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1 Introduction

“Information in an organization,
particularly decision-related
information, is rarely innocent,
thus rarely as reliable as an
innocent person would expect. Most
information is subject to strategic
misrepresentation...” James G.
March, 1981.

Much of the information relevant for decision making in organizations is typi-
cally dispersed among employees. Due to time, location or qualification constraints,
management is unable to observe this information directly. Managers aim to collect
decision-relevant information from their subordinates, but employees often have their
own interests and hence communicate strategically to influence decision making in
their favour. In this paper, I study how a manager optimally elicits information by
designing a communication structure within the organization. The manager commits
to a hierarchical network that specifies who communicates with whom, and in which
order. Her objective is to maximize information transmission.1

My analysis shows that the optimal communication network is shaped by two
competing forces: an intermediation force that calls for grouping employees together
and an uncertainty force that favours separating them. The manager optimally di-
vides employees into groups of similar bias. Each group has a group leader who
collects information directly from the group members and communicates this infor-
mation in a coarse way to either another group leader or the manager. If employees’
biases are sufficiently close to one another and far away from the manager’s, the op-
timal network consists of a single group. My results resonate with the classic studies
of Dalton (1959), Crozier (1963), and Cyert and March (1963), who observe that
groups — or “cliques” — collect decision-relevant information in organizations and
distort this information before communicating it to organization members outside
the group.

The model I present considers a decision maker and a set of employees whom I
call experts. Each expert observes a noisy signal of a parameter that is relevant for a
decision to be made by the decision maker. The decision maker and the experts have

1Evidence suggests that the communication structure within an organization indeed affects em-
ployees’ incentives to reveal their private information. See discussions in Schilling and Fang (2014)
and Glaser et al. (2015).
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different preferences over this decision; specifically, the experts have biases of arbi-
trary sign and magnitude over the decision maker’s choice. The decision maker does
not observe any signal of the relevant parameter and relies on communication with
the experts. As committing to transfers or to decisions as a function of the informa-
tion transmitted is often difficult in an organizational context, I rule these out.2 The
decision maker instead commits to a communication network, which specifies who
communicates with whom, and in which order.3 Communication is direct and cost-
less, i.e. it takes the form of “cheap-talk” as in Crawford and Sobel (1982). I focus
on the best equilibrium payoffs for the decision maker in any given communication
network and characterize the optimal network for the decision maker.

My model builds upon Galeotti et al. (2013) who study simultaneous commu-
nication in a similar setting. The crucial difference is that my model studies the
optimal sequential structure from decision maker’s perspective, where they focus
on the properties of simultaneous communication in different network structures. In
particular, I restrict attention to tree communication networks, or “hierarchies.” This
type of network is a natural starting point in the study of communication in organi-
zations. In the theoretical literature, hierarchies are regarded as the optimal formal
organization for reducing the costs of information processing (Sah and Stiglitz, 1987;
Radner, 1993; and Garicano, 2000) and for preventing conflicts between subordi-
nates and their superiors (Friebel and Raith, 2004). In practice, hierarchies have
been identified as a prominent communication structure in organizations, even in
those that aim to have non-hierarchical communication and decision rights alloca-
tion (see Ahuja, 2000 and Oberg and Walgenbach, 2008).

I begin my analysis of optimal communication networks by identifying a trade-off
between two competing forces. On the one hand, the intermediation force pushes in
favour of grouping experts together, in order to enable them to pool privately held
information and have more flexibility in communicating to the decision maker. On
the other hand, the uncertainty force pushes in favour of separating the experts, in
order to increase their uncertainty about the information held by other experts and
relax their incentive constraints. As in other contexts, uncertainty allows to pool
incentive constraints, so a less informed expert can be better incentivized because
fewer constraints have to be satisfied compared to the case of a more informed expert.

2A manager cannot contract upon transfers or any information received in Dessein (2002), Alonso
et al. (2008), Alonso et al. (2015), and Grenadier (2015). See also the literature discussion in
Gibbons et al. (2013).

3The design of communication structures appears as a more natural form of commitment. For
example, if a party commits not to communicate with an agent, she will ignore any reports from the
agent so long as they are not informative, and the agent in turn will not send informative reports
as he expects them to be dismissed.
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Building upon the interaction between the intermediation force and the uncer-
tainty force, I derive three main results. My first main result concerns star networks
— those in which each expert communicates directly to the decision maker. Star net-
works are a simple and a prominent benchmark in the social network literature (see
Jackson, 2008). My analysis shows, however, that a star communication network
is always dominated by an optimally-designed sequential communication network.
Sequential communication between the experts can generate as much information
transmission to the decision maker as a star network, and sometimes strictly more.
The improvement arises because coordination in reports gives experts the possibil-
ity to report pooled information in a coarse way. This is strictly beneficial for the
decision maker whenever the experts would send a less informative report were they
unable to coarsen information.

My second main result shows that an optimal communication network consists of
“groups” of experts. In a group, a single expert — the group leader — receives direct
reports from all other members of the group and then communicates the aggregated
information in a coarse way either to another group leader or directly to the decision
maker. The coarsening of information by a group leader is key to incentivize the
experts to reveal their signals truthfully. As for the optimal composition of a group,
I show that group members who only observe their own private signals have identical
ranges of biases that support their equilibrium strategies; the reason is that they have
the same expected uncertainty about the signals of other experts and their reports
are treated symmetrically by their group leader. Consequently, the decision maker
benefits from grouping similarly biased experts together.

Finally, my third main result shows that if the experts’ biases are sufficiently close
to one another while large enough (relative to the decision maker’s preferences),
then the optimal network consists of a single group. The group leader acts as a
single intermediary who aggregates all the information from the other experts and
sends a coarse report to the decision maker. Aggregation of the entire information
allows this intermediary to send a report with minimal information content. As a
consequence, from the perspective of each expert, any deviation from truth-telling
results in the largest possible shift in the decision maker’s policy from the expected
value of the state. This allows to incentivize highly-biased experts to reveal their
private information truthfully.

As noted, my findings are in line with work on the modern theory of the firm,
which emphasizes the importance of coordination between employees for intra-firm
information transmission. Cyert and March (1963) observe that managerial deci-
sions are lobbied by groups of employees that provide distorted information to the
authority. Similarly, Dalton (1959) and Crozier (1963) view an organization as a

4



collection of cliques that aim to conceal or distort information in order to reach their
goals. Dalton claims that having cliques as producers and regulators of information
is essential for the firm, and provides examples of how central management influ-
ences the composition of such groups through promotions and replacements.4 Group
leaders in my model also resemble the internal communication stars identified in the
sociology and management literature. Allen (1977), Tuchman and Scanlan (1981),
and Ahuja (2000) describe these stars as individuals who are highly connected and
responsible for a large part of information transmission within an organization, often
acting as informational bridges between different groups.

The next section discusses the related literature. Section 2 describes the model.
Section 3 illustrates the main ideas with a simple example, provides a characteri-
zation of the intermediation and uncertainty forces, and derives the main results.
Section 4 provides additional results: I study the optimal ordering of biases, the
case of experts with opposing biases, the value of commitment, and the benefits and
limitations of using non-hierarchical networks. Section 5 concludes.

Related Literature. An early strand of literature on communication within or-
ganizations takes a team-theoretic approach which assumes same objectives for all
players. Communication is non-strategic and the optimal mechanism minimizes com-
munication and/or information processing costs (starting with Marschak and Radner,
1962 and more recently Bolton and Dewatripont, 1994; Radner and van Zandt, 1992;
Calvó-Armengol and de Mart, 2007 and 2009).

This paper fits into a different strand of literature which models a conflict of inter-
est within organizations such that the players disclose their information strategically.
In the absence of complete contracts the revelation principle does not work and the
management acts in the world of second-best. The literature discusses multiple or-
ganizational responses to strategic communication motives. For example, decision
maker(s) can close down communication channels and reward those agents who focus
on productive activities (Milgrom and Roberts, 1988) or optimally delegate decisions
to better informed parties (Dessein, 2002; Alonso, Dessein and Matouschek, 2008;
and Rantakari, 2008 and Alonso, Dessein and Matouschek, 2015). This paper stud-
ies a different incentive instrument: the design of communication hierarchies in the
presense of arbitrary many players with strategic communication motives, who have
arbitrary ideal points regarding the policy domain.

My focus on hierarchies is motivated by the extensive literature on hierarchies

4See p. 65-67. Dalton describes a case in which the new members of a clique were instructed
about the “distinction between their practices and official misleading instructions” (italics are from
the original text).
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within organizations. Hierarchies minimize information processing costs (Bolton and
Dewatripont, 1994; van Zandt, 1999a and 1999b; and Garicano, 2000) or prevent
conflicts between different organizational layers (Friebel and Raith 2004). More
generally, optimally designed hierarchies can reduce moral hazard on “lower” level
of organizations and thus minimize resource misallocation.5 Furthermore, empirical
literature shows how organizations adopt hierarchical structures even if they publicly
emphasise non-hierarchical decision-making (Oberg and Walgenbach 2008, Ahuja and
Carley 1998).

The literature on communication in firms has a counterpart in sociology and
management. Early studies of Cyert and March (1963), Dalton (1959) and Crozier
(1963) identify intra-organizational groups which lobby decisions by distorting the
information provided to the management (see, e.g., Glaser et al. 2015). Tuchman and
Scalan (1981) and Allen (1977) show that much of intra-organizational information
is mediated by internal communication stars — individuals who act as informational
bridges between different groups. Both findings resonate with my result on “group
leaders” within optimal communication hierarchies who collect information from the
members of their groups, optimally distort it and then communicate it either to
another group leader or directly to the management.6

I model communication as cheap talk. The workhorse model is Crawford and
Sobel (1982) (CS) who study costless and direct communication between a perfectly
informed sender and an uninformed receiver who is unable to commit to choices
contingent on sender’s messages. There are extensions of CS to multiple senders:
Krishna and Morgan (2001a) study simultaneous communication and show that the
decision maker benefits from consulting two experts with opposing biases; Krishna
and Morgan (2001b) study information revelation with two experts from a mechanism
design perspective; and Battaglini (2002) shows that perfect revelation with multiple
dimensions of the state space is generically possible even for large experts’ biases.

All those papers achieve full revelation constructing an equilibrium that plays the
experts’ reports against one another. Such equilibrium construction is not possible in
my model. Since experts’ signals are conditionally independent, the on-path signal
realizations are unrestricted and the decision maker cannot credibly threaten to
punish the experts due to “incompatibility” of their reports as in Ambrus and Lu
(2014) or Mylovanov and Zapechelnyk (2013).

5For the literature on incentives in hierarchies without strategic communication see an excellent
overview in Mookherjee (2006).

6More recently, the importance of such communication stars is documented in Wadell (2012).
Strategic distortions of communicated information are documented in Dhanaraj and Parke (2006)
and Schilling and Fang (2013).
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I model imperfectly informed experts. Austen-Smith (1993) first studies two im-
perfectly informed experts in a cheap-talk environment and compares simultaneous
and sequential communication. Battaglini (2004) extends the analysis to many ex-
perts who communicate simultaneously to the decision maker. Different to my paper,
these papers do not study the optimal communication design.

The following three papers are most closely related to my paper. First, Wolinsky
(2002) studies a team of imperfectly informed experts and a single decision maker
who is unable to commit to decisions based on experts’ reports. Wolinsky compares
simultaneous communication to a division of experts into groups. He provides ex-
amples that show that the decision maker prefers to split the experts into groups
rather than to consult each expert individually, and characterizes the lower bound
of the group size. There are three major differences of Wolinsky’s approach to my
model: First, and most importantly, Wolinsky does not look for the optimal commu-
nication network whereas my paper optimizes over a large family of communication
structures. Second, he assumes the same preferences of the experts and so abstracts
from strategic information transmission motives between them. My model, however,
allows for arbitrary ideal points of experts with respect to the final decision and
shows the importance of the conflict of interest between the experts for the optimal
communication. Finally, Wolinsky assumes partial verifiability and non-correlated
information, which is both not the case in my model.

The two other papers are Galeotti et al. (2013) and Hagenbach and Koessler
(2011) who study equilibrium communication networks with one round of simulta-
neous communication. My model is based on Galeotti et al. (2013)7 with the major
difference that I pose a question of the optimal communication design whereas Ga-
leotti et al. (2013) look at the properties of one-round communication where each
player can read messages to all other players.

Generally, to the best of my knowledge the question of optimal network design
in the presence of cheap talk for a broad class of networks and an arbitrary number
of players with arbitrary ideal points in the policy space has not been studied yet.
However, the literature provides valuable insights for a restricted class of networks
like complete networks (Galeotti et al., 2013; Hagenbach and Koessler, 2011) and
sequential communication with a single or multiple intermediaries arranged in a line
(see, e.g., Ivanov, 2010; Ambrus et al. 2013).

7This framework is based on Morgan and Stocken (2008) and is currently used in many political
economy and informational economics applications, see e.g. Argenziano et al. (2015) or Dewan
(2014).
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2 The main idea

Think of two experts (“he”) and a decision maker (“she”) who wants to obtain
payoff-relevant information from the experts. All players share a common prior over
an unobserved state θ that is uniformly distributed on [0, 1]. Each expert receives a
costless signal which is either “0” or “1”: signal “1” is received with the probability
equal to the state and, conditional on the state, the signals are independent. The
decision maker chooses a policy y ∈ R and wants to minimize the quadratic loss
function −(y−θ)2. Each expert wants to minimize −(y−θ−b)2 where b ∈ R denotes
each expert’s bias. The decision maker is uninformed and relies on communication
with the experts. I assume that each expert can lie at no cost.

