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Abstract

We analyze persuasion in a model, in which each receiver (of many) might buy a direct access to

the sender’s signal or to rely on her network connections to get the same information. For the sender,

a more biased signal increases the impact per subscriber (direct receiver), yet diminishes the willingness

of agents to become subscribers. Contrary to the naive intuition, the optimal propaganda might target

peripheral, rather than centrally located agents, and is at its maximum level when the probability that

information flows between agents is either zero, or nearly one, but not in-between. The density of the

network has a non-monotonic effect on the optimal level of propaganda as well.
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1 Introduction

Any economic model of persuasion should satisfy the incentive compatibility constraint for the

target of persuasion: no one would consume information unless it is beneficial to do so. If

receiving information is costly - even if the cost is the price of newspaper subscription or simply

the alternative cost of switching on a radio - the signal should be informative enough so that

the receiver would opt to bear the cost. In a network, an agent might receive information from

a neighbor, which reduces her willingness to bear the cost. Thus, there is a trade off for any

producer of propaganda: when the signal is more biased, the impact on direct receivers and

those who get information from them is higher, yet the willingness of agents to become direct

receivers is lower.

Recently, propaganda and censorship has become an active area of research both empirically

(King, Pan, and Roberts, 2013, 2014), and theoretically (Lorentzen, 2013, 2014, Gehlbach and

Sonin, 2014, Kolotilin, Li, Mylovanov, and Zapechelnyuk, 2017). Some studies combine propa-

ganda models with basic network analysis. However, this work often relies on naive intuition

that treats information as a fluid matter in continuum mechanics or infection in biomedicine,

ignoring the basics of economics approach: any consumption of information is a strategic ac-

tion of a rational individual. As our simple examples demonstrate, this naive intuition, while

fruitful in some contexts (e.g., Banerjee, Chandrasekhar, Duflo, and Jackson, 2018), might be

conceptually misleading in others.

To analyze the impact of propaganda when agents are linked via a network, we use the

basic Bayesian persuasion model (Kamenica and Gentzkow, 2011, Bergemann and Morris, 2018,

Kamenica, 2018). There is a single sender who maximizes the expected amount of action by

agents. (In a political economy setting, our main application, this will be, e.g., mobilization

in support of a leader or abstention from the anti-government protest.) Without information,

each agent would not act. The sender knows the state of the world, and chooses the information

design to maximize her own payoff. With a single receiver, the optimal strategy is to commit

to truthfully report the state of the world in which the receiver prefers to act, and bias, in the

favor of the sender-preferred action, the report in the state when the receiver prefers not to act.

When the sender chooses the information design, receivers would compare the cost of getting

this information with the value that information provides to them; less bias makes information

more valuable. In Example 1, we look at the consequences of the optimal choice by receivers

(whether to buy subscription themselves or to get information for free from their connections)

and the sender who optimizes the impact of propaganda in a very simple linear network.
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Figure 1: Sender-optimal equilibria as a function of p. Subscribers are solid. The optimal level

of propaganda is decreasing on [0, p1) and [p1, p2), and constant on [p2, 1].

Example 1 Consider the network in Figure 1: the probability that information passes through

any link connecting two agents is p; there is a non-zero cost of subscribing to the signal. For

different values of p, different levels of propaganda (bias) are optimal. If p is high enough, the

sender-optimal structure is such that the level of propaganda is at its maximum compatible

with an individual agent buying subscription, the central agent chooses to subscribe, while each

of peripheral agents opt to receive information from the central one. If p is low enough, then

the impact is maximized if everyone is a subscriber. Finally, for intermediate values of p, the

sender-preferred equilibrium is such that the level of propaganda is below the maximum level,

the two peripheral agents buy subscription, and the central one receives information from them.

(See the Appendix for full details on this example).

In Example 1, the sender has to reduce the bias in the message at the intermediate levels

of p to make subscription incentive compatible for peripheral agents. If the central agent buys

subscription, peripheral agents would get information with probability p. If the peripheral agents

subscribe, then the central agent gets information with probability 1−(1− p)2 , which exceeds p
whenever p 6= 0, 1. Therefore, the sender trades off a lower level of bias that induces the desired
action to have a higher probability that the signal reaches every agent. The sender’s utility is

maximized in two extreme cases. When p is very low, everyone is a subscriber and very little

reduction of the maximum bias is needed to satisfy each subscriber’s incentive compatibility

constraint. When p is close to 1, there is a single subscriber, so the bias is at the maximum

level.

Example 1 is not an isolated phenomenon. Contrary to the naive intuition, the sender of
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propaganda would not necessarily target the centrally connected individual in a general star

network. When the node with a high degree of centrality (Bloch, Jackson, and Tebaldi, 2019)

receives information directly, this crowds out the incentives of those who can receive information

from this node. In Example 2 (Figure 2), when the penetration probability p is suffi ciently low,

the sender would prefer that every peripheral agent becomes a subscriber.1

Figure 2: The sender-optimal equilibrium structure for different levels of p. Subcribers are solid.

Example 2 Consider a star network with r peripheral nodes depicted in Figure 2. When the

penetration rate p is high, then the naive logic applies: the impact is maximized when the central

agent is a subscriber, and other receive information from the central agent. However, when p

is low, it might be optimal for the sender that everyone but the central agent opts to receive

information directly, while the central agent receives information from r peripheral agents.

Proposition 1 describes the equilibrium information structure on a one-way infinite linear

network and relates the size of the “subscription cell”, the number of non-subscribers receiving

information from a neighbor, to the models’ fundamentals. While a part of our analysis is

concerned with networks that do not allow cycles such as linear networks or star networks, the

cyclic case is not necessarily different when information flows both ways on each link. At the

same time, Example 4 in Subsection 6.1 demonstrates that sometimes there does not exist an

equilibrium: a one-way network with three nodes provides such an example for a certain range

of parameters. Yet an equilibrium always exists if a two-way network is linear, finite or infinite,

circular, or complete, or in many other situations.

1Jackson and Yariv (2011) discuss the best-shot public goods game, a game of local public-good provision, first

analyzed by Bramoullé and Kranton (2007) and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010), as an

example of network games with externalities, which produce the effect similar to that in Figure 2. In a model of

information diffusion in a development context, Akbarpour, Maladi, and Saberi (2018) have effect similar to that

in Example 2: the optimal seeding structure might target peripheral, rather than centrally connected agents.
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Our main application is in political economics of authoritarian propaganda. The sender is the

government that needs to maintain a certain level of support by the citizenry. The government

commits to an information scheme that reports the state of the world: in practice, it might be an

institutional structure that provides a certain level of censorship (King, Pan, and Roberts, 2013),

a legal system that punishes dissemination of critical information in offi cial media, or simply

the policy of appointment of editors with a certain bias. In our simple model, the government

commits to report the state of the world truthfully if it is favorable and bias the report in the

unfavorable state. The problem for the sender is that once citizens rely on each other to receive

information, there is less bias that the government can induce. An increase in the bias reduces

the citizens’incentives to subscribe. As a result, more dense social network forces the government

to report information more truthfully; this, in turn, makes authoritarian governments willing to

deal with highly granular, atomized polities. Not surprisingly, totalitarian regimes discouraged

all kind of networking, even strictly non-political, save for directly state-supervised one. Example

3 illustrates this intuition.

Example 3 Consider a polity in which the government (the sender) needs support from its

citizens, i.e. action 1 in our model, to stay in power. There is an infinite countable set of

citizens, whose support for the government depends on their estimate of the state of the world,

which in turns depends on government’s competence (or effort). In both pairs of polities, P1

and P
′
1, and P2 and P

′
2 in Figure 3, agents have the same number of connections (2 and 4,

respectively) yet have markedly different network structures. In a sender-optimal equilibrium,

it is easier to influence agents’ actions and maintain government support in P1 and P2. In

particular, there exists a threshold p such that for any p > p, the government survives for a

wider range of parameters with polity P1 than with polity P ′1 and with P2 rather than P
′
2. By

Proposition 12, when p is high enough (not necessarily close to 1), the sender-optimal level of

propaganda in P1 and P2 is β∗ (p) = βmax and each connected component will have a unique

subscriber. For P ′1, it is never optimal to have propaganda at its maximum unless p = 1; for P ′2,

again, there exists another threshold p̃ < 1, such that β∗ (p) = βmax for any p > p̃.

As Example 3 illustrates, the equilibrium subscription structures are drastically different in

P ′1 and P
′
2. In P

′
1 = Z, for any p, 0 < p < 1, the subscribers are allocated at a regular distance.

The sender-optimal equilibrium is when the distance that is consistent with the subscribers’

incentive compatibility constraint is minimal. This distance approaches infinity as p tends to 1,

but it is never infinite unless p = 1. In contrast, in P ′2 = Z2, for any level of propaganda and

cost of subscription, there exists a threshold p̃ < 1 such that for any p > p̃, there is exactly
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Figure 3: In networks P1 and P ′1, as well as in networks P2 and P
′
2, each agent has the same

number of links (two and four, resp.). When p is above a certain threshold, the government

propaganda is more effective in P ′1 and P
′
2. However, in P1, the sender-optimal subscription set

is a singleton if and only if p = 1, while in P ′2 is a singleton whenever p is larger than some

p < 1.

one subscriber. The reason for this is percolation (Broadbent and Hammersley, 1957, Duminil-

Cupo, 2018): when p is large enough, there exists, almost surely, a unique infinite cluster of

connected nodes. Therefore, for any agent in the network, the probability of getting informed

is the probability of belonging to this infinite cluster.

