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Abstract

Why does a worker become more efficient when given freedom at work? Under
incomplete contracts, a worker faces a ratchet effect of innovating when he is closely
monitored: if the worker uncovers a more efficient production method, the firm, being
aware of it, raises the future performance requirement; anticipating this, the worker
never tries to innovate. When given freedom at work instead, the worker accrues private
information about his innovation. The resulting information asymmetry generates
information rent which feeds back as the worker’s incentive to innovate and improve
efficiency. This paper studies how a firm’s strategic ignorance influences its incentive
structure which has to simultaneously induce effort from the worker and endogenously
generate asymmetric information against the firm. The resulting mechanism provides
a novel rationale to why relationships are sometimes characterized by weak incentives
and low-scale production at the early stages.
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1 Introduction

"If you give people freedom, they will amaze you. All you need to do is give them
a little infrastructure and a lot of room." — Laszlo Bock (Google’s SVP, People
Operations).

Besides its many innovative products, Google is perhaps best known for giving its employees
a lot of freedom at work and benefiting from it. But this phenomenon is not unique to
Google. A report released by the LRN at the World Economic Forum in 2014 concluded
that companies with more freedom in their employment relationships are associated with
more innovations and better long-term successes.1 There is also a plethora of other em-
pirical evidence suggesting that autonomy provision to individuals often leads to improved
performances.2

Why would firms benefit from not knowing what their workers are doing? This hypothesis
does not square well with the prediction from the canonical principal-agent model where the
principal generally benefits from more information about the agent’s actions (Holmström,
1979). Relatedly, why does a worker become more efficient when given freedom at work?
There is an extensive work in the psychology and management literature studying this ques-
tion, and they generally attribute the positive effects from freedom provision to the worker’s
intrinsic motivation.3 But if the worker’s intrinsic motivation is the only explanation, why
do we observe different types of firms having different kinds of monitoring environments? For
example, why is freedom provision more often observed in startups than in factory assembly
lines?

1The report is available online at “http://pages.lrn.com/the-freedom-report”.
2For example, Andrews and Farris (1967) show that scientists are more likely to innovate under higher

degree of freedom. Amabile et al. (1990) find that workers exhibit lower levels of creativity when being
watched while working. Shalley et al. (2000) find that the autonomy to make decision increases employees’
commitment to the organization and fosters innovation. Elloy (2005) finds that employees in self-managed
teams exhibit higher levels of organizational commitment. Falk and Kosfeld (2006) find experimental evidence
that agents react negatively to actions deemed controlling by reducing performances. More recently, Bloom
et al. (2015) find that call center operators experience a 13% increase in overall performance when working
from home.

3Intrinsic motivation are incentives to take an action that are derived through non-monetary rewards.
In the psychology literature, Deci and Ryan (1987) suggest that autonomy is associated with greater interest
and creativity (among other positive behaviors). In the management literature, intrinsic motivation from
freedom takes the form of an empowering leadership style that encourages employees to develop self-control
and initiative. Since autonomy leads to higher job satisfaction (e.g. Spreitzer, 2008), employees under less
controlling work environments have a stronger sense of ownership in the success of the organization. For
example, Amabile et al. (1996) identify freedom provision as an important managerial practice to foster
creativity at work. Stern (2004) finds that scientists in pharmaceutical firms are willing to accept 15% less
pay if they are given freedom on their project choice.
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In this paper, I put aside a worker’s intrinsic motivation and focus on understanding his
extrinsic motivation (i.e. monetary incentives) to innovate and improve efficiency when given
freedom at work.4 The intuition behind the worker’s extrinsic motivation is the following.
When a worker is closely watched by his firm, any new knowledge gained from his innovation
attempt is simultaneously learned by the firm. If the worker uncovers a more efficient
work method, the firm, being aware of it, will respond by raising his future performance
requirement; anticipating this, the worker never tries to innovate. If the worker is given
freedom at work instead – for example, he is allowed to work from home – he accrues
private information about any discovery made. This private information compels the firm
to give information rent to the worker if the firm wants to tap on the worker’s improved
efficiency. The potential for information rent then feeds back as the worker’s incentives
to uncover better work methods in the first place. But giving a worker excessive freedom
is costly to the firm due to the asymmetric information created. Hence, whether freedom
provision is ultimately beneficial would depend on whether if the expected innovation benefits
can outweigh the inefficiency due to the asymmetric information. This in turn provides a
qualitative explanation to why, for example, startups and “tech firms” give their employees
a lot of freedom at the workplace whereas a factory assembly line is often associated with
tight monitoring.

While this notion that players can benefit from “strategic ignorance” has also been noted
in the literature in other contexts,5 the mechanism behind how this feature arises here is
different, and the novelty of this paper lies in understanding how a firm’s strategic ignorance
influences its incentive structure which has to simultaneously induce effort from the worker
and endogenously generate asymmetric information against the firm. The contract design
under strategic ignorance involves an adverse selection problem with moral hazard, and there
is an endogenously created mass point in an otherwise atom-less distribution over the agent’s
continuous private type space. This in turn leads to some interesting features in the optimal
menu of contracts. The evolution of the optimal incentive structure also provides a novel
rationale that explains why workers’ incentives tend to be weak in the early stages of their
career and why some economic relationships have to start off with low-scale production.

I consider a two-period principal-agent model with an embedded two-arm bandit prob-
lem.6 In each period, the agent chooses between using an old technology (o) or a new

4For papers that study how extrinsic incentives affect intrinsic motivation, see for example Bénabou and
Tirole (2003) and Sliwka (2007).

5See Crémer (1995) and other cited works in Section 8.
6I use the female pronoun for the principal and the male pronoun for the agent throughout.
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technology (n). Output is binary in each period, and the probability of getting the high
output with either technology is the agent’s effort choice. The two technologies differ in
their effort costs. The cost efficiency of o, denoted by θo, is commonly known – technology o
represents the currently available work method inside the firm. On the other hand, the cost
efficiency of n, denoted by θn, is ex-ante unknown to both players – technology n represents
a previously untested work method. A higher cost efficiency implies a lower cost of effort,7

and the common prior on θn is represented by a continuous distribution. Under the prior,
o is ex-ante more cost-efficient than n in expectation (i.e. θo > E [θn]), but n is possibly
more cost-efficient than o (i.e. Pr (θn > θo) > 0). The agent can perfectly learn about θn by
producing with n in period 1, which then creates an option value for period 2: if n turns out
to be more cost-efficient than o (i.e. θn > θo), the agent can continue to use n in period 2;
otherwise he can revert to using o. Hence, using n in period 1 is interpreted as an innovation
attempt to uncover a more cost-efficient technology for period 2, but it comes at a cost of
using the myopically less cost-efficient technology n in period 1. The contracting environ-
ment is highly incomplete – only the output is contractible and the principal can only make
spot contracts. Hence the principal offers a bonus-pay contract to the agent at the start of
each period.

Under a “tight-monitoring” environment (hereafter TM), the principal perfectly observes
all of the agent’s actions. This also implies that if n is used, the principal also learns about
θn together with the agent. The agent thus faces a ratchet effect of innovating. If the agent
produces with n in period 1 and uncovers that θn > θo, the principal will offer the agent a
lower period-2 bonus since she knows the agent’s cost of effort has decreased, thus extracting
away all the innovation surplus. Anticipating no gain in period 2, the agent always uses o
in period 1 since θo > E [θn]. Hence innovation is never possible under TM.

On the other hand, under a “freedom-at-work” environment (hereafter FW), the agent
privately learns θn after using technology n in period 1. With asymmetric information,
the principal solves a period-2 contracting problem that consists of both adverse selection
and moral hazard – the principal has to elicit the agent’s private information on θn with
a menu of bonus-pay contracts (adverse selection), while each contract in the menu must
provide incentives for the agent to make the appropriate technology and effort choices (moral
hazard). The optimal period-2 menu has a bonus schedule that is increasing in the agent’s
innovation success and a fixed wage schedule that is decreasing in it. This is because an

7Formally, the cost of effort e on technology τ ∈ {o, n} is ψ
(
e
θτ

)
where ψ is strictly increasing and

convex. Hence a higher θτ implies a lower cost of effort and hence, a higher cost efficiency.
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agent with a more cost-efficient technology incurs a lower cost to increase the probability
of getting the bonus. Hence he is willing to accept a “riskier” contract with a lower fixed
wage in exchange for a higher bonus. The increasing bonus schedule implies that the more
successful innovations are utilized more intensively and efficiently.

An interesting feature of the optimal menu is the pooling of contracts for types with low
cost efficiency, indicating that the principal optimally chooses not to distinguish an agent
with a mildly successful innovation (i.e. θn that is slightly above θo) from an agent who
failed in his innovation attempt (i.e. θn ≤ θo). This feature arises due to the mass point of
failed-innovator agents who revert to using o in period 2; these failed-innovator agents are
essentially of the same type whose cost efficiency in period 2 is θo. If the principal wants to
also distinguish the mildly successful innovators from these failed innovators (i.e. type θo),
she has to further lower the bonus of the contract meant for θo. The loss in surplus from
doing so is very costly to the principal because the atom-less distribution of any one type of
successful innovator is incommensurate with the mass point at θo. Hence the possibility of
innovation failure implies that innovations have to be sufficiently successful before they are
“recognized” by the principal with increasingly powerful bonuses.

As in standard screening problems, the failed innovators get no information rent since
they are the worst type. This implies that if the agent uses o in period 1, his expected
payoff in period 2 is always zero. This is because when an agent enters period 2 without
knowing the underlying value of θn, he will produce with o in period 2 since θo > E [θn]. This
in turn makes him the worst-type agent in the screening problem who gets no information
rent. Only an agent who has used n in period 1 and discovered that θn > θo will get
information rent in period 2. While the potential for rent in period 2 under FW creates
incentives for the agent to use the ex-ante less cost-efficient n in period 1, the principal must
also complement it with a low period-1 bonus. This is because under any period-1 bonus,
the agent’s optimal effort exerted on o is always higher than his optimal effort exerted on n
because of θo > E [θn]. A high period-1 bonus would then encourage the agent to use o to
maximize his likelihood of getting the period-1 bonus and forgo the potential period-2 rent
that comes from experimenting on n.

Since the bonus represents the agent’s opportunity cost of getting a low output, the
requirement for a low period-1 bonus can be interpreted as the firm having to show tolerance
to early failures by its worker to encourage him to innovate. This feature of low period-
1 bonus in equilibrium also provides an alternative mechanism to explain why a worker’s
incentives tend to be weak in the early stages of his career, which differs from the explanation
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from the career concern literature (Holmström, 1999); and why some economic relationships
have to start off with low stakes, which contrasts with the rationale in the reputation-building
literature (e.g. Watson 1999, 2002; Halac 2012).

Finally, the contracts in equilibrium illustrate the evolution of the incentive structure
under the two different monitoring environments. Under TM, the technology level remains
at the cost efficiency of o in both periods and hence, the incentive structure stays relatively
constant over time. On the other hand, the incentive structure under FW starts off with low
incentive in period 1, followed by idiosyncratic changes in incentive in period 2 through the
agent’s choice from the menu of contracts, which is in turn dependent on the outcome of the
agent’s innovation attempt. This evolution can be interpreted as changes in job scopes and
wage structures for the workers over time, which is akin to career progression or promotion
opportunities inside the firm.

To make predictions on a firm’s choice of monitoring environment, I consider the compar-
ative statics of the equilibrium under TM and FW with respect to the underlying parameters.
I show that when the distribution of θn becomes more favorable (in an appropriate sense),
the principal’s total expected payoff increases under FW, but it remains unchanged under
TM. On the other hand, a higher θo increases the principal’s total payoff under both FW and
TM, but the increase is greater under TM. These results suggest that firms with important
needs to improve on existing work methods – for example, young firms still learning about
their operational needs or new-market firms (e.g. startups) which cannot mimic efficient
procedures from others or from their history – are more likely to give their employees free-
dom at the workplace. On the other hand, when the gains from improvement are small –
for example, mechanical jobs and relatively homogenous works (e.g. factory assembly lines)
where there are already well-established experiences that can be adapted and used – firms
are more likely to monitor their employees tightly.

The rest of the paper will proceed as follows. Section 2 first illustrates the intuition
behind a worker’s extrinsic motivation from freedom at work with a numerical example.
Section 3 outlines the main model, and Sections 4 and 5 solve for the equilibrium under the
TM and FW environments respectively. Section 6 does the comparative statics, and Section
7 discusses some extensions, including how more general types of monitoring environments
can be modeled. The discussion on related literature is deferred to Section 8 after the results
have been presented, and Section 9 concludes. All omitted proofs are found in Appendix A.
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2 A Numerical Example

Consider a two-period principal-agent model with risk-neutral parties and no discounting. In
each period t ∈ {1, 2}, the agent can produce an output of Y = 6 for the principal using one
of two available technologies τt ∈ {o, n}, or the agent can take his zero per-period outside
option; he can use a different technology across periods. Producing with technology τ incurs
cost cτ which is constant across the two periods. co = 5 is commonly known. On the other
hand, cn is ex-ante unknown to both players, and they share a common prior of:

cn =


10 , with probability 0.5

1 , with probability 0.1

0 , with probability 0.4

E [cn] = 5.1 > co implies that n is in expectation more costly than o. If the agent uses n in
period 1, the value of cn is realized at the end of period 1; otherwise it remains unknown.
The output is the only contractible term, and the principal cannot enforce any long-term
contract. Hence a contract in each period t is a simple payment bt from the principal to the
agent in exchange for output Y = 6 in that period.

2.1 Tight Monitoring (TM)

Consider a tight-monitoring (TM) environment where the principal perfectly observes all of
the agent’s actions. If n is used, the principal also learns the value of cn with the agent.

Under this arrangement, if cn is still unknown in period 2, the principal will offer b2 = co

for the agent to produce using o. If cn is known, the principal will offer b2 = min{co, cn} for
the agent to use the more cost-efficient technology. Under either case, the worker earns zero
payoff in period 2. Anticipating this, under any offer b1 ≥ co, the agent will produce with o
in period 1 since co < E [cn]. The equilibrium is thus uniquely b1 = b2 = co. The principal’s
profit is 2× (Y − co) = 2, and she can never induce the agent to try out n under TM.8

This result illustrates two key issues. The first is a ratchet effect: because the principal
cannot commit not to lower future payment after a more cost-efficient technology is uncov-
ered, the agent responds by not trying to uncover one. The second issue, which is first made
by Aghion and Tirole (1994), is that the inability to contract on the innovation ex-ante can

8The “sell the firm to the agent” arrangement does not work here because the principal does not have
the ability to pledge the period-2 surplus to the agent at start of period 1.

7



cause under-investment in the innovative activity. In the context here, the inability to induce
the agent to choose τ1 = n is also due to the uncontractibility of the cn realization.

2.2 Freedom-at-Work (FW)

Consider a freedom-at-work (FW) environment where the principal does not observe any of
the agent’s actions. Importantly, if the agent uses n in period 1, the agent privately learns
the value of cn. The revenue Y remains publicly observed and contractible.

I will show that the agent chooses τ1 = n in equilibrium now and the principal’s total
expected payoff is also increased. To see why, suppose that in period 2, the principal conjec-
tures that the agent produced with τ1 = n and privately knows cn. The agent will produce
whenever the offered bonus is such that b2 ≥ min {co, cn}. Table 1 below summarizes the
principal’s expected period-2 profit for the relevant b2 offers, which implies that the optimal
contract is b2 = 1.

Table 1: Principal’s period-2 payoffs

b2
offer

Probability of the agent
producing in period 2

Principal’s expected
payoff in period 2

5 Pr [min {cn, co} ≤ 5] = 1 1× [6− 5] = 1
1 Pr[cn ≤ 1] = 0.5 0.5× [6− 1] = 2.5
0 Pr[cn = 0] = 0.4 0.4× [6− 0] = 2.4

Next, consider the agent’s period-1 action when anticipating that b2 = 1. The agent’s
expected period-2 payoff for producing with τ1 = n is 0.4,9 while his expected period-2 payoff
for producing with τ1 = o is 0 as he will be taking his outside option in period 2. Since
E [cn] − co < 0.4, the agent chooses τ1 = n now. It is readily verified that the optimal
period-1 offer is b1 = 4.7, and the principal’s total expected payoff is now 3.8 which is higher
than that under TM.

Notice that the principal benefits from creating information asymmetry against herself in
period 2. The information asymmetry compels the principal to give rent to the agent in the
event of a very successful innovation (i.e. cn = 0) which then channels back as the agent’s
incentives to experiment on n in period 1. Notice also that relative to TM, the principal’s
total expected payoff under FW is increased while the agent’s payoff is unchanged. This
implies that the creation of informational asymmetry is weakly Pareto-improving, which

9With probability 0.4, cn is 0, in which case the agent earns a payoff of b2 − 0 = 1.
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stands in contrast to the well-understood result that information asymmetry is detrimental
to efficient trade under complete contracts (Akerlof 1970; Myerson and Satterthwaite 1983).

2.3 Corporate Culture and the Persistence of Monitoring Envi-
ronment

While not strictly needed to get the results, the model implicitly assumes that the monitoring
environment is unchanged over time. In practice, the monitoring technology in a firm depends
on features such as the workspace arrangement between the managers (monitors) and the
workers, and on the availability and effectiveness of surveillance facilities. Many of these
features are costly to change, which thus justifies the assumption regarding the persistence
in the monitoring environment in the model.

More importantly, the essence of “freedom-at-work” (or the lack of it) here is about the
trust that a worker has on his managers not secretly watching over him and trying to learn
what he has uncovered. Such trust takes time to build, evolves from the experiences of both
the worker himself and his co-workers, and it should thus be part of the identity and culture
of the firm. As Hermalin (2013) writes:10 “[...] corporate culture is not a precisely defined
concept. It can be seen as encompassing the norms and customs of a firm, its informal and
unwritten rules of behavior. [...] Consequently, given normal personnel turnover, the culture
will persist over time, evolving slowly if at all.” Given the persistence of culture, the essence
of the monitoring environment (TM or FW) should remain fixed at least in the short run,
which justifies why the monitoring environment is fixed throughout the game in the model.

2.4 Other Applications

While being framed as an agency problem in organizations, the intuitions here can be applied
more generally to other economic relationships that require the agent to make uncontractible
experimentation. For example, in a long-term procurement relationship, from the result in
TM, the incentives for the seller to make buyer-specific innovation attempts diminish when
the innovation gains are expected to be observed and appropriated by the buyer. This might
explain why buyers would choose suppliers who are located far away (analogous to FW)
despite the transportation costs incurred.

10See page 458.
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The notion can also be related to the delegation-versus-centralization problem.11 Under
delegation, the principal gives up decision rights to the agent; while under centralization,
the principal keeps the decision rights. Shin and Strausz (2014) suggest that the party with
the decision rights to the input should also have private information about its evolution; this
notion is also implied in Riordan (1990). Hence delegation, analogous to FW, facilitates the
agent in accruing private information; while centralization, analogous to TM, does not. The
results here then suggest that innovations by the agent is more likely to take place under
delegation.

3 The Main Model

The example above illustrates the intuition of how freedom provision motivates a worker to
innovate. But since innovation attempt is modeled as producing with previously untested
technologies, what the example lacks are details on the production environment. In this
section, I introduce the main model which generalizes the example and introduces moral
hazard into production – this would allow us to study how the monitoring environment
influences the incentive structure in a firm.

As previously, consider a two-period principal-agent model with risk-neutral parties who
do not discount the future. In each period, the agent chooses to exert effort on one of two
available technologies τ ∈ {o, n} where the technologies have the same interpretations as
previously; the agent also does not have to use the same technology across periods. The
effort choice set is the continuum [0, 1] for both periods. Both technologies generate a
stochastic per-period revenue of y ∈ {0, Y } for the principal with Y > 0, and the probability
of getting Y with either technology is the agent’s effort choice that period. Hence the two
technologies have the same productivity. To save on time subscript, period-1 effort will be
denoted by e and period-2 effort by its Greek letter counterpart ε. There will not be any time
subscript in the main model; instead subscripts will exclusively denote partial derivative.