Prior to communication, the decision maker chooses a hierarchical communication
network that specifies which player communicates with whom, and in which order.
Assume that the decision maker can only choose between a star where the experts
send simultaneous messages to the decision maker (Figure 1, left), or a line where
expert 1 sends a message to expert 2, and then expert 2 sends a message to the
decision maker (Figure 1, right). I assume that the experts can send any messages.
Which network maximizes decision maker’s payoffs if we focus on the best pure
strategy equilibria for the decision maker?8

Without loss of generality assume that each expert’s message space is equivalent
to the space of his possible signals. Before studying the incentives of the players,
notice that in the star network each expert has only two message strategies. He
can either send signal-independent messages which contain no information for the
decision maker, or he can truthfully communicate his signal. In the line expert 1 has
the same two message strategies. However, expert 2 has more message strategies. If
expert 1 reveals his signal truthfully to expert 2, expert 2’s information is one of the
elements within the set {00, 01, 10, 11}. Therefore, expert 2’s message strategy can
pool multiple signal combinations into a single message - for example, expert 2 can
inform the decision maker if the realization of both signals is {00} or within the set
{10, 01, 11}. Notice that such strategic pooling of signals is not possible in the star.
But would expert 2 use a pooling message strategy in equilibrium, and - if yes - how
does it affect decision maker’s preference over the two communication networks?

In the star network, the decision maker’s payoff increases in the number of truth-
fully communicated signals: 0, 1 and 2 signals result in the decision maker’s expected
payoff of − 1

12
, − 1

18
and − 1

24
respectively. Since the decision maker wants to match

the state, only a small enough bias of the experts can guarantee that they are truthful
in the star network. In particular, an equilibrium in which only one expert commu-

8I analyze mixed strategy equilibria in section 4.4.
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Figure 1: Illustration of the main idea

nicates his signal truthfully requires b ≤ 1
6
, and an equilibrium in which both experts

communicate their signals truthfully requires b ≤ 1
8
. For b > 1

6
there is a unique

equilibrium in the star in which every expert sends signal-independent messages.9

Now, think about the following strategy profile in the line that was hinted above.
Expert 1 reports his signal truthfully to expert 2, who, in turn, observes one of
the signal combinations from the set {00, 01, 10, 11}. Expert 2 informs the decison
maker if the two signals are {00} or within the set {10, 01, 11}. The latter message
is “coarse”: upon receiving the message the decison maker only knows that the
combined signals are not {00}. The decision maker’s expected payoff is − 5

96
and this

strategy profile is an equilibrium for b ≤ 3
16

. Notice that for b > 1
6

the star does not
transmit any information whereas in the line both experts communicate according
to the coarse message profile described above. The key is that strategic coarsening
increases the deviation costs of the experts. In the star, a deviation from a truthful
message results in a smaller shift of decision maker’s policy compared to a shift from
the truthful message {00} to the higher message {10, 01, 11} in the line. A larger
shift in decision maker’s policy means that there is an “overshooting” effect in terms
of the experts’ objectives: by deviation to a higher message, the policy y moves too
far away from experts’ ideal points. This means that the message profile in the line

9The uninformative equilibrium is usually called babbling and it is a standard feature of cheap
talk games. There is a literature on refinements of cheap talk equilibria that - among other things
- aims to exclude babbling, see e.g. Farrell (1993).
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can be supported by large biases.10 As a result, for 1
8
< b < 3

16
the decision maker

strictly prefers the line over the star.11

3 Model

There are n experts, labelled 1,..,n, and a single decision maker denoted by DM .
Let N e := {1, .., n} denote the set of all experts, and N := N e ∪ {DM} denote the
set of all players. Each player i ∈ N has a payoff function

ui = −(y − θ − bi)2,

where y ∈ R is the policy chosen by the decision maker and bi ∈ R is the bias of
player i. Without loss of generality I set bDM = 0. Each player’s payoff depends on
the state θ which is commonly known to be uniformly distributed on [0, 1].

The state is unobserved and every expert receives a costless conditionally inde-
pendent signal s ∈ {0, 1} with Prob(s = 1) = θ. Player’s updating follows the
Beta-binomial model: if the sum of n signals is k, the expected value of the state is
k+1
n+2

.
The decision maker chooses a communication network which is represented by a

directed graph Q = (N,E) with the set of nodes N and an adjacency n× n matrix
E = [eij]i,j∈N with eij ∈ {0, 1} representing the availability of a directed link from i
to j. A path in a network Q, Hi1iL(Q), is a sequence of nodes i1, i2, .., iL such that
eilil+1

= 1 for each l = 1, .., L − 1. I only study communication networks with the
following properties (see the Appendix for the formal definition):

1. every expert has only one outgoing link but can have multiple incoming links,

2. there are no cycles in the graph, and

3. the decision maker has at least one incoming link, but no outgoing links.12

10There is parallel to the cheap-talk communication in CS who show that pooling of multiple
signals into a single message is necessary to support influential communication between a receiver
and a biased sender.

11The example shows that the decision maker strictly prefers to receive her information according
to the partition P := {{00}, {01, 10, 11}} rather than according to the partition P ′ := {{0}, {1}} in
which only one experts communicates his signal truthfully. Notice that P is not more informative
than P ′ in the Blackwell sense. Think of a payoff function −(y− θ)3 for the decision maker. Then,
the expected payoff of the decision maker is − 1

640 for P and 0 for P ′.
12I only look at deterministic mechanisms.
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Let Q denote the family of communication networks which satisfy the above
properties. Notice that those networks are essentially communication hierarchies (in
the paper I use the terms hierarchy and network interchangeably).

The entire payoff-relevant information of expert i ∈ N e, or his type, consists of
his own private signal and the information communicated by the experts directly
connected to i in a network Q. Denote by P (S) a partition of an arbitrary set S.
Each expert’s communication strategy is a partition of his type space. To define
expert’s type space and strategies we need an additional definition and a notation.
First, for any player i ∈ N , let Ni(Q) := {j ∈ N e : eji = 1} define the set of those
experts who can send messages to i in a network Q. Second, if some expert i ∈ N e

babbles, which means that he sends messages independent of his private information,
his communication strategy is denoted by P b

i (Q).
A type set of expert i ∈ N e is

Ti(Q) := Πj∈Ni(Q)Pj({0, 1}Ñj(Q))× {0, 1},

and a communication strategy of expert j ∈ N e is

Pj(Q) := Tj(Q)→ P (Tj(Q)),

where

Ñj(Q) := {i′ ∈ N e : ∃ Hi′j(Q) and for all j′ ∈ Hi′j(Q) Pj′(Q) 6= P b
j′(Q)}

defines the set of all experts located on all paths leading to expert i in Q who
are not babbling, and whose successors on the entire path leading to expert i are not
babbling either.

Notice the recursive structure of expert’s beliefs and strategies: expert’s commu-
nication strategy is a partition of his type space, and his type space is a function
of communication strategies of experts directly connected to him, whereas the com-
munication strategies of those experts are partitions of their type spaces where each
of those type spaces depends on the communication strategies of experts directly
connected to them etc. Naturally, for experts at the bottom of the hierarchy the
type space is {0, 1} and their communication strategy is a partition of {0, 1}.

Decision maker’s beliefs in a network Q are determined by communication strate-
gies of the experts directly connected to her and can be represented by a partition
PDM(Q) := Πi∈NDM (Q)Pi(Q). The strategy of the decision maker consists, first, of
choosing and committing a network Q ∈ Q and, second, of choosing an action
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y(Q) : PDM(Q)→ R.

Most communication networks give rise to multiple equilibria which is typical
for strategic communication games. I focus on the best equilibrium for the decision
maker in any given network.13 In particular, when referring to optimality I use the
notion of a weak dominance: a network Q weakly dominates a different network Q′

if, for any players’ biases, the best equilibrium payoff for the decision maker in Q is
at least as high as in Q′, and for some biases it is strictly higher.14

A Perfect Bayesian Equilibrium specifies strategies and beliefs for each player
i ∈ N and is a tuple(

Q, {Ti(Q)}i=1,..,n, {Pi(Q)}i=1,..,n,DM , y(PDM(Q))
)
.

The following conditions are satisfied in equilibrium:

1. y(·) must be sequentially rational. For k ∈ {0, .., n} it means that if p′ ∈
PDM(Q) is reported to the decision maker, she chooses

y ∈ argmax
y∈R

−
∑
k∈p′

Pr(k)

∫ 1

0

(y − θ)2f(θ|k, n)dθ.

2. For every ti ∈ Ti(Q), the partition Pi(Q) is incentive compatible if, for ti ∈ pi,
pi ∈ Pi(Q):

−
∑

p∈PDM (Q)

Pr(p|pi, P−i(Q))
∑
k∈p

Pr(k|ti)
∫ 1

0

(y(p)− θ − bi)2f(θ|k, n)dθ ≥

−
∑

p∈PDM (Q)

Pr(p|p′i, P−i(Q))
∑
k∈p

Pr(k|ti)
∫ 1

0

(y(p)− θ − bi)2f(θ|k, n)dθ

for p′i ∈ Pi(Q) and p′i 6= pi.

13Such an equilibrium is Pareto optimal in the ex-ante sense: before experts receive their signals
each player aims to minimize the residual variance E[−(y − θ)2].

14A similar optimality criterion is used in Austen-Smith (1993).
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3. Finally, Q maximizes the expected payoff of the decision maker:

Q ∈ argmax
Q∈Q
−

∑
p∈PDM (Q)

Pr(p|P (Q))
∑
k∈p

Pr(k)

∫ 1

0

(y(p)− θ)2f(θ|k′, n)dθ,

where P (Q) := Πi∈NePi(Q).

Given the equilibrium conditions, the decision maker aims to match the state and
chooses y(·) = EDM(θ|p) for p ∈ PDM(Q).

3.1 Simultaneous versus sequential communication

We start with a natural benchmark where all experts send their messages simultane-
ously to the decision maker. Such a star network is shown in Figure 2. It turns out
that equilibria in a star have a simple characterization (see also Morgan and Stocken,
2008; and Galeotti et al., 2013):

Proposition 1: Take any number of experts, n, with arbitrary biases. An equilib-
rium in a star network in which n′ ≤ n experts communicate their signals truthfully
to the decision maker exists iff for every expert i ∈ {1, .., n′}, |bi| ≤ 1

2(n′+2)
.

Figure 2: A star with n experts

Thus, a smaller difference in biases between the experts and the decision maker
results in more experts revealing their signals truthfully. The influence of every
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truthful message on decision maker’s policy gets smaller with a larger number of
equilibrium truthful messages. This makes a deviation more profitable for every
expert. Therefore, in order to sustain a larger number of truthful messages in equi-
librium, the biases of the experts have to be small enough. Conversely, a smaller
number of truthful messages corresponds to a larger impact of each truthful message
on decision maker’s policy making a deviation less profitable. As a result, such an
equilibrium can be supported by larger biases.

A quick intuition might suggest that a star network is beneficial for the deci-
sion maker since no expert can distort the messages of the other experts. The next
Proposition shows that this intuition is wrong: a star network is weakly dominated
by an optimally designed intermediation where at least one expert has access to a
signal of at least one other expert.

Proposition 2: Take any number n of experts with arbitrary biases. Take any
network Q that is not a star, such that if expert i communicates to expert j, eij = 1,
then |bj| ≤ |bi|. Then:

1. Any equilibrium outcome in a star network is also implementable as an equi-
librium outcome in network Q.

2. There is a range of experts’ biases for which the best equilibrium in Q strictly
dominates the best equilibrium in a star. Further, this equilibrium in Q involves
strategic coarsening of information by at least one of the experts.

Proposition 2 provides an important insight into optimal communication hierar-
chies. It shows that an optimally designed intermediation can always generate the
same equilibrium payoffs for the decision maker as the star network. Moreover, it
can sometimes generate strictly higher payoffs for the decision maker. As I show in
the proof, it happens due to informational coarsening by intermediaries, it means,
by the experts who receive and forward messages of at least one other expert.

The proof of the first part requires three steps. First, fix an equilibrium with
n′ ≤ n truthful experts in a star. The decision maker receives information according
to a partition {{0}, {1}, .., {n′}} where the sum of the signals k ∈ {0, .., n′} is the
summary statistic. Upon receiving experts’ messages, a sequentially rational decision
maker chooses y = k+1

n′+2
. Second, take any truthful expert i and suppose that the

sum of the signals of all the other truthful experts is k′ ∈ {0, .., n′ − 1}. If i receives
si = 0 and reveals it truthfully, then the decision maker chooses y = k′+1

n′+2
. However,

if i deviates to the higher message “1”, the decision maker chooses y′ = k′+2
n′+2

. The
difference (y′ − y) is independent of k′ and therefore the incentive of expert i to
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deviate to the higher message does not depend on the exact number k′. The same is
true for expert i’s downward deviation in case si = 1. With other words, conditional
on expert i’s private signal, his deviation only depends on the equilibrium number
of truthful signals but not on the realization of other experts’ signals.