In our simple model of persuasion on networks, we ignore almost all of the peer effects

discussed in the network literature (see, e.g., Jackson and Yariv, 2011, and Jackson, Rogers, and

Zenou, 2019, on the central role of externalities in network analysis). The only externality that

is present in our model is that a direct access to information by an agent discourages those who

could get information from her to buy access themselves. Yet our model exhibits two critical

economic features of information that differentiate it from a liquid matter flowing through a

network. First, the higher is the informational content of a signal, the higher is the demand

for it; if information is not valuable, it is not being consumed. Second, for each agent, different

sources of information are gross substitutes: an agent does not have more information if it has

reached her via two different paths. Still, this parsimonious setup allows to demonstrate the

tension between information diffusion in a network and propaganda efforts by the sender, and

challenge, at least theoretically, the naive wisdom that the agents with a high degree of network

centrality are the most obvious targets of the optimal propaganda.

The rest of the paper is organized as follows. Section 2 provides a brief literature review.

Section 3 contains the setup. Section 4 starts the analysis with the case of a linear network;

Section 5 extends the results to tree networks. Section 6 reports general existence results,
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including the analysis of complete and linear finite networks, and comparative statics, while

Section 7 relates our results to percolation on infinite lattices. Then Section 8 applies the

model’s logic to propaganda in non-democratic regimes. Section 9 concludes, and the Appendix

contains proofs of technical lemmas.

2 Related Literature

Bayesian Persuasion Kamenica and Gentzkow (2011) introduced the general concept of

Bayesian persuasion and demonstrated that an optimal mechanism corresponds to a point on

the concave closure of the sender’s value function. The idea of commitment to information

disclosure as an influence mechanism appeared in Aumann and Maschler (1966) and was de-

veloped, in different contexts, by, e.g., Brocas and Carrillo (2007), Rayo and Segal (2010), and

Ostrovsky and Shwartz (2010). (See Kamenica, 2019, for the review of recent developments and

Bergemann and Morris, 2018, for the general overview of information design.) Relative to other

celebrated communication protocols such as cheap talk in Crawford and Sobel (1982), verifi-

able messaging in Milgrom (1981), and signaling in Spence (1973), Bayesian persuasion assumes

more commitment power on behalf of the sender. This makes Bayesian persuasion a natural

communication mechanism in a setup, where the sender’s bias corresponds to censorship of a

media or a propaganda campaign, which requires an institutional structure of a certain scale.

Bayesian persuasion with multiple receivers was considered in Bergemann and Morris (2013),

Mathevet, Perego, and Taneva (2017), and Taneva (2016). Alonso and Camara (2016) and

Kosterina (2018) assume public signals, in Wang (2015), signals are independent, and Arieli and

Babichenko (2016), Bardhi and Guo (2018), and Chan, Gupta, Li, and Wang (2018) allow for

arbitrary private signals. Kolotilin (2015, 2018) allow the sender to rely on private information

about the receivers. While the persuasion part of our study is much simpler than in any of these

papers, the contribution of this paper is on the relationship between the network structure and

the persuasion mechanism.

Finally, Gentzkow and Kamenica (2014) provide a connection between the literatures on

Bayesian persuasion and rational inattention (e.g., Sims 2003). As in our model subscribers

weight the benefits and the costs of having a direct access to information, the underlying intuition

is somewhat similar to the rational inattention mechanism.

Information in Networks We refer to Jackson (2008) for the exhaustive review of the early

literature and excellent exposition of basic models of information diffusion in networks. Bala

7



and Goyal (1998) pioneered a model of information diffusion in a network with Bayesian agents.

Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) extend their results to a sequential setting with

Bayesian learning. In Golub and Jackson (2010), agents receive independent signals about the

true value of a variable and then update their beliefs by repeatedly taking weighted averages of

neighbors’opinions. Sadler (2019) considers information contagions in a discrete network with

Bayesian players that do not necessarily know the network structure. In Lipnowski and Sadler

(2018), if two players are linked in a network, they get information about each others’strategies.

Galperti and Perego (2019) consider a model, in which a designer sends signals to agents who

then communicate in a network before playing the game. In our model, any two informed agents

receive the same information, rather than two different signals, and therefore cannot learn from

each other. A more general model would combine the two sets of assumptions: if, in addition to

the signal from the media source, the agents receive private signals, our qualitative effects will

stay the same.

Jackson and Yariv (2011) survey both the non-economics and economics literature on the role

of externalities and diffusion in networks. (Akbarpour and Jackson, 2018, analyze the dynamics

of such diffusion.) Chwe (2000) models people in a coordination game who use a communication

network to tell each other their willingness to participate. Though the combinatorial patterns in

our model when the network is linear infinite (Z) and linear are resembling that of Chwe (2000),

the incentives of agents are very different. Candogan (2019) considers a setting, in which agents

linked a social network take binary actions, with the payoff of each agent depending, in addition

to the underlying state of the world, on the number of her neighbors who take the sender-optimal

action. Unlike Bramoullé and Kranton (2007) and Galeotti, Goyal, Fernando-Redondo, Jackson,

and Yariv (2010), we do not assume any externalities in actions and payoffs: this allows us to

concentrate on the impact of informational externalities that depend on the network structure.

In a model of information diffusion in a development context, Akbarpour, Maladi, and Saberi

(2018) demonstrate that the optimal seeding structure might target peripheral, rather than

centrally connected agents. In our model, information acquisition by a centrally connected agent

crowds out more incentives to acquire information than a similar acquisition by a peripheral

agent.

Propaganda In Gehlbach and Sonin (2014), citizens with heterogenous costs of accessing

information, receive it from the censored media. Choosing the level of censorship, the government

trades off the number of media customers and the impact on each receiver. In this paper, citizens

might become direct receivers at a cost, yet there is an opportunity to receive information via
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their network connections which affects the government ability to influence them.

In Egorov, Guriev, and Sonin (2009), while information manipulation is an instrument of

the dictator’s survival, there is a cost in terms of the economic effi ciency. Lorentzen considers a

similar effi ciency vs. stability trade off in the model of strategic protest restrictions (Lorentzen,

2013), and censorship (Lorentzen, 2014). In Shadmehr and Bernhardt (2015), the state does not

censor modestly bad news to prevent citizens from making inferences from the absence of news

that the news could have been far worse. Guriev and Triesman (2019) model the “informational

dictatorship”, in which the dictator chooses between repression and propaganda. (See also Chen,

Lu, and Suen, 2016). Our model is the first, to the best of our knowledge, theoretical exercise

to interact a propaganda mechanism with a social network structure.

DellaVigna and Gentzkow (2010) and Prat and Strőmberg (2013) are two excellent surveys

on the role of persuasion in politics, with the emphasis on a democratic context. In an early

attempt to connect political regimes with media freedom, Egorov, Guriev, and Sonin (2009) used

panel data to confirm the relationship between oil wealth and information access: in dictator-

ships, more resources means less media freedom, whereas in democracies the effect disappears.

Adena, Enikolopov, Petrova, Santarosa, and Zhuravskaya (2015) and Voigtländer and Voth

(2015) analyze the role of propaganda in the rise of Nazis. Satyanath, Voigtländer, and Voth

(2017) explore empirically the role of social capital, but do not analyze the impact of the network

structure. Yanigazawa-Drott (2014), King, Pan, and Roberts (2017a,b), and Chen and Yang

(2018) use experimental technique to analyze empirically propaganda tactics of an authoritarian

government. Chen and Yang (2018) use data on the social network of college dorm roommates

for their estimates, but do not use specifics of the network structure.

Percolation The notion of (Bernoulli) percolation was introduced in Broadbent and Ham-

mersle (1957). Kesten (1980) completed characterization of critical probability in Zm, which we

use in Section 7. Van der Hofstadt (2010) and Duminil-Cupo (2018) are recent mathematical

surveys that we refer to for basic definitions and results on percolation. Jackson (2008) describes

applications of percolation insights to economic issues. We use results from percolation theory

to demonstrate the limits that network structure puts on propaganda power of the government.

3 Setup

We will consider an environment, in which information is acquired not only from the source,

e.g., a radio or a newspaper, directly, but indirectly from other members of the network. We
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will start with the simplest possible network, an infinite ordered sequence of agents numbered

by nonnegative integers, but, in general, there is a network X that consists of nodes x ∈ X and

directed links (edges) (x, y) ∈ E(X).We will assume that X is connected and locally finite (that

is, each node belongs to a finite number of links).

There are two possible states of the world, s ∈ {0, 1}. Each agent x ∈ X has to make,

ultimately, an individual action, ax ∈ {0, 1} , and payoff of each agent depends on the state of
the world and the action taken as follows.

ux(ax = 1, s = 1) = 1− q,

ux(ax = 0, s = 0) = q,

ux(ax = 1, s = 0) = ux(ax = 0, s = 1) = 0.

where q ∈ (0, 1). The common prior is P (s = 1) = µ ≤ q < 1
2 , which guarantees that the default

action in the absence of information is ax = 0.