The cost of effort depends on the technology chosen. An effort level e (respectively ε)
exerted on technology τ incurs a private cost of ψ

(
e
θτ

)
(respectively ψ

(
ε
θτ

)
) to the agent,

where the cost function ψ(·) satisfies Assumption 1 below. θτ ∈ (0, 1] is the effort cost
efficiency for technology τ which is constant across periods; a higher value of θτ indicates a
more cost-efficient technology.

11See for example, Holmström (1977); Szalay (2005); Alonso and Matouschek (2008); Amador and Bagwell
(2013).
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Assumption 1. For all x ∈ [0, 1), ψ(x) is continuously differentiable, strictly increasing
and strictly convex. Moreover, ψ(0) = ψ′(0) = 0, limx→1 ψ(x) = ∞, and 0 ≤ ψ′′′(x) ≤
2
(
ψ′′(x)

)2

ψ′(x) .12

The Inada condition for ψ(·) in Assumption 1 ensures that the agent’s optimal effort
choice is always interior. The bounds on the third derivative of ψ(·) is a technical condition
that ensures that the marginal effect of incentives on the agent’s optimal effort choice is
increasing in θτ .

In terms of information, θo is commonly known. On the other hand, θn is ex-ante unknown
to both players and their common prior on θn is represented by a distribution function F (·)
on

[
θ, θ̄

]
, with 0 < θ < θ̄ ≤ 1. If n is used in period 1 with e > 0, the value of θn will

be realized at the end of period 1. Hence using n in period 1 is also an experimentation to
uncover a possibly more cost-efficient technology and is thus interpreted as an innovation
attempt.

Assumption 2. F has an atom-less density f which is differentiable and strictly positive in
its support. Moreover E [θn] ≤ θo < θ̄, and d

dθn

(
1−F (θn)
f(θn)

)
≤ 0.

The assumption E [θn] ≤ θo implies that o is ex-ante more cost-efficient than the inno-
vative activity n. The non-increasing inverse hazard rate property is a standard assumption
in the screening literature that ensures that the screening problem is well-behaved, although
as shown later, the screening problem in period 2 will still exhibit “bunching”.

I assume that the agent has a zero limited liability constraint every period so that no
positive transfer can be made from the agent to the principal. The agent’s outside option
in periods 1 and 2 are respectively 0 and U0 > 0, where U0 satisfies Assumption 3 below.
On the other hand, the principal has a zero outside option for both periods. In addition,
in period 1, the principal’s only revenue source is the realization of y; while in period 2, on
top of y, the principal also receives a fixed gain of trade of U0 as long as the agent accepts
her period-2 contract offer (to be defined). This fixed gain of trade ensures that the agent’s
higher period-2 outside option never prohibits the principal from entering the relationship
in period 2.13

12Examples of functions that satisfy Assumption 1 include ψ(x) = − log(1− x)− x, and ψ(x) = xm2

(1−x)m1

for any m1 ≥ 1 and m2 > m1.
13The agent’s higher period-2 outside option can be motivated through the accumulation of a worker’s

general human capital over time which is left unmodeled here. His higher level of general human capital in
period 2 then makes his mere presence worth U0 to the firm, thus explaining the principal’s period-2 fixed
gain of trade. The worker’s outside option of U0 in period 2 is then consistent with a competitive market
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Assumption 3. U0 satisfies U0 ≥ max
ε

{
εY − ψ

(
ε/θ̄

)}
> 0.

The main purpose of assuming a high outside option U0 for the agent in period 2 is
to make it impossible for the agent to accrue any period-2 rent (net of outside option)
through his limited liability constraint. Hence any period-2 rent that the agent accrues
under a different monitoring environment (to be described) can be entirely attributed to the
environment. The general results will be largely unchanged if U0 is instead smaller or is
zero, but the comparison of rents will then be shrouded by the rents that always exist due
to the agent’s limited liability.14

3.1 Contracts

The revenue y in each period is the only contractible term throughout; neither the effort
choice, technology choice nor the experimentation outcome can be contracted upon. Effort
is not contractible for the usual non-verifiability issues. τ is not contractible as n represents
an innovative attempt which is in general difficult to identify and describe ex-ante. Innova-
tive activities typically involve coming out with new ideas or exploring previously untested
approaches, both of which often end up with no tangible outcomes to show for. It is thus
difficult to distinguish between a worker who is carrying out an honest experimentation from
a worker who is merely shirking. In the same vein, the experimentation outcome θn is also
assumed to be non-contractible because of the difficulties in describing the innovation before
it is realized and also in verifying the value of an innovation by a third party.15

The principal has no commitment power to enforce long-term contracts. Hence, con-
tracting takes place at the beginning of each period, and a contract specifies a non-negative
fixed transfer and a non-negative bonus for output Y . Like the notation for effort, period-1
contract is denoted by Roman alphabets and period-2 contract by their Greek letter coun-

for labor supply while ignoring the issues of competitive screening on the θn realization; for instance, the
innovation θn can be firm-specific.

14Most of the results can be replicated with U0 = 0 and the agent having unlimited liability. However, this
leads to an unattractive feature in the optimal contracts whereby the agent makes a positive fixed transfer
to the principal.

15Holmström (1989) provides a very good discussion on why innovation attempts are often difficult-to-
measure activities, citing reasons that innovation projects are often multi-staged and unpredictable, and it
is often not clear ex-ante what is the correct course of action that the agent should take. Aghion and Tirole
(1994) also argue how innovations are always unpredictable and hence difficult to contract on before they
are realized. Moreover, innovations are often complex such that even if parties can agree on the innovation
ex-ante, courts can still lack the requisite technical knowledge to enforce the contract, or that the innovation
can take a long time for its full value to be realized such that an agreement on the immediate value is
impossible.

12



terparts. The contracts are thus (a, b) and (α, β) respectively for periods 1 and 2, where a
and α are the fixed wages, and b and β are the bonuses. Henceforth, whenever unspecified,
all payoffs refer to expected payoffs.

3.2 Monitoring Environments

I consider the principal’s problem under two types of monitoring environments – tight-
monitoring (TM ) or a freedom-at-work (FW ) – and the monitoring environment is fixed
across the two periods; see Section 2.3 for a discussion on this assumption. The principal’s
revenue y each period is publicly observed under both environments. Moreover, under TM,
the principal observes all the actions of the agent which include his technology and effort
choices. Importantly, if the agent uses n, both parties would observe θn. On the other hand,
under FW, the principal does not observe any of this information. This implies that if the
agent uses n in period 1, the θn realization will be privately observed by the agent which
then results in asymmetric information in period 2.16

3.3 Exploitation vs Exploration

As Schumpeter (1934) points out, a central concern for sustainability and development in
firms is the relation between exploiting its current capabilities and exploring for new pos-
sibilities. Following March (1991), this is termed as the tension between exploitation and
exploration. This tension arises here via its two-armed bandit problem setup in which o is a
known arm (exploitation) while n is an unknown arm (exploration). The assumptions made
on the costs reflect the nature of conventional work methods versus innovative activities.
Innovative activities, as represented by n, tend to be more costly to engage in initially. On
the other hand, the gains from exploration is learning – engaging in innovative activities
might lead to the uncovering of a more efficient technology (i.e. a θn > θo) for future use.

Throughout the paper, the equilibrium concept used is the perfect Bayesian Equilibrium
(henceforth equilibrium). An equilibrium that features the agent choosing o in period 1 will
be termed an exploitation equilibrium, and an equilibrium that features the agent choosing
n in period 1 will be termed an exploration equilibrium.

16The observability of effort and/or technology choices under FW will be outcome-irrelevant because they
are not contractible (see Remark 4). The only substantial difference between the two environments is the
observability of θn which determines if asymmetry in period-2 payoff-relevant information exists.
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4 Tight-Monitoring (TM)

This section considers the TM environment. It first illustrates the ratchet effect of innovating
under TM and then shows that the only equilibrium is an exploitation equilibrium.

Under TM, information is always symmetric in period 2. Hence the principal optimally
makes the agent the residual claimant of the output by setting bonus β = Y and fixed
wage α such that the agent’s participation constraint binds: if θn is known in period 2,
then α = U0 − max

ε

{
εY − ψ

(
ε
θ

)}
where θ = max {θn, θo}; if θn is unknown, then α =

U0−max
ε

{
εY − ψ

(
ε
θo

)}
. Under Assumption 3, these period-2 fixed wages are non-negative.

To see why α is set in anticipation that the agent uses o when θn is unknown in period
2, consider any bonus β and let εn be the agent’s optimal effort for n under this bonus.17

Notice that:

εnβ − E
[
ψ
(
εn

θn

)]
< εnβ − ψ

(
εn

E [θn]

)
(1)

≤ εnβ − ψ
(
εn

θo

)
(2)

≤ max
ε

{
εβ − ψ

(
ε

θo

)}
, (3)

where inequality (1) follows from the convexity of ψ (·) and Jensen’s inequality. Hence the
agent’s period-2 payoff is higher by using o when θn is unknown.

Since the agent’s period-2 payoff is always his outside option U0, he myopically maximizes
only his period-1 payoff at the start of period 1. Under any acceptable period-1 contract
(a, b), by the same argument as in (1) to (3), the agent will use o in period 1. This illustrates
the ratchet effect: when the employer cannot commit not to expropriate all the efficiency
gains, the worker responds by not trying to improve efficiency at all.18 This thus provides an
economic rationale for the “conventional wisdom” that a more intrusive working environment
stiffens the worker’s creativity.

Proposition 1. Let eo(b) := arg max
e

{
eb− ψ

(
e
θo

)}
. Under TM, the optimal contracts are

17εn depends on β but the argument is dropped to save on notation.
18The model implicitly assumes that the agent is unable to take his innovation to another firm to reap

the benefits of it. Section 7.3 discusses this assumption.
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unique:

a∗ = 0

b∗ = arg max
b

{eo(b) [Y − b]}

α∗ = U0 −max
ε

{
εY − ψ

(
ε

θo

)}
β∗ = Y

(Ratchet effect) The agent cannot be induced to experiment on technology n in period 1 under
TM.19,20

Remark 1. If the effort level is also contractible, the result that the agent cannot be induced
to experiment on n under TM (i.e. ratchet effect) will still hold but with different contracts;
in particular, the principal will contract on effort rather than output now. To see this,
suppose that the principal can enforce payments that are contingent on the agent’s effort,
but the technology that the agent chooses to exert the effort on remains uncontractible; this
implies that the moral hazard problem on effort is eliminated. In period 2, since information
is symmetric, the principal will enforce the agent to exert first-best (conditional on the
available information in period 2) effort level and then exactly compensates the agent for
his forgone period-2 outside option U0 and his effort cost based on the agent’s more cost-
efficient technology. Hence the agent always earns zero rent (net of outside option) in period

19Readers who are familiar with the incomplete contracts literature might be aware of the Maskin-Tirole
critique (Maskin and Tirole, 1999) – if the information is commonly observed by both parties ex-post, one
can possibly design a subgame perfect implementation mechanism (Moore and Repullo, 1988) that gives
incentives for both parties to reveal the information. The possibility of doing so is assumed away here for a
number of reasons. First, it is difficult to reconcile with the requirement that the principal can commit to
playing the revelation game given that she cannot commit to long-term contracts. Second, since players are
risk-neutral, renegotiation must not be allowed in order for the Maskin-Tirole mechanism to work, which
again carries some tension with the limited commitment assumption. Third, such revelation mechanisms
are highly complex and appears unrealistic given the dearth of evidence that such mechanisms do operate
in practice. Moreover, Aghion et al. (2015) and Fehr et al. (2016) have also provided experimental evidence
that such subgame perfect implementation mechanisms fail to induce truth-telling due to various irrational
beliefs held by the subjects. The recent work of Aghion et al. (2012) has also shown that the Maskin-
Tirole mechanism is not robust to small perturbation from common knowledge of perfect information; this
theoretical prediction is also confirmed empirically by Aghion et al. (2015).

20The result that the agent cannot be induced to experiment with n in period 1 can still hold even if the
principal can make long-term contracts on output y, if the parties cannot commit not to renegotiate at the
start of period 2. With commitment to make long-term contracts on y, this becomes a hold-up problem. Che
and Hausch (1999) show that ex-ante contracting is useless if investment is “cooperative”; in the context here,
this can happen when θn is firm-specific and the firm can reap the benefit of a worker’s innovation through
other workers as well. A similar result also holds if the investment is “selfish” but possibly “complex”; see
Hart and Moore (1999) and Segal (1999).
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2. As a result, under any effort obligation in period 1, the agent will always choose to fulfill
the effort obligation using o since it is the ex-ante more cost-efficient technology. While
innovation is not possible under TM, the elimination of the moral hazard on effort does,
however, increase the principal’s period-1 payoff as there was a distortion previously due to
the interaction between the effort moral hazard and the agent’s limited liability when the
effort was not contractible. However, it is readily verified that all subsequent results in the
paper are unaffected.

5 Freedom-at-Work (FW)

The previous section has illustrated that only the exploitation equilibrium is sustainable
under TM. This section considers the FW environment, focusing on deriving the principal-
optimal exploration equilibrium.21 The analysis begins at period 2 (Section 5.1) after the
agent has accrued private information about θn from period 1. The principal screens the
agent with a menu of bonus contracts; such menus can be interpreted here as workers self-
selecting themselves into the firm’s various projects and career tracks. Note that the agent’s
period-1 effort is chosen before the realization of θn; hence the realization of y in period 1
does not provide any information about the agent’s period-1 technology choice nor on the
realization of θn, and deviation by the agent in period 1 is thus never detectable. As a result,
the principal’s choice of the period-2 menu will be independent of the period-1 realization of
y. The optimal menu thus determines both the agent’s on-path and off-path period-2 payoffs.
The optimal period-1 contract is then derived in Section 5.2 while taking into account these
period-2 payoffs. The discussions on the implications of the optimal contracts are provided
in Section 5.3.

5.1 Period 2

The principal’s period-2 problem is one of adverse selection with moral hazard – the menu
as a whole must elicit information about θn from the agent (adverse selection), while each

21One can also view this as the principal’s cost-minimization problem to induce the agent to explore with
probability one. The Supplementary Appendix considers other types of equilibrium, including exploitation
equilibrium, and mixed equilibrium in which the agent plays a mixed strategy for his period-1 technology
choice. It is shown there that if an exploitation equilibrium exists under FW, the principal’s total expected
payoffs from such an equilibrium cannot be higher than her payoffs from the unique (exploitation) equilibrium
under TM in Proposition 1. Hence, if the principal is better off under FW than TM, the equilibrium must
involve the agent exploring with positive probability in the first period.
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individual contract has to provide him with incentives to make the appropriate technology
and effort choices (moral hazard).22 The analysis begins by defining the appropriate type
space of the agent which will have a mass point of failed innovators. The moral hazard
aspect of the problem is then subsumed by working with the agent’s indirect utility. The
optimal menu of contracts, which features “bunching” because of the mass point of failed
innovators, is characterized in Proposition 2.

5.1.1 Type-space, Distribution of Types and Innovation Success

In period 2, if θn is less than θo, its exact value is irrelevant since the agent will use o. Hence
the agent’s payoff-relevant private information (i.e. type) is:

θ := max {θn, θo} . (4)

The support of θ is
[
θo, θ̄

]
with a probability distribution:

Pr (θ ≤ x) = F (θo) +
∫ x

θo
f(t)dt.

Type-θo agent is a failed innovator who reverts to o in period 2 and this happens with
probability F (θo) ∈ (0, 1) on the equilibrium path. A successful innovator has a type θ
greater than θo and an agent with a higher type has a more successful innovation.

5.1.2 Subsuming the Moral Hazard Problem

After accepting a period-2 contract (α, β), the agent’s effort choice problem is:

max
ε

{
α + εβ − ψ

(
ε

θ

)}
. (5)

Let ε (β, θ) denote the solution to (5), which is implicitly characterized by the first-order
condition:

β = 1
θ
ψ′
(
ε (β, θ)
θ

)
. (6)

By the revelation principle, attention can be restricted to only direct mechanisms with an
obedience constraint given by condition (6). This is equivalent to considering the agent’s

22See chapter 7 of Laffont and Martimort (2001) for an introduction to such hybrid models.
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indirect utility. Let:

u (β, θ) := max
ε

{
εβ − ψ

(
ε

θ

)}
(7)

= ε (β, θ) β − ψ
(
ε (β, θ)
θ

)
.

The agent’s indirect utility under a contract (α, β) is thus α + u (β, θ). By viewing α as
a “transfer” and β as an “allocation”, the problem becomes a pure screening problem with
the agent having quasi-linear preferences. The properties of the agent’s indirect utility are
stated in Lemma 1. Henceforth subscript i of any function denotes its partial derivative with
the argument i.

Lemma 1. Both ε (β, θ) and u (β, θ) are continuously differentiable and strictly increasing
in both their arguments. ε (β, θ) is strictly concave in β and strictly convex in θ. u (β, θ) is
strictly convex in both its arguments. The agent’s indirect utility satisfies the Spence-Mirrlees
single-crossing condition: uθβ (β, θ) > 0 ∀β > 0.

Both the induced effort ε (β, θ) and the agent’s variable part of his indirect utility u (β, θ)
are increasing in the bonus and his type. The principal never offers an infinite bonus since
ε (β, θ) is concave in β. The single-crossing condition arises due to the fact that an increase
in bonus β benefits an agent with higher θ more because his marginal cost of effort is lower
and he is thus willing to exert more effort which then gives him the bonus with a higher
probability.23

5.1.3 The Optimal Contracting Problem

Consider a menu of contracts denoted by {α(θ), β(θ)}θ∈[θo,θ̄]. Let U
(
θ̃; θ

)
:= α

(
θ̃
)

+
u
(
β
(
θ̃
)
, θ
)
be the indirect utility of type θ when he chooses the contract of type θ̃, and let

Ū(θ) := U(θ; θ) be his indirect utility under truth-telling. The menu is feasible and incentive
23The convexity of u(β, θ) in β is a non-standard feature of the screening problem here. In textbook

treatments of screening problems (for example, chapter 7 of Fudenberg and Tirole (1991)), the utility function
of the agent is assumed to be concave in the allocation (which is the β here) to ensure that the problem is
well-behaved. The convexity here suggests that the principal might benefit from offering stochastic bonuses
to the agent. However this turns out not to be the case under optimality (see footnote 45 in the Appendix).
For ease of exposition, I restrict attention to only deterministic contracts but note that doing so is without
loss of generality.
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compatible if:

α(θ), β(θ) ≥ 0 , ∀θ ∈
[
θo, θ̄

]
(LL-2)

Ū(θ) ≥ U0 , ∀θ ∈
[
θo, θ̄

]
(IR-2)

θ ∈ arg max
θ̃

U
(
θ̃; θ

)
, ∀θ ∈

[
θo, θ̄

]
(IC-2)

(LL-2) is the agent’s limited liability constraint, (IR-2) is his participation constraint and
(IC-2) is his truth-telling constraint.24 The problem of the principal is program P :

max
α(·),β(·)

∫ θ̄

θo

ε (β (θ) , θ) [Y − β(θ)]− α (θ) + U0

dF (θ) (8)

subject to (LL-2), (IR-2) and (IC-2).

The term U0 in the objective comes from the principal’s fixed gain of trade. Using standard
envelope theorem arguments, (IC-2) can be simplified to the following:

Lemma 2. A menu of contracts {α(θ), β(θ)}θ∈[θo,θ̄] satisfies constraint (IC-2) if and only if

∀θ ∈
[
θo, θ̄

]
, the following two conditions are satisfied:

1. (IC-2A): Ū(θ) = Ū (θo) +
∫ θ
θo uθ (β(t), t) dt.

2. (IC-2B): β(θ) is non-decreasing.