Third, from Proposition 1 we know that in the star, for any number of truthful
signals communicated to the decision maker, there always exists an equilibrium in
which the largest absolute value of the bias among all truthful experts is weakly
smaller than the smallest absolute value of the bias among all non-truthful experts.15

The optimal ordering in Proposition 2 ensures that all such truthful experts are
“closest” to the decision maker. Since in any equilibrium in which decision maker’s
partition is {{0}, {1}, .., {n′}}, the deviation incentives of the experts are independent
of their beliefs about the signals of the other truthful experts, such an equilibrium
can be generated by an optimally ordered hierarchy.

Figure 3: Example of an informational coarsening by expert 3

The proof of the second part uses the fact that within an optimally ordered
hierarchy each expert has at least as many message strategies as in the star. Figure
3 illustrates this point. If experts 1 and 2 truthfully reveal their signals, the summary

15Think, for example, of three experts with b1 = b2 = 1
8 and b3 = 1

10 . Given Proposition 1, the
most informative equilibrium in the star features only - and any - two experts. Thus, it can be the
case that in the most informative equilibrium experts 1 and 2 communicate truthfully and expert 3
babbles, although expert 3 has the smallest bias. But what matters for Proposition 2 is that there
exists an equilibrium with two truthful experts one of whom is expert 3.

15



statistic of expert 3 has one of the realizations from the set {0, 1, 2, 3}. Thus, expert
3 can use a message strategy which pools some of his information sets into a single
message. In particular, he can either communicate to the decision maker that his
summary statistic is 0, or everything else (as shown in Figure 3). As I show in
the proof, such a message strategy is optimal for the decision maker if all experts’
biases are sufficiently large. The decision maker benefits from coarse information
transmission since otherwise no information is transmitted in the star. The reason is
that the informational coarsening increases the “costs” of deviation from truthtelling
and makes the experts more trustworthy than in the star.

Propositions 1 and 2 further imply that if the biases of all n experts are weakly
below 1

2(n+2)
, the shape of an optimal communication network does not matter as

long as every expert has a directed link to one of the other players. In this case the
conflict of interest among the players is so small that all signals are truthfully revealed
to the decision maker. However, once the bias of at least one of the experts exceeds

1
2(n+2)

, a star network can never outperform an optimally designed intermediation.

The next Proposition shows that for high enough positive (or low enough nega-
tive) biases the optimal communication network has two simple requirements. First,
a decision maker has to receive messages from a single expert, no matter which one.
Second, each of the other experts must have a directed link to any of the other ex-
perts (examples of optimal networks are depicted in Figure 4).

Proposition 3: Take any number n ≥ 2 of experts such that all their biases are
either within the interval ( n

4(1+n)
, n+1
4(n+2)

] or within the interval [− n+1
4(n+2)

,− n
4(n+1)

).
Then:

1. In the optimal network the decision maker is connected to a single expert i ∈
{1, .., n}, eiDM = 1, and each expert apart from i is connected to some other
expert j ∈ {1, .., n}, no matter which one.

2. Any other network does not transmit any information from the experts to the
decision maker.

Moreover, If the biases of all experts are above n+1
4(n+2)

or below − n+1
4(n+2)

, then no in-
formation is transmitted in equilibrium.

The explanation for Proposition 3 goes as follows. If the stated conditions are
satisfied, there exists an equilibrium in which an expert who is directly connected to
the decision maker knows the signals of all other experts. This enables him to send
messages according to the coarsest possible message profile. In the case of positive
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biases, this expert sends either a message containing the sum of the signals 0, or
a second message which pools together all the other signals. This message profile
implies that all experts condition their upward deviation on the same event that
all n signals are 0. Whenever an expert with a summary statistic 0 deviates to a
higher message, then, conditional on all signals being 0, the decision maker chooses
a policy which is a large distance away from the experts’ ideal points. This prevents
deviations to higher messages even by experts with very large biases.

Figure 4: Examples of optimal networks in Proposition 3

Examples of possible optimal networks from Proposition 3 are depicted in Figure
4. The ordering of the experts can be arbitrary. This is because the experts’ biases
are within a narrow bias range and, therefore, the experts do not face incentive
problems when informing each other about their signals.

The proof in case of negative biases is similar: the corresponding downward
deviation which leads to the largest possible downward shift of decision maker’s
policy away from the experts’ ideal points, requires a communication strategy which
either informs the decision maker that the sum of the signals is n or that the sum of
the signals is everything else.

3.2 Uncertainty and incentives

Example: Think of three positively biased experts, labelled 1, 2 and 3. Consider,
first, the network depicted in Figure 5a in which the experts 1 and 2 are uncertain
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about each other’s signals. Think of a strategy profile in which expert 3 reveals his
signal to expert 2 who, then, informs the decision maker if the combined signals are
00, or within the set {10, 01, 11}. Expert 1 reveals his signal to the decision maker.
The decision maker, then, matches the policy y to her posterior of the state. As
I show in the appendix, this strategy profile is an equilibrium for b2, b3 ≤ 74

525
and

b1 ≤ 293
2550

. Moreover, for b1 ≤ 293
2550

and 1
8
< max{b2, b3} ≤ 74

525
the network in Figure

5a is optimal.

Figure 5: Illustration of the example (p 17)

The decision maker can implement the same payoff profile in the line (Figure 5b)
but for the above bias range the line is not an optimal network. To see why, think
of the following strategy profile: experts 2 and 3 have the same message strategies
as in the network in Figure 5a. Expert 1, however, communicates to the decision
maker both his own signal and the message of expert 2. The decision maker re-
ceives information according to the same partition of experts’ signals as before, and
therefore the expected payoff allocation of all players remains the same. Moreover,
the incentive constraints for experts 2 and 3 remain unchanged. However, the line
requires a strictly smaller bias for expert 1: it has to be weakly below 1

30
. This is

because in the line expert 1 conditions his deviation on the exact message of expert
2 and therefore has to satisfy more incentive constraints than in the other network.

An important feature of the above example is the strategic coarsening of infor-
mation by expert 2. If an equilibrium does not feature informational coarsening by
at least one of the experts, Proposition 2 tells us that the incentive constraints of
the experts are the same across all optimally ordered hierarchies. The next Lemmas
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show that this is no longer true in equilibria with strategic coarsening of information.
In such equilibria, the less information an expert has about the overall signals, the
larger is the slack in his incentive constraints.16

Definition: Expert i receives full information from some other expert j in a network
Q if i perfectly observes every p ∈ Pj(Q) communicated by expert j.17

Lemma 1: Take any equilibrium in an optimal network Q that involves strategic
coarsening of information. If some expert j truthfully communicates all his signals,
Pj(Q) = Tj(Q), and some other expert i receives full information from j, then the
range of biases supporting the equilibrium strategy of i is weakly included in the range
of biases supporting the equilibrium strategy of j.

The next Lemma shows the implication of Lemma 1 for the structure of optimal
networks.

Lemma 2: Take any number of experts with arbitrary biases. In the corresponding
optimal network Q, if an equilibrium involves strategic coarsening of information and
there is a player i ∈ N who receives full information from some expert j ∈ N e, j 6= i,
then j has to be connected to i, eji = 1.

The proof of Lemma 2 uses the insight that if, contrary to the Lemma, there
are some experts between i and j, those experts face tighter constraints compared
to the case in which j is directly connected to i, without changing the expected
payoff allocation. Thus, the Lemma shows that if an expert receives full information
from some other experts and coarsens the aggregated information, then in an optimal
network he receives this information unmediated, it means from each of those experts
directly.

As a result, an optimal network consists of “information coordination units” - I
call them groups - which are essentially stars. At the center of a group there is an
expert - I call him a group leader - who receives direct messages from all other group
members, strategically coarsens the aggregated information and communicates it up
the hierarchy.

Definition: In an optimal network, a group G is a non-empty subset of a communi-

16This effect is well known in mechanism design where in general the interim incentive constraints
are easier to satisfy than the ex post constraints.

17Formally, the partition P b
i (Q) is finer than the partition Pj(Q).
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cation network consisting of some expert i ∈ N e and a non-empty subset of experts
Ñ ⊆ N e \ {i} such that each j ∈ Ñ is directly connected to i. Expert i is a group
leader and I denote him by iG.

Notice that I am not excluding the possibility that a group leader can be directly
connected to a leader of another group if the latter strategically coarsens informa-
tion in his message strategy. Thus, the “depth” of an optimal network has a direct
connection to the number of informational coarsening rounds. The next Lemma pro-
vides insights into the intra-group structure.

Lemma 3: Suppose that an equilibrium in an optimal network Q involves strategic
coarsening of information. Then:

1. if two distinct experts j′ ∈ N e and j ∈ N e belong to the same group G, none of
them is a group leader of G, both j and j′ have no incoming links,

∑
k∈Ne ekj =∑

k∈Ne ekj′ = 0 and both of them do not babble, Pj(Q) 6= P b
j (Q) and Pj′(Q) 6=

P b
j (Q), then their message strategies are supported by the same range of biases,

and

2. the equilibrium strategy of iG is supported by a weakly smaller range of biases,
compared to j and j′.

To understand Lemma 3, think of a group in an optimal hierarchy which features
experts with no incoming links. Their only information are their private signals.
Lemma 3 shows that, conditional on a group, in equilibrium all those experts face
the same incentive constraints. As shown in the proof of Lemma 3, this is, first,
because the experts with no incoming links face the same expected uncertainty about
the overall signals and, second, because their signals enter the message strategy of
their group leader symmetrically. In this sense, groups in an optimal network include
experts with similar biases.

Further, a group leader has a better knowledge about the overall signals compared
to those experts in his group who only observe their own signals. In an equilibrium
with strategic coarsening of information, the range of biases supporting the equilib-
rium strategy of a group leader is weakly included into the range of biases supporting
the equilibrium strategy of those experts, which is a direct consequence of Lemma 1.

Lemmas 2 and 3 show that due to the uncertainty force an optimal communication
hierarchy should not be “too deep”. An optimal hierarchy consists of groups of
experts with similar biases. A group leader collects information from the other
group members and communicates it in a coarse way either to another group leader or
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directly to the decision maker. This result resonates with the findings on information
processing in organizations by Cyert and March (1963) who show that groups include
organizational members with similar objectives who aggregate information within
a group before communicating it in a systematically distorted way further up the
hierarchy.

3.3 Optimal networks

This section uses the results of the previous sections and characterizes the optimal
networks and corresponding equilibria for three positively biased experts such that
none of them babbles.18 When referring to the experts I label them 1, 2 and 3 such
that b1 ≤ b2 ≤ b3.

Propositions 1 and 2 imply that for experts’ biases below 1
10

, any network leads
to complete revelation of all signals and yields EUDM ' −0.033.

For the following assume b > 0.1 for at least one of the experts. The optimal
network depends on the biases as follows

1. The optimal network is depicted in Figure 6(a) (denoted by Qa) if the biases
are small. Assume b1 ≤ 0.1 and 0.1 < b3 ≤ 0.125. In equilibrium experts 2
and 3 communicate their signals truthfully to expert 1. Expert 1 sends one of
the three messages: if the sum of the signals is 0, he sends p1, if the sum of the
signals is 1, he sends p′1, and if the sum of the signals is either 2 or 3, he sends
p′′1. Decision maker’s choices are y(p1) = 1

5
, y(p′1) = 2

5
and y(p′′1) = 7

10
. This

strategy profile yields EUDM ' −0.038.

2. The optimal network is depicted in Figure 6(b) (denoted by Qb) if all biases
are in the intermediate range. The biases b1 ≤ 0.115 and 0.125 < b3 ≤ 0.14
support the following equilibrium strategy profile: expert 3 communicates his
signal truthfully to expert 2. Expert 2 sends p2 if both his private signal and
the message of expert 3 are 0, and sends p′2 otherwise. Expert 1 sends p1 if
his signal is 0, and p′1 otherwise. The decision maker’s choices are y(p1, p2) =
1
5
, y(p′1, p2) = 2

5
, y(p1, p

′
2) = 7

15
and y(p′1, p

′
2) = 18

25
resulting in EUDM ' 0.04.

We know from the section 3.2 that the same outcome can be implemented in
a line, but only for a strictly smaller range of expert 1’s bias.

3. The optimal networks are depicted in Figure 6(a) and 6(c) (the latter is denoted
by Qc) if all biases are large. This is a direct consequence of Proposition 3. Fix

18If, for example, one of the experts babbles, we are back to the case with two communicating
experts which has been covered in the introductory example.
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Figure 6: Networks for 3 experts

0.1875 < b1 ≤ 0.2 and b3 ≤ 0.2. In equilibrium experts 2 and 3 communicate
their signals truthfully to expert 1. Expert 1 sends p1 if the sum of all signals is
0. Otherwise he sends p′1. The decision maker chooses y(p1) = 1

5
and y(p′1) = 3

5

with the resulting EUDM ' −0.05.

