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Modeling Legal Modularity 

Ted Sichelman* and Henry E. Smith** 

 

Abstract 

Law employs modular structures to manage the complexity among legal actors. Property, torts, 
contracts, intellectual property, and doctrines in other areas of the law reduce information costs 
in similar ways by chopping up the world of interactions between parties into manageable 
chunks—modules—that are semi-autonomous. These modules employ boundaries—whether 
“real” boundaries as in real property law or “abstract” boundaries as in intellectual property, 
torts, and contracts—to hide information so as to make law less context-dependent and, hence, 
more modular. Previous explications of modularity in law have been qualitative. Here, 
borrowing from numerical measures of modularity in network theory, we offer the beginnings of 
a quantitative model of legal modularity. We posit that our “network science” approach to 
jurisprudential issues can be adapted to quantify many other important aspects of legal systems. 

1. Introduction  

 Law is a complex system.  As such we should expect many of its properties to be 
nontrivially related to its parts. Put another way, the micro-foundations of law are easy to take 
for granted and not at all easy to relate to macro-behavior. 

 This micro-macro connection requires managing complexity itself. If any legal actor 
could relate to any other legal actor in any possible way in principle, specifying the constraints 
on that behavior and predicting behavior under constraints would quickly become intractable. 
Instead, when economists model two-party actions and then add up the effects across society, 
they are silently making strong assumptions about how behavior does not interact, and the legal 
rules being modeled likewise assume away large amounts of information as irrelevant. This 
problem is particularly central to property law. Many debate whether property is a “law of 
things” or is better characterized as being about bundles of rights. On the former view, ask where 
our notion of things comes from and why things should matter in property law. If, on the other 
hand, property is a bundle of rights, sometimes captured with the metaphor of the “bundle of 
sticks,” why do some sticks go with other sticks and why are some packages more likely than 
others? Why doesn’t the law disaggregate legal relations all the time? 

 If the system of actors and their interactions over valued resources form a complex 
system, and in turn the legal system that constrains and sometimes constitutes these interactions 
is a complex system, we can analyze this system in terms of modularity. Modules are parts of a 
system within which interaction is relatively intense and between which it is relatively sparse. 
Crucially modularity is a matter of degree. Without assuming that things or aggregates are 
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important, we can measure the set of interactions captured by the law – through devices like 
nuisance, easement, covenants, zoning as well as the law of trespass, and ask to what extent they 
form modules. 

 Network theory has developed tools for making these notions more precise, and we 
employ these tools to show how to measure legal modularity and how to quantify theorizing 
about information in law. Network theory is increasingly being used in economics, and it offers a 
way to think about a wide range of complex systems made of interacting entities.  

 After setting out we the significance of modularity in law in Part II, we show in Part III 
how to model modularity using the tools of network theory and its algorithms for finding 
community structure. Part IV then presents some implications and extensions, and Part V 
concludes. 

2. A Primer on Legal Modularity  

 Law as a complex system benefits from modularity. This modularity is easy to overlook. 
Even the basic ontology of persons, actions, and things, out of which legal rules are built, 
exhibits a modular structure. Each person, activity, or thing could be analyzed further, and it is 
worth asking why legal rules are stated at the level of abstractness that they are, rather than in a 
more (or less) fine-grained way. 
 
 One strand of legal analysis emphasizes the possibility of finer grain. Wesley Hohfeld 
(1913, 1917) devised a scheme of jural relations (rights and corresponding duties, privileges and 
no-rights, powers and liabilities, and immunities and disabilities) that offered the possibility of 
reducing coarse notions like “rights” into smaller and more accurate relations. The Legal Realists 
took this is a reductionist direction with the “bundle of rights” picture of property. Instead of 
being a law of things or centered on rights to exclude, “property” was just a label for socially 
important aggregates of more fundamental legal relations (Grey, 1980).   
 
 The problem of grain has entered property theory through the application of modularity. 
Developed in early work of Herbert Simon (1981 [1969]) and more recently in network theory, 
modularity has been applied to organizations (Baldwin & Clark, 2000; Langlois, 2002; Sanchez 
& Mahoney, 1996).  In law, modularity has been applied to property (Smith, 2012) and other 
areas of private law (Smith, 2011; Lau ms.). 
 