To solve program P , I first consider the relaxed program that ignores constraint (LL-2)
and then check ex-post that the solution to the relaxed program satisfies (LL-2). From (IC-
2A), since uθ (β(θ), θ) is strictly positive, the (IR-2) constraint is most stringent for type θo.
In the absence of a non-negative constraint on the fixed wage (i.e. ignoring (LL-2)), α(θ) in
the objective function in (8) can be replaced by α(θ) = Ū(θ) − u (β(θ), θ) and (IC-2A) of
Lemma 2, while setting Ū(θo) = U0 so that constraint (IR-2) of type θo binds. After some
rearrangement, the relaxed version of program P can be reformulated as program P ′:

max
β(·)∈B

∫ θ̄

θo
v (β(·), θ) dF (θ), (9)

24The “-2” in the labels of the constraints refers to period 2. This is added to distinguish these constraints
from the associated constraints of period 1 later.
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where B is the set of non-decreasing functions mapping from domain
[
θo, θ̄

]
to [0,∞), and:

v (β(·), θ) := ε (β(θ), θ)Y − ψ
(
ε (β(θ), θ)

θ

)
︸ ︷︷ ︸

s(β(θ),θ)

−
∫ θ

θo
uθ (β(t), t) dt︸ ︷︷ ︸
r(β(·),θ)

. (10)

v (β(·), θ) is the principal’s period-2 payoff generated from type θ under a bonus schedule
β(·). It consists of the social surplus s (β(θ), θ) less the agent’s information rent r (β(·), θ).
Program P ′ is thus maximizing this subject to a monotonicity constraint on the bonus
schedule β(·). Doing integration by parts, (9) becomes:

max
β(·)∈B

∫ θ̄

θo
φ (β(θ), θ) f(θ)dθ + s (β(θo), θo)F (θo) , (11)

where

φ (β, θ) = s (β, θ)− uθ (β, θ)H(θ), (12)

and H(θ) := 1−F (θ)
f(θ) is the inverse hazard rate ratio for θ > θo. The term

∫ θ̄
θo φ (β(θ), θ) f(θ)dθ

is the principal’s expected payoff from agents with a successful innovation, while the term
s (β(θo), θo)F (θo) is the expected payoff from the failed innovators. The non-standard feature
of this screening problem is the mass point at type θo, and its effect on the objective is
reflected in the term s (β(θo), θo)F (θo) in (11).25 The following proposition characterizes the
solution.

Proposition 2. (Optimal period-2 incentive scheme.) The solution to program P ′ in (9) is
25Due to the mass point at θo, the distribution of θ does not satisfy the non-increasing inverse hazard ratio

property. This implies that the standard procedure of “optimizing point-wise” for program P ′ in (11) will
not work here. When this happens, the literature typically uses some form of control theoretic techniques to
solve the screening problem. However, the mass point at type θo precludes a direct application of optimal
control theory. Hellwig (2010) provides a technique to handle screening problems with mass points in the
support. The basic idea there is to develop a (as he terms it) “pseudo-type” θ̃ of the original type θ where the
distribution of θ̃ has no mass point. Non-smooth analysis techniques in optimal control theory can then be
applied on the “pseudo” problem, and Hellwig proves that the solution to the “pseudo” problem is also the
solution to the original problem. The “bunching” of contracts for the mass point type θo with types slightly
higher than θo, as shown in Proposition 2, is a general phenomenon which is proven in Theorem 2.3 in Hellwig
(2010). However, because the problem here is more specific – in particular, the mass point exists only at
the lowest type of the support here – than the one considered by Hellwig, the optimal bonus schedule can
be solved here via a simpler method. This method is more in line with developing the intuition behind the
optimal menu here, and it also circumvents the use of optimal control theory techniques completely, which
implies that there is no need to make a priori assumption that the optimal bonus schedule is differentiable.
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unique. The optimal bonus schedule β∗(·) is:

β∗(θ) =

β̂(θ) , ∀θ ∈
[
θ̈, θ̄

]
β̂(θ̈) , ∀θ ∈

[
θo, θ̈

] ,
where β̂(·) is characterized by:

sβ
(
β̂(θ), θ

)
= εθ

(
β̂(θ), θ

)
H(θ) , ∀θ ∈

[
θo, θ̄

]
, (13)

and θ̈ is characterized by:

∫ θ̈

θo
φβ
(
β̂(θ̈), θ

)
f(θ)dθ + sβ

(
β̂(θ̈), θo

)
F (θo) = 0. (14)

The optimal fixed wage schedule α∗(·) is:

α∗(θ) = U0 +
∫ θ

θo
uθ (β∗(t), t) dt− u (β∗(θ), θ) > 0 , ∀θ ∈

[
θo, θ̄

]
. (15)

• θ̈ is strictly in the interior of
[
θo, θ̄

]
.

• β∗(·) is continuous everywhere, differentiable everywhere except at θ̈, and strictly in-
creasing for θ > θ̈; and β∗(θ̄) = Y .

• α∗(·) is continuous everywhere, differentiable everywhere except at θ̈, and strictly de-
creasing for θ > θ̈.

Under Assumption 3, the wage schedule α∗(·) in (15) is strictly positive for all θ ∈
[
θo, θ̄

]
and hence satisfies (LL-2); Proposition 2 thus characterizes the optimal period-2 menu.

The form of the optimal bonus schedule β∗(·) is illustrated in Figure 1. To understand it,
suppose for the moment that the principal is maximizing only the part of

∫ θ̄
θo φ (β(θ), θ) f(θ)dθ

in the objective in (11), which is the expected payoff from the agents with a success-
ful innovation. The optimal schedule for this problem is β̂(·) in (13), which represents
φβ
(
β̂(θ), θ

)
= 0. The corresponding incentive compatible fixed wage schedule is α̂(θ) =

U0−
∫ θ
θo uθ

(
β̂(t), t

)
dt−u

(
β̂(θ), θ

)
(from (IC-2A) in Lemma 2.1). Under

{
α̂(·), β̂(·)

}
, there is

inefficiency for all types other than θ̄.26 This is the consequence of the standard trade-off be-
tween efficiency and information rent provision in screening problems. The term sβ

(
β̂(θ), θ

)
26The first-best incentive is always β = Y since it induces the first-best effort level for each θ.
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Figure 1: Optimal bonus schedule β∗(·)

β(θ)

θ

β∗(θ)

β̂(θ)

θo θ̈ θ̄

β̂(θ̈)

Y

Recognized
successful innovations

Non-recognized
successful innovations

Failed innovation

The blue dotted graph represents β̂ (·). The red bold graph represents the optimal bonus schedule
β∗(·); the schedule is flat for θ ∈

[
θo, θ̈

]
and strictly increasing for θ > θ̈.

in (13) represents the marginal gain in surplus from type θ from increasing his bonus; the
term εθ

(
β̂(θ), θ

)
H(θ) represents the marginal increase in information rent provision from

doing so.
To elaborate on the trade-off, holding fixed a bonus level, the agent’s optimal effort choice,

which determines his probability of getting his bonus, is positively correlated to the level of
his innovation success θ. Hence an agent with a low θ gets the bonus with a lower probability
and thus has to be given a higher fixed wage to satisfy his participation constraint. This
creates incentives for the agent to under-report his type. The principal counters this by
lowering the bonus of the agents with low θ; doing so makes these contracts less attractive
to the agents with higher types and thus reduces the rent given to them. As a result, β̂(·) is
upward-sloping.

Next, suppose now that the principal is instead maximizing only the part of s (β(θo), θo)F (θo)
in the objective function in (11), which is the expected payoff from the failed innovations.
The solution to this problem is to set the bonus at the first-best level βo = Y , and the fixed
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transfer at αo = U0 − s (Y, θo). This is equivalent to making the failed-innovator agents the
residual claimant while ensuring that their participation constraint binds.

In the presence of both failed and successful innovations – that is, maximizing the full
objective in (11) – the principal cannot offer the contract schedule

{
α̂(·), β̂(·)

}
together with

the contract (αo, βo). This is because such a set of contracts violates (IC-2B) of Lemma
2.2: any agent with a successful innovation will take contract (αo, βo) instead of the contract
meant for him.27

Consider giving the failed-innovator type θo a bonus of β̈ > β̂ (θo) instead. Let θ̈ > θo be
the type in which β̂

(
θ̈
)

= β̈. From the discussion above, the bonus for any type θ ∈ (θo, θ̈)
must also be raised to be at least β̈ to satisfy (IC-2B). This implies that when maximizing the
expected payoff from the successful innovations, there is now the additional constraint that
the bonus schedule must be everywhere above β̈. A β̈ that is higher than β̂(θo) creates an
additional loss to the principal due to her inability to lower the information rent as necessary
according to β̂(·). On the other hand, whenever β̈ is below Y , the principal faces a loss from
not being able to maximize the expected payoff from the agents who have a failed innovation.

Hence the principal trades off between maximizing the expected payoff from the successful
innovations with that from the failed innovations by optimally choosing β̈; this trade-off is
reflected in (14). The first term

∫ θ̈
θo φβ

(
β̂(θ̈), θ

)
f(θ)dθ represents the marginal gain in the

principal’s expected payoff from distorting the bonus of types in
(
θo, θ̈

]
to below the level

of β̂(θ̈); the marginal cost of this distortion on the payoff from the failed innovations is the
second term in (14), sβ

(
β̂(θ̈), θo

)
F (θo). Because F (θo), the probability of having a failed

innovation, is strictly positive, this marginal cost is strictly positive as well, which then
implies that the optimal β̈ will always be higher than β̂(θo). This thus creates a “bunching”
region where all types in

[
θo, θ̈

]
receive the same incentive contract. The implication is that

only the more successful innovations θ ∈
(
θ̈, θ̄

]
are “recognized” and distinguished with

increasingly powerful incentive contracts; the mildly successful innovations θ ∈
(
θo, θ̈

]
are

“not recognized” and given the same incentive contracts as if their innovation was a failure.

Remark 2. The principal’s period-2 payoff in the exploration equilibrium under FW is always
higher than her period-2 payoff in the exploitation equilibrium under TM. This is because
her period-2 payoff under TM is s(Y, θo) (see Proposition 1), while program P has a feasible

27If an agent of type θ > θo chooses his contract
(
α̂(θ), β̂(θ)

)
, he earns a rent of

∫ θ
θo
uθ

(
β̂(t), t

)
dt. If he

takes contract (αo, βo) instead, he earns a rent of
∫ θ
θo
uθ (Y, t) dt. Since β̂(t) < Y ∀t < θ̄, this is higher than∫ θ

θo
uθ

(
β̂(t), t

)
dt.
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but not optimal solution β(θ) = Y and α(θ) = U0 − s (Y, θo) ∀θ which achieves the payoff
s (Y, θo).

5.1.4 On-path and Off-path Payoffs of the Agent.

Let R be the agent’s expected period-2 information rent (net of outside option) for choosing
n in period 1. R is given by:

R = E
[
Ū(θ)

]
− U0 =

∫ θ̄

θo

(∫ θ

θo
uθ (β∗(t), t) dt

)
dF (θ)

=
∫ θ̄

θo
uθ (β∗(θ), θ) [1− F (θ)] dθ > 0. (16)

If the agent deviates to o in period 1, he will not know θn. Since θo ≥ E [θn], by the same
argument in (1) to (3), the deviating agent will use o in period 2. This implies that the
deviating agent is of type θo, and Ū(θo) = U0.

Corollary 1. If the agent uses technology n in period 1, his expected period-2 payoff is
R + U0. If he deviates to using technology o in period 1, his expected period-2 payoff is U0.

Remark 3. Because the agent reverts to o whenever the experimentation outcome is such that
θn ≤ θo, the distribution of θn below θo does not have any substantial effect on the analysis
here. Hence all results follow through even if the regularity conditions and the decreasing
inverse hazard rate ratio property on the distribution of θn, as stated in Assumption 2, hold
only for θn ∈

(
θo, θ̄

]
.

Remark 4. Corollary 1 will continue to hold if the agent’s choice of effort and/or technology
is also observed by the principal but is not contractible. The only difference is that when
the agent deviates to choosing τ = o in period 1, the principal will know about it; instead
of offering the menu of contracts in Proposition 2 in period 2 in this case, the principal will
offer the contract β = Y and α = U0 − s (Y, θo) which still gives the agent an expected
period-2 payoff of U0.

5.2 Period 1

This subsection completes the equilibrium characterization by deriving the optimal period-1
contract. Under a period-1 contract (a, b), the agent’s total expected payoffs for using n
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with period-1 effort e is a+W n(e, b), where:

W n(e, b) := eb− E
[
ψ
(
e

θn

)]
+R + U0. (17)

His total expected payoffs for deviating to o is a+W o(e, b) where:

W o(e, b) := eb− ψ
(
e

θo

)
+ U0. (18)

For τ ∈ {o, n}, let:

W̄ τ (b) := max
e

W τ (e, b) (19)

eτ (b) := arg max
e

W τ (e, b) (20)

Lemma 3. eτ (b) is strictly increasing for both τ ∈ {o, n}, and eo(b) > en(b) ∀b > 0. There
exists a bonus threshold b̄ > 0 such that W̄ n(b) ≥ W̄ o(b) if and only if b ≤ b̄. The threshold
b̄ is non-decreasing in R.

The first property of eτ (·) is intuitive: higher bonus induces higher effort. At any bonus b,
the agent chooses higher effort under o than under n since o is ex-ante more cost-efficient in
expectation. To understand the property of W̄ τ (·), observe that in deciding which technology
to use in period 1, the agent trades off between the payoffs across the two periods. R >

0 implies that n maximizes his period-2 payoff while o, being more cost-efficient ex-ante,
maximizes his period-1 payoff. Hence, if the principal makes the period-1 incentives too
powerful, the agent’s total payoffs from using o in period 1 will be higher than that from
choosing n .

The following provides the definition for an exploration equilibrium:

Definition 1. A period-1 contract (a, b), together with the agent using technology n with
effort e∗ in period 1, forms an equilibrium if the following conditions are satisfied:

a+ W̄ n(b) ≥ U0 (IR-1)

W̄ n(b) ≥ W̄ o(b) (IC-τ -1)

en(b) = e∗ (IC-e-1)

a, b ≥ 0 (LL-1)

(IR-1) is the agent’s participation constraint where the right hand side is the sum of the
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outside options across the two periods. (IC-τ -1) is the agent’s technology choice incentive
compatibility constraint, (IC-e-1) is his effort choice incentive compatibility constraint, and
(LL-1) is his limited liability constraint.

Proposition 3. Under FW, the optimal period-1 contract that induces the agent to choose
technology n in period 1 is unique:

a∗ = 0

b∗ = min
{
b̂, b̄
}

where b̂ := arg max
b

{en(b) [Y − b]}.

If the agent always uses n in period 1, the principal’s maximized period-1 payoff subject
to constraints (IR-1) and (IC-e-1) is achieved by providing bonus level b̂ in Proposition 3.
Under Lemma 3, (IC-τ -1) is satisfied if and only if b̂ ≤ b̄. If b̂ > b̄, then the optimal bonus
becomes b̄ because the principal’s period-1 objective function en(b) [Y − b] is strictly concave
in b.

5.3 Discussion on the Optimal Contracts

5.3.1 Low Incentives in Period 1

Proposition 3 illustrates that low early incentives are required to motivate exploration and
this feature has a number of interesting interpretations. First, the bonus in the model
reflects the agent’s opportunity cost of getting a low output. The requirement for low early
incentives thus implies that firms must show tolerance to early failures by their workers in
order to encourage them to innovate. This complements Manso’s (2011) point that long-term
contracts that encourages exploration must both tolerate early failures and reward long-term
successes.

Second, it illustrates a mechanism, which is in terms of innovation incentives, that ex-
plains why workers’ incentives tend to be weak in the early stages of their career. The
prevalent explanation for this phenomenon is the career concern model (Holmström 1999;
Gibbons and Murphy 1992) where low incentives would be sufficient to induce workers to
exert effort in their early career due to the reputation concern regarding their ability. In
contrast, low early incentives are necessary here to induce the workers to take on risky ex-
perimentation instead. This feature where low incentives are sometimes needed to increase
the overall surplus has also been noted in other contexts. For example, in the multi-tasking
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literature (Holmström and Milgrom, 1991), the principal might lower the incentives of one
task to create incentives for the agent to work on other more important tasks. The parallel
here is not drawn directly on the multi-tasking aspect of the model since the principal cannot
give incentives for a different choice of τ ; rather, the point is one can view the two periods
here as different “tasks”, and low incentives in period 1 induce the agent to put emphasis on
the period-2 rent, which would then encourage him to experiment on n in period 1.

Finally, the requirement for low period-1 bonus implies that the expected surplus from
the principal-agent relationship is also small in period 1. That relationship sometimes has
to “start small” is reminiscent of the reputation building literature (e.g. Sobel 1985; Ghosh
and Ray 1996; Watson 1999, 2002; Halac 2012).28 In this literature, there is ex-ante asym-
metric information about the players’ type and hence, the early stages of relationships are
characterized by low stakes while the asymmetric information among the players is gradually
resolved. In contrast, information is ex-ante symmetric here, and the players “start small”
here to create asymmetric information rather than resolving it.

5.3.2 Cost of Innovation and Share of Innovation Surplus in Period 2

There are three types of costs incurred to innovate. First it involves the use of the ex-ante
inefficient technology n; second there is a limit to the period-1 surplus due to the upper
bound b̄ on the period-1 bonus; third there is a cost due to the asymmetric information in
period 2. The first type of cost is an inherent cost to innovate. The second type is a friction
which has been discussed above. I discuss the third type of cost now.

In the absence of experimentation, the period-2 social surplus (net of outside options)
is max

ε

{
εY − ψ

(
ε
θo

)}
= s (Y, θo) (see Proposition 1); s (Y, θo) thus acts as the benchmark

surplus. With experimentation, under the optimal menu of contracts, the social surplus (net
of outside options) generated from innovation θ is s (β∗(θ), θ). Hence the social innovation
surplus of θ is defined as:

Innov(θ) := s (β∗(θ), θ)− s (Y, θo) ,

while the ex-ante expected social innovation surplus is defined as:

Innov := E [Innov(θ)] =
∫ θ̄

θo
s (β∗(θ), θ) dF (θ) − s (Y, θo) .

28The term “start small” is taken from Watson (1999, 2002).
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The agent’s innovation surplus of θ is defined as his period-2 rent (net of outside option)
under the optimal menu of contracts, which is Ū(θ)− U0 =

∫ θ
θo uθ (β∗(t), t) dt.

Proposition 4. Innov(θo) < 0 and Innov > 0. The agent’s innovation surplus is strictly
positive for all θ > θo, and it is strictly increasing and strictly convex in θ.

Although innovation is socially beneficial in expectation ex-ante (i.e. Innov > 0), inno-
vation failure is always costly (i.e. Innov(θo) < 0), and the agency costs involved implies
that a successful innovation is socially beneficial ex-post only if it turns out to be sufficiently
successful. This is seen by noticing that Innov(θ) is negative when θ is only slightly above
θo.

On the other hand, the agent’s innovation surplus is never negative; it is strictly positive
whenever he has a successful innovation (i.e. θn > θo), and it is zero when he fails to innovate
(i.e. θn ≤ θo). This implies that the principal subsidizes the agent when the innovations are
only mildly successful (i.e. θn is slightly above θo); in return the principal is able to extract
a larger share of the social innovation surplus when the innovation turns out to be highly
successful.

It is intuitive that the agent’s innovation surplus is increasing in his innovation success.
What is less obvious is that this gain is convex. In practice, it is difficult to distinguish the
degree of innovation success from its monetary payoff to the innovator, since the latter is
often used as proxy measure for the former. However there are suggestive evidences for the
presence of this convexity feature in gains related to innovation (see Trajtenberg, 1990; Hall
et al., 2005).29 In this model, the convexity feature arises from the principal’s solution to the
screening problem. This suggests that the high concentration of value at the upper-end of
the innovation spectrum is attributed to users trying to discern very good innovations from
the rest, instead of reflecting the true values of the innovations to the users.