Prior to taking action, each agent x decides whether or not to subscribe to the media that

provides an informative signal ŝ. The signal is structured so that

P (s = 1|ŝ = 1) = µ

µ+ (1− µ)β ,

P (s = 0|ŝ = 0) = 1,

where β = P (ŝ = 1|s = 0) is the control parameter of the sender. (Kamenica and Gentzkow,
2011, results guarantee that this is the optimal persuasion scheme in this setup.) There is a price

of subscription, c > 0. We will assume that c < µ. (In fact, we will assume c to be small enough

when needed without explicitly mentioning this.) If the agent is indifferent, she subscribes. In

Section 8, we briefly discuss the case of a random individual cost of subscription for each agent

x ∈ X : qualitatively, most of results go through with cx ∼ U [0, 2c].
With probability p, each agent x gets information from any agent y such that (y, x) ∈ E(X).

This is modeled using the Erdős-Rényi random graph approach (Jackson, 2008): given network

X, each link disappears with probability 1 − p and information flows through the remaining

links. We consider both one-way and two-way flow links (Bala and Goyal, 2000).

Definition 1 Given the sender’s choice of β, an equilibrium information structure on network

X is defined by the subset of subscribers S(X) such that no agent would want to change

her subscription choice: any x ∈ S(X) prefers subscription to no subscription, and any y ∈
X\S(X) prefers no subscription.
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The sender maximizes the expected amount of action 1; in the case of an infinite network,

the expected average amount of action 1.The timing is as follows. First, the sender commits to

the level of propaganda β, then everything is determined in an equilibrium given β. If there is

more than one such equilibrium, we will focus on sender-optimal equilibria.

Finally, we say that network X is complete if each node is connected to every other node,

(vertex)-transitive if for any pair of nodes x, y ∈ X, there exists a graph isomorphism X → X

(i.e., a bijective map on the set of nodes that maps links into links) that maps x on y, star if

there exists a unique node x such that for any two distinct nodes y1, y2, all three nodes y1, y2,

and x belong to a linear network, and simple star if the network is star and there is at most one

node that belongs to more than one link.

4 Linear Networks

We start our analysis with the case of an infinite linear network, in which information flows in

one direction, X = {0, 1, 2, 3, ...} (Figure 4). The case of (directed) X = Z can be analyzed in a

similar way; also, in the case of an infinite linear networks, there is little qualitative difference

between one-way and two-way flows.

Figure 4: An equilibrium on a one-way linear network.

In the absence of information, any agent x chooses ax = 0 and gets the expected pay-

off of (1− µ) q. If there is access to information, the agent’s expected utility is µ (1− q) +
(1− µ) (1− β) q. Thus, the value of information is

V = V (β) = µ (1− q)− (1− µ)βq.

Agent 0 subscribes if and only if V ≥ c; we assume that this is always true. Consider

the decision by agent k ∈ {1, 2, 3, ...}. Buying subscription gives the expected value of V − c.
Not buying gives V with probability pk and 0 with probability 1 − pk. That is, agent k buys
subscription if and only if V − c ≥ V pk, or, equivalently

V ≥ c 1

1− pk .
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The right-hand side is increasing in k, so there exists K such that

c
1

1− pK ≤ V < c
1

1− pK−1 . (1)

Note that function K = K(β, µ, q, c, p) is increasing in c and β and is decreasing in µ and p.

In equilibrium, the set of subscribers is S(X) = {nK|n = 0, 1, 2, ...}. The average amount of
action by K people is

(µ+ (1− µ)β)
(
1 + p+ ...+ pK−1

)
= (µ+ (1− µ)β) 1− p

K

1− p .

(Recall that agents act if and only if they receive signal s = 1, which is translated by the media

with probability µ+ (1− µ)β.)
To calculate the expected average action, take any m. Suppose, for now, that m is a multiple

of K, m = lK. Then the amount of action among m agents is

m

K
(µ+ (1− µ)β) 1− p

K

1− p .

Now, the expected average action is

lim
m−→∞

1

m

(
m

K
(µ+ (1− µ)β) 1− p

K

1− p

)
=
1

K
(µ+ (1− µ)β) 1− p

K

1− p .

(So, we effectively replaced limm−→∞
1
m by liml−→∞

1
lK . ) A straightforward observation is that

the average expected amount of action is decreasing with K and, as a result, with p.

What is the optimal amount of propaganda β on such a network? The incentive compatibility

constraint at the action stage (ax = 1 when s = 1) for an individual subscriber comes from

µ

µ+ (1− µ)β (1− q) ≥
(1− µ)β

µ+ (1− µ)β q,

which is equivalent to

β ≤ µ

1− µ
1− q
q

. (2)

The incentive compatibility constraint for agent 0 to subscribe, V − c ≥ 0, is equivalent to

µ (1− q)− (1− µ)βq − c ≥ 0, i.e.
β ≤ µ (1− q)− c

(1− µ) q . (3)

As c ≥ 0, if (3) is satisfied, then (2) is satisfied as well. Given the constraints, the optimal
choice of the sender targeting one receiver is

βmax =
µ (1− q)− c
(1− µ) q .
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As expected, βmax, the maximum level of propaganda with one receiver, is lower when q, the

intrinsic preference for action a = 0, is higher, or the cost of subscription, c, is higher. Naturally,

when µ, the ex ante probability that action a = 1, is preferred, βmax is higher.

Now, consider

β∗ = argmax
β

{
1

K (β)
(µ+ (1− µ)β) 1− p

K(β)

1− p

}
.

Choosing optimal β∗ can be done in two separate steps. First, chose K = K(β∗), the number

of the second (after agent #0) agent who buys subscription. Second, increase β∗, the bias that

favors action, so that the IC constraint is binding for K, i.e.

V (β) = c
1

1− pK .

which solves for

β(K) =
1

(1− µ) q

(
µ (1− q)− c 1

1− pK

)
.

So, the maximization problem is

K∗ = argmax
K∈N

{
1

K

(
µ− c 1

1− pK

)(
1− pK

)}
.

Let us make K real t, and analyze the continuous-variable optimization. (Multiplying by q and

1− p does not affect maximization.)

t∗ = argmax
t≥0

{
1

t

(
µ
(
1− pt

)
− c
)}

.

Technically, we prove Lemma A1 that shows that function 1
t

(
µ
(
1− pt

)
− c
)
is single-peaked on

[0,+∞) for any a ∈ (0, 1). This does not necessarily imply that there always exists a unique K
(and corresponding β) that maximizes the amount of action. However, it does prove that there

is at maximum two such Ks, that such K is unique in any generic case, and also guarantees

existence.

Proposition 1 Let X = {0, 1, 2, ...} define a one-way linear network.
(i) Generically, there exists a unique optimal length of the “subscription cell”K∗ such that

K∗ = argmax
K∈N

{
1

K

(
µ
(
1− pK

)
− c
)}

.

The corresponding propaganda level β∗ satisfies
(
1− pK∗

)
V (β∗) = c, and maximizes the average

amount of action in the network.

(ii) The subscription cell length K∗ (p) and the propaganda bias β∗(p) are increasing functions

of p : the higher is the probability that the signal passes, the less often the agents buy subscription,

and the higher is the level of propaganda that the sender chooses.
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(ii) K∗ (c) and β∗(p) are increasing functions of c : the higher is the cost of subscription, the

less often it is bought, and the higher is the sender-optimal level of propaganda.

One immediate corollary of Proposition 1 is that the optimal level of propaganda is lower

in the case of the linear network than in the case of a single receiver. It is intuitive given that

the sender has to trade off the impact on an individual receiver against the willingness of would

be receivers to subscriber. This mechanism is very general: this result extends to any random

graph in which for each node x the probability that x is reached from “the origin” is strictly

positive and the set of subscribers is not a singleton. Indeed, setting the level of propaganda

at the origin at βmax results in no other subscribers as each agent compares zero benefits of

subscription to a positive cost of subscription.

Technically, the comparative statics of parts (ii) and (iii) of Proposition 1 rely on Lemma A2

that demonstrates that the continuous function 1
t

(
µ
(
1− pt

)
− c
)
satisfies increasing differences

condition in (t, p) and (t, c) and provides the basis for comparative statics with respect to p and

c. Then, the monotone comparative statics (Milgrom and Shannon, 1994) guarantees that the

results extend to our main (discrete) case.

With the optimal β, every subscriber but #0 is on her incentive constraint. The subscriber

#0 has a positive surplus (if there are any non-subscribers at all). It is straightforward to extend

this analysis to a two-way flow infinite linear network, X = Z. (Lemma A5 formally establishes

the existence of an equilibrium on X = Z.) Of course, in the sender-optimal equilibrium in this

case every subscriber will have zero surplus. In other dimensions, the story is very different as

the specifics of one-dimensional case is that nobody could receive any information but from the

immediate neighbors (see Section 7).

To describe equilibria on X = Z for any level of bias β, let b = b (p, β, c) be the maximum

number of non-subscribers between two subscribers in an equilibrium on Z, and let Sb be the cor-

responding set of subscribers, Sb = {(b+ 1)n|n ∈ Z} . Observe that S b
2 =

{(⌊
b
2

⌋
+ 1
)
n
∣∣n ∈ Z}

is an equilibrium set of subscribers as well. (btc denotes the integer part of t.) Indeed, if there
were b + 1 agents between two subscribers, the agent

⌊
b+1
2

⌋
would want to subscribe by con-

struction of b. Since in S
b
2 every subscriber is in exactly the same position as this

⌊
b+1
2

⌋th
agent

in Sb, and the distance between two subscribers is closer in S
b
2 than in Sb, S

b
2 defines an equi-

librium. Define a = a (p, β, c) to be the minimum distance such that Sa = {(a+ 1)n|n ∈ Z} is
an equilibrium set of subscribers. We just demonstrated that a ≤

⌊
b
2

⌋
. Trivially, for each β, the

sender-optimal equilibrium set of subscribers is Sa. The optimal amount of propaganda on such

a network satisfies c = V (β∗)
(
1− pa∗

)2
, where a∗ = minβ {a (β)} .
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Figure 5: A special case of irregular equilibria on an infinite linear two-way network.