 In the following, we will draw on both the modular and Hohfeldian approaches. From the 
former, we adopt the notion of modularity and from the latter we will borrow the vocabulary of 
constituent legal relations. Crucially, we will endogenize things, by build the familiar legal 
ontology from the ground up. Modularity will not be assumed but will emerge (or not) from the 
application of network theory to the cluster of basic Hohfeldian legal relations. In a sense, this 
will even allow us to provide a micro grounding for the bundle of sticks. 

3. A Mathematical Model of Legal Modularity  

As Section 2 described, modularity in the law reduces information costs by shielding the 
multitude of bilateral legal relations that exist among legal actors. Here, we begin by 
constructing a “Hohfeldian” network of individual legal actors connected to one another by 
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various sets of legal relations. Then, adapting the work of Newman and Girvan (2004) and 
Newman (2006), we offer a means to naturally divide the network into relevant modules and to 
quantify the level of modularity present in the network. 

3.1 Complex Hohfeldian Networks 

In Section 2, we briefly noted that the bilateral, “atomic” relations among legal actors 
were Hohfeldian in nature. In other words, in the framework of the early 20th century legal 
theorist Wesley Hohfeld, legal relations can be selected from one of eight categories: right, 
privilege, duty, no-right, power, immunity, disability, liability (Hohfeld, 1913). Here, for 
simplicity, we focus on the first-order relations: right, privilege, duty, and no-right. In this 
framework, one legal actor’s “right” implies a “duty” on the part of some other legal actor (to 
perform or abstain from performing some action), and the absence of a right (a “no-right”) of one 
legal actor implies a “privilege” on the part of another legal actor (to perform or abstain from 
performing some action). In view of this Hohfeldian “correlativity” of rights with duties and no-
rights with privileges, it is sufficient to specify whether a given actor has a duty or privilege vis-
à-vis another actor with respect to a particular action. 

3.1.1 “Fully” Modular Networks 

A landowner’s rights against trespass and privileges of use vis-à-vis third parties are a 
quintessential example of Hohfeldian relations at work. For instance, suppose we have a large 
tract of land L, comprising three sub-regions, I, J, K, as well as commons between the sub-
regions. See Fig. 1. 

 

Figure 1. Three Subplots and a Commons on a Parcel of Land. 

 Assume that each of the sub-regions, I, J, K, are ideal for various economic activities 
(e.g., grazing cattle, growing fruit, etc.), and that in the absence of some kind of legal 
restrictions, overuse would occur. One of several options to achieve efficient use is to “privatize” 
the tracts so that an individual owns each plot, which allows for more optimal decisionmaking 
regarding usage (Demsetz, 1967; Ellickson, 1993). Here, we assume that Yellow (Y) owns I, 
Orange (O) owns K, and Green (G) owns J. 
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Ownership implies rights in the owner and concomitant duties in third parties along with 
privileges in the owner and concomitant no-rights in third parties. In a pure “exclusionary” 
regime, each “owner” of each plot has (1) an absolute (Hohfeldian) privilege to do what she 
pleases on her land (assume there are no negative externalities); (2) an absolute (Hohfeldian) 
right that others not enter the owner’s land or interfere with uses on the land; and (3) an absolute 
(Hohfeldian) privilege to undertake action in the commons.  

If we represent the legal actors as nodes in a network and legal relations as edges between 
nodes, we can create a traditional network or graph representation of the exclusionary property 
regime (removing plot K for simplicity). See Fig. 2. 

 

 

Figure 2. Two Subplots, a Commons, and Legal Actors  
Connected by Modular Hohfeldian Legal Relations on a Parcel of Land. 

 

In order to properly represent the “location” of the legal relations via the edges, we place 
the actors at the location where an action of interest is performed. For simplicity, we place the 
owner of each plot at the center of the plot, so that owner Y is placed in the center of plot I and 
owner G is placed at the center of plot J. Because we are concerned here solely with trespass, we 
place the non-owners at the boundary of each plot. So for plot I, the legal actors G and Y are 
placed at the boundary; for plot J, the legal actors Y and O are placed at the boundary. 

 The legal relations between each actor with respect to a given action on a given plot are 
indicated by directed edges. Red arrows represent Hohfeldian duties on the party of the third 
parties to the owner—here, not to enter a particular plot. Blue arrows represent Hohfeldian 
privileges of the owner to perform various actions on the plot, such as grazing cattle, as well as 
the owner’s privilege to enter the plot.1 (For simplicity, we ignore the various privileges of 
parties with respect to each other that relate to actions on the commons.) 