6 Tight-Monitoring Versus Freedom-at-Work

This section studies how the performance of the two monitoring environments are affected by
the innovation potential (i.e. distribution of θn) and the efficiency of the existing technology

29Trajtenberg (1990) uses patent citation counts as the measure of innovation success and find that the
marginal value of patent citation is increasing. Hall et al. (2005) examine data on patent citations and
market value, and they find that the market-value premium is disproportionately concentrated at highly-
cited patents. For a more anecdotal form of support, the Wall Street Journal also reports that almost all of
the profits from venture-backed start-ups come from only 25% of all the venture-backed companies, although
all the companies almost always have created something new (see “The Venture Capital Secret”, September
20 2012, The Wall Street Journal).
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(i.e. the θo value). The results here speak to why and when would different firms adopt
different monitoring environments in practice.30

Throughout this section, whenever unspecified, all payoffs will refer to ex-ante expected
payoffs. In addition, the contracts and the payoffs under FW will refer to the contracts and
the resulting payoffs of the principal-optimal exploration equilibrium under FW as charac-
terized in Propositions 2 and 3. Likewise, the contracts and the payoffs under TM will refer
to the contracts and the resulting payoffs of the unique exploitation equilibrium under TM
in Proposition 1. The results of this section are summarized in Table 2 below.

6.1 Innovation Potential: The Distribution of θn

Under TM, the contracts and payoffs of both players are independent of the distribution of
θn. Hence, I only consider the effects of the distribution of θn under FW. To do so, I first
parametrize the set of distributions of θn by a parameter k. Let F (·; k) be a distribution on[
θ, θ̄(k)

]
, and let F := {F (·; k)} denote a family of such distributions.

Assumption 4. F satisfies the following assumptions:

1. For all F (·; k) ∈ F , the distribution F (·; k) has a density function f (·; k) that satisfies
Assumption 2.

2. k′′ > k′ implies that θ̄(k′′) ≥ θ̄(k′) and H(θn; k′′) > H(θn; k′) ∀θn ∈
[
θ, θ̄(k′)

]
.

3. For any θn ∈
[
θ, θ̄(k)

)
, f (θn; k) is absolutely continuous in k.

Assumption 4.1 implies that all the results from Section 5 apply. Assumption 4.2 implies
that the parameter k orders the distributions in terms of both the upper bound of the support
and the inverse hazard rate ratio point-wise, while the lower bound is fixed within the family
of distributions. Assumption 4.3 is a regularity condition on the family of distributions. An
example of F is the family of uniform distributions in which θn is uniformly distributed over
[θ, k]:

f(θn; k) =


1

k−θ , θn ∈ [θ, k]

0 , θn /∈ [θ, k]
(21)

30Another comparative static that can be readily carried out is on the players’ discount factor. Recall
that the principal’s period-1 payoff is higher under TM than FW since o is ex-ante more cost-efficient than
n, while her period-2 payoff is higher under FW than TM (Remark 2). Moreover, when the agent’s period-2
rent increases under FW, the upper bound b̄ on the period-1 bonus also increases, which then implies that
the principal is free to offer better period-1 incentives if necessary. Hence, when the players’ weight on the
period-2 payoffs increases, FW becomes more likely to be favored over TM , and vice-versa.
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It is well-known that inverse hazard rate dominance implies first-order stochastic domi-
nance under common support; this relationship remains when the dominant distribution has
a higher upper bound:
Remark 5. Under Assumption 4, k′′ > k′ implies that F (θn; k′′) < F (θn; k′) ∀θn ∈

[
θ, θ̄(k′′)

)
.31

Under a family of distributions F that satisfies Assumption 4, a higher k implies that
the distribution (i) has a higher upper bound, (ii) is more concentrated at more successful
innovations (first-order stochastic dominance from Remark 5), and (iii) has less risk (second-
order stochastic dominance). k thus provides a measure of the ex-ante innovation potential
of the innovative activity n, and a higher k implies that the innovative activity has more
potential ex-ante.

I develop some comparative statics on the optimal contracts and payoffs with respect to
k next. The following notations will be useful in explaining the comparative statics. Let:

V
(
β(·); k

)
:=
∫ θ̄(k)

θo
v
(
β(·), θ

)
dF (θ; k); (22)

let the optimal bonus schedule associated with distribution F (·; k) ∈ F be:

β∗(·; k) := arg max
β(·)∈B(k)

V
(
β(·); k

)
, (23)

where B(k) is the set of non-decreasing functions mapping from domain
[
θo, θ̄(k)

]
to [0,∞).

The principal’s maximized period-2 payoff is thus:

V(k) := V
(
β∗(·; k); k

)
, (24)

and the agent’s expected period-2 rent is, from (16):

R(k) :=
∫ θ̄(k)

θo
uθ (β∗(θ; k), θ) [1− F (θ; k)] dθ.

In addition, let b̂(k) and b̄(k) respectively be the bonus b̂ and threshold b̄, characterized in
the optimal period-1 contract in Proposition 3, that are associated with distribution F (·; k).

Proposition 5. Suppose that k′′ > k′. Under FW:

1. (Period-2 Bonus Schedule.) β∗(θ; k′′) < β∗(θ; k′) ∀θ ∈
[
θo, θ̄(k′)

]
.32

31A proof of Remark 5 is provided in the Supplementary Appendix.
32β∗(·; k′) is not defined for θ ∈

(
θ̄(k′), θ̄(k′′)

]
.
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2. (Period-2 Payoff.) V(k′′) > V(k′).

3. (Period-1 Payoff.) If b̂(k′′) ≤ b̄(k′′), or if R(k′′) ≥ R(k′), then the principal’s expected
period-1 payoff is strictly higher from an innovative activity with potential k′′ than from
one with potential k′.

Proposition 5.1 states that when n has more potential ex-ante, the period-2 bonus offered
will be lower. To understand it, recall from (IC-2A) in Lemma 2 that the information rent
(net of outside option) for a type-θ agent is the integral of uθ

(
β(t), t

)
over all types t below θ.

When the principal further distorts the bonus schedule downward for all types below θ, the
rents given to all agents with types above θ are reduced. The downside of doing so is that
it lowers the surplus generated by the lower types. However, when k is higher, the density
of θ is more concentrated at the higher types. Hence the savings from rent-provision to the
higher types outweighs the loss in surplus generated from the lower types, thus making such
a downward distortion of the bonus schedule profitable for the principal.

From (IC-2A) in Lemma 2, d
dθ
Ū(θ) = uθ

(
β∗(θ; k), θ

)
whenever the derivative exists, and

this is increasing in the bonus. Proposition 5.1 thus also implies that when there is a higher
likelihood of more successful innovations, the agent’s marginal gain from a better innovation
decreases:

Corollary 2. If the innovative activity has more potential ex-ante, the agent’s marginal gain
from having a better innovation decreases.

With regards to the principal’s period-2 payoff (Proposition 5.2), the effect from the
change in the bonus schedule due to a change in k (as described in Proposition 5.1) is of
only a second-order magnitude at the optimum. Instead, the first-order effect comes from
the change in distribution of θ. It is verified in the proof for Proposition 5.2 that the surplus
generated by a higher θ increases faster than the rent provided (i.e. v (β(·), θ) is increasing
in θ). Hence a higher k, which implies higher density at more successful innovations, results
in a higher period-2 payoff for the principal.

As for period 1 (Proposition 5.3), a higher k also implies that the ex-ante cost efficiency
of n, which is the technology used in period 1 under FW, is higher. Under any positive
period-1 bonus, the agent optimally exerts more effort on a n with a higher k; this in turn
leads to a higher period-1 payoff for the principal. In the absence of any restriction on the
period-1 bonus that motivates the agent to use n in period 1, her period-1 payoff is always
increasing in the ex-ante efficiency of n. This explains why when b̂(k) ≤ b̄(k), the principal’s
period-1 payoff is increasing in k
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However, if the bonus threshold is binding (i.e. b̂(k) > b̄(k)), the principal’s period-1
payoff can depend on how k affects the bonus threshold b̄(k). In general, the bonus threshold
is increasing in both the ex-ante efficiency of n and the agent’s expected rent (see Lemma 3).
Hence, if R(k) is also increasing in k, the bonus threshold will also be increasing in k, which in
turn implies that a n that is more efficient ex-ante also has a less restrictive bonus threshold.
In this case, the principal’s period-1 payoff will be increasing in k, which then explains the
second part of Proposition 5.3.33 Corollary 3 provides a particular parametrization of the
model in which R(k) can be shown to be always increasing in k; its proof is found in the
Supplementary Appendix.

Corollary 3. Suppose that F is the family of uniform distributions in (21) and ψ(x) = ξx2

where ξ > 0 is sufficiently large such that arg max
e

{
eY − ψ

(
e/θ̄(k)

)}
< 1 ∀k.34 Then R(k)

is strictly increasing, and the principal’s total expected payoffs under FW is strictly increasing
in the ex-ante innovation potential of the innovative activity.

From Proposition 5.2-5.3, if R(k) is increasing – such as in the case of quadratic cost
function with uniform distribution in Corollary 3 – the principal’s total payoffs under FW
are strictly increasing in k. Since her payoffs under TM are independent of k, the results
thus provide a prediction for the choice of monitoring environment as a function of k, as
summarized in Corollary 4:

Corollary 4. Suppose that R(k) is increasing. Then there exists a threshold potential k∗ for
the innovative activity n such that the principal prefers FW to TM if and only if k > k∗.

6.2 Efficiency of Existing Technology: The Value of θo

Next, I consider how the contracts and payoffs change with θo while holding the distribution
of θn fixed. For an efficiency level of θo, let β∗ (·|θo) be the associated optimal period-2 bonus
schedule β∗ (·) as characterized in Proposition 2, let β̂ (·|θo) be the associated bonus schedule
β̂(·) as characterized in (13), and let θ̈ (θo) be the associated type θ̈ as characterized in (14).

33It is not clear how R(k) changes with k in general. If a higher k were to lower R(k) significantly, then
b̄(k) can be decreasing in k. In turn, if this decrease is also significant, the more restrictive b̄(k) can then
cause the principal’s period-1 payoff to be decreasing in k as well. Numerical examples however suggest that
such a phenomenon would not happen; although b̄(k) tends to bind for high values of k (i.e. b̄(k) < b̂(k)),
R(k) appears to be always increasing in k, which then implies that b̄(k) is always non-decreasing in k.

34This cost function violates the Inada condition that limx→1 ψ(x) =∞, but since the principal will never
offer a bonus greater than Y , the agent’s effort choice is still always interior, which in turn ensures that all
the results in Section 5 hold.
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Proposition 6. When the efficiency level of technology o increases from θo
′ to θo′′:

1. Under TM, the principal’s expected payoffs in both periods increase.35

2. Under FW:

(a) β̂(θ|θo′) = β̂(θ|θo′′) ∀θ ∈
[
θo
′′
, θ̄
]
,36 while θ̈

(
θo
′′
)
> θ̈

(
θo
′
)
. Hence β∗

(
θo
′′|θo′′

)
>

β∗
(
θo
′ |θo′

)
.

(b) The principal’s expected period-2 payoff increases.

Proposition 6.1 is straightforward: since o is used in both periods under TM, when o

becomes more efficient, both the offered bonus and the principal’s payoffs in both periods
become higher.

Proposition 6.2a states that when θo is higher, the optimal bonus schedule “bunches”
at a higher level, but the bonuses at the “non-bunching” region are unchanged. The latter
property is readily seen from condition (13) which illustrates that the schedule β̂ (·) is inde-
pendent of the value of θo. Intuitively, this is because β̂ (·) is determined by a local trade-off
between surplus maximization and information rent minimization. As for the former prop-
erty, when θo is higher, the probability of having a failed innovator (i.e. an agent who draws
θn < θo) increases. The principal will then optimally increase the “bunching” bonus level
because the principal now puts more emphasis on increasing the surplus generated by the
failed innovators. Since the failed-innovator type has a mass point, such a change in bonus
schedule significantly increases the principal’s period-2 payoff, as stated in Proposition 6.2b

Although a higher θo increases the principal’s period-2 payoff under both types of mon-
itoring environments, the magnitude of increase is always higher under TM (Proposition 7
below). LetDTM

(
θo
′′
, θo

′
)
be the difference in the principal’s period-2 payoff under TM when

the efficiency of o changes from θo
′ to θo′′ . Let DFW

(
θo
′′
, θo

′
)
be the analogous difference in

the principal’s period-2 payoff under FW.

Proposition 7. For any θo′′ > θo
′, DTM

(
θo
′′
, θo

′
)
> DFW

(
θo
′′
, θo

′
)
> 0.

Proposition 7 rests on two main observations. First, as just mentioned, the main effect
of θo on the principal’s period-2 payoff under FW is on the surplus from the failed-innovator
type agent which occurs with a probability of less than 1. On the other hand, under TM, a

35The results are unchanged even if effort is contractible under TM (see Remark 1).
36β̂(θ|θo′′) is undefined for θ ∈

[
θo

′
, θo

′′
)
.
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more efficient o always has an effect since o is used with probability 1 in period 2. Second,
under TM, the principal provides first-best incentives for the agent to use o, whereas under
FW, when o is used by the agent in the event of an innovation failure, the incentive provided
is distorted downward.

The effect of θo on period 1 under FW is however ambiguous. If the period-1 bonus
threshold does not bind (i.e. b̂ ≥ b̄), the period-1 bonus and the principal’s period-1 payoff
under FW will be independent of the value of θo since n is used instead. However, if the
period-1 bonus threshold binds, then the effect on the principal’s period-1 payoff depends
on how θo affects the bonus threshold b̄. The ambiguity then arises because it is in general
unclear how a higher θo affects the agent’s expected rent which will in turn affects the
threshold: a higher bonus for the lower types implies that the rent of all agents with a
successful innovation is higher, but the higher probability of innovation failure implies that
the agent is also getting a rent with lower probability.

Table 2: Effect of n with more potential, and a more efficient o

When n has more potential (k ↑) When o becomes more efficient (θo ↑)
Period-2
bonus

Principal’s payoff Period-2
bonus

Principal’s payoff
Period 2 Period 1 Period 2 Period 1

TM No change No change No change Higher Higher Higher

FW Lower
everywhere Higher Highera

Higher for
lower types;
no change for
the higher

types

Higher,
but by a
smaller

magnitude
than under

TM

Ambiguous

aAssuming that the conditions in Proposition 5.3 holds; see Corollary 3.

Nevertheless, the principal’s period-1 payoff under FW is bounded above by en
(
b̂
) [
Y − b̂

]
(see Proposition 3) which is strictly lower than her period-1 payoff under TM whenever
E [θn] ≤ θo. On the other hand, while her period-2 payoff under FW is always higher than
that under TM (Remark 2), it is readily verified that as θo approaches θ̄, the principal’s
period-2 payoffs under the two different monitoring environments converge. Hence, when θo

is sufficiently high, the loss in the principal’s period-2 payoff under TM relative to under
FW will be offset by the gain in period-1 payoff:

Corollary 5. There exists δ > 0 such that the principal always prefers TM to FW if θo >
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θ̄ − δ.

6.3 Implications on the Choice of Monitoring Environment

The comparative static results in this section suggest that one is more likely to observe a
FW type of environment when the firm has a constant need to adapt and improve upon
existing work methods. Within industries, young firms (e.g. startup firms) should be more
likely than old firms to adopt a FW type of environment as they are still learning about
their own operational needs and improving upon the current operating procedures. Across
industries, firms whose business models are based on creating new products (e.g. “tech
firms”) are unlikely to be able to mimic efficient procedures from others or from their own
history, and they thus have high gains from their employees constantly trying to find better
operating strategies. Similarly, firms in volatile market conditions face a constant need to
adapt their procedures to the changing market conditions; firms in such industries should
then be expected to adopt a FW type of environment which promotes innovations from their
employees. On the other hand, when the gains from improvement from the status quo method
are small, the jobs are expected to be carried out under a TM type of environment. These
could include mechanical jobs and relatively homogenous businesses where the experience of
others can be readily adapted and used.

7 Discussion

7.1 General Monitoring Environments

The key difference between TM and FW lies in the information available to the principal in
period 2. In contrast to most principal-agent models, a more informative signal generating
process, in the sense of Blackwell (1951), does not necessarily improve the social surplus
nor the ex-ante expected payoffs of the principal. This is readily observed by noting that
the perfectly informative signal generating process corresponds to TM while the perfectly
uninformative one corresponds to FW. This phenomenon arises because of the incompleteness
in the contracting environment.

One can consider more general types of monitoring environments by allowing for a more
general structure of information flow to the principal post-experimentation. To formalize
this idea, suppose now that the principal never observes the agent’s effort and technology
choices in both periods, and she also does not observe the θn realization directly if it is
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realized. Instead, at the start of period 2, the principal observes a signal σ ∈ Σ, where Σ is a
finite set. If the agent uses n in period 1, the conditional probability distribution of σ given
the θn realization is Π

(
σ

∣∣∣∣θn); and if the agent uses o in period 1, the conditional probability

distribution of σ is Π
(
σ
∣∣∣∣θo). Signal σ is also observed by the agent but is non-verifiable by

a third party and hence not contractible. A {Σ,Π}-pair is thus a general form of monitoring
environment.

On the equilibrium path of an exploration equilibrium, upon observing signal σ in period
2, the principal forms a posterior belief about θn. Using Bayes theorem, the density of the
posterior is:

fσ (θn) =
Π
(
σ
∣∣∣∣θn) f (θn)∫ θ̄

θ Π
(
σ
∣∣∣∣t) f (t) dt

, ∀θn.

The principal’s screening problem after observing σ will be program P in (8) but with the
distribution replaced by her posterior now.37 The parties’ ex-ante expected payoffs in period
2 is then obtained by taking expectation over the probability distribution of σ.38

The choice of {Σ,Π} is a choice of the distribution over the principal’s posterior, where
each posterior is associated to a set of period-2 payoffs for the two parties. This is an informa-
tion control problem and is related to the literature on Bayesian persuasion (Kamenica and
Gentzkow, 2011). The difference is that in the persuasion literature, the principal chooses
an information structure to “persuade” the agent to take an ex-post action in her favor; in
contrast, here the principal chooses an information structure that commits herself to take an
ex-post action (the bonus offers in period 2) which then influences the agent’s actions both
ex-ante (period 1) and ex-post (period 2).

This is also reminiscent of the seminal work of Aghion and Tirole (1997) which provides
a theory of authority using asymmetric information as the main building block. Aghion and
Tirole define “formal authority” as the formal right to make decisions, while “real authority”
is having the information to effectively make decisions. Hence the principal trades off between
giving up control (ceding formal authority) or committing to have less information (ceding

37That is, the distribution of θ ∈
[
θo, θ̄

]
is Pr [θ ≤ x] = Fσ (θo) +

∫ x
θo
fσ(t)dt, where Fσ is the distribution

representing the posterior.
38Some of the assumptions made here are without loss of generality. First, the assumption that the agent

also observes σ is not important. Even if the agent does not observe σ, the menu offered by the principal,
which depends on her now privately known posterior distribution of θn, must still satisfy the same set of
agent’s truth-telling constraints for all realizations of θn. Next, when the focus is on exploration equilibrium,
what the principal observes when the agent uses τ = o in period 1 does not matter, because an agent who
uses o always earns zero rent regardless of the posterior held by the principal.

36



real authority), with incentivizing the agent to gather information that improves the quality
of decision-making. In the same spirit, this paper uses the information observed by the
principal as a cornerstone that determines the size of the surplus generated in the relationship
through innovation attempts by the agent, and how it is eventually shared between the
principal and the agent.

7.2 Innovative Effort

The degree of innovation success in the baseline model is completely dictated by luck since
it is just a draw of θn. In reality, a worker should be able to affect the probability of getting
an innovation and its degree of success. In the Supplementary Appendix, the baseline model
is extended to allow for the agent to privately choose another dimension of effort in period
1 when he uses the innovative technology n. This additional dimension of effort is termed
as innovative effort i, which is distinct from productive effort e and ε. Exerting a higher
innovative effort level i will increase both the agent’s probability of getting an innovation and
its degree of success, but it comes at a cost of decreasing marginal productivity of productive
effort in period 1.

The distinction between effort for production and effort for better innovation is motivated
by the view that the process of generating output and that of generating innovation are
different, and better innovation is often created at the expense of lowering productivity
during the innovating stage. For example, when trying out a new machine, a worker might
devote time to understanding its mechanics. This takes away time from current production
but improves his proficiency in using the new machine in future. The choice of innovative
effort i thus studies to what extent is a worker willing to neglect his current main job, which
his current pay is dependent on, to focus on coming out with better innovations, to which
he might benefit from in the future?