Proposition 2 summarizes the above discussion.

Proposition 2 Let X = Z, two-way.

(i) There exist two integer thresholds a = a (p, β, c) and b = b (p, β, c) such that for any

integer d, a ≤ d ≤ b, Sd = {dn|n ∈ Z} is an equilibrium set of subscribers, and for any d < a

or d > b, Sd is not an equilibrium set.

(ii) The threshold a that defines the sender-optimal equilibrium on two-way X = Z satisfies

a ≤
⌊
b
2

⌋
.

Proposition 2 describes “symmetric” equilibria, in which subscribers are separated by the

same number of subscribers. However, there might exist other equilibria, in which the gap

between subscribers varies. Figure 5 demonstrates one such equilibrium. Still, any sender-

optimal equilibrium is “symmetric”.

5 Tree Networks

The analysis of infinite linear networks allows us to study persuasion on more general networks.

Suppose the network X = Tr is a tree with each node having r > 1 outgoing links. (See Figure

6 illustrating the binary tree network.) The tree networks play a critical role in percolation on

random graphs as in many networks any connected cluster that starts with an origin (a single

subscriber in our model) is a tree. What is the optimal level of propaganda β in such a network?

Figure 6: A binary tree network (n = 2).

Each directed path through a tree is isomorphic to the one-dimensional one-way case. Define
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K(β) as in (1). Now, suppose that β∗ is the optimal level of β. Then, the IC constraint should

be binding for K(β∗) :

V (β∗) = c
1

1− pK(β∗)
,

or, equivalently

β∗ =
1

(1− µ) q

(
µ (1− q)− c 1

1− pK∗
)
.

In the r−link network, the average action can be calculated as follows. For any K, the total
number of agents at levels 0, ...,K − 1 from the root is rK−1

r−1 . The expected number of agents

who receive the propaganda signal at levels 0, ...,K − 1 from the root is

1 + rp+ (rp)2 + ...+ (rp)K−1 =
(rp)K − 1
rp− 1 .

Each agent that received a signal acts with probability

µ+ (1− µ)β = 1

q

(
µ− c

1− pK

)
.

So, the problem is to maximize the average action is as follows.

K∗ (r) = argmax
K∈N

{
r − 1
rK − 1

1

q

(
µ− c

1− pK

)
(rp)K − 1
rp− 1

}
.

If rp > 1, Lemma A3 guarantees that the continuous function ϕ (t, r) = (rp)t−1
(rt−1)

(
1− c/µ

1−pt
)
is

single-peaked with respect to t. As in the linear network case, this demonstrates that there exists

a unique optimal point t∗, which guarantees existence (but not necessarily uniqueness) of the

optimal K∗.

Proposition 3 Let X = Tr. Suppose that rp > 1.

(i) Generically, there exists a unique K∗(r) such that

K∗ (r) = argmax
K∈N

{
(rp)K − 1
rK − 1

(
1− c/µ

1− pK

)}
.

(ii) The optimal length of the “subscription cell”K∗(r) is an increasing function of r, the

number of outgoing links in each node of regular-tree network X. Also, K∗ is an increasing

function of c, the cost of subscription, and a decreasing function of µ, the ex ante probability of

the sender-desired state.

The comparative statics rely on Lemma A4, which asserts that function ϕ(t) = ϕ(t|r, c, µ)
satisfies increasing differences in (t, c), (t,−µ), and (t, r). While Lemma A4 deals with the
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continuous function, the monotone comparative statics applies to the discrete maximization in

K∗(r). In particular, Proposition 3 yields that that the sender-optimal level of propaganda in

an r-arnary tree network increases with r, the number of outdoing links in each node. As in

the case of the linear network in Section 4, the sender trades off the frequency of subscribers,

which requires less propaganda bias in the signal, against the impact of the signal. Now that

each subscriber affects r groups similar to one group of the linear network, the sender puts in

more propaganda bias, which results in a longer subscription cell.

6 General Networks

In this Section, we start with existence results for a few classes of networks. Then, we produce

comparative statics results for the same network classes.

6.1 Existence

The first observation about existence of equilibrium in any two-way network is that if the sender

moves first, then she could always choose a level of propaganda, for which the equilibrium division

on subscribers and non-subscribers exists. Trivially, if βmax is the chosen level of propaganda,

then the set of subscribers in any connected two-way network is a singleton. If the network is,

in addition, complete, any agent can be this unique subscriber. Still, an equilibrium with βmax

is not necessarily sender-optimal, even in a complete two-way network. On the other hand,

with an arbitrary β and a general network X, existence is not guaranteed. In what follows, we

identify certain classes of networks, in which an equilibrium exists for any level of propaganda.

We start with the following simple observation.

Proposition 4 Suppose that a finite information network X does not have any cycles. Then

for any β, there exists an equilibrium.

Proof. For βs such V (β) < c, the result is trivially true: no one buys subscription. Suppose

that V (β) ≥ c. Start with any node x ∈ X that is not an end of any link. As V (β) ≥ c, x buys
subscription. Then use induction to follow any path starting from x; the no-cycles assumption

assures correctness of this procedure. Repeat until all nodes that are not ends of links are

exhausted.

While the absence of cycles guarantees the existence of an equilibrium, this need not be true

when cycles are present. The simple Example 4 shows that an equilibrium in pure strategies

might not exist.
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Figure 7: The cyclic network, for which there is no equilibrium for some open set of parameters.

Example 4 Consider the network in Figure 7 (“a wheel on five nodes”, Jackson, 2008). Suppose

that agent #1 is a subscriber. It is straightforward to verify that there exist parameters p, β, c, µ

such that agent #3 prefers not to subscribe, yet agent #4 prefers subscription:

p2V (β) > V (β)− c > p3V (β) .

Then, if #3 subscribes, #1 prefers to switch to non-subscription.

Note that all parameters in Example 4 are generic: for each of them, there exists an open

neighborhood, in which the inequalities (and the non-existence result) stay true. Furthermore,

any one-flow “wheel”, with a suitable choice of β and p, will exhibit no equilibria. Indeed, for

an “n-node wheel”, choose p so that the optimal length of the subscription cell K is
[
1
2n
]
+ 1,

where [t] refers to the integer part of t. Then, if this agent is a subscriber, the first subscriber

will prefer not to be. At the same time, if a circular network is two-way, it has equilibria for

any β.

Remark 1 One way to deal with the non-existence of pure-strategy equilibria on a “wheel

with five nodes”might be to define a “dynamic equilibrium” on the network in Figure 7, in

which the set of subscribers depends on time t. E.g., in period one S1(X) = {#1,#4} , then
S2(X) = {#2,#5} , S3(X) = {#3,#1} , etc. This concept would immediately extend to any
one-way network on “wheels” and their direct products (such as a one-way cell network on a

two-dimensional torus). In the case of a “wheel”, these equilibria will be periodic. Another

option, obviously, will be to consider mixed-strategy equilibria.

An important class of networks, in which existence is guaranteed for any β, is complete

networks.

Proposition 5 Suppose that a finite information network X is two-way and complete, i.e., each

node is connected to every other node. Then for any β, there exists an equilibrium.
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Proof. Start with any node x ∈ X. As V (β) ≥ c, x buys subscription. Then follow any

path until some next agent buys subscription, and repeat the procedure until the network is

exhausted. The critical reason why it is possible to do this in the case of a complete network is

as follows. Suppose the procedure reached some agent y ∈ X, for which the value of subscription,
V (β)− c, exceeds the value of non-subscription, fy(p)V (β). Then for any agent who has already
subscribed, the value of subscription, once y is subscribed, is equal to fy(p)V (β). That is, none

of the existing subscribers would want to change her strategy.

Conjecture 1 The result of Proposition 5 should extend to any two-way finite transitive network

by, essentially, the same argument. However, the two-way assumption is necessary as the graph

in Example 4 is transitive.

Another important class of networks, in which existence is guaranteed for any β, is fi-

nite linear two-way networks. To prove this, we could use the parameters b = b (p, β, c) , the

maximum number of non-subscribers between two subscribers in an equilibrium on Z (and so

Sb = {(b+ 1)n|n ∈ Z} is the equilibrium set of subscribers) and a = a (p, β, c), the minimum

distance such that Sa = {(a+ 1)n|n ∈ Z} is an equilibrium set of subscribers. Recall from

Proposition 2 in Section 4 that a ≤
⌊
b
2

⌋
.

Consider a finite two-way network X and make the left-most agent a subscriber. Choose

b + 2th agent on X to be a subscriber, so that there is no agents who would want to subscribe

between the first and second subscriber. Suppose that there is no such subscriber, i.e. |X| ≤ b+1.
If |X| is between a and b, making the right-most agent a subscriber results in an equilibrium. If
the length of the network X is less than a, and there exists d such that d < a, pd < 1 − c

V (β) ,

make the agent d + 1 a subscriber. If there are non-subscribers to the right of d + 1 who want

to subscribe, move the subscriber from d+ 1 right-ward. Since |X| < a, moving a final number

of steps will be suffi cient, and there cannot be would-be subscribers in between the two by

construction of a.