 In the event that all of the legal relations that are connected to one another in the 
“Hohfeldian” network are within a given boundary, then in graph theory terms, the network is 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 We assume a level of abstractness for actions, which themselves could be analyzed for modular structure. 
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“modular” (or, “decomposable”) in the sense that it can be partitioned without any loss of 
information. For instance, a social network—say among “friends” on a social networking service 
such as Facebook—is fully modular between two communities when the first community of 
individuals (here, a group of friends) have no links to a second community of individuals (here, 
another group of friends). For instance, Figure 3 shows two dense networks of friends 
(“communities”) that are not in any manner linked to one another. 

 

 

 

 

Figure 3. Two Independent (“Fully Modular”) Communities of Friends. 
 

Complete modularity is present in the real property schematic of Figure 1, because the entire plot 
L can be subdivided into two separate plots, I and J, and the legal analysis of each subplot can 
proceed without paying any attention to the other subplot.2 In other words, all of the relevant 
legal relations occur at or inside the boundary of a subplot, which follows from the fact that there 
are no relations connecting one subplot to the other. 

3.1.2 Partially Modular Networks 

However, as we noted in Section 2, legal relations governing property (or any area of law 
for that matter) are typically not completely modular. For instance, easements, covenants, 
nuisance law, and regulation all concern privilege or duty relations that in essence “cross” the 
boundary of a piece of land. Partial modularity (or “near” decomposability, Simon, 1981) occurs 
when there are multiple, stable communities formed by dense networks that are connected to one 
other loosely enough that the communities retain enough form so as to function as effectively 
independent modules.  

For instance, in Figure 4, the previously unconnected friend communities are now loosely 
connected via a single connection (indicated by the thick red edge) between two individuals.   

 

 

 

 

 

Figure 4. Two Communities of Friends Connected Solely by One Relationship. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Although the subplots I and J are modular with respect to one another, because there is structure within each 
subplot that is not wholly modular, the entire system is not, as Section 3.3 describes, fully modular. 
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The single connection destroys full modularity between the two communities, but essentially 
leaves intact the independence of each community. As we show in Section 3.2, there are standard 
techniques to quantify the amount of system-wide modularity destroyed by connections between 
communities. 
 In the context of our real property hypothetical, deviation from full legal modularity 
occurs when the following three types of first-order relations arise:	
  (1) duties of an owner inside 
the boundary of the owned plot; (2) privileges of a third-party across or inside the boundary of 
the owner’s plot; (3) duties of a third-party outside the boundary that affect the owner’s plot. In 
the parlance of Smith (2002), such relations shift the relevant legal regime from one of pure 
exclusion to a mixed regime of exclusion and governance. An example of how these 
“governance” relations appear in the Hohfeldian network is shown in Figure 5. 
 

 
 

Figure 5. Two Subplots, a Commons, and Legal Actors  
Connected by Partially Modular Hohfeldian Legal Relations on a Parcel of Land. 

 
 
In Figure 5, additional legal relations appear that cross the boundaries of the subplots. 

First, governmental environmental regulation that imposes “governance” obligations on owner Y 
sets up a red duty relation between the owner and the State. (For ease of visualization, we 
indicate this relation as a line that extends from owner Y outside the boundary and back to owner 
Y.)3 Second, there is a license indicated by a blue privilege relation that extends from legal actor 
O that crosses the boundary into owner Y. (Alternatively we could model an easement with a 
duty relation.) Third, there are two nuisance obligations indicated by red edges that extend from 
owner Y to owner G and vice-versa. These additional legal relations destroy full modularity 
between the subplots, instead resulting in partial modularity. Like social and other types of 
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  However, this loop is not intended to be “self-referential” in the usual sense of network theory. In any event, we 
ignore legal relations vis-à-vis the State in the treatment below, but we briefly address the issue of public law in 
Section 4.	
  



[Draft	
  –	
  Please	
  do	
  not	
  circulate	
  or	
  cite	
  without	
  authors’	
  permission]	
  

7 
	
  

networks, in order to determine how much modularity has been erased, it is necessary to devise a 
quantitative measure of modularity, which we turn to next.  
 