The main result in the extension establishes that the agent can only be induced to exert
either zero or maximum innovative effort level. This is because the agent’s gain from a
better innovation is his expected period-2 rent which is inherently convex in his innovation
success level (this is analogous to Proposition 4). The convexity then makes it difficult to
strike a balance between incentive provision for productive and innovative efforts. This result
suggests an implicit need for specialization in organizations at each stage of their development
in which the focus at any one time can only be on either innovation or production, but not
both:

“Both exploration and exploitation are essential for organizations, but they com-
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pete for scarce resources. As a result, organizations make explicit and implicit
choice between the two” - March (1991), pg. 71.

7.3 Outside Option for Innovation

By having the agent’s period-2 outside option being independent of θn, the model is implicitly
assuming that the worker is unable to take his innovation to another firm and reap the
benefits there. For example, the innovation could be firm-specific, or it could be difficult for
other firms to verify the innovation. More generally, this assumption is also in line with a
firm’s need to also protect its own innovations from being stolen by its workers, which implies
that the firm has in place a default arrangement that prevents its workers from taking any
innovation to another firm. In practice, this is often carried out through “assignment of
inventions” and “non-compete” clauses in employment contracts.

An “assignment of inventions” clause cedes intellectual property rights of any invention
created by the worker during his tenure in the firm to his employer. Cherensky (1993)
observes that “virtually all technical employees agree, as a condition of employment, to
assign to the employer all rights to inventions conceived by the employee while at work, or
in subject matters related to work, or while using any resources of the employer”. Howell
(2012) writes about how such agreements “have become important and commonplace facets
of employment agreements”. On the other hand, a “non-compete” clause forbids employees
from leaving the firm to work for a rival or setting up a competing business. The Economist
reports that about 90% of managerial and technical employees in the United States have
signed such “non-compete” agreements, and the classifications of “rival” or “competing”
businesses are defined very broadly.39 These agreements typically have a lifespan of up to
two but can go as many as five years.

8 Related Literature

This paper is related to the ratchet effect literature. Freixas et al. (1985) and Laffont
and Tirole (1987, 1988) are early theoretical contributions on the ratchet effect. In the
labor literature, the ratchet effect arises as the workers rationally restricting output as they
expect their employers to respond to higher performances with more demanding requirements
later (Lazear, 1986; Gibbons, 1987). Kanemoto and MacLeod (1992) and Carmichael and

39See “Ties that bind”, Dec 14th 2013, The Economist.
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MacLeod (2000) identify market conditions that mitigate the ratchet effect in labor markets.
In this paper, instead of engaging in output restriction, the ratchet effect concerns the
worker (not) choosing the principal’s desired technology. More substantially, the ratchet
effect literature assumes that the agent has ex-ante superior information over the principal
and studies the principal’s problem due to short-term contracting; in contrast, information
is ex-ante symmetric in this paper. Two notable exceptions are Bhaskar (2014) and Bhaskar
and Mailath (2015) who also identify a ratchet effect under ex-ante symmetric uncertainty.
However, the ratchet effect in these two papers arises from the agent shirking and gaining
rent from the principal holding wrong (in particular, more pessimistic) beliefs about the
underlying state, which is different from here. Moreover, while the principal suffers from
the agent’s ability to create differential beliefs in Bhaskar (2014) and Bhaskar and Mailath
(2015), the principal can benefit here from the agent having superior information over the
underlying state as illustrated under FW.

The theme of strategic ignorance where the principal can benefit from less information
on the agent’s actions, which is at the core of this paper, has been previously noted in
the literature in various contexts (e.g. Riordan, 1990; Crémer, 1995; Aghion and Tirole,
1997; Fingleton and Raith, 2005; Prat, 2005; Taylor and Yildirim, 2011; Shin and Strausz,
2014).40 However, this paper differs from the above mentioned paper in two aspects. First,
the mechanism is different – reduced monitoring here serves as a commitment device for the
principal to share the innovation surplus with the agent. Second, the notion of strategic
ignorance is stronger here in the sense that the principal also has to appropriately design

40Riordan (1990) considers vertical relationships and illustrates how incentives for the supplier to make
buyer-specific investments diminish when the two are integrated. Crémer (1995) highlights the benefit of
an “arm’s length relationship” where the principal does not observe the agent’s intrinsic ability and effort
choice; in doing so, the principal’s threat of firing the agent after a low performance becomes credible
which then deters the agent from shirking. Aghion and Tirole (1997) show that a principal can provide
better incentives for information acquisition for effective decision-making by committing not to observe the
information collected by an agent with mis-aligned preference on project choice. Fingleton and Raith (2005)
considers how observing the actions of the agent who bargains on behalf of the principal can lead to overly
aggressive bargaining behavior by the agent in order to signal his bargaining ability. Prat (2005) shows that
when the principal observes the agent’s action directly, the agent who has career concerns might disregard
his useful information and acts in a conformist way to mimic a good agent to gain reputation, thus hurting
the principal. Taylor and Yildirim (2011) show that the principal can provide better incentives for the agent
to improve the quality of the project if she can commit not to observe the agent’s ability (i.e. “blind review”
on the project quality). Shin and Strausz (2014) consider a setting in which the agent has ex-ante private
information and the principal is unable to elicit the agent’s information in period 1 due to her inability to
enforce long-term contracts; they then show that by allowing the agent to accrue private information on
another dimension, the inability to elicit information in period 1 can be alleviated, and this can benefit the
principal if early information revelation is important.
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the incentive structure for the agent to generate information asymmetry against herself.41,42

This paper is also related to the strategic experimentation literature. Bergemann and
Hege (1998, 2005), Hörner and Samuelson (2013), and Halac et al. (2016) (among oth-
ers) study optimal contracting on the experimentation outcome to solve the moral hazard
problem. In this literature, the uncertainty and learning are typically modeled on the pro-
ductivity; whereas here, they are modeled on the cost of effort instead. This is a deliberate
choice and it highlights the difference in focus. A model here that is more in line with this
literature would be to suppose that the probability of getting Y in period 1 with n is pne,
where pn is an ex-ante unknown productivity parameter to be learned via the experimenta-
tion. Under such a model specification, the principal’s posterior on pn under FW will depend
on the realization of y in period 1. Two substantial issues then arise. First the realization of
y in period 1 now carries information about the experimentation outcome since it is affected
by the underlying value of pn. Outcome y being contractible then implies that the exper-
imentation outcome is at least partially contractible. However, the focus in this paper is
on motivating experimentation when the experimentation outcome is totally uncontractible.
The second issue is a technical one resulting from the agent’s ability to affect y in period 1
through his effort e. The types of private beliefs, and hence the off-equilibrium payoffs, that
can be generated would complicate the analysis significantly and shroud the main points.43

The way in which the tension between experimentation and forgoing current productivity
is incorporated in a two-armed bandit problem here is similar to Manso (2011) (see also
Ederer, 2013; Ferreira et al., 2014). Besides the difference in perspective on the contractibility
of the experimentation outcome just mentioned, this paper also differs from Manso (2011) in
terms of how the agent derives incentives to innovate. In Manso (2011), the agent’s incentives
for innovation are hard; they come from the principal’s ability to write long-term contracts
or from the rent derived due to the agent’s limited liability. In this paper, the incentives
are soft; it is a potential information rent derived from the asymmetric information that the

41Information asymmetry is absent in models of career concerns which thus further stand in contrast to
this paper. The model of Ortner and Chassang (2015) also features the principal benefiting from generating
asymmetric information, but the asymmetric information is generated between the agents to make collusion
between them harder; in contrast, the principal benefits from generating asymmetric information against
herself here.

42The strategic ignorance theme is also reminiscent of the highly influential work by Bernheim and Whin-
ston (1998). They show that when some aspect of performance is not contractible, it can be optimal to
also not contract on some verifiable aspects of the performance. Their focus is on optimal incomplete-
ness in contracts – a phenomenon they call “strategic ambiguity” – whereas this paper focuses on optimal
(un)observability of the agent’s actions.

43A simple version of this issue arises in an extension with innovative effort which is modeled in the
Supplementary Appendix.
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principal generates against herself.
More broadly, the screening problem in period 2 in this paper also concerns the effects of

the information structure on the optimal contracts in the principal-agent framework. Early
works by Lewis and Sappington (1991, 1993) and Sobel (1993) study the principal’s pref-
erence over the amount of information possessed by the agent. Subsequent contributions
by Crémer and Khalil (1992), Lewis and Sappington (1997), Crémer et al. (1998a,b), Sza-
lay (2005, 2009) and Iossa and Martimort (2015) consider the agent’s incentives to acquire
information. This literature takes the agent’s cost of information acquisition as given and
considers writing a menu of contracts that affects the agent’s incentives to gather informa-
tion. In contrast, the menu of contracts in this paper cannot be used to affect the agent’s
information acquisition incentives (i.e. incentives to experiment on n) since the menu is
offered only after the information acquisition process in period 1; instead the principal influ-
ences the agent’s information acquisition incentives via the monitoring environment, which
affects the agent’s expected gain from information acquisition, and via the period-1 contract,
which determines his opportunity cost of information acquisition.

9 Conclusion

This paper studies motivating innovation when the innovation is not contractible ex-ante and
the firm is unable to commit to future rewards. I illustrate how the monitoring environment
affects a worker’s incentives to innovate and improve the efficiency inside the firm, and I
characterize the incentive structure required to complement the monitoring environment.
By allowing its workers to accrue private information about their innovation, the firm is
compelled to share any innovation surplus with its workers via an information rent. This
helps to explain why workers perform better when given more freedom at work, and how
workplaces are sometimes organized to indirectly distribute rents to the workers.
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A Appendix: Proofs

Proof of Proposition 1.

Proof. The main text establishes the period-2 contract (α∗, β∗). Given the agent’s limited
liability and zero outside option in period 1, a∗ = 0. b∗ will be unique if eo(b) [Y − b] is
continuous and strictly concave. Verifying this is similar to the proof of Proposition 3 and
is thus omitted.

Proof of Lemma 1.

Proof. ε (·) is differentiable using the implicit function theorem on (6). Differentiability of
u (·) then follows. Omitting the arguments, the partial derivatives of ε (·) and u (·) are:
εβ = θ2

ψ′′
> 0, εθ = ψ′

ψ′′
+ ε

θ
> 0, εββ = − θ3ψ′′′

(ψ′′)3 < 0, εθθ = ψ′[2(ψ′′)2−ψ′.ψ′′′]
θ(ψ′′)3 > 0, εβθ =

θ[2(ψ′′)2−ψ′.ψ′′′]
(ψ′′)3 > 0; and uβ = ε > 0, uθ = ψ′ · ε

θ2 > 0, uββ = εβ > 0, uθθ = (ψ′)2

θ2(ψ′′)2 > 0,
uβθ = εθ > 0.

Proof of Lemma 2.

Proof. Follows from standard arguments. See for example Salanié (2005) Chapter 2.3.1.

Proof of Proposition 2.

The proof proceeds in two steps. In Step 1, I consider the auxiliary problem P̃ ′:

Φ
(
β̈
)

:= max
β(·)∈B(β̈)

∫ θ̄

θo
φ (β(θ), θ) f(θ)dθ, (P̃ ′)

where B(β̈) is the set of all non-decreasing functions mapping from domain
[
θo, θ̄

]
to [β̈,∞).44

Φ
(
β̈
)
is thus the principal’s maximum expected payoff from the successful innovators when

she has to give at least bonus β̈ to the failed innovator type. It will be shown that for any
β̈, the solution to P̃ ′ is unique. In Step 2, the optimal β∗(θo) is pinned down by solving:

max
β̈

Φ
(
β̈
)

+ s
(
β̈, θo

)
F (θo) . (A.1)

44There is an abuse of notation of B(·) from (23) in the main text.
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Since the solution to P̃ ′ is unique, the solution to (A.1) together with its corresponding
solution for P̃ ′ is the solution to program P ′ in (11).

(Step 1) Solving the Problem P̃ ′:

The following properties of φ (·) and its maximal will be useful to characterize the solution
of P̃ ′:

Lemma A.1. φ(β, θ) is continuously differentiable in both its arguments. For any θ ∈
[
θo, θ̄

]
,

arg max
β≥0

φ(β, θ) has a unique solution. Define β̂(θ) := arg max
β≥0

φ(β, θ). For any θ ∈
[
θo, θ̄

]
:

1. φ(β, θ) is strictly concave in β for β ∈ [0, Y ].

2. β̂(θ) is characterized by φβ
(
β̂(θ), θ

)
= 0.

3. β̂(θ̄) = Y .

4. β̂(θ) is differentiable and d
dθ
β̂(θ) is continuous.

5. β̂(θ) is strictly increasing in θ.

6. φ∗(θ) := φ
(
β̂(θ), θ

)
is continuous in θ.

Proof. Differentiability of φ (·) follows from differentiability of ε (·) and ψ (·).

φβ (β, θ) = εβ(β, θ)Y − 1
θ
ψ′
(
ε(β, θ)
θ

)
− uβθ(β, θ)H(θ)

= εβ(β, θ) [Y − β]− εθ(β, θ)H(θ), (A.2)

where the last line uses (6) and uβθ(β, θ) = εθ(β, θ) (see proof of Lemma 1). Next:

φββ (β, θ) = εββ(β, θ) [Y − β]− εβ(β, θ)− εβθ
(
β, θ

)
H(θ). (A.3)

Hence φ (·) is strictly concave in β for β ∈ [0, Y ] (point 1).45 From (A.2), φβ (β, θ) < 0
whenever β > Y . Hence the optimal β must be less than Y . Together with point 1, β̂(θ) is
unique and is characterized by the FOC; this thus proves point 2. Point 3 then follows from
H(θ̄) = 0. Next:

φθβ (β, θ) = εθβ(β, θ) [Y − β]− εθθ(β, θ)H(θ)− εθ(β, θ)Hθ(θ). (A.4)
45From here, it is readily noted that the principal’s objective is strictly concave in β. Hence offering

stochastic contracts will never be optimal for the principal.
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Using point 2 and FOC (A.2), Y − β̂(θ) = εθ(β̂(θ),θ)H(θ)
εβ(β̂(θ),θ) . Substitute this into (A.4) and with

some algebra (and dropping the arguments without confusion):

φθβ (β, θ)
∣∣∣∣
β=β̂(θ)

= εβθ
εθH(θ)
εβ

− εθθH(θ)− εθHθ(θ)

= [2(ψ′′)2 − ψ′ψ′′′]
θ2(ψ′′)2 εH(θ)− εθHθ(θ) > 0

where the inequality follows Assumptions 1 and 2. By the implicit function theorem,
d
dθ
β̂(θ) = − φθβ(β̂(θ),θ)

φββ(β̂(θ),θ) > 0 which is also continuous. This establishes points 4 and 5. Since

φ(·) is continuous in θ ∈
[
θo, θ̄

]
, by Berges Maximum theorem , φ∗ is continuous which

establishes point 6.

Lemma A.1.2 is condition (13) in the proposition. The next lemma completes Step 1:

Lemma A.2. Fix a β̈ > 0 and let β̃∗(·) be the solution to program P̃ ′. β̃∗(·) is uniquely
characterized as the following:

1. If β̈ ≥ Y , then β̃∗(θ) = β̈ ∀θ ∈
[
θo, θ̄

]
.

2. If β̈ ≤ β̂ (θo), then β̃∗(θ) = β̂(θ) ∀θ ∈
[
θo, θ̄

]
.

3. If β̈ ∈
(
β̂(θo), Y

)
, then

β̃∗(θ) =

β̂(θ) , ∀θ > θ̈

β̈ , ∀θ ≤ θ̈
(A.5)

where θ̈ := β̂−1
(
β̈
)
.

Proof. The case of β̈ ≥ Y is trivially true since φ (β, θ) < 0 ∀θ for β > Y . The case for
β̈ ≤ β̂ (θo) follows from β̂(·) being point-wise optimal for all θ ∈

[
θo, θ̄

]
(Lemma A.1). For the

case of β̈ ∈
(
β̂(θo), Y

)
, first note that θ̈ is well-defined since β̂(·) is strictly increasing (Lemma

A.1.5). Consider some β̃(·) that differs from β̃∗(·) in (A.5) for some non-zero measure subset
of
[
θo, θ̄

]
. Suppose first that β̃(·) differs from β̃∗(·) for some non-zero measure subset of[

θ̈, θ̄
]
. This implies that:

∫ θ̄

θ̈
φ
(
β̃∗(θ), θ

)
f(θ)dθ =

∫ θ̄

θ̈
φ
(
β̂(θ), θ

)
f(θ)dθ >

∫ θ̄

θ̈
φ
(
β̃(θ), θ

)
f(θ)dθ
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since β̂(·) is the unique point-wise optimal for φ (·). Next suppose that β̃(·) differs from
β̃∗(·) for some non-zero measure subset of

[
θo, θ̈

]
instead. Note that β̃(θ) ≥ β̈ ∀θ ∈

[
θo, θ̄

]
since β̃(·) ∈ B(β̈). Moreover, φββ (β, θ) < 0 (Lemma A.1.1) implies that ∀θ ∈

[
θo, θ̄

]
,

φ (β, θ) < φ (β′, θ) when β > β′ ≥ β̂(θ). Since β̈ ≥ β̂(θ) ∀θ ∈
[
θo, θ̈

]
and β̃(θ) ≥ β̈, this

implies that:

∫ θ̈

θo
φ
(
β̃∗(θ), θ

)
f(θ)dθ =

∫ θ̈

θo
φ
(
β̈, θ

)
f(θ)dθ >

∫ θ̈

θo
φ
(
β̃(θ), θ

)
f(θ)dθ.

Hence any β̃(·) that differs from β̃∗(·) in (A.5) is strictly worse than β̃∗(·).

(Step 2) Solve for β̈:

Lemma A.3. Φ
(
β̈
)
is differentiable, strictly decreasing and strictly concave for β̈ ≤ Y .

Proof. Φ
(
β̈
)
can be written as:

Φ
(
β̈
)

=
∫ β̂−1(β̈)
θo

φ
(
β̈, θ

)
f(θ)dθ +

∫ θ̄

β̂−1(β̈)
φ
(
β̂(θ), θ

)
f(θ)dθ.

Since β̂(·) is strictly increasing and differentiable (Lemma A.1), β̂−1(β) is also strictly increas-
ing and differentiable with derivative 1

β̂′(β̂−1(β)) which is continuous since β̂′(·) is continuous
(Lemma A.1.4). Hence Φ is differentiable by Leibniz’s rule:

d

dβ̈
Φ
(
β̈
)

=
φ (β̈, θ̈) f(θ̈)− φ

(
β̂(θ̈), θ̈

) )
f(θ̈)


︸ ︷︷ ︸

=0

 1
β̂′
(
β̂−1(β̈)

)
+

∫ β̂−1(β̈)
θo

φβ
(
β̈, θ

)
︸ ︷︷ ︸

<0

f(θ)dθ < 0.

φβ
(
β̈, θ

)
< 0 for all θ ∈

[
θo, θ̈

)
since φββ < 0 (Lemma A.1.1) and β̈ > β̂(θ). Differentiating

again:

d2

dβ̈2
Φ
(
β̈
)

= φβ
(
β̂(θ̈), θ̈

)
︸ ︷︷ ︸

=0

f(θ̈)
 1
β̂′
(
β̂−1(β̈)

)
+

∫ β̂−1(β̈)
θo

φββ
(
β̈, θ

)
︸ ︷︷ ︸

<0

f(θ)dθ < 0.

Lemma A.4. s
(
β̈, θo

)
F (θo) is differentiable, strictly increasing and strictly concave for

β̈ < Y .

A-4



Proof. Differentiability of s (·) follows from differentiability of ε (·) and ψ (·).

d

dβ̈
s
(
β̈, θo

)
= εβ

(
β̈, θo

)
Y −

εβ
(
β̈, θo

)
θo

ψ′

ε
(
β̈, θo

)
θo


= εβ

(
β̈, θo

) [
Y − β̈

]
which is positive whenever β̈ < Y , and d2

dβ̈2 s
(
β̈, θo

)
= εββ

(
β̈, θo

) [
Y − β̈

]
−εβ

(
β̈, θo

)
< 0.