Now suppose that we made agents 1, b + 2, ..., l (b+ 1) + 1 subscribers and l is the largest

such number satisfying l (b+ 1) + 1 ≤ |X|. If |X| − l (b+ 1) − 1 < d, this set of subscribers is

equilibrium. If |X| − l (b+ 1)− 1 ≥ a, there is no problem as well: making the right-most agent

a subscriber completes the equilibrium set. If |X| − l (b+ 1)− 1 < a, make agent with number

|X| a subscriber and move subscriber l (b+ 1) + 1 to the left until |X| − l (b+ 1) − 1 = a + 1.

Since a ≤
⌊
b
2

⌋
, the distance between l (b+ 1) + 1 and |X| − l (b+ 1)− 1 exceeds

⌊
b
2

⌋
. Thus, we

ended up with an equilibrium subscription set.
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A similar argument establishes that in any circular network, an equilibrium exists for any β.

An argument similar to one in Section 4 proves existence in the case of a star network, in which

there are no terminal nodes.

Conjecture 2 An equilibrium exists for any two-way star network and for any two-way tree.

In linear networks, each subscriber’s incentives are determined by the distance to at most

two other subscribers. Now, let us consider the following important case in which this is not the

case. Let X be an m−dimensional integer lattice, in which information flows in both direction
on each link. For each m, there exists a threshold pc (Zm) such that for any p < pc (Zm) , the

probability that a cluster that originates with a subscriber is, in expectation, of a finite size (see

more details in Section 7).

Proposition 6 Let X = Zm be an m−dimensional integer lattice, in which information flows
in both direction on each link and suppose p < pc (Zm). For any β, there exists a symmetric

equilibrium.

Proof. Let m = 2. A helpful observation is that if the structure is “symmetric” (see below),

than the value of non-subscription for each subscriber is the same.

Suppose that V (β) ≥ c. We will consider the sequence of sets of potential subscribers Sh,

h ∈ N. For each h, define the set

S2h = {(2hl1, 2hl2) , (2hl1 + 1, 2hl2 + 1) |l1, l2 ∈ Z} .

(See Figure 9 S22 .) First, for each x ∈ S2h, the alternative value of subscription (the amount

of information that she receives from others), vh, is the same. Second, it is decreasing in h,

asymptotically approaching zero. (This is the place where the assumption p < pc (Zm) is used.)

Thus, there exists h∗ such that vh∗−1 > V (β)− c and vh∗ < V (β)− c. To show that S(X) = S2h∗

is the equilibrium subscriber set, it is suffi cient to demonstrate that any x ∈ X\S2h∗ would not
want to subscribe. Observe that for any x ∈ X\S2h∗ , there exists at least one subscriber who is
closer than the distance between two subscribers on S2h∗−1.

The proof for any m > 2 uses Smh in a similar way.

6.2 Comparative Statics

Some comparative statics results are true for any network. For example, for any finite network,

the number of subscribers in a sender-optimal equilibrium (weakly) decreases with p.2 For infinite
2This is not true for arbitrary equilibrium subscription structures. For example, for X = Z, there exists a

range of equilibria for any p as described in Proposition 2; they are payoff-ordered from the sender’s standpoint.
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Figure 8: Sender-optimal equilibria in a full network with two-way information flow as a function

of p. Subscribers are solid.

networks, this is true for the average, rather than total, number of subscribers.

Again, we start with networks that do not have any cycles. Such networks include directed

trees, but also include networks in which different nodes can be connected by more than one

path.

Proposition 7 Suppose that two networks, X and Y, have no cycles, have the same set of

nodes, and X has every link that Y has. Then, for any given p and β, the average amount of

action is (weakly) lower in X than in Y.

Proof. Take any path in Y that starts with a node that is not an end of any link. In the

corresponding equilibrium in X, there cannot be a subscriber earlier (along the path) than in

Y. (Because the amount of outside information that non-subscribers receive as a result of new

links can only increase.) Therefore, X will have (weakly) less subscribers than Y.

Proposition 7 suggests the next class of networks, to which the comparative statics might

be extended. For example, consider an r− regular (one-way) tree, in which nodes with the

distance of l from the root are connected by additional two-way links. Consider two connected

subnetworks, X and Y, that have the same set of nodes and “vertical” links as this tree, and

suppose that X has every link that Y has. By induction, each “floor” of such network will

contain less subscribers in X than in Y.

Let us now turn to complete graphs, i.e., two-flow networks, in which each node is connected

to every other node. As it is shown in Proposition 5, any such network admits an equilibrium

for any β. Example 5 describes the comparative statics with respect to probability p (see Figure

8) in a three node-network.

Example 5 Consider the complete network in Figure 8, in which each pair of agents is connected

to each other. The probability that information passes through an link connecting two agents
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is p. Again, for different values of p, different levels of propaganda are optimal. If p is high

enough, the sender’s payoff is optimized at the level of propaganda such that only agent chooses

to subscribe, while each of the two other agents opt to receive information from that one. If p is

low enough, then the impact is maximized if everyone is a subscriber. Finally, for intermediate

values of p, the sender-preferred equilibrium is such that two agents buy subscription, and the

third one receives information from them.

The logic of Example 5 extends to any finite complete network. If such a network has n

nodes, then for any m, 1 ≤ m ≤ n, there exists a range of parameters [pmin(m), pmax(m)] such

that for any p ∈ [pmin(m), pmax(m)] , there is an equilibrium with exactly m subscribers. Also,

Example 5 demonstrates that the comparative statics with respect to additional links depends

critically on p. Indeed, consider a network X with nodes {1, 2, 3} and two-way links (1, 2) and
(2, 3). When p is low, the optimal structure is S(X) = {1, 3} and adding link (1, 3) forces the
sender to reduce the bias; the impact of propaganda becomes smaller as there is more crowding-

out effect. At the same time, when p is high, S(X) = {2} , β∗ = βmax and adding link (1, 3)

increases the impact of propaganda as both agents 1 and 3 receive the same information with a

strictly higher probability.

In a complete network, there is a recursive formula to calculate the probabilities with which

agents get information. Denote f(m, k) the probability that a non-subscriber in a complete

network with m members and k subscribers receives information. Then the following recursive

formula holds

f(m+ 1, k) = 1− (1− p)k (1− pf (m, k))m−k .

Indeed, the new m + 1th agent will not get any information from k subscribers with prob-

ability (1− p)k and will not get any information from m − k non-subscribers with probabil-

ity (1− pf (m, k))m−k . (The probability of not getting information from one non-subscriber is

1− f (m, k) + (1− p) f (m, k) = 1− pf (m, k) .)
Consider two finite complete networks, X and Y, such that Y ⊂ X, |X| = |Y | + 1. Take

β (Y ), which is optimal for Y. Then, every subscriber x ∈ S(Y ) is on the IC constraint. (Recall
that in a complete network every subscriber has the same expected pay off.) With β (Y ) in

X, the (|Y |+ 1)th agent becomes a nonsubscriber as she receives more information than any
nonsubscriber in Y before and every previous non-subscriber stays non-subscriber for the same

reason (the only thing that changed is that there is an additional channel, via the (|Y |+ 1)th
agent, to receive information). Some subscribers cannot be subscribers as they were on the IC

constraint and benefits of non-subscription increased for the same reason. So, with β (Y ) in X
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the number of subscribers is strictly smaller than in Y. So, the optimal choice of β (X) might

be either higher than β (Y ) - that is, the sender would decide to put all those agents who are

subscribers of X with β (Y ) on the IC constraint, or it might be lower, if the sender decides to

increase the number of subscribers. While this explains why the comparative statics might be

ambiguous locally, it is unambiguous when the number of network members is large. Indeed,

the following result holds.

Proposition 8 For any set of parameters µ, p, β, there exists m∗ = m∗ (µ, p, β) such that in

any equilibrium in the complete two-way network Xm with m agents, the set of subscribers is a

singleton, |S(Xm)| = 1.

Proof. Suppose that there is more than one subscriber in an equilibrium in Xm, m ≥ 2. Take
any x ∈ S(Xm). The probability that information reaches x cannot be lower than g(m) =

1 − (1− p)
(
1− p2

)m−2
. Indeed, with probability 1 − p, x does not receive information from

another subscriber (by assumption, there exists at least one) and with
(
1− p2

)m−2
x does

not receive information from any other non-subscriber (p2 is that probability that x receives

information from the other subscriber through a particular non-subscriber.) For x ∈ S(Xm),

the IC constraint is

V (β) <
c

1− g(m) =
c

(1− p) (1− p2)m−2
,

which cannot hold for large m.

Proposition 8 implies that when m is large, the optimal level of propaganda in a complete

network is βmax as the only constraint is the unique subscriber’s IC constraint. However, this

is not true for every m as Example 5 demonstrates: for low p, when m = 3, the optimal level of

propaganda might make two or even all three agents subscribers.

Not surprisingly, if m is constant, and p goes to one, the set of subscribers is, again, a

singleton. This is a corollary to the celebrated Erdős-Rényi theorem: in any complete graph,

the probability that the network is connected tends to 1 as long as the penetration probability

p exceeds the threshold lnn
n (Erdős and Rényi, 1961, Jackson, 2008, Th. 4.1). This argument

might be extended to any two-way finite network, also showing the existence of equilibria for

any β, when p is close enough to 1.

Proposition 9 Let X be any two-way (connected) finite network. Then, for any β, there exists

p = p (β) ∈ (0, 1) such that for any p > p, in any equilibrium the set of subscribers is a singleton.