3.2 Quantifying the Modularity of the Network 
 

3.2.1 General Methods for Identifying Communities of Interest 
 

To quantify the level of modularity in a network, one must have a means to determine how a 
network can be decomposed into communities that are roughly independent.4 In our property 
example in Section 3.1, the artificial “legal” boundary of each subplot implicitly represented the 
“community” of interest. However, in many legal situations, there is no external boundary that 
can be simply identified and associated with a given community. For instance, the various legal 
relationships in tort law between individuals do not typically create an artificial boundary that 
allows one to quickly identify “communities” of legal relations. Indeed, even in real property 
law, ideally the aim is to ignore the external, physical boundary in order to determine the 
effective boundary and locus of legal relations. For instance, the effective boundary that results 
from how real property relations are enforced and adjudicated may include a buffer zone that is 
an effective expansion of the nominal, de jure boundary. (Or, conversely, the effective boundary 
may be an effective contraction of the nominal boundary.) Thus, in the analysis that follows, we 
abstract away from the nominal, physical boundary and examine only the Hohfeldian network of 
legal relations itself. This allows us to more accurately depict communities and modularity not 
only for real property examples, but also to extend our analysis to areas of law where there are 
no such boundaries (such as torts, contracts, intellectual property, and so forth).5 

 In the citation network literature, hierarchical clustering techniques may be used to 
“discover[] natural divisions of (social) networks” and identify groups (Newman and Girvan, 
2004).6 In the “agglomerative” technique, communities are determined by building up the 
network from the ground up, that is, from the lowest level of relations between nodes in the 
network. However, as Newman and Girvan (2004) explain, agglomerative techniques have not 
been shown to determine community structure well in a variety of networks. Rather, using a 
novel “divisive” technique—which starts with the existing network and splits it up from the top 
down—Newman and Girvan (2004) provide a highly accurate, as well as computationally simple 
and relative fast, method to determine community structure.7 As such, we adapt their method to 
modeling Hohfeldian networks of legal relations. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 This assumes that the network exhibits some community structure. In rare cases, a network may simply be 
composed of individuals so haphazardly connected to one another, there is essentially no community structure. 
5 Although we believe that the concept of modularity plays a role in public law, given that the role of modularity has 
been analyzed primarily in the domain of private law (Smith, 2002, 2004, 2007, 2011), we generally confine our 
discussion accordingly. 
6 In contrast to hierarchical clustering, “graph partitioning” may be used to determine sub-network properties but 
only is feasible when community structure is essentially known ex ante (Newman and Girvan, 2004). 
7 Although the community identification approach of Newman and Girvan (2004) has been improved (e.g., Girvan 
(2006)), the basic approach of the improvements is the same as the original method. Because the original method is 
simpler to convey, we use that approach here. Of course, our method could be improved in basically the same 
manner. 
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3.2.2 Subdividing Hohfeldian Networks 
 

Before calculating the modularity of a system, it is necessary to identify the communities of 
interest in the system. The approach of Newman and Girvan (2004) to community identification 
is to remove edges from the network with the highest measure of “betweenness”— namely, those 
edges that primarily lie “between” rather than “within” communities. As edges are removed, 
communities are exposed, and the process may repeated to identify sub-communities.  

Newman and Girvan (2004) offer two approaches to determining the betweenness of 
edges—“shortest path” and “random walk.” In the shortest path approach, one examines the 
shortest path (or paths) between all pairs of vertices in the network, examining how often a 
particular edge occurs in each of the shortest paths. Edges that occur more frequently have a 
higher “betweenness” measure than edges that do not. For instance, in a road network connecting 
various parts of a city, a freeway that connects many sub-regions within a city would have a 
higher betweenness score than a cul-de-sac. Another approach is to use a “random walk,” in 
which betweenness is measured by the expected number of times a particular edge will be 
traversed in a random walk between to vertices. Because Newman and Girvan (2004) show that 
the random walk method essentially provides results similar to the shortest path method, yet is 
more computationally demanding, we apply the shortest path method here.8 

In examining the shortest paths, for simplicity, we ignore path direction (e.g., privileges vs. 
duties), and discard easements, covenants, and legal relations vis-a-vis the State. We also do not 
adjust for the size of each edge—in actuality, some relations may be treated as more important 
than others. As discussed by Newman and Girvan (2004), the shortest path approach can be 
adapted to such extensions; thus, our treatment is without loss of such generality. 