4 Further results

4.1 Opposing signs of biases

Suppose that a decision maker consults four experts: two experts have the same
positive bias, b1 = b2 = b+ > 0, and the other two experts have the same negative
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bias, b3 = b4 = b− < 0. Suppose that the decision maker can only split the experts
into two lines, each one including two experts. The available networks (up to rela-
belling of the experts) are depicted in Figure 7. What is the optimal assignment of
the experts into both lines? Although the question is more restrictive than before,
it offers additional insights into optimal networks with experts having opposite signs
of biases. I show that it is optimal to put the biases of the same sign into a single
line, and therefore to separate them from the biases of the opposite sign. The rea-
son is that in the optimal network the experts within each line bias their messages
in the direction opposite to the other line. The decision maker wants to minimize
the residual variance and benefits from having two reports biased in the opposite
directions.

Assume max{|b−|, |b+|} > 1
12

as otherwise Proposition 2 states that all experts
communicate their signals truthfully in any network.

In case A (Figure 7A) the experts are partitioned into two lines according to the
sign of their biases. In cases B, C and D (Figure 7B, 7C, 7D) the experts have
mixed signs within the lines and differ by the signs of the experts communicating to
the decision maker.

Think of the following message strategies in case A: experts 2 and 4 communicate
their signals truthfully to experts 1 and 3. If the sum of the signals observed by ex-
pert 1 is 0, he sends p1. Otherwise he sends p′1. If the sum of the signals which expert
3 observes is either 0 or 1, he sends p3. Otherwise he sends p′3. As a result, the deci-
sion maker receives messages according to the partition {{0}, {1, 2}}×{{0, 1}, {2}}.
Notice that expert 1’s communication strategy pools together the two of the largest
sums of signals whereas expert 3’s message strategy pools together the two of the
lowest sums of signals. Thus, the experts within each group bias their communication
strategy in a direction opposite to the other group. The decision maker chooses

y(p1, p3) =
2

9
, y(p1, p

′
3) = y(p′1, p3) =

1

2
, y(p′1, p

′
3) =

7

9
.

The expected payoff of the decision maker is EUDM ' −0.037. This strategy
profile is an equilibrium for b+ ≤ 0.13 and b− ≥ −0.13. As I show in the appendix, for
b+ ∈ (0.1, 0.13] and b− ∈ [−0.13,−0.1) the network depicted in Figure 7A dominates
all other networks.19

19For max{|b−|, |b+|} ≤ 1
10 any of the networks is optimal and involves any of the three experts

revealing their signals perfectly to the decision maker.
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Figure 7: Possible group arrangements

4.2 Commitment

Suppose that the decision maker can commit to a mechanism which implements
allocations contingent on experts’ messages. According to the revelation principle
we can focus on a direct mechanism. Denote by σi a (pure) strategy of expert i ∈ N e

in a direct mechanism and by σ−i the strategy profile of all other experts. Formally,
a direct mechanism is a rule q that maps experts’ types into the final decision y ∈ R:

q : {0, 1}n → R,

and which satisfies

EUi(σi = ti, σ−i|ti ∈ {0, 1}) ≥ EUi(σi = 1− ti, σ−i|ti ∈ {0, 1}), for every i ∈ N e
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meaning that an expert of type ti ∈ {0, 1}, i ∈ N e, has no incentive to communicate
1− ti instead of ti if all other experts communicate their types truthfully.

Proposition 4: Every equilibrium outcome generated by an optimal network Q ∈ Q
is also an equilibrium outcome of the direct mechanism q. The converse is false.

The intuition for Proposition 4 goes as follows. Each equilibrium outcome in a
communication network can be summarized by a partition of {0, 1}n according to
which the decision maker receives her information. Per definition, such an equilib-
rium partition is incentive-compatible for every player and can be implemented by
an incentive-compatible direct mechanism q.

The converse is not true. In a communication network which is not a star at least
one of the experts observes the message of at least one other expert. According to
Lemma 1, in equilibria which involve strategic coarsening of information, observing
the signals of the experts tightens the incentive constraints of an expert. In the direct
mechanism, however, no expert observes the signals of the other experts. Therefore,
a direct mechanism can in general implement an allocation for a larger range of biases
compared to an optimal network which is not a star.

In equilibria that do not involve strategic coarsening of information (as in the
star), the incentives to communicate information are independent of players’ beliefs
about the signals of other experts, as Proposition 2 shows. In this case the optimal
network and a direct mechanism generate the same outcome.

4.3 Beyond Tree Networks

How limiting is the focus on trees compared to alternative communication networks
with only one round of communication? I show how a network with multiple outgoing
links can outperform an optimal (tree) hierarchy.
Example: Consider three positively biased experts organized in a network depicted
in Figure 8, and the following strategy profile: expert 3 truthfully reveals his signal
to expert 2. Expert 2 sends the same message to the decision maker and to expert
1: if both expert 3’s message and his private signal are 0 he sends p2, otherwise he
sends p′2. Expert 1 communicates as follows: if he receives p2, he sends p1 irrespective
of his private signal. If he receives p′2, he sends p′1 if his private signal is 0 and p′′1
if his private signal is 1. Thus, if the decision maker receives p2 from expert 2, she
disregards expert 1’s message. Otherwise she can distinguish between different types
of expert 1. As a result, in 1

3
of cases (which is the case if p2 is sent) the decision maker

receives coarse information only from experts 2 and 3, and in 2
3

of cases (which is the
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Figure 8: Expert 2 has two outgoing links

case if p′2 is sent) the decision maker receives additional information about expert
1’s signal. The expected utility of the decision maker is -0.044. It turns out that
for 0.125 < b2, b3 ≤ 0.14 and 0.115 < b1 ≤ 0.13, the network depicted in Figure 8
dominates any tree network.

Intuitively, only some (but not all) types of expert 1 want to reveal themselves
to the decision maker. The additional communication channel from expert 2 informs
the decision maker if a type of expert 1 has an incentives to truthfully reveal itself. If
the network were a line, the decision maker would not be able to distinguish whether
expert 1’s type is within a “truthful” subset or not, since all types of expert 1 would
want to appear to be in this subset. The above message strategy is therefore incentive
compatible in the network in Figure 8 but not incentive compatible in the line.

4.4 Symmetric mixed strategies in the star with two experts

4.4.1 Symmetric equilibrium for positively biased experts

Since the experts are positively biased (their biases are not necessarily equal), they
reveal signal 1 truthfully. If an expert i ∈ {1, 2} receives signal 0, assume that
he communicates pi = 0 with probability π < 1 and pi = 1 otherwise.20 The

20One can think of a strategy profile in which only one expert mixes and the other uses pure
strategies. I disregard this case since the bias of the mixing expert has to be exactly 1

8 which is a
non-generic case.
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corresponding game tree is shown in Figure 9.

Figure 9: Symmetric mixed strategies with positively biased experts.

The decision maker’s posteriors of the state - and so her choices of y - are:

y0 := E(θ|p1 = p2 = 0) =
1

4
.

y1 := E(θ|pi = 0, pj = 1) =
1
3

1
3

+ 2
3
(1− π)

(1

2

)
+

2
3
(1− π)

1
3

+ 2
3
(1− π)

(1

4

)
=

2− π
6− 4π

for i, j ∈ {1, 2}, i 6= j, and

y2 := E(θ|p1 = p2 = 1) =
2
3

2
3

+ 21
3
(1− π) + 2

3
(1− π)2

(3

4

)
+

21
3
(1− π)

2
3

+ 21
3
(1− π) + 2

3
(1− π)2

(1

2

)
+
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2
3
(1− π)2

2
3

+ 21
3
(1− π) + 2

3
(1− π)2

(1

4

)
=

6− 4π + π2

4(3− 3π + π2)
.

It turns out that this strategy profile puts stronger requirements on the biases
of the experts compared to the case of complete signal revelation by both experts.
Think of expert 1 who receives s1 = 0. If he sends p1 = 0, his expected payoff is

−1

3

∫ 1

0

(y1−θ−b1)26θ(1−θ)dθ−
2

3

(
π

∫ 1

0

(y0−θ−b1)23(1−θ)2dθ+(1−π)

∫ 1

0

(y1−θ−b1)23(1−θ)2dθ
)

If he deviates to p1 = 1, his expected payoff is:

−1

3

∫ 1

0

(y2−θ−b1)26θ(1−θ)dθ−
2

3

(
π

∫ 1

0

(y1−θ−b1)23(1−θ)2dθ+(1−π)

∫ 1

0

(y2−θ−b1)23(1−θ)2dθ
)

Expert 1 is indifferent between sending both messages for

b∗1(π) =
−5π4 + 34π3 − 84π2 + 90π − 36

8(2π − 3) (π2 − 3π + 3) (3π2 − 8π + 6)
<

1

8

where
∂b∗1(π)

∂π
> 0 and b∗1(π) < 1

8
. Since we focus on the best equilibrium for the

decision maker, we conclude that in the star the experts with positive biases never
play a symmetric mixed strategy equilibrium since for bi ≤ 1

8
, i ∈ {1, 2}, the best

equilibrium in the star features both experts revealing their signals perfectly to the
decision maker.

4.4.2 Equilibrium with opposing biases

Assume b1 = b > 0 and b2 = −b.21 Expert 1 truthfully reveals his signal s1 = 1.
Conditional on s1 = 0, he sends p1 = 0 with probability π < 1, and p1 = 1 otherwise.
Expert 2 truthfully reveals s2 = 0 and, conditional on s2 = 1, he sends p2 = 1 with
probability q and p2 = 0 otherwise. The corresponding game tree is shown in Figure
10.

The sequentially rational decision maker matches y to her expectation of the state
depending on the message profile as follows:

y′0 := E(θ|p1 = 0, p2 = 0) =
1
3
(1− q)

1
3
(1− q) + 2

3

1

2
+

2
3

1
3
(1− q) + 2

3

1

4
=

2− q
2(3− q)

.

21The bias restriction is assumed for tractability.
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Figure 10: Symmetric mixed strategies with opposing biases.

y′1 := E(θ|p1 = 1, p2 = 0) =
3
4
[2
3
(1− q)] + 1

2
[1
3

+ 1
3
(1− π)(1− q)] + 1

4
[(1− π)2

3
]

2
3
(1− q) + 1

3
+ (1− π)1

3
(1− q) + (1− π)2

3

=

6− π(2− q)− 4q

2(6− π(3− q)− 3q)
.

y′2 = E(θ|p1 = 0, p2 = 1) =
1

2

y′3 = E(θ|p1 = 1, p2 = 1) =
2
3
q

2
3
q + (1− π)1

3
q

3

4
+

(1− π)1
3
q

2
3
q + (1− π)1

3
q

1

2
=

4− π
2(3− π)

.
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The expected payoff of the decision maker is

−1

2

(2

3

[
q

∫ 1

0

(y′3−θ)23θ2dθ+(1−q)
∫ 1

0

(y′1−θ)23θ2dθ
]

+
1

3

∫ 1

0

(y′1−θ)26θ(1−θ)dθ
)
−

1

2
π
(1

3

[
q

∫ 1

0

(
1

2
−θ)26θ(1−θ)dθ+(1−q)

∫ 1

0

(y′0−θ)26θ(1−θ)dθ
]
+

2

3

∫ 1

0

(y′0−θ)23(1−θ)2dθ
)
−

1

2
(1−π)

(1

3

[
q

∫ 1

0

(y′3−θ)26θ(1−θ)dθ+(1−q)
∫ 1

0

(y′1−θ)26θ(1−θ)dθ
]
+

2

3

∫ 1

0

(y′1−θ)23(1−θ)2dθ
)
.

Now, think of the incentive constraints of expert 1 who receives s1 = 0. His
expected payoff when truthfully revealing his signal is

−2

3

∫ 1

0

(y′0−θ−b)23(1−θ)2dθ−1

3
q

∫ 1

0

(
1

2
−θ−b)26θ(1−θ)dθ−1

3
(1−q)

∫ 1

0

(y′0−θ−b)26θ(1−θ)dθ

whereas if he deviates to p1 = 1 he expects the payoff

−2

3

∫ 1

0

(y′1−θ−b)23(1−θ)2dθ−1

3
q

∫ 1

0

(y′3−θ−b)26θ(1−θ)dθ−
1

3
(1−q)

∫ 1

0

(y′1−θ−b)26θ(1−θ)dθ.

Next, the expected payoff of expert 2 from sending p2 = 1 is

−1

3
π

∫ 1

0

(
1

2
−θ+b)26θ(1−θ)dθ−1

3
(1−π)

∫ 1

0

(y′3−θ+b)26θ(1−θ)dθ−
2

3

∫ 1

0

(y′3−θ+b)23θ2dθ

whereas by deviation to p2 = 0 expert 2 expects the payoff

−1

3
π

∫ 1

0

(y′0−θ−b2)26θ(1−θ)dθ−
1

3
(1−π)

∫ 1

0

(y′1−θ−b2)26θ(1−θ)dθ−
2

3

∫ 1

0

(y′1−θ−b2)23θ2dθ.

The strategy profile which satisfies the indifference conditions is:

p∗(b) = q∗(b) =
12b− 1

4b

and the corresponding expected utility of the decision maker is:
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b− 1

6
.

Can the mixed strategy equilibrium in the star be strictly better than the equilib-
rium in the line from the introductory example? The answer is no for the following
reason. First, notice that the range of b supporting equilibrium strategies has to be
such that p∗, q∗ ∈ [0, 1]. This implies that a mixed strategy equilibrium exists for
b ∈ [ 1

12
, 1
8
]. But we know that for all b ≤ 1

8
, both experts reveal their signals in the

star and the in line. Therefore, the above mixed strategy equilibrium in the star
cannot strictly dominate the line.