Lemmas A.3 and A.4 jointly imply that Φ
(
β̈
)

+ s
(
β̈, θ

)
F (θo) is strictly concave in

β̈ ∈
[
β̂(θo), Y

]
. The solution for (A.1) must be in the interior of

[
β̂(θo), Y

]
. To see why,

notice that d
dβ̈

Φ
(
β̈
) ∣∣∣∣∣∣

β̈=β̂(θo)

= 0 while d
dβ̈
s
(
β̈, θo

) ∣∣∣∣∣∣
β̈=β̂(θo)

> 0. Hence β̈ > β̂(θo). Similarly,

d
dβ̈

Φ
(
β̈
) ∣∣∣∣∣∣

β̈=Y

< 0 while d
dβ̈
s
(
β̈, θo

) ∣∣∣∣∣∣
β̈=Y

= 0. Hence β̈ < Y . Thus, the solution to (A.1)

is characterized by its first-order condition which is condition (14) in the proposition. The
strict concavity also implies that the solution is unique and thus, the solution to P ′ is
unique. Notice that β̃∗(·) in (P̃ ′) is continuous everywhere, differentiable everywhere except
(possibly) at θ̈ , and strictly increasing for θ ≥ θ̈. Since these properties hold for any β̈, they
carry over to β∗(·). Using (IC-2A) in Lemma 2:

α∗(θ) = Ū(θ)− u (β∗(θ), θ) = U0 +
∫ θ

θo
uθ (β∗(t), t) dt− u (β∗(θ), θ) .

β∗ (θ) ≤ Y =⇒ u (β∗(θ), θ) ≤ u (Y, θ) ≤ u
(
Y, θ̄

)
≤ U0; hence α∗(θ) > 0 is differentiable

almost everywhere, with d
dθ
α∗(θ) = −uβ (β∗(θ), θ) β∗θ (θ) ≤ 0 whenever the derivative exists.

Proof of Lemma 3.

Proof. Concavity of W τ (e, b) in e implies that eτ (b) is characterized by the respective first-
order condition:

b = 1
θo
ψ′
(
eo(b)
θo

)
(A.6)

b = E

[
1
θn
ψ′
(
en(b)
θn

)]
(A.7)
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Since W τ (e, b) is super-modular, using the implicit function, eτ (b) is differentiable and
d
db

(eτ (b)) > 0:

d

db
(eo(b)) = 1(

1
θo

)2
ψ′′
(
eo(b)
θo

) ,
d

db
(en(b)) = 1

E
[(

1
θn

)2
ψ′′
(
en(b)
θn

)] . (A.8)

Next (A.6) and (A.7) imply that for any b > 0:

1
θo
ψ′
(
eo(b)
θo

)
= E

[
1
θn
ψ′
(
en(b)
θn

)]
>

1
E [θn]ψ

′
(
en(b)
E [θn]

)
≥ 1

θo
ψ′
(
en(b)
θo

)
.

Since ψ′(·) is strictly increasing, eo(b) > en(b).
Next let ∆(b) = W̄ o(b) − W̄ n(b). Since limb→0 e

τ (b) = 0 ∀τ , limb→0 ∆(b) = −R < 0.
Hence there exists small enough b such that ∆(b) < 0. By the envelope theorem, ∆′(b) =
eo(b)− en(b) > 0 ∀b > 0; this implies that ∆(b) is strictly increasing and thus can cross 0 at
most once. If ∆(·) crosses 0, then b̄ is defined by b̄ = ∆−1(0). If ∆(·) is bounded above by
0, then b̄ =∞. That b̄ is non-decreasing in R is immediate from the observation that ∆(b)
is point-wise decreasing in R.

Proof of Proposition 3.

Proof. Given the explanation in the main text, I only have to prove that en(b) [Y − b] is
strictly concave in b. en(·) is continuously differentiable from (A.8). Differentiating (A.7)
w.r.t b twice:

−E
[( 1
θn

)3
ψ′′′

(
en(b)
θn

)](
d

db
(en(b))

)2

− E
[( 1
θn

)2
ψ′′
(
en(b)
θn

)]
d2

db2 (en(b)) = 0

Since ψ′′′(·) ≥ 0, it must be true that d2

db2
(en(b)) ≤ 0. Next differentiating en(b) [Y − b] twice

gives d2

db2
(en(b) [Y − b]) =

(
d2

db2
(en(b))

)
[Y − b]− 2

(
d
db

(en(b))
)
< 0.

Proof of Proposition 4.

Proof. Innov(θo) < 0 is immediate. For Innov > 0, using the formulation in (9) for program
P , maxβ(·)∈B

∫ θ̄
θo v (β(·), θ) dF (θ) =

∫ θ̄
θo s (β∗(θ), θ) dF (θ)−R ≥ s (Y, θo) (see Remark 2). Since

R > 0, Innov must be strictly positive. That the agent’s innovation surplus is strictly
increasing and strictly convex in θ follows from straightforward differentiation on (IC-2A) in
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Lemma 2.

The following result will be useful for the proof of the next three propositions.

Lemma A.5. sθ (β, θ) = εθ(β, θ) [Y − β]+uθ(β, θ) and sθβ (β, θ) = εθβ(β, θ) [Y − β]. Hence
∀β ≤ Y , sθ (β, θ) > 0 and sθβ (β, θ) > 0.

Proof.

sθ(β, θ) = εθ(β, θ)Y − ψ′
(
ε(β, θ)
θ

)[
θεθ(β, θ)− ε(β, θ)

θ2

]

= εθ(β, θ)
[
Y − 1

θ
ψ′
(
ε(β, θ)
θ

)]
+ ψ′

(
ε(β, θ)
θ

)
ε(β, θ)
θ2

= εθ(β, θ) [Y − β] + uθ (β, θ)

By noting that εθ(β, θ) = uθβ (β, θ), it is immediate that sθβ (β, θ) = εθβ(β, θ) [Y − β].

Proof of Proposition 5.

Throughout this proof, let β̂ (·; k) be the bonus schedule characterized in (13) for distribution
F (·; k), let θ̈(k) be the corresponding maximum bunching type characterized in (14),46 and
let β̈(k) denote the bunching bonus level β̂

(
θ̈(k); k

)
.

Proof of Proposition 5.1.

Proof. Since εββ < 0 and εβθ > 0, inspection of (13) reveals that H(θ; k′′) > H(θ; k′) =⇒
β̂(θ; k′′) < β̂(θ; k′). The result is then established by showing β̈(k′′) < β̈(k′). Rewrite (14)
as: ∫ β̂−1(β̈(k);k)

θo
φβ
(
β̈(k), θ

)
f(θ; k)dθ + sβ

(
β̈(k), θo

)
F (θo; k) = 0 (A.9)

46Note that there is an abuse of notation of θ̈(·) relatively to how it is used in Section 6.2.
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where β̂−1 (·; k) is the inverse function of β̂(·; k). By the implicit function theorem, d
dk
β̈(k) =

−
∂(eq (A.9))

∂k
∂(eq (A.9))

∂β̈

. From Lemma A.3 and A.4, ∂(eq A.9)
∂β̈

< 0. I show that ∂(eq A.9)
∂k

< 0 next.

∂(eq A.9)
∂k

= φβ
(
β̈(k), θ̈(k)

)
︸ ︷︷ ︸

=0

f
(
θ̈(k); k

)( ∂

∂k
β̂−1

(
β̈(k); k

))

+
∫ β̂−1(β̈(k);k)
θo

εβ(β̈(k), θ
)

︸ ︷︷ ︸
>0

(
Y − β̈(k)

)
︸ ︷︷ ︸

>0

fk(θ; k) + εθ
(
β̈(k), θ

)
︸ ︷︷ ︸

>0

Fk(θ; k)︸ ︷︷ ︸
<0

 dθ
+ sβ

(
β̈(k), θo

)
︸ ︷︷ ︸

>0

Fk(θo; k)︸ ︷︷ ︸
<0

.

To sign the second line,47 notice that if fk(θ; k) ≤ 0, then ∂(eq A.9)
∂k

< 0. Suppose that
fk(θ; k) > 0 instead. Since θ ≤ β̂−1

(
β̈(k); k

)
in this region, β̈(k) ≥ β̂(θ; k). From (A.2) and

(A.3):

εβ
(
β̈(k), θ

) [
Y − β̈(k)

]
− εθ

(
β̈(k), θ

)
H(θ; k) ≤ 0

⇐⇒ Y − β̈(k) ≤ εθ(β̈(k),θ)H(θ;k)
εβ(β̈(k),θ) .

Substitute this into the above:

εβ
(
β̈(k), θ

) (
Y − β̈(k)

)
fk(θ; k) + εθ

(
β̈(k), θ

)
Fk(θ; k)

≤ εβ
(
β̈(k), θ

)εθ
(
β̈(k), θ

)
H(θ; k)

εβ
(
β̈(k), θ

)
 fk(θ; k) + εθ

(
β̈(k), θ

)
Fk(θ; k)

= εθ
(
β̈(k), θ

)
[H(θ; k)fk(θ; k) + Fk(θ; k)]

which is negative since d
dk
H(θ; k) > 0 and d

dk
H(θ; k) = − 1

f(θ;k) [H(θ; k)fk(θ; k) + Fk(θ; k)].

47To get the second line, it might be helpful to note that φβ
(
β̈(k), θ

)
f(θ; k) =

εβ
(
β̈(k), θ

) (
Y − β̈(k)

)
f(θ; k)− εθ

(
β̈(k), θ

)
[1− F (θ; k)].
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Proof of Proposition 5.2.48

Proof.
∫ θ̄
θo v (β(·), θ) f(θ)dθ = v

(
β(·), θ̄

)
−s (β(θo), θo)F (θo)−

∫ θ̄
θo

d
dθ

[v (β∗(·), θ)]F (θ)dθ from
an integration by part. Program P ′ in (9) can thus be written as:

∫ θ̄

θo
v (β(·), θ) dF (θ) = v

(
β(·), θ̄

)
−
∫ θ̄

θo

d

dθ
[v (β∗(·), θ)]F (θ)dθ.

Suppose k′′ > k′. It is without loss to define β∗(θ; k′) = Y for θ ∈
[
θ̄(k′), θ̄(k′′)

]
; β∗(·; k′) is

non-decreasing in
[
θ, θ̄(k′′)

]
and is thus feasible under distribution F (·; k′′). This implies:

V(k′′) ≥ v
(
β∗(·; k′), θ̄(k′′)

)
−
∫ θ̄(k′′)

θo

d

dθ
[v (β∗(·; k′), θ)]F (θ; k′′)dθ,

V(k′) = v
(
β∗(·; k′), θ̄(k′)

)
−
∫ θ̄(k′)

θo

d

dθ
[v (β∗(·; k′), θ)]F (θ; k′)dθ.

Hence

V(k′′)− V(k′) ≥ v
(
β∗(·; k′), θ̄(k′′)

)
− v

(
β∗(·; k′), θ̄(k′)

)
(A.10)

−
∫ θ̄(k′′)

θ̄(k′)

d

dθ
[v (β∗(·; k′), θ)]F (θ; k′′)dθ (A.11)

−
∫ θ̄(k′)

θo

d

dθ
[v (β∗(·; k′), θ)] (F (θ; k′′)− F (θ; k′)) dθ. (A.12)

For (A.10), using the definition of v in (10):

v
(
β∗(·; k′), θ̄(k′′)

)
− v

(
β∗(·; k′), θ̄(k′)

)
= s

(
Y, θ̄(k′′)

)
− s

(
Y, θ̄(k′)

)
−
∫ θ̄(k′′)

θ̄(k′)
uθ (β∗(θ; k′), θ) dθ

=
∫ θ̄(k′′)

θ̄(k′)
sθ (Y, θ) dθ −

∫ θ̄(k′′)

θ̄(k′)
uθ (Y, θ) dθ, (A.13)

48Standard envelope theorem results (eg. Milgrom and Segal (2002)) cannot be directly applied here
because the feasible set B (k) is dependent on k. The proposition also does not require differentiability of
V (k).
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and, for (A.11):

∫ θ̄(k′′)

θ̄(k′)

d

dθ
[v (β∗(·; k′), θ)]F (θ; k′′)dt

=
∫ θ̄(k′′)

θ̄(k′)

d

dθ

s( β∗(θ; k′)︸ ︷︷ ︸
=Y

, θ
)
−
∫ θ

θo
uθ (β(t; k′), t) dt

F (θ; k′′)dθ

=
∫ θ̄(k′′)

θ̄(k′)
[sθ (Y, θ)− uθ (Y, θ)]F (θ; k′′)dθ. (A.14)

From Lemma A.5, sθ (Y, θ) = uθ (Y, θ); hence the terms in (A.13) and (A.14) are both 0.
Hence:

V(k′′)− V(k′) ≥ −
∫ θ̄(k′)

θo

d

dθ
[v (β∗(·; k′), θ)] [F (θ; k′′)− F (θ; k′)]︸ ︷︷ ︸

<0

dθ.

which is strictly positive since, using Lemma A.5:

d

dθ
v (β∗(·; k′), θ) = sβ (β∗(θ; k′), θ) β∗θ (θ; k) + sθ (β∗(θ; k′), θ)− uθ (β∗(θ; k′), θ)

= sβ (β∗(θ; k′), θ) β∗θ (θ; k′) + εθ (β∗(θ; k′), θ) [Y − β∗(θ; k′)] (A.15)

> 0. (A.16)

Proof of Proposition 5.3.

Proof. For a period-1 bonus b, let the agent’s optimal period-1 effort for n with potential k
be:

en(b; k) := arg max
e

{
eb−

∫ θ̄(k)

θ
ψ
(
e

θn

)
f(θn; k)dθn

}

= arg max
e

{
eb− ψ

(
e

θ̄(k)

)
−
∫ θ̄(k)

θ

e

(θn)2ψ
′
(
e

θn

)
F (θn; k)dθn

}
,

en(b; k′′) > en(b; k′) since the objective is strictly super-modular in e and k. First suppose
that b̂(k′′) ≤ b̄(k′′). The principal’s period-1 payoff under k′′ is en

(
b̂(k′′); k′′

) [
Y − b̂(k′′)

]
,
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and:

en
(
b̂(k′′); k′′

) [
Y − b̂(k′′)

]
≥ en

(
b̂(k′); k′′

) [
Y − b̂(k′)

]
> en

(
b̂(k′); k′

) [
Y − b̂(k′)

]
≥ max

b≤b̄(k′)
{en (b; k′) [Y − b]} .

Suppose that R(k′′) ≥ R(k′) instead. This implies b̄(k′′) ≥ b̄(k′) ≥ b∗(k′) where b∗(k′) :=
min

{
b̂(k′), b̄(k′)

}
; b∗(k′) is a feasible bonus under k′′. Hence

max
b≤b̄(k′′)

{en(b; k′′) [Y − b]} ≥ en (b∗(k′); k′′) [Y − b∗(k′)] > en (b∗(k′); k′) [Y − b∗(k′)] .

Proof of Proposition 6.

Proof. Proposition 6.1 is straightforward and thus omitted. For Proposition 6.2a, note that
θo affects only the bunching bonus β̂

(
θ̈
)
. From the proof of Proposition 2 , ∂(LHS of (14))

∂β̂(θ̈) < 0.
Moreover:

∂

∂θo
(LHS of (14)) = −φβ

(
β̂(θ̈), θo

)
f(θo) + sβ

(
β̂(θ̈), θo

)
f(θo) + sβθ

(
β̂(θ̈), θo

)
F (θo).

Using the results in the proof of Proposition 2, β̂(θ̈) > β̂(θo) =⇒ φβ
(
β̂(θ̈), θo

)
< 0; β̂

(
θ̈
)
<

Y =⇒ sβ
(
β̂(θ̈), θo

)
> 0. From Lemma A.5, sβθ

(
β̂(θ̈), θo

)
= εβθ

(
β̂(θ̈), θo

) [
Y − β̂(θ̈)

]
> 0.

Hence ∂
∂θo

(LHS of (14)) > 0. By the implicit function theorem, β̂(θ̈) is increasing in θo.
I prove Proposition 6.2b next. Let θo′′ > θo

′ . β∗(·|θo′) is feasible under θo′′ imply that:

∫ θ̄

θo′′
v
(
β∗(·|θo′′), θ

)
dF (θ) ≥

∫ θ̄

θo′′
v
(
β∗(·|θo′), θ

)
dF (θ)

=
∫ θ̄

θo′′
φ
(
β∗(θ|θo′), θ

)
f(θ)dθ + s

(
β∗(θo′′|θo′), θo′′

)
F (θo′′).(A.17)
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Hence:
∫ θ̄

θo′′
v
(
β∗(·|θo′′), θ

)
dF (θ)−

∫ θ̄

θo′
v
(
β∗(·|θo′), θ

)
dF (θ)

≥ s
(
β∗(θo′′ |θo′), θo′′

)
F (θo′′)− s

(
β∗(θo′ |θo′)︸ ︷︷ ︸
≤β∗(θo′′ |θo′ )

, θo
′)
F (θo′)−

∫ θo
′′

θo′
φ
(
β∗(θ|θo′), θ

)
f(θ)dθ(A.18)

≥ s
(
β∗(θo′′ |θo′), θo′′

)
F (θo′′)− s

(
β∗(θo′′ |θo′), θo′

)
F (θo′)︸ ︷︷ ︸

=
∫ θo′′
θo
′ [sθ(β∗(θo′′ |θo′ ),θ)F (θ)+s(β∗(θo′′ |θo′ ),θ)f(θ)]dθ

−
∫ θo

′′

θo′
φ
(
β∗(θ|θo′), θ

)
f(θ)dθ(A.19)

≥
∫ θo

′′

θo′
sθ
(
β∗(θo′′|θo′), θ

)
F (θ)dθ +

∫ θo
′′

θo′
uθ
(
β∗(θ|θo′), θ

)
H(θ)f(θ)dθ. (A.20)

where inequality (A.18) follows from (A.17), and (A.20) follows from β∗(θo′′|θo′) ≥ β∗(θo|θo′)
∀θ ∈

[
θo
′
, θo

′′
]
. Proposition 6.2b thus follows from uθ(β, θ) > 0 and sθ(β, θ) > 0 (Lemma

A.5).

Proof of Proposition 7.

Proof. I follow the notation for β∗ (·|θo) used in the proof of Proposition 6. Let θo′′ > θo
′ .

Note that DTM
(
θo
′′
, θo

′
)

= s
(
Y, θo

′′
)
− s

(
Y, θo

′
)
. sθβ(β, θ) > 0 (Lemma A.5) implies:

DTM
(
θo
′′
, θo

′)
> s

(
β∗(θo′′ |θo′′), θo′′

)
− s

(
β∗(θo′′ |θo′′), θo′

)
=
∫ θo

′′

θo′
sθ
(
β∗(θo′′ |θo′′), θ

)
dθ.

(A.21)
Next, without loss, let β∗(θ|θo′′) = β∗(θo′′ |θo′′) ∀θ ∈

[
θo
′
, θo

′′
)
; this implies that β∗(·|θo′′) is

feasible under θo′ . Hence
∫ θ̄
θo′ v

(
β∗(·|θo′), θ

)
dF (θ) ≥

∫ θ̄
θo′ v

(
β∗(·|θo′′), θ

)
dF (θ), and:
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∫ θ̄

θo′
v
(
β∗(·|θo′′), θ

)
dF (θ) =

∫ θ̄

θo′
φ
(
β∗(θ|θo′′), θ

)
f(θ)dθ + s

(
β∗(θo′|θo′′)︸ ︷︷ ︸
=β∗(θo′′ |θo′′ )

, θo
′
)
F (θo′)

=
∫ θ̄

θo′′
φ
(
β∗(θ|θo′′), θ

)
f(θ)dθ + s

(
β∗(θo′′ |θo′′), θo′

)
F (θo′)

+
∫ θo

′′

θo′

[
s
(
β∗(θ|θo′′)︸ ︷︷ ︸

=β∗(θo′′ |θo′′ )

, θ
)
f(θ)− uθ

(
β∗(θ|θo′′)︸ ︷︷ ︸

=β∗(θo′′ |θo′′ )

, θ
)

[1− F (θ)]
]
dθ

=
∫ θ̄

θo′′
φ
(
β∗(θ|θo′′), θ

)
f(θ)dθ + s

(
β∗(θo′′ |θo′′), θo′′

)
F (θo′′)︸ ︷︷ ︸

=
∫ θ̄
θo
′′ v(β∗(·|θo′′ ),θ)dF (θ)

−
∫ θo

′′

θo′

[
sθ
(
β∗(θo′′|θo′′), θ

)
F (θ) + uθ

(
β∗(θo′′ |θo′′), θ

)
[1− F (θ)]

]
dθ

where the last equality follows from integration by parts on
∫ θo′′
θo′ s

(
β∗(θo′′|θo′′), θ

)
f(θ)dθ.