Figure 6 is adapted from Figure 5, and represents solely the relations of interest for the 
treatment to follow.  

 

 

Using the network on Figure 6, we can engage in the first step of identifying relevant 
communities by calculating a betweenness score for every edge. For example, suppose our full 
path of interest is from O (on I) to O (on J) (i.e., orange node to orange node). In this case, there 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 In particular, the shortest path method computes the betweenness for a system with n vertices and m edges in time 
O(mn). 



[Draft	
  –	
  Please	
  do	
  not	
  circulate	
  or	
  cite	
  without	
  authors’	
  permission]	
  

9 
	
  

are five paths from O (on I) to Y (on I) (i.e., orange node to yellow node on I); two paths from Y 
(on I) to G (on J) (i.e., yellow node on I to green node on J); and five paths from G (on J) to O 
(on J) (i.e., green node on J to orange node on J). This makes for a total of 50 possible paths from 
O (on I) to O (on J): Orange-Yellow on I (5 paths) * Yellow to Green (I-J) (2 paths) * Green to 
Orange on J (5 paths) = 50 paths. 

 Next, one can calculate the frequency of each edge occurring in the 50 paths. For the five 
paths from O to Y (on I), each edge appears in 10 of the 50 paths (since there is one of five paths 
that can be taken on each route), or 20% of the time; for the two paths from Y (on I) to G (on J), 
each one appears 50% of the time (since one or the other is necessary on each route); and for the 
five paths from G (on J) to O (on J), each edge appears 20% of the time. Thus, the edges with the 
highest betweenness scores for this route are the two connecting I and J.  

In the method of Newman and Girvan (2004), it is necessary to calculate betweenness 
scores for all possible paths—in other words, how often a given edge appears in every possible 
shortest path between each pair of nodes. We perform these calculations in the Appendix and 
show (expectedly) that the two edges connecting plots I and J (the “interstate” like paths) occur 
with the greatest frequency. Specifically, the Appendix finds that there are a total of __ shortest 
paths between all pairs of nodes, in which the edges between plot I and J occur __ times (__%), 
and the edges inside I and J each occur __ times (__%). Thus, the first step in the process of 
Neman and Girvan (2004) is to remove the two edges between plots I and J, resulting in Figure 
7.  

 

In Figure 7, the two nuisance relations imposing duties on the owners of subplots I and J have 
been removed, leaving two unconnected sets of legal relations of privileges and duties solely 
relating to I or to J.  In this sense, the method of Newman and Girvan (2004) method identifies 
two separate communities of legal relations or “modules” in the sense of Smith (2012). 
Importantly, these communities are identified without any reference to the physical, external 
boundaries of I and J, but rather merely to the legal relations and legal actors regarding these 
plots.  

The next step of the Newman and Girvan (2004) algorithm is to recalculate betweenness 
for each community in order to determine sub-communities. In Figure 7, however, each edge is 
completely symmetric to every other edge. Thus, no edge has a higher betweennness score than 
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any other. Thus, removing any edge requires removing all edges, which simply leaves the 
owners of each plot, Y and G, which are single nodes and are not typically considered 
communities. In more complex examples involving asymmetric legal relations within 
communities, division of those communities into subcommunities would be feasible. 
 A common abstraction to display the division of a system into communities is the 
dendogram. Figure 8 displays a dendogram for the set of legal relations depicted in Figure 6, 
where the thickness of the edges represents the number of different underlying legal relations. 
The outer dotted line represents the division of the land L from the outside world, and the inner 
dotted lines represent the division of L into the two communities of legal relations and actors 
separately centered on the subplots I and J. Note that the inner dotted lines intersect the non-
owners, as they reside right at the edge of the plot. (Again, the relations regarding the commons 
between the subplots are ignored for simplicity.) 
 