Proof. Suppose not, i.e. there are at least two subscribers, x and y. Let f(p) be the probability

that x’s information reaches y. f(p) is (obviously) an increasing function of p with f(0) = 0 and
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f(1) = 1. Thus, for any c > 0, the IC condition f(p)V (β) < V (β) − c will be violated with p
approaching 1.

Note that Proposition 9 cannot be extended to an infinite network: e.g., it is not true in the

case of an infinite linear network that we considered in Section 4. Still, with p approaching 1,

the length of a subscription cell on X = Z or X = Tr tends to infinity for any β.

Consider a sequence of lattices Zm, m = 1, 2, ..., with links

{((x1, ...xl, ..., xm) , (x1, ...xl + 1, ..., xm)) | (x1, ...xl, ..., xm) ∈ Zm} . Consider the set of sub-

scribers

Sm = {(2l1, 2l2, ..., 2lm) , (2l1 + 1, 2l2 + 1, ..., 2lm + 1) |l1, l2, ..., lm ∈ Z} . (4)

(Each line in Zm is a linear network with K = 2. See Figure 9 for S1 and S2.)

Figure 9: Sets of subscribers S1 and S2 in Z and Z2, respectively, result in the same frequency

of subscribers, 12 , but the maximum level of propaganda consistent with S2 is lower.

Proposition 10 Let X = Zm, be two-way, and let the set Sm be defined by (4), and let βm be

the level of propaganda that makes Sm the equilibrium subscriber set for each m and guarantees

the same average frequency of subscribers of 12 . Then βm is a (strictly) decreasing function of

m.3

While Proposition 10 is formulated for the average frequency of subscribers of 12 , the results

should be true for other frequencies as well. The reason is that whenever n > m, each agent has

3The IC constraint for the nonsubscriber is
(
1− (1− p)2m

)
V < V − c, which is impossible to satisfy simul-

taneously for every c > 0 and every m ∈ N. That is, the fully rigorous statement should be as follows. Let
m = m (β, c, p) = argmax

{
m|c < V (β) (1− p)2m

}
. Given c, β, and p, βm is a strictly decreasing function on

[0,m] .
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more links to receive information from in Zn than in Zm, and so the IC constraint is satisfied

for a lower level of propaganda.

7 Persuasion and Information Percolation

Take any (connected) networkX, two-way or a directed tree. To analyze equilibrium subscription

structures on X, it is helpful to consider the (Bernoulli) percolation (Duminil-Copin, 2018). Let

denote C to be the (random) connected component of the origin, the unique subscriber, and

define the percolation function θ (p) = P (|C| =∞) , the probability that an infinite cluster
forms. Then, in many cases, there exists a critical probability pc = pc (X) ∈ (0, 1) such that for
any p < pc, θ (p) = 0 and for any p > pc, θ (p) > 0. For r-regular trees and multidimensional

integer lattices, the function θ (p) is continuous on [0, 1] and is increasing on (pc, 1].4 Another

standard characteristics is the expected cluster size, given by the susceptibility function χ(p) =

Ep (|C|) . Of course, whenever p > pc, χ(p) =∞.
In this Section, we use results from percolation theory to discuss the relationship between p

and the sender-optimal subscription structures on regular trees and Zm.

7.1 Persuasion on a Regular Tree

If X = Tr, then pc (X) = 1
r−1 and the susceptibility

χ(p) = Ep (|C|) =
1 + p

1− (r − 1) p

if p < 1
r−1 and χ(p) = ∞ otherwise. This allows to obtain the following estimate for any

graph for which the degree of every node is bounded by r (van der Hofstadt, 2010, Theorem

1.2) For p < 1
r−1 , for every subscriber x, the expected size of the subscription cluster is finite

Ep (|C (x) |) <∞.
So, if p < 1

r−1 , then the tree does not contain, in expectation, any infinite clusters. Thus,

setting β∗ = βmax and allowing the agent at the root of the tree to be a subscriber results in the

zero expected average amount of action, while the optimal solution of Section 5 always results

in a positive amount. If p > 1
r−1 , then X contains infinitely many clusters (except for the case

when p = 1). When p → 1, the expected average amount of action converges (from above) to

the case of one subscriber at the root of the tree.
4Percolation in the critical case of p = pc is subject to active research (Duminil-Copin, 2018).

25



7.2 Persuasion on Zm

Consider X = Zm, two-way. For p < pc (X) , the probability that one subscriber results in an

infinite cluster is θ (p) = 0, which means that the regular structure described in Propositions

6 and 10 results in a higher expected average action than any one-subscriber structure. For

p > pc (X) , this is less clear: with probability θ(p) > 0, the cluster C(0) is infinite; in this case,

it is possible that choosing βmax results in a higher expected average action than in any regular

structure.

Consider X = Z2, two-way, and the subscription structure S2 (see Figure 9). Each neighbor

y of any x ∈ S2 receives information (not counting information from x) with probability 1 −
(1− p)3 . Agent x receives information from y with probability p

(
1− (1− p)3

)
. Thus, agent x

receives information from someone with probability f(p) = 1−
(
1− p

(
1− (1− p)3

))4
, which

is (obviously) an increasing function of p with f(0) = 0 and f(1) = 1. The IC constraint of the

subscriber is satisfied if f(p)V (β) ≤ V (β) − c, and the expected average amount of action is
1
2 (1 + p)

1
q

(
µ− c

1−f(p)

)
, which is non-negative. So, with p < 1

2 , this structure is preferable to

that of a finite number of subscribers with βmax (pc
(
Z2
)
= 1

2 , Kesten, 1980).

If p > pc
(
Z2
)
= 1

2 , then S2 is stable as long as

1−
(
1− p

(
1− (1− p)3

))4
≤ 1− c

V (β)
. (5)

Inequality (5) cannot be true for any pair (c, p), c > 0, p > 0, yet for any p < 1, there exists a

c(p) > 0 such that (5) holds (and so S2 is stable) for any c < c(p).

When p is below the critical threshold pc
(
Zd
)
, there cannot be an equilibrium with a finite

number of subscribers for any β < βmax. Indeed, each subscriber generates a cluster of second-

hand receivers of a finite size (almost surely). Thus, there is always an agent far enough from

the any finite group of subscribers that would prefer to subscribe.

When p is above the critical threshold pc
(
Zd
)
, it is possible to have a finite group of sub-

scribers when β < βmax. Indeed, suppose that

θ (p)V (β) > V (β)− c, (6)

where θ (p) is the probability that an infinite cluster forms; θ (p) continuously maps
[
1
2 , 1
]
onto

[0, 1]. As p > pc
(
Zd
)
, the ergodicity implies that for any node x ∈ Zd, θ (p) is the probability

that x belongs to the cluster that originates with the single subscriber. That is, the probability

that information reaches x is at least θ (p) , which makes her unwilling to subscribe. Therefore,

in X = Zd, d ≥ 2, we have an equilibrium with a unique subscriber for any β < βmax such that
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θ (p)V (β) > V (β) − c. This stands in a sharp contrast with the case of X = Z, in which a

unique subscriber is possible only when β = βmax. In any network, if the choice of the sender is

over equilibrium structures with a unique subscriber, the sender-optimal choice is βmax.

If p > pc
(
Zd
)
, but (6) is not fulfilled, then finite equilibrium groups of subscribers with

β < βmax do not exist for another reason. Indeed, suppose there is a finite number of subscribers.

Each of them generates an infinite cluster with probability θ (p) . Because of the Kolmogorov

zero-one law, there exists, almost surely, exactly one infinite cluster. For any non-subscriber x

the probability of getting information is close to θ (p) , the probability to belong to the unique

infinite cluster, which means that she will be willing to be another subscriber. Thus, for any

finite number of subscribers, there always exists a non-subscriber who would want to subscribe.

As a result, any equilibrium should include an infinite number of subscribers. For a certain

combination of parameters, there exists an equilibrium (see S2 on Picture 9). Whether or not

there exists an equilibrium subscription structure for any set of fundamental parameters is an

open question.

8 Optimal Propaganda

Propaganda and censorship is considered a major tool in any autocrat’s disposal (Besley and

Prat, 2005, Guriev, Egorov, and Sonin, 2009, Lorentzen, 2013, Guriev and Triesman, 2019). Still,

even in a totalitarian dictatorship, which shuts down all alternative channels of information, a

major limit on the impact of propaganda stems from incentive compatibility.

If the sender takes the probability p as given, her optimal choice is a function of p. In the case

of the linear network, an increase in p leads to a higher optimal level of propaganda. However,

if the sender has a choice of p, then she will prefer, unambiguously, as low level of p as possible.

Proposition 11 Suppose that the government chooses both p, the probability that information

passes through the network, and the level of propaganda β, to maximize the expected amount of

action. Then its optimal choice of p is either p∗ = 0 or p∗ = 1, and the propaganda level is at

its maximum:

β∗ = βmax =
µ (1− q)− c
(1− µ) q .

Proof. By choosing p∗ = 0, the government forces everyone to buy subscription. Then, choosing

β∗ = βmax maximizes the expected average amount of individual action, which is equal to

µ+β∗ (1− µ) = µ+ c−µ(1−q)
q = 1

q (µ− c) . Alternatively, p
∗ = 1, and in a two-way network there

will be a single subscriber. In a directed network, there might be more than one subscriber, but
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with p∗ = 1 information from one of them cannot reach another subscriber. Again, choosing

β∗ = βmax maximizes the expected average amount of individual action.