5 Conclusions

This paper shows how an organization should optimally design its communication
hierarchies if the players communicate their information strategically. The optimal
hierarchies resemble the ones discussed in now classic contributions to the theory of
organizations by Cyert and March (1963), Dalton (1959) and Crozier (1963).

I show that an optimal communication hierarchy is shaped by two competing
forces. On the one hand, an intermediation force brings experts together and en-
ables strategic coarsening of information. On the other hand, an uncertainty force
separates the experts and relaxes their incentives to reveal their signals. Perhaps
surprising, simultaneous communication is always dominated by an optimally de-
signed sequential communication where the experts closer to the decision maker are
the ones whose bias is closer to the decision maker’s bias. Optimal sequential com-
munication, in general, separates the experts into groups of similar bias. If the biases
of experts are sufficiently close to one another, and sufficiently different to the bias
of the decision maker, the optimal network has a simple requirement of a single in-
termediary communicating to the decision maker given that all the other experts are
interconnected in some way.

In real-life organizations, communication patterns can be very complex. Com-
munication hierarchies are a useful first approximation. For future research it will
be important to look at other communication structures where the experts can talk
to multiple audiences and where communication networks allow for cycles or varying
“strengths” of links.

Communication is a dynamic acticity that usually features multiple rounds of
informational exchange. Literature on strategic communication shows that even
adding a second round of communication between an informed sender and an un-
informed receiver can enlarge the set of equilibrium outcomes compared to a signle
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round communication (Krishna and Morgan, 2004). It will be interesting to see how
the equilibria in optimal hierarchies are affected by communicating dynamics.

Further, it will be important to combine the optimal communication design with
the other incentive tools such as transfers, delegation or monitoring.

6 Appendix

Calculations for the leading example:

For n and k successes, the posterior on θ is f(θ|k, n) = (n+1)!
k!(n−k)!θ

k(1− θ)n−k. The

corresponding expected value is E(θ|k, n) = k+1
n+2

.

1. Equilibrium in the star with one truthful expert.

If an expert i ∈ {1, 2} reveals his signal truthfully, the decision maker’s choices
are

y(0) = EDM(θ|0, 1) =
1

3
, y(1) = EDM(θ|1, 1) =

2

3
,

Expert i does not deviate from the truthful revelation of his signal 0 if:

−
∫ 1

0

(
1

3
− θ − bi)2f(θ|0, 1)dθ ≥ −

∫ 1

0

(
2

3
− θ − bi)2f(θ|0, 1)dθ,

where f(θ|0, 1) = 2(1 − θ). Further, he does not deviate from the truthful
revelation of his signal 1 if

−
∫ 1

0

(
2

3
− θ − bi)2f(θ|1, 1)dθ ≥ −

∫ 1

0

(
1

3
− θ − bi)2f(θ|1, 1)dθ,

where f(θ|1, 1) = 2θ. The above inequalities hold for |bi| ≤ 1
6
.

Decision maker’s utility is

−1

2

∫ 1

0

(
1

3
− θ)22(1− θ)dθ − 1

2

∫ 1

0

(
2

3
− θ)22θdθ = − 1

18
.
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2. Equilibrium in the star with two truthful experts.

The decision maker receives messages according to the partition {{0}, {1}, {2}},
where the sum of successes k ∈ {0, 1, 2} is the summary statistic. Her optimal
choices are

y(0) =
1

4
, y(1) =

1

2
, y(2) =

3

4
.

Suppose, an expert i ∈ {0, 1} receives a signal si = k′. Then, he assigns
probability 2

3
to the other expert having the same signal k′, and probability 1

3

to the other expert having signal 1− k′.
Thus, an expert i does not deviate from the truthful revelation of his signal 0
if:

−2

3

∫ 1

0

(
1

4
− θ − bi)2f(θ|0, 2)dθ − 1

3

∫ 1

0

(
1

2
− θ − bi)2f(θ|1, 2)dθ ≥

−2

3

∫ 1

0

(
1

2
− θ − bi)2f(θ|0, 2)dθ − 1

3

∫ 1

0

(
3

4
− θ − bi)2f(θ|1, 2)dθ,

where f(θ|0, 2) = 3(θ)2 and f(θ|1, 2) = 6θ(1 − θ). Similarly, an expert i does
not deviate from the truthful revelation of his signal 1 if:

−1

3

∫ 1

0

(
1

2
− θ − bi)2f(θ|1, 2)dθ − 2

3

∫ 1

0

(
3

4
− θ − bi)2f(θ|2, 2)dθ ≥

−1

3

∫ 1

0

(
1

4
− θ − bi)2f(θ|1, 2)dθ − 2

3

∫ 1

0

(
1

2
− θ − bi)2f(θ|2, 2)dθ,

where f(θ|2, 2) = 3θ2. Both incentive constraints hold for |bi| ≤ 1
8
.

To calculate the expected utility of the decision maker notice that the summary
statistic k ∈ {0, 1, 2} is uniformly distributed:

Prob(k|n = 2) =

∫ 1

0

Pr(k|θ, n = 2)dθ =

∫ 1

0

2!

k!(2− k)!
θk(1− θ)2−kdθ =

1

3
.

Therefore, the expected utility of the decision maker is
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−1

3

∫ 1

0

(
1

4
− θ)23(1− θ)2dθ − 1

3

∫ 1

0

(
1

2
− θ)26θ(1− θ)dθ−

−1

3

∫ 1

0

(
3

4
− θ)23θ2dθ = − 1

24
.

3. Equilibrium in the line with two truthful experts perfectly revealing their entire
information.

Think of the following strategy profile: expert 1 truthfully reveals his signal
to expert 2, who, in turn, truthfully reveals both his signal and the message
of expert 1 to the decision maker. The decision maker receives information
according to the partition {{0}, {1}, {2}}, where the sum of successes k ∈
{0, 1, 2} is the summary statistic. Her optimal choices are the same as in the
case of two truthful experts in the star:

y(0) =
1

4
, y(1) =

1

2
, y(2) =

3

4
.

The incentive constraints for expert 2 depend on his signal and the message
from expert 1. Expert 2’s information sets can be represented by the summary
statistic {0, 1, 2} which reflects the sum of successes of his private signal and
the message of expert 1. Without loss of generality, assume that his message set
is {0, 1, 2} such that in equilibrium his message truthfully reveals his summary
statistic. If his summary statistic is 0, he has no incentives to deviate to the
next highest message 1 (and therefore not to deviate to an even higher message
2) if

−
∫ 1

0

(
1

4
− θ − b1)2f(θ|0, 2)dθ ≥ −

∫ 1

0

(
1

2
− θ − b1)2f(θ|0, 2)dθ.

If his summary statistic is 1, he has no incentives to deviate upwards to the
message 2 if

−
∫ 1

0

(
1

2
− θ − b1)2f(θ|1, 2)dθ ≥ −

∫ 1

0

(
3

4
− θ − b1)2f(θ|1, 2)dθ

and no incentives to deviate downwards to the message 0 if

34



−
∫ 1

0

(
1

2
− θ − b1)2f(θ|1, 2)dθ ≥ −

∫ 1

0

(
1

4
− θ − b1)2f(θ|1, 2)dθ.

Finally, if his summary statistic is 2, he has no incentives to deviate to a lower
message 1 (and, thus, no incentives to deviate to an even lower message 0) if

−
∫ 1

0

(
3

4
− θ − b1)2f(θ|2, 2)dθ ≥ −

∫ 1

0

(
1

2
− θ − b1)2f(θ|2, 2)dθ.

Combining all incentive constraints for expert 1 we obtain:

|b2| ≤
1

8
.

Finally, the incentive constraints for expert 1 are the same as in the star with
two truthful experts: in both cases he has the same expectation over the deci-
sion maker’s summary statistic. This implies |b1| ≤ 1

8
.

The expected utility of the decision maker is the same as in the star with both
experts truthfully revealing their signals, which is − 1

24
.

4. Equilibrium in the star in which expert 2 strategically coarsens his information.

In this equilibrium the decision maker receives her information according to the
partition {{0}, {1, 2}} where the sum of successes k ∈ {0, 1, 2} is the summary
statistic of experts’ signals. If the decision maker is informed that the signals
are contained within the pool p := {1, 2}, his posterior of θ is formed by Bayes
rule:

f(θ|k ∈ p, n) =
Pr(p|θ)∫ 1

0
Pr(p|θ)dθ

=

∑
k∈p Pr(k)f(k|θ, n)∫ 1

0

∑
k∈p Pr(k)f(k|θ, n)dθ

.

where f(k|θ, n) = n!
k!(n−k)!θ

k(1 − θ)n−k. Using the fact that
∫ 1

0
θk(1 − θ)n−k =

k!(n−k)!
(n+1)!

, we obtain:

f(θ|k ∈ p, n = 2) =
3

2
θ(2− θ),

and therefore
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E(θ|k ∈ p, n) =

∫ 1

0

3

2
θ2(2− θ)dθ =

5

8
.

Thus, decision maker’s choices contingent on the received messages are

y(0) = 1
4

an y(1, 2) = 5
8
.

Given truthful communication from expert 1 to expert 2, the latter knows the
sum of successes of both signals. I denote expert 2’s first message by 0, and his
second message by (1, 2). Suppose, first, that expert 2 believes that the sum
of successes is 0. He has no incentives to deviate from the truthful message 0
to the other message (1, 2) if

−
∫ 1

0

(
1

4
− θ − b1)2f(θ|0, 2)dθ ≥ −

∫ 1

0

(
5

8
− θ − b1)2f(θ|0, 2)dθ.

If his summary statistic is 1, truthful communication requires that he sends a
message (1, 2). He has no incentives to deviate to the lower message 0 if

−
∫ 1

0

(
5

8
− θ − b1)2f(θ|1, 2)dθ ≥ −

∫ 1

0

(
1

4
− θ − b1)2f(θ|1, 2)dθ.

Finally, if his summary statistic is 2, truthful communication requires that he
sends message (1, 2). He has no incentives to deviate to the lower message 0 if

−
∫ 1

0

(
5

8
− θ − b1)2f(θ|2, 2)dθ ≥ −

∫ 1

0

(
1

4
− θ − b1)2f(θ|2, 2)dθ.

The above incentive constraints hold for

− 1

16
≤ b2 ≤

3

16
.

Finally, assuming that expert 2 communicates according to the partition {{0}, {1, 2}}
(which is part of the equilibrium strategy profile which we fixed above), expert
1 has no incentives to deviate from truthfully communicating his signal 0 if

−2

3

∫ 1

0

(
1

4
− θ − b2)2f(θ|0, 2)dθ − 1

3

∫ 1

0

(
5

8
− θ − b2)2f(θ|1, 2)dθ ≥
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−2

3

∫ 1

0

(
5

8
− θ − b2)2f(θ|0, 2)dθ − 1

3

∫ 1

0

(
5

8
− θ − b2)2f(θ|1, 2)dθ.

Finally, expert 1 has no incentives to deviate from truthfully communicating
his signal 1 if

−{2

3

∫ 1

0

(
5

8
− θ − b1)2f(θ|1, 2)dθ +

1

3

∫ 1

0

(
5

8
− θ − b1)2f(θ|2, 2)dθ} ≥

−{2

3

∫ 1

0

(
5

8
− θ − b1)2f(θ|1, 2)dθ +

1

3

∫ 1

0

(
5

8
− θ − b1)2f(θ|2, 2)dθ}.

The above incentive constraints hold for

− 1

16
≤ b1 ≤

3

16
.

The expected utility of the decision maker is

−1

3

∫ 1

0

(
1

4
− θ)23(1− θ)2dθ − 2

3
(
5

8
− θ)23

2
θ(2− θ)dθ = − 5

96
.

Remaining definitions from the model section:

In this paper I study directed graphs with the following properties:

(1) for each i ∈ N e, there is j ∈ N , j 6= i, with eij = 1, and there is no other j′ ∈ N ,
j′ 6= j, such that eij′ = 1. This means that every expert has a single outgoing
link.

(2) Take any i ∈ N e. There is no path Hij(Q), j ∈ N with j 6= i, such that eji = 1.
This means that there are no cycles.

(3)
∑

j∈Ne ejDM ≥ 1 and
∑

j∈Ne eDMj = 0 which means that the decision maker has
at least one incoming link but no outgoing links.

Bayesian updating follows the Beta-binomial model: given n observations and k
successes (sum of the signals), the conditional pdf is:
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f(k|θ, n) =
n!

k!(n− k)!
θk(1− θ)n−k.

The distribution of k’s is uniform:

Prob(k|n) =

∫ 1

0

Prob(k|θ, n)dθ =

∫ 1

0

n!

k!(n− k)!
θk(1− θ)n−kdθ =

1

n+ 1
.

The posterior is

f(θ|k, n) =
(n+ 1)!

k!(n− k)!
θk(1− θ)n−k,

Thus, E(θ|k, n) = k+1
n+2

.

For n trials with k successes the probability of having j successes from m addi-
tional trials is:

P (j|m,n, k) =

∫ 1

0

P (j|m, θ)P (θ|k, n)dθ =

∫ 1

0

m!

j!(m− j)!
θj(1− θ)m−j (n+ 1)!

k!(n− k)!
θk(1− θ)n−kdθ =

∫ 1

0

m!

j!(m− j)!
(n+ 1)!

k!(n− k)!
θk+j(1− θ)m−j+n−kdθ =

m!

j!(m− j)!
(n+ 1)!

k!(n− k)!

