Peripherals (23); Informa-
tion Storage (24); Electronic Business Methods and
Software (25)

Drugs & Medical (3) Drugs (31); Surgery & Medical Instruments (32);
Biotechnology (33); Miscellaneous-Drug&Medical
(39)

Electrical & Electronic (4) Electrical Devices (41); Electrical Lighting (42);
Measuring & Testing (43); Nuclear & X-rays (44);
Power Systems (45); Semiconductor Devices (46);
Miscellaneous-Elec. (49)

Mechanical (5) Materials Processing & Handling (51); Metal
Working (52); Motors, Engines & Parts (53);
Optics (54); Transportation (55); Miscellaneous-
Mechanical (59)

Others (6) Agriculture, Husbandry, Food (61); Amusement
Devices (62); Apparel & Textile (63); Earth Work-
ing & Wells (64); Furniture, House Fixtures (65);
Heating (66); Pipes & Joints (67); Receptacles (68);
Miscellaneous-Others (69)

Source: Hall et al. (2001) and PatentsView. Appendix 1 in Hall et al. (2001) also lists the respective
USPC main classes (version 1999) for each sub-category.

stands on its own whereas a dependent claim is in reference to an independent claim,1456

further limiting its scope.1457

Claims typically consists of two parts: a preamble and body. The preamble is an1458

introductory phrase or paragraph that identifies the category of the invention of the1459

claim. For example, an invention may be an apparatus or device (as in an apparatus1460

or device claim, here referred to as product claim) or a method or method (as in a1461

method claim or process claim). The body of a patent claim recites the elements of1462

the claim. In many cases, these elements are steps (as in the steps of a process) or1463

items (as in the items that define a product).1464

The approach in Ganglmair et al. (2019) uses information from both the preamble1465

and the body. Both parts of the claim are classified as describing a process or a1466
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product. For the preamble, this classification is conducted via a simple keyword search1467

(e.g., “process” or “method” for process-claim preambles; “apparatus” or “device” for1468

product-claim preambles). For the body, the authors take a syntax-based approach,1469

analyzing the linguistic structure of each line (or “bullet point”) in the body. The1470

steps of a process are listed using the gerund form of a verb, whereas the items of a1471

product (an apparatus, a device) are listed as components. The authors’ algorithm1472

accounts for these drafting conventions when classifiying a body as process-claim body1473

or product-claim body. In the end, combining the classifications of the preamble and1474

the body, a classification for the entire claim is obtained:1475

Process claim or method claim: A process claim (also called a method claim) de-1476

scribes the sequence of steps which together complete a task such as making an1477

article of some sort. The preamble of a method claim often uses the terms “pro-1478

cess” or “method.” The body of a method claim typically consists of a listing1479

of the “steps” of the process.1480

Product claim: A product claim (also called a “device claim” or “apparatus claim”)1481

describes an invention in the form of a physical apparatus, system, or device.1482

For instance, a claim that covers a tripod for a camera or a window crank is1483

an apparatus claim. In the preamble of a product claim, the patent applicant1484

often recites what the product is and what it does. Then, in the body of the1485

claim, the applicant lists the essential elements (i.e., “items”) of the invention.1486

In addition to process claims and product claims, the special case of product-by-1487

process claim is classified.1488

Product-by-process claim: A product-by-process claim is a claim that defines a1489

product by the process of making it. The product-by-process claim defines a1490

product by several process steps. Though, ultimately, the scope of the claim’s1491

coverage is directed toward a physical article (i.e., the “product”) rather than1492

the method, the claim includes elements of both product claiming (i.e., elements1493

in the body that describe the items that comprise an article or product) and1494

the sort of steps found in a process claim.1495

The authors’ algorithm deals at great length with a number of issues: badly1496

formatted claims, claims not following the usual drafting conventions, and two-part1497
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Figure G.8: Share of Missing Observations (All Three Patent-Level Indicators)

claims (also called improvement claims or Jepson claims). In Figure G.8, we plot the1498

fraction of missing observations for each of our patent-level indicator. For both our1499

main indicator and the process patent indicator with a majority of process claims,1500

at least one patent claim must be classified - the graphs in the figure are therefore1501

the same. The requirement for the indicator of the first process claim is stricter, and1502

the number of missing observations is higher throughout. Notice, however, that the1503

reliability of the approach increases over time as the percentage of missing observa-1504

tions (over all patents in our main sample) drops below 1% around 1985 (with higher1505

numbers for patents with earlier priority dates).1506

G.4.2 Descriptive Figures1507

In Figure G.9, we plot the share of process patents by priority year. We show graphs1508

for each of our three process patent indicators. The solid line depicts the share of1509

process patents for our main indicator (Figure 2: at least one patent claim is a process1510

claim, ‘Any’). The dotted graph depicts the share of patents with the first patent1511

claim a process claim (‘First’); the dashed graph depicts the share of patents with1512

a majority of process claims (‘Most’). As we we have discussed in the main text,1513

our main indicator is the most aggressive in terms of identifying patents as process1514

patents. The overall time trends, however, are very similar. We also plot the average1515
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Figure G.9: Share of Process Patents (Multiple Indicators)

share of process claims in a patent (dash-dotted line). The graph follows similar1516

trends.1517

In Figure G.10, we depict the share of process patents by applicant size (panel1518

(a)) and NBER category (panel (b)) – the two dimensions we use for our analysis1519

of heterogeneous treatment effects in the main text. The share of process patents1520

is higher in larger firms than in smaller firms, and lowest for individuals. In panel1521

(a) of Figure G.11 we can further observe this pattern in all NBER categories except1522

“Drugs and Medicals” (Category 3) in which small firms exhibit the highest numbers1523

for process patents, followed by large firms and individuals.1524

In panel (b) of Figure G.10, we see that the NBER Category “Computers and1525

Communication” (Category 2) has the highest share of process patents. Within this1526

category, “Computer Hardware & Software” (Sub-Category 22) and “Electronic Busi-1527

ness Methods and Software” (Sub-Category 25) stand out. This implies that even1528

without business methods (or: business method patents), category 2 is the a leading1529

category for process patents. On the other end of the spectrum, the catch-all category1530

“Others” (Category 6) exhibits the lowest share. Within this latter category, “Earth1531

Working & Wells” (Sub-Category 64) has the highest share (with more than 50%),1532

whereas “Furniture, House Fixtures” (Sub-Category 65) comes with the lowest share1533

of process patents.1534
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Figure G.10: Share of Process Patents

(a) Share of Process Patents by Applicant Size

(b) Share of Process Patents by NBER Category
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Figure G.11: Share of Process Patents (by NBER Category and Time Period)

(a) By NBER Category and Applicant Size

(b) By NBER Category and Time Period

A22



Figure G.12: Share of Process Patents (by NBER Sub-Category)
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Last, in panel (b) of Figure G.11 we capture time trends in the share of pro-1535

cess patents for different NBER categories. We see strong positive time trends for1536

“Computers and Communication” (Category 2) and weaker trends for “Electrical1537

and Electronic” (Category 4), “Mechanical” (Category 5), and the catch-all category1538

“Others” (Category 6). We see little or no time trends for “Chemical” (Category 1)1539

or “Drugs and Medical” (Category 3).1540

G.5 Data for AIPA Analysis (Graham and Hegde, 2015)1541

We use the supplementary data provided by the authors at http://science.sciencemag.1542

org/content/347/6219/236.1543
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