Hence:

DFW
(
θo
′′
, θo

′) =
∫ θ̄

θo′′
v
(
β∗(·|θo′′), θ

)
dF (θ)−

∫ θ̄

θo′
v
(
β∗(·|θo′), θ

)
dF (θ)

≤
∫ θo

′′

θo′

[
sθ
(
β∗(θo′′ |θo′′), θ

)
F (θ) + uθ

(
β∗(θo′′ |θo′′), θ

)
[1− F (θ)]

]
dθ(A.22)

(A.21) and (A.22) jointly imply that

DTM
(
θo
′′
, θo

′)−DFW
(
θo
′′
, θo

′)
>

∫ θo
′′

θo
′

[
sθ
(
β∗(θo′′ |θo′′), θ

)
− uθ

(
β∗(θo′′ |θo′′), θ

)]
[1− F (θ)] dθ

=
∫ θo

′′

θo′
εθ
(
β∗(θo′′|θo′′), θ

) [
Y − β∗(θo′′ |θo′′)

]
[1− F (θ)] dθ

> 0

where the last equality follows from Lemma A.5.
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B Supplementary Appendix (For Online Publication
Only)

B.1 Other Equilibria under FW

B.1.1 Exploitation Equilibrium under FW

This section considers the possibility of an exploitation equilibrium under FW in which the
agent chooses o in period 1. In this case, θn is unknown in period 2 on the equilibrium path,
and following the argument in (1) to (3) the agent can only be induced to choose o in period 2.
The principal then optimally sets β∗ = Y and α∗ = U0−maxε

{
εY − ψ

(
ε
θo

)}
= U0−s (Y, θo)

where s (·) is as defined in (10).
Under this period-2 contract, if the agent had deviated to τ = n in period 1 and privately

knows θn, his period-2 payoff under innovation outcome θ = max {θo, θn} is

α∗ + max
ε

{
εY − ψ

(
ε

θ

)}
= U0 + s (Y, θ)− s (Y, θo) .

His ex-ante expected period-2 payoff from deviation is then
∫ θ̄
θo s (Y, θ) dF (θ)−s (Y, θo)+U0 >

U0.
Consider period 1 next. Analogous to (17) and (18), let the agent’s total expected payoffs

for choosing technology τ in period 1 together with effort e and under a contract (a, b) be
a+ W̃ τ (e, b), where:

W̃ n(e, b) := eb− E
[
ψ
(
e

θn

)]
+
∫ θ̄

θo
s (Y, θ) dF (θ)− s (Y, θo) + U0,

W̃ o(e, b) := eb− ψ
(
e

θo

)
+ U0.

In period 1, on the equilibrium path, the principal always offers a zero period-1 fixed wage:
a∗ = 0. Let ẽτ (b) := arg max

e
W̃ τ (e, b),49 and ¯̃W τ (b) := maxe W̃ τ (e, b). Following the proof

of Lemma 3, it is readily verified that ¯̃W o(b) − ¯̃W n(b) is strictly increasing in b, and there
exists b > 0 such that ¯̃W o(b) ≤ ¯̃W n(b) if and only if b ≤ b. Analogous to the argument for
Proposition 3, the following result is immediate:

Proposition B.1. (Exploitation equilibrium under FW.) Under FW, an exploitation equi-
49ẽτ (·) is equivalent to eτ (·) in (20).
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librium (i.e. the agent chooses technology o in period 1) exists if and only if b is finite.
When b is finite, the optimal period-1 contract that induces the agent to choose technology o
in period 1 is unique:

a∗ = 0

b∗ = max
{
b̃, b
}

where b̃ := arg max
b

{ẽo(b) [Y − b]}.

Notice that under this equilibrium, the principal’s period-2 payoff is s (Y, θo) which is
exactly what she gets in period 2 from the optimal contract under TM as characterized in
Proposition 1. On the other hand, her expected period-1 payoff must be weakly lower given
the additional constraint of b∗ ≥ b. Hence:

Corollary B.1. If an exploitation equilibrium exists under FW, the principal’s total expected
payoffs from this equilibrium is weakly lower than her total expected payoffs from the unique
equilibrium under TM as characterized in Proposition 1.

B.1.2 Mixed Exploration-Exploitation under FW

This section considers equilibria in which the agent chooses mixed strategy in his technology
choice in period 1 under FW. Consider an equilibrium in which the agent plays technology n
in period 1 with probability ρ. In period 2, if the principal knows that the agent had chosen
o in period 1, she will offer bonus β = Y and fixed fee α = U0 − s (Y, θo). If the principal
knows that the agent had chosen n in period 1, she will offer the agent the menu of contracts
characterized in Proposition 2. Notice that an agent with a successful innovation always
prefers the first contract to his contract in the menu and will thus always report that he
has chosen o in period 1. Hence the principal can never elicit information about the agent’s
period-1 technology choice before offering the agent a menu of contracts.

As in Section 5, the agent’s payoff-relevant private type is still
[
θo, θ̄

]
, where the agent’s

type when he had chosen o in period 1 is θo. The difference here from Section 5 is the
principal’s belief about the type distribution. Now, for any θ ∈

[
θo, θ̄

]
:

Pr (θn ≤ θ) = 1− ρ+ ρ

[
F (θo) +

∫ θ

θo
f(t)dt

]
(B.1)

where f and F are, as previously, the pdf and cdf of θn respectively.
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Consider the following density function:

f̃ (θn; ρ) =


[

1−ρ
F (θo) + ρ

]
f (θn) , θn ≤ θo

ρf (θn) , θn > θo
,

and let F̃ (·; ρ) denote its corresponding cdf; it is readily verified that f̃(·; ρ) is a valid density
for any ρ ∈ [0, 1]. Notice that under f̃(·; ρ), for any θ ∈

[
θo, θ̄

]
,

Pr (θn ≤ θ) =
∫ θo

θ

[
1− ρ
F (θo) + ρ

]
f (t) dt +

∫ θ

θo
ρf(t)dt

= 1− ρ+ ρ

[
F (θo) +

∫ θ

θo
f(t)dt

]

as in (B.1). In other words, if the principal conjectures that the agent plays technology n in
period 1 with probability ρ, it is equivalent to her designing a period-2 menu of contracts
based on the belief that θn follows a distribution of f̃(·; ρ). Notice that f̃(·; 1) = f(·).
Moreover Assumption 2 is satisfied for f (θn; ρ) for all θn ∈

(
θo, θ̄

]
and ρ ∈ (0, 1]. Hence all

results from Section 5 hold for any ρ ∈ (0, 1] (see Remark 3).
Let H̃(·; ρ) := 1−F̃ (·;ρ)

f̃(·;ρ) be the inverse hazard rate associated with f̃(·; ρ). For all θn > θo:

H̃ (θn; ρ) =
∫ θ̄
θn ρf(t)dt
ρf (θn)

= H (θn) .

For θn ≤ θo:

H̃ (θn; ρ) =
∫ θo
θn

[
1−ρ
F (θo) + ρ

]
f(t)dt +

∫ θ̄
θo ρf(t)dt[

1−ρ
F (θo) + ρ

]
f (θn)

= H (θn)−
[

1− ρ
1− ρ+ ρF (θo)

]
1− F (θo)
f (θn) .

F (θo) < 1 implies that H̃ (θn; ρ) is strictly increasing in ρ for all θn ∈
(
θo, θ̄

]
.50 Hence

ρ ∈ (0, 1] parametrizes the distribution as in Assumption 4 (with the upper bound of the
support fixed for all ρ) and it is readily verified that all results in Section 6 apply with weak

50 d
dρ

[
1−ρ

1−ρ+ρF (θo)

]
= −(1−ρ+ρF (θo)−(1−ρ)(−1+F (θo)

[1−ρ+ρF (θo)]2 = − F (θo)
[1−ρ+ρF (θo)]2 < 0. Hence d

dρH̃ (θn; ρ) > 0.
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inverse hazard rate dominance.51 Hence:

Proposition B.2. The principal’s expected period-2 payoff under FW is strictly increasing
in ρ, the principal’s conjecture probability of the agent choosing technology n in period 1.

Proof. Follows from Proposition 5.2.

Let R(ρ) be the agent’s expected period-2 rent (net of outside option) given the principal’s
conjecture ρ. For the agent to mix between o and n in period 1, the bonus b in period 1
must satisfy:

max
e

{
eb− E

[
ψ
(
e

θn

)]
+R(ρ)

}
= max

e

{
eb− ψ

(
e

θo

)}
. (B.2)

Let b̄(ρ) denote the bonus threshold characterized in Lemma 3 for R = R(ρ). If b̄(ρ) is finite,
then it is the unique solution bonus to (B.2); if b̄(ρ) is infinite, then there is no bonus level
satisfying (B.2).

Proposition B.3. Under FW, a mixed exploration-exploitation equilibrium in which the
agent chooses n with probability ρ exists if and only if b̄(ρ) is finite.

Suppose a mixed exploration-exploitation equilibrium for ρ exists. The principal’s period-
1 payoff is: [

ρen
(
b̄(ρ)

)
+ (1− ρ)eo

(
b̄(ρ)

)] (
Y − b̄(ρ)

)
(B.3)

where eτ (·) is as defined in (20). The following provides a sufficient condition for when a
mixed exploration-exploitation equilibrium is dominated by a pure exploration equilibrium
for the principal:

Proposition B.4. Suppose arg max
b

{en(b) [Y − b]} < b̄(1). Then there exists δ > 0 such
that ∀ρ ∈ (1 − δ, 1), the principal’s total expected payoffs from the principal-optimal ex-
ploration equilibrium, as characterized in Section 5, is higher than her payoffs from a mixed
exploration-exploitation equilibrium in which the agent chooses n with probability ρ, whenever
such a mixed exploration-exploitation equilibrium exists.

Proof. Taking the limit ρ → 1 for (B.3) gives en
(
b̄(1)

) (
Y − b̄(1)

)
≤ max

b
{en(b) [Y − b]}.

Under the assumption that arg max
b

{en(b) [Y − b]} < b̄(1), the principal’s period-1 payoff
in the optimal pure exploration equilibrium is max

b
{en(b) [Y − b]} (see Proposition 3). This

implies that there exists δ > 0 such that ∀ρ ∈ (1− δ, 1), the principal’s period-1 payoff from
51That is, if Assumption 4.2 had been “k′′ > k′ implies that H (θn; k′′) ≥ H (θn; k′) ∀θn and H (θn; k′′) >

H (θn; k′) ∀θn in some non-zero measure subset of
[
θ, θ̄
]
.”
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the principal-optimal pure exploration equilibrium is higher than her period-1 payoff from a
mixed exploration-exploitation equilibrium in which the agent chooses n with probability ρ.
The result of the proposition then follows given Proposition B.2.

B.2 Additional Details for Section 6

B.2.1 Proof of Remark 5.

Lemma. Under Assumption 4, k′′ > k′ implies that F (θn; k′′) < F (θn; k′) ∀θn ∈
[
θ, θ̄(k′′)

)
.

Proof. Since F (θ; k′) = 1 for θ ∈
[
θ̄(k′), θ̄(k′′)

]
and f(·; k′′) is strictly positive over its support[

θ, θ̄(k′′)
]
, the lemma is trivially true in

[
θ̄(k′), θ̄(k′′)

]
. Consider θ ∈

[
θ, θ̄(k′)

]
next. Notice

that:
∫ θ

θ

1
H (t; k)dt =

∫ θ

θ

f (θ; k)
1− F (θ; k)dt

= − log [1− F (θ; k)]

For any θ ∈
[
θ, θ̄(k′)

]
:

∫ θ
θ

1
H(t;k′)dt >

∫ θ
θ

1
H(t;k′′)dt

=⇒ − log [1− F (θ; k′)] > − log [1− F (θ; k′′)]

=⇒ F (θ; k′) > F (θ; k′′)

B.2.2 Proof of Corollary 3 and the Effect of k on the Agent’s Period-2 Rent

I follow the notations β̂ (·; k), θ̈(k) and β̈(k) as in the proof of Proposition 5.

Lemma B.1. If β̂θk(θ; k) ≤ 0 ∀θ, k, then R(k) is strictly increasing in k.52

Proof. From (16), R(k) =
∫ θ̄(k)
θo uθ (β∗(θ; k), θ) [1− F (θ; k)] dθ. Note that uθ (β∗(θ; k), θ) is

differentiable in θ everywhere except at θ̈(k). Define Q(θ; k) :=
∫ θ
θ [1− F (t; k)] dt > 0. Doing

52Since f(θ; k) is absolutely continuous in k, β̂θ(θ; k) is differentiable in k almost everywhere.
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integration by parts:

R(k) = uθ (β∗(θ; k), θ)Q(θ; k)
∣∣∣∣θ̄(k)

θo
−
∫ θ̄(k)

θo

[
d

dθ
uθ (β∗(θ; k), θ)

]
Q(θ; k)dθ

= uθ
(
Y, θ̄(k)

)
Q(θ̄(k); k)− uθ

(
β̈(k), θo

)
Q(θo; k)

−
∫ θ̄(k)

θ̈(k)

[
d

dθ
uθ
(
β̂(θ; k), θ

)]
Q(θ; k)dθ −

∫ θ̈(k)

θo

[
d

dθ
uθ
(
β̈(k), θ

)]
Q(θ; k)dθ.

Differentiating with respect to k now:53

d

dk
R(k)

=

uθθ
(
Y, θ̄(k)

)
Q(θ̄(k); k) + uθ

(
Y, θ̄(k)

)
Qθ(θ̄(k); k)︸ ︷︷ ︸

=1−F (θ̄(k);k)=0

−
[
d

dθ
uθ
(
β̂(θ̄(k); k), θ̄(k)

)]
︸ ︷︷ ︸

=uθθ(Y,θ̄(k))

Q(θ̄(k); k)

 θ̄′(k)

︸ ︷︷ ︸
=0

+uθ
(
Y, θ̄(k)

)
Qk(θ̄(k); k)− uθ

(
β̈(k), θo

)
Qk(θo; k)︸ ︷︷ ︸

=Term 1

−
[
d

dk
uθ
(
β̈(k), θo

)]
Q(θo; k)︸ ︷︷ ︸

<0

+
[
d

dθ
uθ
(
β̂
(
θ̈(k); k

)
, θ̈(k)

)]
Q
(
θ̈(k); k

)
· θ̈′(k)−

[
d

dθ
uθ
(
β̈(k), θ̈(k)

)]
Q
(
θ̈(k); k

)
· θ̈′(k)︸ ︷︷ ︸

=0

−
∫ θ̄(k)

θ̈(k)

d

dk

([
d

dθ
uθ
(
β̂(θ; k), θ

)]
Q(θ; k)

)
dθ︸ ︷︷ ︸

=Term 2

−
∫ θ̈(k)

θo

d

dk

([
d

dθ
uθ
(
β̈(k), θ

)]
Q(θ; k)

)
dθ︸ ︷︷ ︸

=Term 3

Hence:
d

dk
R(k) > (Term 1)− (Term 2)− (Term 3).

53The derivative exists almost everywhere.
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Next:

Term 1 = uθ

(
β̂(θ̄(k); k)︸ ︷︷ ︸

=Y

, θ̄(k)
)
Qk(θ̄(k); k)− uθ

(
β̂
(
θ̈(k); k

)
︸ ︷︷ ︸

=β̈(k)

, θ̈(k)
)
Qk

(
θ̈(k); k

)

+ uθ
(
β̈(k), θ̈(k)

)
Qk

(
θ̈(k); k

)
− uθ

(
β̈(k), θo

)
Qk(θo; k)

=
∫ θ̄(k)

θ̈(k)

d

dθ

(
uθ
(
β̂(θ; k), θ

)
Qk(θ; k)

)
dθ +

∫ θ̈(k)

θo

d

dθ

(
uθ
(
β̈(k), θ

)
Qk(θ; k)

)
dθ

=
∫ θ̄(k)

θ̈(k)

([
d

dθ
uθ
(
β̂(θ; k), θ

)]
Qk(θ; k) + uθ

(
β̂(θ; k), θ

)
Qkθ(θ; k)

)
dθ

+
∫ θ̈(k)

θo

([
d

dθ
uθ
(
β̈(k), θ

)]
Qk(θ; k) + uθ

(
β̈(k), θ

)
Qkθ(θ; k)

)
dθ

and

Term 2 =
∫ θ̄(k)

θ̈(k)

[
d

dθ
uθ
(
β̂(θ; k), θ

)]
Qk(θ; k)dθ +

∫ θ̄(k)

θ̈(k)

[
d2

dθdk
uθ
(
β̂(θ; k), θ

)]
Q(θ; k)dθ

Term 3 =
∫ θ̈(k)

θo

[
d

dθ
uθ
(
β̈(k), θ

)]
Qk(θ; k)dθ +

∫ θ̈(k)

θo

[
d2

dθdk
uθ
(
β̈(k), θ

)]
Q(θ; k)dθ

Hence

(Term 1)− (Term 2)− (Term 3)

=
∫ θ̄(k)

θ̈(k)
uθ
(
β̂(θ; k), θ

)
Qkθ(θ; k)dθ +

∫ θ̈(k)

θo
uθ
(
β̈(k), θ

)
Qkθ(θ; k)dθ

−
∫ θ̄(k)

θ̈(k)

[
uθββ

(
β̂(θ; k), θ

)
β̂θ(θ; k)β̂k(θ; k) + uθβ

(
β̂(θ; k), θ

)
β̂θk(θ; k) + uθθβ

(
β̂(θ; k), θ

)
β̂k(θ; k)

]
︸ ︷︷ ︸

= d2
dθdk

uθ(β̂(θ;k),θ)

Q(θ; k)dθ

−
∫ θ̈(k)

θo

[
uθθβ

(
β̈(k), θ

)
β̈k(k)

]︸ ︷︷ ︸
= d2
dθdk

uθ(β̈(k),θ)

Q(θ; k)dθ

Since Qkθ(θ; k) = −Fk(θ; k) > 0, the first line is positive. From the proof of Lemma 1,
uθβ > 0 and it is readily verified that uθθβ, uθββ > 0; from the proof of Proposition 5.1,
β̈k(k) < 0. Hence the last line is positive. If β̂θk(θ; k) ≤ 0, then the second line is also
positive. This in turn implies that d

dk
R(k) > 0.

Corollary 3 is then established by checking that the condition β̂θk(θ; k) ≤ 0 holds under
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the given parametrization.

Proof of Corollary 3

Proof. When ψ(x) = ξx2, it is readily verified that ε(β, θ) = 1
2ξβθ

2. From (13), β̂(θ) =
θY

2H(θ)+θ . When F is the family of uniform distributions in (21), H(θ; k) = k − θ. Hence
β̂(θ; k) = θ

2k−θY and it is readily verified that β̂θk(θ; k) < 0. The result then follows from
Lemma B.1.

B.3 Innovative Effort

The section considers the extension discussed in Section 7.2. In particular, I extend the
baseline model to incorporate innovative effort in a stylized way and develop some insights
on the nature of innovative effort.