 

 
  

 
3.1.1 Calculating Modularity Scores 

As explored in Newman and Girvan (2004) and Newman (2006), the ability to remove edges 
of high betweenness so as to identify communities and sub-communities forms the basis for a 
quantitative measure of modularity for a given system. Using the approach of Newman (2006), 
we begin with a legal system of relations among legal actors, then divide the system into 
communities using the method of Newman and Girvan (2004). Next, we calculate the 
modularity, Q, of the system as-a-whole by determining “the number of edges falling within 
[communities] minus the expected number in an equivalent network with edges placed at 
random” normalized to 1 (Newman, 2006).9  

In other words, when Q is equal to 1, the system is absolutely (i.e, 100%) modular. In the real 
property context, this would entail Blackstone’s (1768) idealization of “property as . . . that sole 
and despotic dominion which one man claims and exercises over the external things of the world, 
in total exclusion of the right of any other individual in the universe.” In this case—and as we 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Newman and Girvan (2004) provide a similar approach to Newman (2006) to determine modularity, but Newman 
(2006) is a substantial improvement and more straightforward, so we adopt it here. 
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show, even at much lower modularity scores—all legal relations are contained within the 
boundary of each owner’s plot, with no interactions between the owners of various plots or other 
third parties beyond the boundary of an owner’s plot.  

When Q is equal to 0, the network is exactly the expected one—namely, a network that is 
most likely to occur given an exogenous set of vertices arranged in space. In this instance, the 
modularity of the system is roughly half that of a fully modular one. For instance, in the real 
property context, one would expect roughly an equal mix of legal relations inside and outside the 
boundaries of subplots when Q is 0. In the language of Smith (2002), such a system is roughly 
equal in “exclusion” and “governance” strategies.  

Finally, when Q is –1 the system is absolutely indivisible—no communities emerge and each 
node stands on its own. When no legal relation is part of a module, the entire system is one of 
pure “governance” (Smith, 2002). 

For simplicity, following Newman (2006), we describe how to calculate modularity when the 
system of interest contains two communities.10 First, we calculate the actual number of edges 
falling between two vertices, i and j. Let Aij be an element of a matrix A (the “adjacency” 
matrix), which represents the number of the actual edges between i and j. If we assume there are 
n total vertices, then A will be an n x n matrix.  

 

Recall from Figure 6 (reproduced above) that there are six nodes in our two-community 
Hohfeldian network. If we label G on I as node 1, Y on I as 2, O on I as 3, Y on J as 4, G on J as 
5, and O on J as 6, the Aij are as follows:  

• A12, A21, A23, A32, A45, A54, A56, A65  = 5 
• A25, A52 = 2 
• All other Aij = 0. 

As such, matrix A can be represented as follows: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Newman (2006) describes methods for three or more communities, which can be readily adapted to the approach 
described here. 
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0 5 0 0 0 0
5 0 5 0 2 0
0 5 0 0 0 0
0 0 0 0 5 0
0 2 0 5 0 5
0 0 0 0 5 0

 

Now that the total paths between each pair of vertices has been calculated, the next step is to 
determine the expected number of edges between each pair of vertices if edges are placed at 
random between the two vertices.  

 To determine this for a given graph, one must first calculate the total number of edges, m, 
in the network. This can be calculated by summing the total number of edges, ki, emanating from 
each node i, and dividing the total by two: 

m = (!
!
) ki!  

For any given graph, following Newman (2006), the expected number of edges between two 
nodes, i and j, is: 

• kikj/2m ≡ kij/2m ≡ 𝑘!" 

In our hypothetical, we have the following:11 

• m = 22 (total edges) 

• k12, 21, 23, 32, 45, 54, 56, 65 = 60; k13, 31, 46, 64 = 25 

• Thus, 𝑘!",21, 23, 32, 45, 54, 56, 65 = (60/44); 𝑘!",31, 46, 64 = (25/44) 

The next step is to determine Aij  – kikj/2m, but only for those pairs of nodes, i and j, that appear 
in the same community. This limitation is effective because the measure of the expected number 
of edges effectively incorporates the structure of the entire network. In other words, modularity 
compares the number of actual linkages within the nodes of a given community with the 
expected linkages within the nodes in the same community, effectively taking into account the 
structure of the entire network. 

 Thus, for any given pair of vertices, one then calculates the following: 

• (Aij  – kikj/2m) (sisj + 1), where si = 1 vertex i belongs to community 1 and 
si = –1 if vertex i belongs to community 2 (and similarly for sj) 

Then, to calculate the total system modularity, Q, one sums across all pairs of vertices in the 
network and normalizes to 1 with the weighting favor (1/4m) as follows: 

• Q = !
!!