(k + j)!(m− j + n− k)!

(n+m+ 1)!
.

Finally, when a partition P is adoped, the expected utility of type ti ∈ Ti(Q) of
player i ∈ N can be written as

−
∑
p∈P

Pr(p|ti)
∫ 1

0

(y(p)− θ − bi)2f(θ|p)dθ,

where Pr(p) =
∑

k∈p Pr(k).
The posterior f(θ|p) is calculated by Bayes rule:

f(θ|p) =
Pr(p|θ)∫ 1

0
Pr(p|θ)dθ

=
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∑
k∈p Pr(k) n!

k!(n−k)!θ
k(1− θ)n−k∫ 1

0

∑
k∈p Pr(k) n!

k!(n−k)!θ
k(1− θ)n−kdθ

.

Given
∫ 1

0
θk(1− θ)n−kdθ = k!(n−k)!

(n+1)!
, we have

f(θ|p) =

∑
k∈p Pr(k) n!

k!(n−k)!θ
k(1− θ)n−k∑

k∈p Pr(k) n!
k!(n−k)!

k!(n−k)!
(n+1)!

=

∑
k∈p Pr(k) (n+1)!

k!(n−k)!θ
k(1− θ)n−k∑

k∈p Pr(k)

But since f(θ|k, n) = (n+1)!
k!(n−k)!θ

k(1− θ)n−k, we can rewrite the above expression as

f(θ|p) =

∑
k∈p Pr(k)f(θ|k, n)∑

k∈p Pr(k)
.

Thus, the expected utility can be expressed as:

−
∑
p∈P

∑
k∈p

Pr(k|ti)
∫ 1

0

(y(p)− θ − bi)2f(θ|k, n)dθ,

where y(p) = E(θ|p) which is

E(θ|p) =

∫ 1

0

θf(θ|p)dθ =
1∑

k∈p Pr(k)

∑
k∈p

Pr(k)
(n+ 1)!

k!(n− k)!

(k + 1)!(n− k)!

(n+ 2)!
=

1∑
k∈p Pr(k)

∑
k∈p

Pr(k)E(θ|k, n)

and E(θ|k, n) = k+1
n+2

.

Proof of Proposition 1:

Take a star network with n experts and denote it by Qs. Fix a strategy profile
P1(Q

s) × .. × Pn′(Qs) in which n′ ≤ n experts communicate their signals truthfully
such that Pi(Q

s) = {{0}, {1}} for each i ∈ {1, .., n′}. We derive conditions on
experts’ biases for the above strategy profile to be an equilibrium.

Given the above strategy profile, the decision maker receives her information
according to the partition of the summary statistics (which is the sum of the signals),
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which is {{0}, {1}, .., {n′}}. For k ∈ {0, .., n′}, the sequentially rational decision
maker chooses

y(k) = E(θ|k, n′) =
k + 1

n′ + 2
.

Denote by t−i the vector of types of all truthful experts rather than i, expressed
in terms of their summary statistic, t−i ∈ {0, .., n′ − 1}. Let y(p−i, pi) be the action
profile of the decision maker if she receives message pi ∈ {0, 1} from expert i and
the messages of all other experts, p−i = t−i. If ti = 0, expert i truthfully reveals his
signal 0 if

−
(
Ei(t−i = 0|ti = 0)

∫ 1

0

(y(0, 0)− θ − bi)2f(θ|k = 0, n)dθ + ...

+Ei(t−i = n′ − 1|ti = 0)

∫ 1

0

(y(n′ − 1, 0)− θ − bi)2f(θ|k = n′ − 1, n′)dθ
)
≥

−
(
Ei(t−i = 0|ti = 0)

∫ 1

0

(y(0, 1)− θ − bi)2f(θ|k = 0, n′)dθ + ...

+Ei(t−i = n′ − 1|ti = 0)

∫ 1

0

(y(n′ − 1, 1)− θ − bi)2f(θ|k = n′ − 1, n′)dθ
)
.

Using decision maker’s optimal choices, the above inequality can be written as

−
(
Ei(t−i = 0|ti = 0)

∫ 1

0

(
1

n′ + 2
− θ − bi)2f(θ|k = 0, n)dθ + ...

+Ei(t−i = n′ − 1|ti = 0)

∫ 1

0

(
n′

n′ + 2
− θ − bi)2f(θ|k = n′ − 1, n′)dθ

)
≥

−
(
Ei(t−i = 0|ti = 0)

∫ 1

0

(
2

n′ + 2
− θ − bi)2f(θ|k = 0, n′)dθ + ...

+Ei(t−i = n′ − 1|ti = 0)

∫ 1

0

(
n′ + 1

n′ + 2
− θ − bi)2f(θ|k = n′ − 1, n′)dθ

)
,

which can be rewritten as

n′−1∑
k=0

E(t−i = k|ti = 0)
1

n′ + 2
(
k + 1

n′ + 2
+
k + 2

n′ + 2
− 2

k + 1

n′ + 2
− 2bi) ≥ 0.

The above inequality holds for
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bi ≤
1

2(n′ + 2)
.

Similarly, if ti = 1, expert i communicates his signal truthfully if

−
(
Ei(t−i = 0|ti = 1)

∫ 1

0

(
2

n′ + 2
− θ − bi)2f(θ|k = 1, n′)dθ + ...

+Ei(t−i = n′ − 1|ti = 1)

∫ 1

0

(
n′ + 1

n′ + 2
− θ − bi)2f(θ|k = n′, n′)dθ

)
≥

−
(
Ei(t−i = 0|ti = 1)

∫ 1

0

(
1

n′ + 1
− θ − bi)2f(θ|k = 1, n′)dθ + ...

+Ei(t−i = n′ − 1|ti = 1)

∫ 1

0

(
n′

n′ + 2
− θ − bi)2f(θ|k = n′, n′)dθ

)
,

which can be rewritten as:

n′−1∑
k=0

Pr(t−i = k|ti = 1)
1

n′ + 2
(
k + 1

n′ + 2
+
k + 2

n′ + 2
− 2

k + 2

n′ + 2
− 2bi) ≥ 0.

The above inequality holds for

bi ≥ −
1

2(n′ + 2)
.

Summing up, there is an equilibrium with n′ ≤ n truthful experts iff

|bi| ≤
1

2(n′ + 2)

for each i ∈ {1, .., n′}.
Q.E.D.

Proof of Proposition 2:

Here is the proof of the first part.

Fix a set of experts N = {1, .., n}, n ≥ 2, and a bias profile b(n) = (b1, .., bn)
such that there exists at least one equilibrium in the star in which at least one of
the experts is not babbling. Take any of the non-babbling equilibria and denote the
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set of truthful experts by N ′ with |N ′| = n′. From Proposition 1 we know that it
implies |bi| ≤ 1

2(n′+2)
for each i ∈ N ′.

Fix any tree network Q ∈ Q which is not a star such that the experts are ordered
monotonically according to the absolute value of their biases: if expert i reports to
expert j, then |bi| ≥ |bj|. In the following I show that Q has the same equilibrium
outcomes as the star with n′ truthful experts. Think of a strategy profile in Q
in which every experts within N ′ perfectly reveals his type to his successor in the
network. It means, for any ti ∈ Ti(Q), i ∈ N ′, Pi(Q) = Ti(Q). Upon observing
experts’ messages, the decision maker chooses y = k+1

n+2
, where k ∈ {0, .., n′} is the

decision maker’s summary statistic.
Take any expert j ∈ N ′. Using the notation ñ = |Ñj(Q)|, the type space of j can

be represented as Tj(Q) = {0, 1, .., ñ + 1}.22 Expert j does not observe the signals
of n − (ñ + 1) experts. The type set of those experts, denoted by T−j(Q), can be
expressed in terms of the summary statistic as T−j(Q) = {0, .., n− (ñ+ 1)}.

The incentive constraint which ensures that a type tj = k′ ∈ {0, .., ñ+ 1} sends a
truthful message pj = k′ instead of deviating (upward) to the next highest message
k′ + 1 is

n′−(ñ+1)∑
l=0

E(t−j = l|tj = k′)
(
y(k′ + 1 + l)− y(k′ + l)

)
(
y(k′ + 1 + l) + y(k′ + l)− 2E(θ|k′ + l, n′)− 2bj)

)
≥ 0

Notice that

y(k′ + 1 + l)− y(k′ + l) =
k′ + l + 2

n′ + 2
− k′ + l + 1

n′ + 2
=

1

n′ + 2
,

and

y(k′+1+l)+y(k′+l)−2E(θ|k′+l, n′) =
k′ + l + 2

n′ + 2
+
k′ + l + 1

n′ + 2
−2

k′ + l + 1

n′ + 2
=

1

n′ + 2
.

Given that
∑n′−(ñ+1)

l=0 E(t−j = l|tj = k′), the incentive constraint implies

bj ≤
1

2(n′ + 2)
.

22Remember that Ñj(Q) is defined as the set of all non-babbling experts on all paths in Q leading
to j.
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Similarly, the incentive constraint which ensures that a type tj = k′ ∈ {0, .., n′}
sends truthful message pj = k′ instead of deviating (downward) to the next lower
message k′ − 1 is

n′−(ñ+1)∑
l=0

E(t−j = l|tj = k′)
(
y(k′ − 1 + l)− y(k′ + l)

)
(
y(k′ − 1 + l) + y(k′ + l)− 2E(θ|k′ + l, n′)− 2bj)

)
≥ 0

Notice that

y(k′ − 1 + l)− y(k′ + l) =
k′ + l

n′ + 2
− k′ + l + 1

n′ + 2
= − 1

n′ + 2

and

y(k′−1+ l)+y(k′+ l)−2E(θ|k′+ l, n′) =
k′ + l

n′ + 2
+
k′ + l + 1

n′ + 2
−2

k′ + l + 1

n′ + 2
= − 1

n′ + 2
.

This implies

bj ≥ −
1

2(n′ + 2)
.

which proves the first part of the Proposition.

Here is the proof of the second part.

Fix a set of experts N e = {1, .., n}, n ≥ 2, and a bias profile b(n) = (b1, .., bn)
such that for each i ∈ N e, bi >

1
6
. Proposition 1 tells us that the only equilibrium in

the star is the babbling equilibrium which results in EUDM = −
∫ 1

0
(1
2
− θ)2dθ = − 1

12
.

Take any network Q ∈ Q which is not a star and denote the number of experts
which belong to the longest path in Q, starting with some expert j ∈ N e and ending
with the decision maker, HjDM(Q), by r+ 1. Since Q is not a star, it must be r ≥ 2.

Denote the expert on HjDM(Q) who is directly connected to the decision maker
by i′, ei′DM = 1. Think of a strategy profile in Q in which all experts on HjDM(Q)
apart from i′ perfectly reveal their types, expert i′ communicates to the decision
maker according to the partition Pi′(Q) = {{0}, {1, .., r}}, and all the remaining
experts babble.
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The actions of the decision maker depend on the communicated pool of Pi′(Q)
as follows:

y(0) =
1

r + 2
, y(1, .., r) =

( 2

r + 2
+ ..+

r + 1

r + 2

)1

r
=

r + 3

2(r + 2)
.

Notice that in case of an upward deviation, all experts on HjDM(Q) condition
their deviation on the same event that the sum of all signals is 0. The corresponding
incentive constraint for each i ∈ HjDM(Q) has a simple form:

−
∫ 1

0

(y(0)− θ − bi)2f(θ|k = 0, r)dθ ≥
∫ 1

0

(y(1, .., r)− θ − bi)2f(θ|k = 0, r)dθ

which implies bi ≤ r+1
4(r+2)

. Notice that:

r + 1

4(r + 2)
>

1

6
for r ≥ 2,

In a similar way we obtain that the incenive preventing a deviation of every
i ∈ HjDM(Q) to a lower message results in bi ≥ r−3

4(r+2)
. It proves that Pi′(Q) can be

supported for biases strictly larger than 1
6
.

It remains to show that this partition results in a higher expected utility for the
decision maker, compared to the strategy profile in which every expert babbles. The
expected utility of the decision maker in Q is:

EUDM(PDM(Q) = Pi′(Q)) = −1

3
+

1

(r + 1)(n+ 2)2

(
1+

(2 + ..+ (r + 1))2

r

)
= −4 + r + r2

12(2 + r)2

which is strictly higher than − 1
12

for r ≥ 2. We conclude that if the biases
of all experts on HjDM(Q) are within the interval [ r−3

4(r+2)
, r+1
4(r+2)

] ∩ (1
6
,∞], then the

network Q has at least one equilibrium which strictly dominates the (uninformative)
equilibrium in the star.

Q.E.D.

Proof of Proposition 3:

The proof is lengthy but follows a straightforward structure. First, I show that
among all implementable two-pool partitions of {0, 1}n according to which the de-
cision maker receives her information, it is the partition {{0}, {1, .., n}} (where
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k ∈ {0, .., n} is the decision maker’s summary statistic) which results in the largest
shift in decision maker’s policy upon an upward deviation by any of the experts.
Therefore, it can be supported by the largest possible biases. For this partition,
I obtain the corresponding upper bias threshold b1 = n+1

4(n+2)
. Second, I show that

any other decision maker’s two-pool partition of {0, 1}n is supported by the upper

bias of at most (n+3)(n−1)
4(n+1)(n+2)

< b1. Third, I show that the largest shift in decision

maker’s policy with n′ < n experts, conditional on decision makers’ two-pool parti-
tions of {0, 1}n, results in the upper threshold b2 = n

4(n+1)
, with (n+3)(n−1)

4(n+1)(n+2)
< b2 < b1.