Both of the two extreme penetration probabilities, p∗ = 0 or p∗ = 1, result in a sender-

optimal equilibrium. Still, the regime of p∗ = 0, under which the government chooses to shut

up all the channels of information exchange, forcing everyone to subscribe to propaganda, is

different from that of p∗ = 1, the regime of unrestricted networking. Let us focus on a two-way

network. Suppose that the opportunity cost of subscription for each agent x ∈ X is a random

variable. Then, with p∗ = 0, choosing any β∗ would result in a different fraction of agents

becoming subscribers. With p∗ = 1, the impact of propaganda is higher: optimal β∗ should

maximize the probability that the minimum of agents’costs is such that the incentive constraint

for the subscriber is satisfied.

Even if the government chooses p, the impact is still limited by agents intrinsic aversion to

do the sender-preferred action a = 1, q, or by the ex ante probability µ that they attach to the

state when action a = 1 is receiver-preferred. Trivially, if the government has means to lower c,

the cost of subscription, the impact will always be higher.

What is the optimal structure of propaganda consumption when the government cannot

change p? Consider a simple star network, i.e., a tree network with a single root and branches

of length 1. Locally, any network in which there cannot be more than one link between nodes

is a star network. The naive intuition would suggest that the sender would always prefer that

the central agent is a subscriber and then information is “spread”to periphery. However, this

argument does not take into account the negative externality: when the central agent subscribes,

this crowds out the peripherals’incentives to subscribe (and thus diminishes the probability of

action).

Proposition 12 Let X be a simple star network with r + 1 nodes.

(i) There exists a pair of thresholds pmin,1, pmin,2 > 0 such that for any p ∈ [pmin,1, pmin,2], in
the sender-optimal equilibrium, the set of subscribers consists of all peripheral agents. The level

of propaganda β∗ = β∗(p) is a strictly decreasing function on [pmin,1, pmin,2]; β∗(0) = βmax.

(ii) There exists a pmax < 1 such that for any p ∈ [pmax, 1], in the sender-optimal equilibrium,
the set of subscribers is a singleton with the central agent being the only subscriber; β∗ = βmax

on [pmax, 1].

(iii) The set of subscribers in the sender-optimal equilibrium (weakly) shrinks with p.

Let us sketch the proof of Proposition 12. When all peripheral agents is the set of subscribers,

the probability that a peripheral agent receives information from others is p
(
1− (1− p)r−1

)
,
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where 1 − (1− p)r−1 is the probability that the central agent received a signal from the other

r − 1 peripheral agents. So, the IC constraint for the subscriber (as always, the IC constraint
is an equality as we focus on sender-optimal equilibria) yields the probability that the signal is

s = 1 of µ + (1− µ)β = 1
q

(
µ− c

1−p(1−(1−p)r−1)

)
,and the total expected amount of action is

equal to (r + (1− (1− p)r)) 1q
(
µ− c

1−p(1−(1−p)r−1)

)
. Then, the threshold pmin,1 is determined

by the equation

(r + 1)
(
µ− c (1− p)−r

)
= (r + (1− (1− p)r))

µ− c

1− p
(
1− (1− p)r−1

)
 , (7)

in which the left-hand side is derived for the situation when all r + 1 agents are subscribers,

which is sender-optimal when p = 0, and the relevant IC constraint is that of the central agent

as she is the most likely to receive information.

It is a straightforward, though tedious, exercise to prove that there exists a solution pmin,1 to

this equation, and then to find pmin,2 using the IC constraint in the situation of r− 1 peripheral
subscribers. The IC constraint in the left-hand side on (7) implies that

pmin,1 ≤ 1− (c/µ)
1
r ,

which is decreasing in r.

To prove (ii), one may use Proposition 9 that guarantees a unique subscriber in a finite

two-way network when p is close to 1. Choosing the central agent to be the subscriber is sender-

optimal.

Analyzing the IC constraints in a star network, it is natural to formulate the following

conjecture.

Conjecture 3 The thresholds pmin,1 and pmax(r) decrease with r.

Proposition 12 extends to any finite two-way tree. When p is close to 1, there is no chance

to satisfy the IC constraint for more than one subscriber. In this situation, it is better to have

the central agent to subscribe. When p = 0, then everyone is a subscriber; with p increasing

from zero, the nodes with high centrality are the first to drop from the subscriber set. With

one-way (directed) tree, the results are essentially the same, but such a tree might have more

than one “root”, a node with a single outgoing link. In such a case, there might be more than

one subscriber even if β∗ = βmax.5

5 It is possible to have an equilibrium with more than one subscriber even if the level of propaganda is βmax.

Consider network X with three nodes {1, 2, 3} and two one-way links (1, 2) and (3, 2) . For any p exceeding some
positive threshold p, the sender-optimal equilibrim involves S(X) = {1, 2} and the propaganda level of βmax.
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Proposition 12 challenges the conventional wisdom on the proper target of a government

propaganda intervention. The effect is not confined to our particular setup: e.g., suppose that

the government is choosing to allocate one free subscription in a star network, and the cost of

subscription cx is random, say cx ∼ U [0, 2c]. When p is high, the optimal allocation of the free

subscription is the central agent. However, if p is relatively low, the government has to take

into account the crowding-out effect. Allocating free subscription to a peripheral agent will have

less of a crowding out effect: there will be a higher probability that peripheral agents become

subscribers on their own. This result extends to any network: provided that an equilibrium

exists, agents with high degree of centrality may not be the optimal direct receivers from the

sender’s standpoint. Instead, she would prefer to have agents with low degree of centrality to

be the subscribers.

The above results allows to discuss the relationship between the network structure and the

government’s ability to maintain support. Consider networks in Figure 3. In both polities P1

and P
′
1 each agent is connected to two others, yet the network architecture is different, and the

government’s ability to maintain support depends on both the architecture and p. In polities

P2 and P
′
2, each agent has four connections. In a sender-optimal equilibrium, it is typically,

although not always, easier to influence agents’actions and maintain government support in P1

and P2. In particular, there exists a threshold p such that for any p > p, the government survives

for a wider range of parameters with polity P1 than with polity P ′1 and with P2 rather than P
′
2.

By Proposition 9, when p is high enough (not necessarily close to 1), each connected component

will have a unique subscriber and the sender-optimal level of propaganda will be β∗ (p) = βmax

in both in P1 and P2. In contrast, for P ′1, it is never optimal to have propaganda at its maximum

unless p = 1. For P ′2, there exists another threshold p̃ < 1, such that β
∗ (p) = βmax for any p >

p̃.

Galperti and Perego (2019) demonstrate that a “deeper”network worsens the designer ability

to manipulate beliefs of the networked receivers, with a complete network being the deepest

possible network. In our random graph setup, the impact of network’s “depth”depends, non-

monotonically, on p. While for suffi ciently high probabilities p, the sender prefers P1 (a locally

more deep network) to P ′1 and P2 to P
′
2, there is a range of ps for which the sender’s preference

is reversed. If the government has the ability to alter the network architecture (keeping the

number of links constant), the following simple observation is true. For any p, there exists a

division of network P1 into m-nodes wheels (P2 consists of 3-nodes wheels) so that the resulting

structure (weakly) increases the amount of support that the government receives.
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Finally, our main results are robust to the amount of information about the structure of

network that the agents possess. In our model, the agents who make the subscription decision

know the exact structure of the network. However, the main insights will stay intact if agents

would know their own number of links and the distribution of links overall. (Such models are

discussed in, e.g., Galeotti, Goyal, Fernando-Redondo, Jackson, and Yariv, 2010, and Sadler,

2019.) Unlike in the local public goods games (Bramoullé and Kranton, 2007, Galeotti, Goyal,

Fernando-Redondo, Jackson, and Yariv, 2010), agent’s decision to subscriber in equilibrium is

not necessarily monotonic in the agent’s degree. Still, when p is suffi ciently low, it is monotonic

in the sender-optimal equilibrium, which looks as follows: all agents with a node degree smaller

than some threshold K∗ will be subscribers, those agents with node degrees higher than K∗ will

be non-subscribers, and the agents with the degree equal to K∗ will subscribe with a certain

probability. As in our main model, agents with a high node centrality are not sender-preferred

targets of propaganda.

9 Conclusion

We consider an environment in which agents that are influenced by a sender who committed

to a certain information design face the following trade-off: subscribe, as a cost, to the news

source and be sure to receive payoff relevant information or rely on network neighbors which

might or might not pass the information. Our setup is the simplest possible model of Bayesian

persuasion with multiple receivers who are linked in a network. When the network is dense,

optimal propaganda needs to be less biased, because otherwise the subscription rate would fall.

The sender might be interested in peripheral, rather than centrally connected agents subscribing

to information. Adding or removing links in the network results in a higher or lower propaganda

impact depending on the penetration rate for the network.
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Appendix

Algebra for Example 1

There are 3 possible cases.

(1) If the central agent is a subscriber and the peripheral agents receive information from

her, then for the optimal level of propaganda β∗ = βmax, one has µ + (1− µ)β∗ = 1
q (µ− c) ,

and the expected total action is
1

q
(µ− c) (1 + 2p) . (A1)

(2) If the peripheral agents are subscribers, and the central agent is the second-hand receiver,

than the optimal amount of propaganda satisfies p2V (β) = V (β)− c (otherwise, one of the two
peripheral agents would drop subscription) so that µ + (1− µ)β∗ = 1

q

(
µ− c

1−p2
)
. Then, the

expected total action is
1

q

(
µ− c

1− p2

)
(2 + (2− p) p) . (A2)

(The central agent receives information with probability 1− (1− p)2 = (2− p) p > p2.).