Suppose now that in period 1, when the agent chooses technology n, on top of the choice
of e, the agent also gets to privately choose another dimension of effort denoted by i ∈ [0, ī]
with ī < 1

2 . One should interpret i as an innovative effort which is exerted only during
the innovative stage (period 1), as opposed to e and ε which are productive efforts that are
exerted in both periods. Let p be a commonly known marginal productivity parameter for
technology n with the assumption that p ∈ (̄i, 1 − ī).54 When the agent exerts innovative
effort i and productive effort e on technology n in period 1, the probability of getting outcome
Y in that period is (p − i)e. On the other hand, come period 2, the probability of getting
outcome Y under a period-2 productive effort level ε becomes (p+ i)ε. Hence the choice of
innovative effort i is a deterministic transfer of marginal productivity of productive effort for
technology n across periods.

The rest of the model remains unchanged from Section 3. The reason to why this formu-
lation can be an appropriate representation for the issue at hand will be made clear below
after Lemma B.2. Since technology o is unaltered, it is immediate that Proposition 1 con-
tinues to hold here. The focus thus remains on inducing the agent to explore in period 1
under FW and studying the effect of having the additional dimension of innovative effort i.

Denote the marginal productivity of productive effort for technology n in period 2 by
π(i) := p+ i. Previously an innovation is considered successful if the θn realization is higher
that θo. This is no longer the case here because of the difference in the marginal productivity
of productive effort between the two technologies in period 2, which is dependent on the

54p was 1 in the baseline model.
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choice of i in period 1.

Lemma B.2. For any β > 0, max
ε

{
π(i)εβ − ψ

(
ε
θn

)}
≥ max

ε

{
εβ − ψ

(
ε
θo

)}
if and only if

π(i)θn ≥ θo.

Proof. Let pn = π(i) and po = 1. For τ ∈ {o, n}, let ετ = arg maxε
{
pτεβ − ψ

(
ε
θτ

)}
which

is uniquely characterized by
pτβ = 1

θτ
ψ′
(
ετ

θτ

)
. (B.4)

Hence
max
ε

{
pτεβ − ψ

(
ετ

θτ

)}
= ετ

θτ
ψ′
(
ετ

θτ

)
− ψ

(
ετ

θτ

)
.

Convexity of ψ implies that xψ′(x) − ψ(x) is increasing in x for any positive x. Hence for
any β > 0:

maxε
{

(π(i)ε) β − ψ
(
ε
θn

)}
≥ maxε

{
εβ − ψ

(
ε
θo

)}
⇐⇒ εn

θn
ψ′
(
εn

θn

)
− ψ

(
εn

θn

)
≥ εo

θo
ψ′
(
εo

θo

)
− ψ

(
εo

θo

)
⇐⇒ εn

θn
≥ εo

θo

⇐⇒ pnθnβ ≥ pnθnβ

⇐⇒ π(i)θn ≥ θo

where the second last line follows from (B.4). This thus establishes the result.

Lemma B.2 describes the agent’s period-2 technology choice after choosing τ = n in
period 1 with innovative effort level i. It is also clear that maxε

{
π(i)εβ − ψ

(
ε
θn

)}
is in-

creasing in π(i). From this, the efficiency of technology n in period 2 and hence, the degree
of innovation success, can be represented by π(i)θn. Since π(i) is increasing in i, exerting i
increases both the probability and the degree of innovation success, and is thus an appro-
priate representation of innovative effort. Although the inter-temporal transfer of marginal
productivity due to innovative effort i is deterministic, the marginal effect of innovative effort
on the degree of innovation success is θn, which is stochastic.

B.3.1 Period 2 with Innovative Effort

To fix idea, let us first suppose that the agent’s choice of innovative effort i in period 1 is
also observed by the principal. π(i) is thus common knowledge in period 2. The agent’s
private type is now (with an abuse of notation on θ) θ := max {θo, π(i)θn} ∈

[
θo, θ̄(i)

]
,
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where θ̄(i) := π(i)θ̄. Let f(·|i) and F (·|i) denote the pdf and cdf of π(i)θn respectively.55

The distribution of θ is then Pr(θ ≤ x|i) = F (θo|i) +
∫ x
θo f (t|i) dt.

As in expression (7), it will be convenient to work with the agent’s indirect utility function.
The analog of u(β, θ) in (7) is defined here as:

u(β, θ|i) := max
ε

{
π(i)εβ − ψ

(
ε

θ

)}
.

It is readily verified that the properties in Lemma 1 continue to hold for any i. The optimal
menu of period-2 contracts is thus characterized as in Proposition 2 with the appropriate
modifications to the distribution and indirect utility functions as described.

When the principal does not observe the agent’s choice of innovative effort i in period 1,
she designs the menu of contracts in period 2 based on her conjecture on i. Note that the
outcome of y in period 1 does not affect her conjecture. Consistency in beliefs in equilibrium
requires that the principal’s conjecture is correct, and this issue will be handled later.

Complications arise regarding which contract an agent who has deviated in period 1
to an innovative effort ĩ 6= i will optimally choose in period 2, and what is his resulting
(off-equilibrium path) payoffs. In particular, the agent’s private type space is now two-
dimensional (̃i and θn), and multidimensional screening problems are in general very difficult
to handle.

The advantage of the formulation here is that under Lemma B.2, the agent’s payoff-
relevant private information can still be summarized by the one-dimensional variable (abusing
notation of θ again) θ := max

{
π(̃i)θn, θo

}
where ĩ is his privately known innovative effort

exerted in period 1. Notice that if θ is in
[
θo, θ̄(i)

]
, the type-space according to the principal’s

conjecture, the agent will still truthfully report his type since each contract in the menu
satisfies the truth-telling constraint. The only concern is what an agent with type θ > θ̄(i)
will choose; such an agent can exist if ĩ > i. The following lemma establishes that such an
agent will optimally claim to be θ̄(i), the highest type that the principal expects to exist:

Lemma B.3. Suppose the principal conjectures that the agent has exerted innovative effort
i in period 1 and thus offers him a menu of contracts β∗ :

[
θo, θ̄(i)

]
→ [0, Y ] and α∗ :[

θo, θ̄(i)
]
→ R according to Proposition 2. Facing this menu of contracts, an agent with type

θ ∈
[
θo, θ̄(i)

]
will report his type truthfully, and an agent with type θ > θ̄(i) will report his

type to be θ̄(i).
55f(z|i) = 1

π(i)f
(

z
π(i)

)
and F (z|i) = F

(
z
π(i)

)
.
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Proof. Incentive compatibility for type θ̄(i) implies that for all θ̃ < θ̄(i):

(
β
(
θ̄(i)

)
, θ̄(i)

)
− u

(
β
(
θ̃
)
, θ̄(i)

)
≥ α

(
θ̃
)
− α

(
θ̄(i)

)
.

The Spence-Mirrlees condition (see Lemma 1) implies that for any θ > θ̄(i),

u
(
β
(
θ̄(i)

)
, θ
)
− u

(
β
(
θ̃
)
, θ
)

> u
(
β
(
θ̄(i)

)
, θ̄(i)

)
− u

(
β
(
θ̃
)
, θ̄(i)

)
≥ α

(
θ̃
)
− α

(
θ̄(i)

)
.

The last inequality then establishes that type θ > θ̄(i) prefers the contract of θ̄(i) to that of
any θ̃ < θ̄(i).

With this, the agent’s expected period-2 information rent both on and off equilibrium
path are readily computed. Let R

(̃
i
∣∣∣i) be the agent’s expected period-2 information rent

(net of outside option U0) under innovative effort level ĩ and facing a menu of contracts
designed for an agent with innovative effort i (i.e. the principal conjectures i).

Lemma B.4. The agent’s expected information rent, R
(
·
∣∣∣i), is strictly increasing and

strictly convex for any principal’s conjecture i.

Proof. Suppose that the principal conjectures the innovative effort to be i and offers the op-
timal menu of contracts {α∗(·|i), β∗(·|i)} as characterized in Proposition 2. Let rent

(
θn, ĩ

∣∣∣i)
be the information rent (net of outside option U0) of an agent who has exerted innovative
effort ĩ in period 1, has a θn realization and faces a menu of contracts designed by a principal
with conjecture i. From the result in Lemma B.3:

rent
(
θn, ĩ

∣∣∣i) =


0 if π(̃i)θn < θo,∫ π(̃i)θn
θo uθ (β∗(t|i), t) dt if θo ≤ π(̃i)θn ≤ θ̄(i),∫ θ̄(i)
θo uθ (β∗(t|i), t) dt+

∫ π(̃i)θn
θ̄(i) uθ (Y, t) dt if θ̄(i) < π(̃i)θn.

rent (θn, ·|i) is continuous and piece-wise differentiable for all θn and i:

d

d̃i
rent

(
θn, ĩ

∣∣∣i) =


0 if π(̃i)θn < θo,

uθ

(
β∗
(
π(̃i)θn

∣∣∣∣i) , π(̃i)θn
)
· θn if θo ≤ π(̃i)θn ≤ θ̄(i),

uθ
(
Y, π(̃i)θn

)
· θn if θ̄(i) < π(̃i)θn.
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By noting that uθ is positive and strictly increasing in both its argument, and that β∗
(
π(̃i)θn

∣∣∣∣i) ≤
Y for π(̃i)θn ≤ θ̄(i), the derivatives are strictly positive and increasing everywhere for
π(̃i)θn ≥ θo. Hence rent (θn, ·|i) is increasing and convex. This implies that E

[
rent

(
θn, ĩ|i

)]
is strictly increasing in ĩ. To see that it is also convex, note that expectation is a linear op-
erator which preserves convexity.

B.3.2 Period 1 with Innovative Effort

With the agent’s period-2 expected rent both on and off equilibrium paths accounted for,
I consider the innovative effort level that can be induced in equilibrium next. Under a
contract (a, b) that prescribes the agent to choose technology n in period 1 together with an
innovative effort i (where i then forms the principal’s conjecture in period 2), the agent’s
total expected payoff for choosing n together with productive effort e and an innovative effort
ĩ is a+W n(̃i, e, b|i) where:

W n(̃i, e, b|i) := (p− ĩ)eb− E
[
ψ
(
e

θn

)]
+R

(̃
i
∣∣∣i)+ U0.

His total expected payoff for deviating to choose technology o instead is a + W o(e, b) as
in (18). With the additional choice of innovative effort now, the equilibrium definition is
slightly different from that in Definition 1. The differences are incorporated in the following
definition:

Definition B.1. Under the setting with innovative effort, a contract (a, b), together with
the agent choosing technology n, productive effort e∗ and innovative effort i∗, forms an
equilibrium if the following conditions are satisfied:

(IR-1i) : a+W n(i∗, e∗, b|i∗) ≥ U0

(IC-τ -1i) : W n(i∗, e∗, b|i∗) ≥ max
e
W o(e, b)

(IC-e,i-1i) : (e∗, i∗) ∈ arg max
e,̃i

W n(̃i, e, b|i∗)

(LL-1i) : a, b ≥ 0

The next proposition, illustrated in Figure 2, characterizes the set of possible equilibria
associated with each contract (a, b).

Proposition B.5. Under FW in the setting with innovative effort, for any principal’s con-
jecture i ∈ [0, ī], there exist thresholds b̄l(i) and b̄h(i), with 0 < b̄l(i) ≤ b̄h(i), such that:
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1. For all b ≤ b̄l(i):

max
e
W o(e, b) ≤ max

e,̃i
W n(̃i, e, b|i) = max

e
W n

(̄
i, e, b|i

)
.

In words, the agent’s optimal actions are to choose technology n in period 1 and max-
imum innovative effort i = ī (together with the appropriate productive effort e on n).

2. If b̄l(i) < b̄h(i), then for all b ∈
[
b̄l(i), b̄h(i)

]
:

max
e
W o(e, b) ≤ max

e,̃i
W n(̃i, e, b|i) = max

e
W n (0, e, b|i) .

In words, the agent’s optimal actions are to choose technology n in period 1 and min-
imum innovative effort i = 0 (together with the appropriate productive effort e on
n).

3. For all b ≥ b̄h(i):
max
e
W o(e, b) ≥ max

e,̃i
W n(̃i, e, b|i).

In words, the agent’s optimal action is to choose technology o (together with the appro-
priate productive effort e on o).

The following result is then immediate:

Corollary B.2. Under FW in the setting with innovative effort, in an exploration equilib-
rium in which the agent uses technology n in period 1, the agent is either choosing zero or
maximum innovative effort.

The intuition behind the result is similar to that for Lemma 3. When deciding whether
to engage in the innovative activity or not, the agent trades off between future expected
payoffs of innovation and current payoffs from production. In addition, here, there is the
added consideration of “how intense should one be exploring the new technology”. As in the
baseline model, low-powered incentives in period 1 decreases the opportunity cost of forgo-
ing early production. This encourages innovative initiative and moreover, it increases the
intensity of the innovative initiative. Furthermore, because the gain from better innovation
is convex (Lemma B.4), whenever the agent finds it profitable to exert additional intensity
for exploration, he will exert maximum intensity which thus explains Corollary B.2. The
proof of Proposition B.5 is as follows:
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Figure 2: The agent’s best response given a bonus b under principal’s conjecture i.

0
b

b̄l(i) = b̄h(i)

Exploration
with ĩ = ī

Exploitation

When b̄l(i) = b̄h(i):

0
b

b̄l(i) b̄h(i)

Exploration
with ĩ = ī

Exploration
with ĩ = 0

Exploitation

When b̄l(i) < b̄h(i):

Proof. First note that given any contract (a, b) with prescribed innovative effort i, the optimal
ĩ and e choices for the agent exist since the choice set is compact and the objective is
continuous. I first show that at the optimal, ĩ must be either 0 or ī which proves Corollary
B.2. Suppose for a contradiction that under some b > 0, the optimal choices are e and
ĩ ∈ (0, ī). Let ĩ′ = max

{
0, 2̃i− ī

}
. ĩ is optimal implies that:

W n(̃i, e, b|i) ≥ W n(̃i′, e, b|i)

⇐⇒ −ĩeb+R
(̃
i
∣∣∣i) ≥ −ĩ′eb+R

(̃
i′
∣∣∣i)

⇐⇒
R

(
ĩ

∣∣∣i)−R(ĩ′∣∣∣i)
ĩ−ĩ′ ≥ eb

Recall that R
(
·
∣∣∣i) is strictly increasing and strictly convex (Lemma B.4). Since ī− ĩ ≥ ĩ− ĩ′,

this implies that
R

(
ī

∣∣∣i)−R(ĩ∣∣∣i)
ī−ĩ >

R

(
ĩ

∣∣∣i)−R(ĩ′∣∣∣i)
ĩ−ĩ′ . Hence:

R

(
ī

∣∣∣i)−R(ĩ∣∣∣i)
ī−ĩ > eb

=⇒ −īeb+R
(̄
i
∣∣∣i) > −ĩeb+R

(̃
i
∣∣∣i)

=⇒ W n(̄i, e, b|i) ≥ W n(̃i, e, b|i)

which contradicts ĩ being optimal. This then implies that ĩ = 0 or ĩ = ī in equilibrium.
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Hence, given the contract, the agent is essentially only choosing from 3 options in period 1:
(i) τ = n and ĩ = ī, (ii) τ = n and ĩ = 0, or (iii) τ = o, each together with the corresponding
optimal productive effort level. Using the same steps as in the proof of Lemma 3 and noting
that R(·|i) is increasing, the following three claims can be established:

Claim 1. Suppose the agent is considering only between options (i) and (ii). Then there
exists a threshold b̄(1)(i) > 0 such that max

e
W n(̄i, e, b|i) ≥ max

e
W n(0, e, b|i) if and only if

b ≤ b̄(1)(i).

Claim 2. Suppose the agent is considering only between options (i) and (iii). Then there
exists a threshold b̄(2)(i) > 0 such that max

e
W n(̄i, e, b|i) ≥ max

e
W o(e, b) if and only if b ≤

b̄(2)(i).

Claim 3. Suppose the agent is considering only between options (ii) and (iii). Then there
exists a threshold b̄(3)(i) > 0 such that max

e
W n(0, e, b|i) ≥ max

e
W o(e, b) if and only if b ≤

b̄(3)(i).

Set b̄l(i) = min{b̄(1)(i), b̄(2)(i)} and b̄h(i) = max{b̄(2)(i), b̄(3)(i)}, and the three statements
in the proposition will follow. To see why, first notice that the statements 1 and 3 of the
proposition are readily verified to be true. The non-obvious part is the second statement
about b ∈

[
b̄l(i), b̄h(i)

]
. Consider all 6 possible permutations on the order of b̄(1)(i), b̄(2)(i)

and b̄(3)(i) now. Note that whenever b̄l(i) = b̄h(i), the statement is trivially true. To ease
notation, I drop the argument of i from now on. Also, recall that W̄ o(b) = maxeW o(e, b),
and I denote W̄ n(̃i, b|i) := maxeW n(̃i, e, b|i).

Case 1: b̄(1) ≤ b̄(2) ≤ b̄(3): Hence b̄l = b̄(1) and b̄h = b̄(3). For any b ∈
[
bl, bh

]
, W̄ n(0, b|i) ≥

W̄ n(̄i, b|i) since b ≥ b̄(1), and W̄ n(0, b|i) ≥ W̄ o(b) since b ≤ b̄(3).

Case 2: b̄(1) ≤ b̄(3) ≤ b̄(2): Hence b̄l = b̄(1) and b̄h = b̄(2). If b̄(3) = b̄(2), then the argument
of Case 1 applies. Moreover, it cannot be the case that b̄(3) < b̄(2). If not, consider a b ∈(
b̄(3), b̄(2)

)
. b > b̄(3) implies that W̄ n(0, b|i) < W̄ o(b), b < b̄(2) implies that W̄ o(b) < W̄ n(̄i, b|i),

and b > b̄(1) implies that W̄ n(̄i, b|i) < W̄ n(0, b|i), which then implies W̄ n(0, b|i) < W̄ n(0, b|i)
(contradiction).

Case 3: b̄(2) ≤ b̄(1) ≤ b̄(3): Hence b̄l = b̄(2) and b̄h = b̄(3). If b̄(2) = b̄(1), then the argument
of Case 1 applies. Moreover, it cannot be the case where b̄(2) < b̄(1). If not, consider a
b ∈

(
b̄(2), b̄(1)

)
. b < b̄(1) implies that W̄ n(0, b|i) < W̄ n(̄i, b|i), b > b̄(2) implies that W̄ n(̄i, b|i) <
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W̄ o(b), and b < b̄(3) implies that W̄ o(b) < W̄ n(0, b|i), which then implies W̄ n(0, b|i) <

W̄ n(0, b|i) (contradiction).

Case 4: b̄(2) ≤ b̄(3) ≤ b̄(1): Hence b̄l = b̄(2) and b̄h = b̄(3). If b̄(2) = b̄(3), then b̄l = b̄h and
the statement is trivially true. Moreover, it cannot be the case where b̄(2) < b̄(3). If not,
consider a b ∈

(
b̄(2), b̄(3)

)
. b1 > b̄(2) implies that W̄ n(̄i, b|i) < W̄ o(b), b < b̄(3) implies that

W̄ o(b) < W̄ n(0, b|i), and b1 < b̄(1) implies that W̄ n(0, b|i) < W̄ n(̄i, b|i), which then implies
W̄ n(̄i, b|i) < W̄ n(̄i, b|i) (contradiction).

Case 5: b̄(3) ≤ b̄(1) ≤ b̄(2): Hence b̄l = b̄(1) and b̄h = b̄(2). If b̄(1) = b̄(2), then b̄l = b̄h and
the statement is trivially true. Moreover, it cannot be the case where b̄(1) < b̄(2). If not,
consider a b ∈

(
b̄(1), b̄(2)

)
. b > b̄(3) implies that W̄ n(0, b|i) < W̄ o(b), b < b̄(2) implies that

W̄ o(b) < W̄ n(̄i, b|i), and b > b̄(1) implies that W̄ n(̄i, b|i) < W̄ n(0, b|i), which then implies
W̄ n(0, b|i) < W̄ n(0, b|i) (contradiction).

Case 6: b̄(3) ≤ b̄(2) ≤ b̄(1): Hence b̄l = b̄h = b̄(2) and the statement is trivially true.
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