The partition {{0}, {1, .., n}} can only be implemented in a network specified in the
Proposition. Forth, I show that a decision maker’s partition {0, 1}n with at least
three pools cannot generate an equilibrium which supports biases higher than b2
(Claim 3). It follows that, if the biases of all n experts are in the interval (b2, b1],
then only a network which satisfies the requirements of the Proposition can transmit
any information from the experts to the decision maker.

At the start of the proof, I prove two Claims which provide a useful characteri-
zation of experts’ message strategies.

Claim 1 : Take an expert i ∈ N e in a network Q who communicates his information
to a player j ∈ N according to an equilibrium partition P ′i (Q) consisting of two pools,
p1, p2, with Ej(θ|p2) > Ej(θ|p1). Take any ti ∈ p1 and any t′i ∈ p2. Then, it must be
true that Ei(θ|ti) < Ei(θ|t′i).

Proof of Claim 1 : Suppose not such that Ei(θ|ti) ≥ Ei(θ|t′i). But then, if t′i has no
incentives to deviate from sending p2, the type ti would deviate from sending p1 and
send p2 instead, a contradiction. Q.E.D.

The next Claim shows that in any Q ∈ Q, the sums of the signals in any two-
pool partition according to which the decision maker receives her signals are “nicely”
ordered.

Claim 2 : Take any optimal network Q ∈ Q with n′ ≤ n non-babbling experts such
that |NDM(Q)| = 1. Denote the single expert who communicates to the decision
maker by i. If an equilibrium partition of i, Pi(Q), consists of two pools p1, p2 with
EDM(θ|p1) < EDM(θ|p2), and p2 contains an element of {0, 1}n′ with the sum of the
signals k, k < n′, then p2 contains at least one element of {0, 1}n′ with the sum of
the signals k + 1.
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Proof of Claim 2 : First, suppose that i’s type space can be represented by Ti =
{0, 1, .., n′} which means that i observes the exact sum of n′ signals. According to
Claim 1, all the elements of {0, 1}n′ with the same sum of the signals can only be
part of the same pool. With other words, if expert i is the only expert who pools
together his information sets, it has to be the case that all elements with the same
sum of the signals are either in p1 or in p2. Therefore, the only way that the elements
of {0, 1}n′ with the same sum of the signals are distributed between two pools is that
there exists a path Hji(Q), j ∈ N e, such that:

1. there is i′ ∈ Hji(Q) (which can be i) such that |Hji′(Q)| > 2,

2. for every j′ ∈ Hji(Q), Pj′(Q) 6= P b
j′(Q) which means that none of the experts

on the path Hij(Q) babbles,

3. for every l̃ ∈ Ni′(Q), Tl̃(Q) = {0, 1, .., |Ñl̃(Q)|} which means that all experts
within Ni′(Q) receive uncoarsed information, and

4. there is at least one l ∈ Ni′(Q) who’s type space can be represented by
{0, 1, .., |Ñl(Q)|} - which simply means that l knows the summary statistic
of the signals of all non-babbling experts on all possible paths in Q leading
to l - and that there exists p ∈ Pl(Q) and two different types tl, t

′
l ∈ Tl(Q),

E(θ|tl) 6= E(θ|t′l), such that tl ∈ p and t′l ∈ p, which means that l strategically
coarsens his information.

Notice that the type space of i′, Ti′(Q) = {0, 1} × Πi∈Ni′ (Q)Pi(Q), has two prop-
erties. First, there are at least two different types ti′ , t

′
i′ ∈ Ti′(Q) such that both of

them include at least one element of {0, 1}|Ñi′ (Q)|+1 with the same sum of the signals.

Second, if a type t ∈ Ti′(Q) includes at least one element of {0, 1}|Ñi′ (Q)|+1 with the

sum of the signals k, and at least one element of {0, 1}|Ñi′ (Q)|+1 with the sum of the

signals k+2, then it has to include at least one element of {0, 1}|Ñi′ (Q)| with the sum of
the signals k+1. This happens because the type space of i′ is a product of partitions
with the property that for any î ∈ Ni′(Q), either Pî(Q) = Tî(Q) = {0, .., |Ñî(Q)|} or
Pî(Q) is an incentive-compatible coarsening of {0, .., |Ñî(Q)|}.

Therefore, it must be true that the type space of each l′ ∈ Hi′DM is such that if
there is a type t ∈ Tl′(Q) which includes at least one element of {0, 1}|Ñl′ (Q)|+1 with

the sum of the signals k, and at least one element of {0, 1}|Ñl′ (Q)|+1 with the sum of

1’s k+2, then it has to include at least one element of {0, 1}|Ñl′ (Q)|+1 with the sum of
the signals k+ 1. But then, since Pi(Q) has to be incentive-compatible, the ordering
of the sums of the signals within p1, p2 ∈ Pi(Q) has to satisfy conditions stated in
the Claim. Q.E.D.
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For the next steps I assume that a partition of {0, 1}n according to which the
decision maker receives her information consists of two pools. Given Claims 1 and
2, the set of such two-pool partitions can be represented by a family of partitions

P k
DM(Q) = {{0, .., k}, {k + 1, .., n}}, 0 ≤ k ≤ n− 1,

and

P z,k
DM(Q,ω) := {{0, .., (k − z)ω0, (k − z + 1)ω1, .., (k)ωz},

{(k − z)(1− ω0), (k − z + 1)(1− ω1), .., (k)(1− ωz), .., n}},

0 ≤ z ≤ k − 1, 1 ≤ k ≤ n− 1, ωi =
nk−z+i(

n
k−z+i

) , ω = (ω0, .., ωz),

where P k
DM(Q) is the partition of {0, 1}n, nk−z+i, i ∈ {0, .., z}, is the number of the

elements of {0, 1}n with the sum of the signals k − z + i which is featured in the
first pool. Since 1 ≤ nk−z+i ≤

(
n

k−z+i

)
, for every i ∈ {0, .., z}, ωi ≤ 1 and there is at

least one j ∈ {0, .., z} for which ωj < 1. Further, Q ∈ Q is such that |NDM(Q)| = 1
since otherwise the decision maker’s partition contains strictly more than 2 pools
(assuming that all experts connected to the decision maker are not babbling). In the
following I denote the expert who is directly connected to the decision maker by i′.

For tractability I write P k and P z,k instead of P k
DM(Q) and P z,k

DM(Q,ω) unless
necessary. In the next step I show that among all decision maker’s two-pool partitions
of {0, 1}n that are implementable in any Q ∈ Q, the partition which supports the
largest possible experts’ biases is P 0 = {{0}, {1, .., n}}. For P 0 the corresponding
choices of the decision maker are:

y(p01) =
1

n+ 2
, y(p02) =

1

n

n∑
i=1

i+ 1

n+ 2
=

3 + n

2(n+ 2)
, p01 = {0}, p02 = {1, .., n}

(1) First, I show that P 0 has a higher upper bias threshold compared to P k for any
k > 0. In case of P k the corresponding choices of the decision maker are:

y(pk1) =
1

k + 1

k∑
i=0

i+ 1

n+ 2
=

2 + k

2(n+ 2)
, y(pk2) =

1

n− k

n∑
i=k+1

i+ 1

n+ 2
=

3 + k + n

2(n+ 2)
,

47



where pk1 = {0, .., k} and pk2 = {k + 1, .., n}. In case of P 0 (P k) every expert
conditions his upper deviation on all signals being 0 (k). As a result, in case
of P 0 (P k) every experts’ strategy is constrained by the upper bias threshold

denoted by b
0

(b
k
). I aim to show that b

0
> b

k
.

If b
0
> b

k
, the following must be true for every i ∈ N e

∫ 1

0

(y2(p
0
2)− θ − b

0
)f(θ|0, n)−

∫ 1

0

(y1(p
0
1)− θ − b

0
)f(θ|0, n) ≥∫ 1

0

(y2(p
k
2)− θ − bk)f(θ|k, n)−

∫ 1

0

(y1(p
k
1)− θ − bk)f(θ|k, n).

The inequality is satisfied if the following in true:

y(p01) + y(p02)− 2E(θ|0, n) > y(pk1) + y(pk2)− 2E(θ|k, n). (1)

Substituting the policy decisions and the expected values of θ we get:

1

n+ 2
+

3 + n

2(n+ 2)
− 2

1

n+ 2
−
( 2 + k

2(n+ 2)
+

3 + k + n

2(n+ 2)
− 2

k + 1

n+ 2

)
=

k

n+ 2
> 0

which shows that (1) is true.

(2) Next, fix any P z,k
DM(Q,ω) and - with a bit of notational abuse - denote the cor-

responding two pools by p̂1 and p̂2. The corresponding choices of the decision
maker are:

y(p̂1) =

1
n+2

(
1 + ..+ (k − z) + (k − z + 1)ω0 + ..(k + 1)ωz

)
1 + ..+ ω0 + ..+ ωz

y(p̂2) =

1
n+2

(
(k − z + 1)(1− ω0) + ..(k + 1)(1− ωz) + (k + 2) + ..+ (n+ 1)

)
(1− ω0) + ..+ (1− ωz) + (n− k)

If the decision maker receives message p̂1, he forms a posterior over the elements
of p̂1 denoted by ∆DM(p̂1). Take the expert i′ who is connected to the decision
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maker in Q. His message strategy is either to send the message p̂1 or the other
message p̂2. Denote the type of i′ which determines the upper bias threshold of
expert i′ by t′i′ . Suppose that p̂1 consists of a single type. Then t′i′ = p̂1 and
∆i′(ti′) = ∆DM(p̂1) where ∆i′(t

′
i′) is the probability distribution of ti′ over the

elements of p̂1. This implies

∑
k∈p̂1

Pr(k|t′i′)E(θ|k, n) =
∑
k∈p̂1

PrDM(k)E(θ|k, n), P rDM(k ∈ p̂1) ∈ ∆DM(p̂1).

(2)

Suppose that there is a set of types T1 := {ti′ : ti′ ∈ Ti′(Q), ti′ ∈ p̂1} with
|T1| > 1. Take a type within T1 with the highest conditional expectation of θ,
which is t′i′ ∈ T1, such that there is no t̃i′ ∈ T1 with E(θ|t̃i′) > E(θ|t′i′). Notice
that in this case ∆i′(t

′
i′) first order stochastically dominates ∆DM(p̂1) implying

∑
k∈p̂1

Pr(k|t′i′)E(θ|k, n) >
∑
k∈p̂1

PrDM(k)E(θ|k, n), P rDM(k ∈ p̂1) ∈ ∆DM(p̂1).

(3)

Denote the upper bias of expert i′ supporting his strategy Pi′(Q) = P z,k
DM(Q,ω)

by bi′ . I aim to show that b
1,0
> bi′ , where bi′ is implicitly defined by

−
∑
k∈p̂1

Pr(k|t′i′)
∫ 1

0

(y(p̂1)−θ−bi′)2f(θ|k, n) = −
∑
k∈p̂1

Pr(k|t′i′)
∫ 1

0

(y(p̂2)−θ−bi′)2f(θ|k, n)

which can be rewritten as

−
∑
k∈p̂1

Pr(k|t′i′)(y(p̂1) + y(p̂2)− 2E(θ|k, n)− 2bi′) = 0,

and therefore

1

2
(y(p̂1) + y(p̂2))−

∑
k∈p̂1

Pr(k|t′i′)E(θ|k, n) = bi′

Further, define a new variable b
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1

2
(y(p̂1) + y(p̂2))−

∑
k∈p̂1

PrDM(k)E(θ|k, n) := b, PrDM(k ∈ p̂1) ∈ ∆DM(p̂1).

Given (2) and (3), b ≥ bi′ . In the following I show that b
1,0
> b. Then, it follows

that b
1,0
> bi′ . It is useful to focus on b since

∑
k∈p̂1 Pr

DM(k)E(θ|k, n) = y(p̂1),

and therefore b
1,0
> b is satisfied if

y(p02)− y(p01) > y(p̂2)− y(p̂1)

is satisfied. Remember that y(p02)− y(p01) = 3+n
2(n+2)

− 1
n+2

= n+1
2(n+2)

.

In the following I express y(p̂1) and y(p̂2) in a convenient form. Notice that y(p̂1)
can be written as

1
n+2

(
1
2
(k − z)(k − z + 1) + (k − z)

∑z
i=0 ωi +

∑z
k=0

∑z
i=k ωi

)
(k − z) +

∑z
i=0 ωi

and y(p̂2) can be written as

1
n+2

(
(k − z)

∑z
i=0(1− ωi) +

∑z
k=0

∑z
i=k(1− ωi) +

∑n+1
i=k+2 i)

)
(1− ω0) + ..+ (1− ωz) + (n− k)

Using the following two rearrangements:

z∑
i=0

(1− ωi) = (z + 1)−
z∑
i=0

ωi,

and

z∑
k=0

z∑
i=k

(1− ωi) =
z+1∑
i=1

i−
z∑

k=0

z∑
i=k

ωi =
1

2
(z + 1)(z + 2)−

z∑
k=0

z∑
i=k

ωi

we can express y(p̂2) as
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1
n+2

(
(k − z)[(z + 1)−

∑z
i=0 ωi] + 1

2
(z + 1)(z + 2)−

∑z
k=0

∑z
i=k ωi + 1

2
(n− k)(k + n+ 3)

)
(z + 1)−

∑z
i=0 ωi + (n− k)

.