It is straightforward, that (A2) exceeds (A1) when p is low and vice versa if p is relatively

larger.

(3) All three agents are subscribers. Then, β should be such that (2− p) pV (β) ≤ V (β)− c
as the central agent is the least willing to subscribe. Then µ + (1− µ)β∗ = 1

q

(
µ− c

(1−p)2
)
.

Then the expected amount of action is

1

q

(
µ− c

(1− p)2

)
3. (A3)

Denote a = c/µ and compare three functions:

f1(p) = (1 + 2p) (1− a) ,

f2(p) = (2 + (2− p) p)
(
1− a

1− p2

)
,

f3(p) = 3

(
1− a

(1− p)2

)
.

Observe that f1 (0) < f2(0) < f3(0), f
′
3(p) < 0 for any p ∈ (0, 1) , f ′2(0) > 0, and that limp→1 f2 =

limp→1 f3 = −∞ for any a [that satisfies the standard conditions in the model]. This implies

that there exist thresholds p1 and p2 such that for any p ∈ (0, p1) , (A3) provides the highest
pay-off for the sender and for any p ∈ (p2, 1) , the sender’s payoff is (A1).
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Let’s consider p = 1
2 . The value of each of the three functions is a function of parameter a:

f1

(
1

2

)
= 2− 2a,

f2

(
1

2

)
=

11

4
− 11a

3
,

f3

(
1

2

)
= 3− 12a.

It is straightforward to check that if a ∈
(
3
100 ,

9
200

)
, f2

(
1
2

)
> max

{
f1
(
1
2

)
, f3
(
1
2

)}
. �

Lemma A1 Suppose that a ∈ (0, 1). Then function ϕ(t) = 1
t

(
a− pt

)
is single-peaked on

[0,+∞).

Proof. Take a derivative:

ϕ′(t) =
−ptt ln p− a+ pt

t2
.

Let φ(t) = −ptt ln p−a+pt
pt = −t ln p− a

(
1
p

)t
+ 1. It is suffi cient to show that there exists some t0

such that φ(t) > 0 for any t ∈ [0, t0) and φ(t) < 0 for any t ∈ (t0,+∞). Since p < 1, 1−a
(
1
p

)t
is

a negative of an exponential function; it crosses y-axis at 1− a > 0. The linear function −t ln p
crosses y-axis at 0 (below 1− a) and then have a single crossing with 1− a

(
1
p

)t
.

Lemma A2 Function 1
t

(
µ
(
1− pt

)
− c
)
satisfies increasing differences condition in (t, p) and

(t, c).

Proof.

∂

∂p

1

t

(
µ
(
1− pt

)
− c
)
=

1

t

(
−µpt−1t

)
= −µpt−1,

∂2

∂p∂t

1

t

(
µ
(
1− pt

)
− c
)
= −pt−1µ ln p > 0;

∂

∂c

1

t

(
µ
(
1− pt

)
− c
)
= −1

t
,

∂2

∂c∂t

1

t

(
µ
(
1− pt

)
− c
)
=

1

t2
> 0.

Lemma A3 Suppose that rp > 1. Then there exists a threshold t ∈ (0, 1) such that the function
ϕ (t, r) = (rp)t−1

(rt−1)

(
1− c/µ

1−pt
)
increases on

(
0, t
)
and decreases on

(
t, 1
)
.
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Proof.

d

dt

(rp)t − 1
(rt − 1) =

(
(rp)t − 1

)
(ln rp− ln r)

(rt − 1)

=

(
(rp)t − 1

)
ln p

(rt − 1)
d

dt

(
1− c/µ

1− pt

)
= − (c/µ) pt ln p

(1− pt)2

d

dt

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
=

(
(rp)t − 1

)
ln p

(rt − 1)

(
1− c/µ

1− pt

)
− (rp)

t − 1
(rt − 1) (c/µ)

pt ln p

(1− pt)2

The above derivative is positive if and only if(
(rp)t − 1

)
ln p

(
1− c/µ

1− pt

)
−
(
(rp)t − 1

)
(c/µ)

pt ln p

(1− pt)2
> 0

as rt − 1 > 0 for any t > 0. This is equivalent to(
(rp)t − 1

)(
1− c/µ

1− pt

)
−
(
(rp)t − 1

)
(c/µ)

pt

(1− pt)2
< 0

as ln p < 0. Finally, the above condition is equivalent to(
1− c/µ

1− pt

)
− (c/µ) pt

(1− pt)2
< 0

as long as (rp)t − 1 > 0, which in turn is true if and only if rp > 1.(
1− pt

)2 − (c/µ) (1− pt)− (c/µ) pt < 0(
1− pt

)2
< c/µ.

The LHS is monotonically increasing in t (and asymptotically approach 1) on (0, 1) .

Lemma A4 Suppose that rp > 1. Then function ϕ(t) = ϕ(t|r, c, µ) satisfies increasing differ-
ences in (t, c), (t,−µ), and (t, r).

Proof. Let us demonstrate that

d2

dtd (c/µ)

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
> 0.

d

d (c/µ)

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
= −(rp)

t − 1
(rt − 1)

1

1− pt

d2

dtd (c/µ)

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
=

d

dt

(
−(rp)

t − 1
(rt − 1)

1

1− pt

)

= −
(
(rp)t − 1

)
(ln rp− ln r)

(rt − 1)
1

1− pt −
(rp)t − 1
(rt − 1)

pt ln p

(1− pt)2
.
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As rp > 1, we can divide by (rp)t − 1, multiply by rt − 1 and 1− pt, so the above expression is
positive if and only if

− ln p− pt ln p

1− pt > 0

if and only if

− ln p(1− pt)− pt ln p > 0,

which is in turn equivalent to

− ln p > 0,

which is always true.

Let us prove that
d2

dtdr

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
> 0.

Calculate

d

dr

(rp)t − 1
(rt − 1)

(
1− c/µ

1− pt

)
=

(
1− c/µ

1− pt

)
d

dr

(rp)t − 1
(rt − 1)

=

(
1− c/µ

1− pt

)
d

dr

tp (rp)t−1

trt−1

=

(
1− c/µ

1− pt

) (tp (rp)t−1) (rt − 1)− trt−1 ((rp)t − 1)
(rt − 1)2

=
(
1− pt − c/µ

) trt−1

(rt − 1)2
.

Now

d

dt

(
1− pt − c/µ

) trt−1

(rt − 1)2
= −pt ln p trt−1

(rt − 1)2

+
(
1− pt − c/µ

) rt−1 (t ln r + 1) (rt − 1)2 − 2trt−1 (rt − 1) rt ln r
(rt − 1)4

= −pt ln p trt−1

(rt − 1)2
+
(
1− pt − c/µ

)
rt
rt − 1 +

(
rt + 1

)
t ln r

r (rt − 1)3

We will create another, sign-equivalent function:

ω(r, t) = −ptt ln p+
(
1− pt − c/µ

) rt − 1 + (rt + 1) t ln r
rt − 1

If
(
1− pt − c/µ

)
> 0, then ω(r, t) > 0 which means that d2ϕ(t,r)

dtdr > 0. But 1 − pt − c
µ > 0 is

equivalent to µ − c
1−pt > 0, which is always true (our model is solved when this assumption is

fulfilled).
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Lemma A5 Let X = Z, two-way. For any β, there exists an equilibrium on X.

Proof. We will prove that there exists an m ∈ Z+ such that the set Sm = {mn|n ∈ Z} is an
equilibrium subscription set. We need to find m such that, if Sm is a subscriber set, then, for

any x ∈ Sm, the IC constraint looks as follows:(
1− (1− pm)2

)
V (β) ≤ V (β)− c

or

2pm − p2m ≤ A, (A4)

if we denote A = 1 − c
V (β) and note that 1 − (1− p

m)2 = 2pm − p2m. If such m exists, we will

need to check whether or not the IC constraint is satisfied for every non-subscriber as well.

Observe that the function ϕ (x) = 2px − p2x is non-negative, single-peaked on [0,+∞) , and
is converging to 0 when x approaches +∞.

Start with the case when A > argmaxm≥0
{
2pm − p2m

}
. Then S0 is an equilibrium sub-

scription set; everyone is a subscriber.

Now, suppose that A ≤ argmaxm≥0
{
2pm − p2m

}
. The fact ϕ (x) is converging to zero

guarantees that the set
{
m|2pm − p2m ≤ A

}
is non-empty. Takem∗ = min

{
m|2pm − p2m ≤ A

}
.

What remains to check is that if Sm
∗
is the subscriber set, than for any x /∈ Sm∗ , the incentive

constraint is satisfied.

Suppose, on the contrary, that there exists an x ∈ Z, 0 < x < m (so distance to the next

left-ward subscriber, 0, is x, and to the next right-ward subscriber, m, is m − x) such that

1 − (1− p)x (1− p)m−x = px + pm−x − pm ≤ A. Without loss of generality x ≥ m − x. Then
pm−x ≤ px as p ≤ 1, and therefore pm−x (1− pm−x) ≤ px (1− pm−x) = px − pm−x. This yields

2pm−x − p2(m−x) ≤ px + pm−x − pm ≤ A,

which contradics the choice of m∗ as the minimal integer satisfying (A4).
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