(!"  Aij  - kikj/2m) (sisj +1) =   
!
!!

(!"  Aij  - 𝑘!") (sisj +1) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Here, we ignore the expected edges between pairs of nodes in different communities, since—as the next step will 
show—these quantities are not used in calculating the modularity measure, Q. 
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For our hypothetical, one can now calculate the total modularity, Q: 

• Q = 1/88 * (8 * (5–(60/44)) + 4 * (–25/44)) = 0.30 

The first term represents (1/4m) where m is the total number of edges (here, 22). The term 8 * 
(5–(60/44)) concerns the two sets of four pairs of nodes within each community (here, pairs 12, 
21, 23, 32, 45, 54, 56, 65) connected by five edges (for which the expected number of edges is 
(60/44).  The term 4 * (–25/44) concerns the two sets of two pairs of nodes within each 
community (here, pairs 13, 31, 46, 64) connected by no edges (for which expected number of 
edges is (25/44).  

Again, the pairs 25 and 52 are not counted, because vertex 2 and vertex 5 are in different 
communities. Recall these pairs represent nuisance obligations of one plot owner to another. 
However, suppose we return to the initial graph in which there were no such duties, which is 
reproduced below (see Figure 2).  

 

In this case, there are 20 total edges and the Aij and 𝑘!" are as follows: 

• A12, A21, A23, A32, A45, A54, A56, A65  = 5 
• A25, A52 = 0 
• All other Aij = 0. 
• k12, 21, 23, 32, 45, 54, 56, 65 = 50; k13, 31, 46, 64 = 25 
• Thus, 𝑘!",21, 23, 32, 45, 54, 56, 65 = (5/4); 𝑘!",31, 46, 64 = (5/8) 

 

In this event, Q is as follows: 

• Q =    !
!!

(!"  Aij  - 𝑘!") (sisj +1) = 1/80 * (8 * (5–(5/4)) + 4 * (–5/8)) 

which is equal to 0.34. From a legal standpoint, we considered the network of Figure 2 fully 
modular from a legal standpoint, because there were no legal interactions between the two 
subplots. However, in the Newman (2006) methodology, this system is still only partially 
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modular, because the structure of the network is examined within each community, and this 
structure is to some degree similar (though not fully similar) to what one would expect in a 
random sub-network within a given community. From a legal standpoint, of course, the bundles 
within each subplot are generally provided as a package. Thus, to the extent modularity is of 
interest because of concerns about high information costs of “unbundled” relations—a 
modularity score of 0.30 (as in the example when nuisance obligations are present) is, from this 
perspective, fairly close to what can be considered “fully” modular in the legal sense, namely, a 
score of 0.34.  

 If we divide the modularity score of the system with edges between communities 
between a similar system without any such edges, we can define the relative modularity as 
follows: 

• Qr =   𝑄𝑠/𝑄𝑐, where Qs is the modularity of the entire system (i.e., with 
all edges) and Qc is the modularity of decomposed system (i.e., with any 
edges between communities removed) 

Thus, for our hypothetical, the relative modularity would be (0.30/0.34) = 0.88. In this sense, 
modularity of the system with a few nuisance relations is quite close in quantitative modularity 
to the one with all the legal relations located within each subplot. Thus, consistent with the 
analysis of Smith (2012), a legal system with large numbers of relations inside the relevant 
boundaries and a small number traversing the relevant boundaries is—from a legal perspective—
“nearly” decomposable. 

 

4. Discussion & Extensions 

4.1 Theoretical and Practical Implications 

[Boundaries are automatically generated …] 

[Abstract modularity (speed limits, etc.)] 

[Application to “social relations” theories of property (the bundle is “very tight” when 
modularity score is high)] 

[Modularity score as measure of information costs.] 

 

4.2 Qualifications and Extensions 

 [Examples with different #s of use rights (e.g., grazing land, trespass to chattels, water rights, 
etc.).] 

[Duties to the state; easements/covenants; etc.] 
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[Using directed networks to determine those actors with substantial rights and those with 
substantial duties; use of higher-order relations to determine “power” centers within the node; 
broker nodes that carry information between nodes; etc.—See Newman PPT.] 

 

5. Conclusion  

[Insert.] 
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Appendix A – Calculation of Betweenness Scores 