With those rearrangements, we have

y(p02)−y(p01)−(y(p̂2)−y(p̂1)) =
(n+ 1)(

∑z
i=0 ωi + (

∑z
i=0 ωi)

2 − 2
∑z

k=0

∑z
i=k ωi)

2(n+ 2)(k +
∑z

i=0 ωi − z)(k − n− 1 +
∑z

i=0 ωi − z)
.

Notice that the denominator is strictly smaller than 0, because (k +
∑z

i=0 ωi −
z) > 0 as k ≥ z + 1 and (k − n − 1 +

∑z
i=0 ωi − z) < 0 since n > k and∑z

i=0 ωi < (z+ 1) as every for every i ∈ {0, .., z}, ωi < 0. Thus, in order to show
that y(p1,02 )− y(p1,01 )− (y(p̂2)− y(p̂1)) > 0, we need to show that

(
z∑
i=0

ωi + (
z∑
i=0

ωi)
2 − 2

z∑
k=0

z∑
i=k

ωi) < 0.

The above inequality can be rewritten as

(
z∑
i=0

ωi)
2 +

z∑
i=0

ωi < 2
z∑

k=0

z∑
i=k

ωi. (4)

First, we can rewrite (
∑z

i=0 ωi)
2 as

ω0(ω0 + ..+ ωz) + ω1(ω1 + ..+ ωz) + ω0ω1 + ω2(ω2 + ..+ ωz) + ω2(ω0 + ω1) + .. =

(ω0+..+ωz)ω0+(ω1+..+ωz)ω1+(ω1+..+ωz)ω0+(ω2+..+ωz)ω2+(ω2+..+ωz)ω1+.. =

(ω0 + ..+ ωz)ω0 + (ω1 + ..+ ωz)[ω1 + ω0] + (ω2 + ..+ ωz)[ω2 + ω1] + ...

Therefore, the LHS of (4) is
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(ω0 + ..+ ωz)(1 + ω0) + (ω1 + ..+ ωz)[ω0 + ω1] + (ω2 + ..+ ωz)[ω2 + ω1] + ...

The RHS of (4) is

2(ω0 + ..+ ωz) + 2(ω1 + ..+ ωz) + 2(ω2 + ..+ ωz) + ...

Since for every i ∈ {0, .., z}, ωi ≤ 1 and for some i ωi < 1, the last two expressions
reveal that the inequality (4) is true. Thus, we have shown that for i′, the largest
upper bias is supported by the strategy Pi′(Q) = {{0}, {1, .., n}}. But then the
same upper threshold is true for every other expert as well, since Pi′(Q) implies
that every expert conditions his upper deviation incentive on the same event
that all experts’ signals are 0.

There is no partition of {0, 1}n′ , for any n′ ≤ n, which can accommodate experts’

biases larger than b
1,0

. Suppose not. Thus, there is an expert j′ ∈ N e with

bj′ > b
1,0

. But then there is no equilibrium with n experts where the decision
maker receives information according to {{0}, {1, .., n}} since expert j′ has an
incentive to deviate to a higher message. Without j′, the partition which ensures
the largest bias of the expert connected to the decision maker (where a single
expert is connected to the decision maker which is a necessary condition for
implementing a partition with largest possible upper biases for the experts) is
{{0}, {1, .., n− 1}}, and the upper bias is given by

1

2
(

1

n+ 1
+

2 + n

2(n+ 1)
)− 1

n+ 1
=

n

4(n+ 1)

which is strictly smaller than b
1,0

= n+1
4(n+2)

.

Next I calculate the lower bound for experts’ biases that support P 0. The binding
downward deviation by any expert i ∈ N e conditions on the event in which any one
of experts’ signals is 1, and all the other signals are 0. The corresponding incentive
constraint is

−
∫ 1

0

(
n+ 3

2(n+ 2)
− θ − bi)2f(θ|1, n)dθ ≥ −

∫ 1

0

(
1

n+ 2
− θ − bi)2f(θ|1, n)dθ,

which holds for:
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bi ≥
n− 3

4(n+ 2)
.

Although I do not know the implementable two-pool decision maker’s partition of
{0, 1}n with the second highest shift in decision maker’s policy (implying the second
highest upper bias threshold), we know that the difference between the two pools
cannot exceed ( n+3

2(n+2)
− 1

n+2
). Moreover, the first pool of such a partition includes at

least one element of {0, 1}n with the sum of the signals 1. Therefore, for any decision
maker’s two-pool partition which is not P 0, the lower bound on expert’s beliefs that
determines his upward deviation constraint cannot be smaller than assigning the
posteriors n

n+1
to k = 0 and 1

n+1
to k = 1. Therefore, we know that the second

highest bias cannot exceed b̂ which solves the following problem:

− n

n+ 1

∫ 1

0

(
1

n+ 2
− θ − b̂)2f(θ|0, n)dθ − 1

n+ 1

∫ 1

0

(
1

n+ 2
− θ − b̂)2f(θ|1, n)dθ =

− n

n+ 1

∫ 1

0

(
n+ 3

2(n+ 2)
− θ− b̂)2f(θ|0, n)dθ− 1

n+ 1

∫ 1

0

(
n+ 3

2(n+ 2)
− θ− b̂)2f(θ|1, n)dθ.

The equation holds for b̂ = (n+3)(n−1)
4(n+1)(n+2)

. Notice that b̂ < b
1,0

which is intuitive

since in the case of b̂ a positive weight is assigned to the sum of the signals 1.
We, further, know that for any n′ < n, the largest upper bias is weakly below

n
4(n+1)

. Since

(n+ 3)(n− 1)

4(n+ 1)(n+ 2)
<

n

4(n+ 1)
, for n ≥ 2,

we can state that, conditional on decision maker’s two-pool partitions of {0, 1}n
implementable in any Q ∈ Q, and given that the biases of all n experts are within
the interval ( n

4(1+n)
, n+1
4(n+2)

], only a network Q which satisfies the requirements stated
in the Proposition can lead to information transmission from the experts to the deci-
sion maker. The corresponding equilibrium is characterized by a partition P 0

DM(Q)
according to which the decision maker receives her information.

Finally, I show that it is without loss of generality to focus on two-pool partitions.

Claim 3 : A partiton of {0, 1}n according to which the decision maker receives her
information in a network Q ∈ Q and which supports the largest possible upper bias
threshold for each expert, has to consist of two pools.
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Proof of Claim 3 : Suppose not. First, take any equilibrium inQ ∈ Q with |NDM(Q)| =
1 and PDM(Q) = {p1, .., pl} such that l ≥ 3.

1. Take any i ∈ N e. There is a type of expert i, denoted by t′i, which determines
the binding upward incentive constraint of expert i and therefore the upper
bias threshold b′i which supports Pi(Q) is therefore implicitly determined by:

−
∑

p∈PDM (Q)

Pr(p|pi, P−i(Q))
∑
k∈p

Pr(k|t′i)
∫ 1

0

(y(p)− θ − b′i)2f(θ|k, n)dθ−

−
∑

p∈PDM (Q)

Pr(p|p′i, P−i(Q))
∑
k∈p

Pr(k|t′i)
∫ 1

0

(y(p)− θ − b′i)2f(θ|k, n)dθ (5)

for t′i ∈ pi and pi 6= p′i where p′i ∈ Pi(Q) is the next highest message to pi.

2. Next, choose pj′ ∈ PDM(Q) such that

pj′ = max
j∈{1,..,l−1}

{pj+1 − pj}.

Define the bias b̂′ which implicitly solves

−
∫ 1

0

(y(pj)−θ− b̂′)2f(θ|k ∈ pj, n)dθ = −
∫ 1

0

(y(pj+1)−θ− b̂′)2f(θ|k ∈ pj, n)dθ,

where f(θ|k ∈ pj, n) is the posterior according to which the decision maker
forms her beliefs about the signals when her state-relevant information is sum-
marized by pj. It follows that b̂′ > b′i.

3. Next, construct another strategy profile which is the same as before for every
expert apart from an expert i′ ∈ N e who is directly connected to the decision
maker. The latter communicates to the decision maker according to the parti-
tion Pi′(Q) = {p′1, p′2} where the first pool is p′1 := ∪i∈{1,..,j}pi, and the second
pool is p′2 := ∪i∈{j+1,..,l}pi.

Notice that y(p′2)− y(p′1) is larger than y(pj+1)− y(pj). Therefore, the bias b̂′′

which solves
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−
∫ 1

0

(y(p′1)− θ− b̂′′)2f(θ|k ∈ p′1, n)dθ = −
∫ 1

0

(y(p′2)− θ− b̂′′)2f(θ|k ∈ p′1, n)dθ

is such that b̂′′ > b̂′.

4. We know from the previous considerations in the proof of Proposition 3 that
if in Q the decision maker would receive information according to PDM(Q) =
{{0}, {1, .., n}} then

y(p′2)− y(p′1) < y(1, .., n)− y(0).

Therefore, for p1 = {0}, p2 = {1, .., n} the bias b̃ which solves

−
∫ 1

0

(y(p1)− θ − b̃)2f(θ|k = 0, n)dθ = −
∫ 1

0

(y(p2)− θ − b̃)2f(θ|k = 0, n)dθ

is such that b̃ > b̂′′. But since b̃ determines each experts’ upper bias in
case the decision maker receives her information according to the partition
{{0}, {1, .., n}}, we conclude that it cannot be that decision maker’s partition
which consists of 3 pools generates an equilibrium that supports experts’ biases
larger than (n+3)(n−1)

4(n+1)(n+2)
.

Now, suppose that |NDM(Q)| > 1, which means that the decision maker is con-
nected to multiple experts. Take any expert i ∈ NDM(Q) and delete the links from
all experts j ∈ NDM(Q), j 6= i. Next create an additional link for every such expert
going from j to i. It means for every j ∈ NDM(Q), j 6= i, there is eji = 1. Denote
the new network by Q′. Now use the same argument as before to show that in equi-
librium with PDM(Q′) = {{0}, {1, .., n}} the upper bias threshold for every expert
is larger than in the former equilibrium represented by PDM(Q) = {p1, .., pl}. Q.E.D.

This shows that the Proposition is true.
Q.E.D.

Example on p. 17:
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Equilibrium in network in Figure 5a:

The strategy profile specified in the example implies that the message strategies
of experts can be represented by the following partitions: P1 = {{0}, {1}}, P2 =
{{0}, {1, 2}} and P3 = {{0}, {1}}. Denote by pj ∈ Pj a typical element of a partition
Pj, j ∈ {1, 2, 3}.

The choices of the decision maker depend on communicated pools of the partitions
P1, P2 as follows:

y(p1 = 0, p2 = 0) =
1

5
, y(p1 = 1, p2 = 0) =

2

5
, y(p1 = 0, p2 = 1, 2) =

7

15
,

y(p1 = 1, p2 = 1, 2) =
18

25
.

We start with the incentive constraints for the types of expert 2: t2 = 0 assigns
the posteriors 3

4
to t1 = 0 and 1

4
to t1 = 1. Thus, the incentive constraint for t2 = 0

is:

−3

4

∫ 1

0

(
1

5
− θ − b2)2f(θ|0, 3)dθ − 1

4

∫ 1

0

(
2

5
− θ − b2)2f(θ|1, 3)dθ ≥

−3

4

∫ 1

0

(
7

15
− θ − b2)2f(θ|0, 3)dθ − 1

4

∫ 1

0

(
18

25
− θ − b2)2f(θ|1, 3)dθ,

so that b2 ≤ 74
525
≈ 0.14.

t2 = 1 assigns the posteriors 1
2

to t1 = 0 and 1
2

to t1 = 1. The incentive constraint
of t2 = 1 is:

−1

2

∫ 1

0

(
7

15
− θ − b2)2f(θ|1, 3)dθ − 1

2

∫ 1

0

(
18

25
− θ − b2)2f(θ|2, 3)dθ ≥

−1

2

∫ 1

0

(
1

5
− θ − b2)2f(θ|1, 3)dθ − 1

2

∫ 1

0

(
2

5
− θ − b2)2f(θ|2, 3)dθ,

so that b2 ≥ − 43
825
≈ −0.05 which is satisfied since we assumed that all experts

are positively biased. Therefore, the binding constraint implies b2 ≤ 74
525

.
Since expert 3 conditions pivotality on the same information sets as expert 2, the

incentive constraints for expert 3 imply as well b3 ≤ 74
525

.
Next, t1 = 0 assigns the posteriors 1

2
to t2 = 0, 1

3
to t2 = 1 and 1

6
to t2 = 2. The

corresponding incentive constraint for t1 = 0 is:
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−1

2

∫ 1

0

(
1

5
− θ − b1)2f(θ|0, 3)dθ − 1

3

∫ 1

0

(
7

15
− θ − b1)2f(θ|1, 3)dθ−

1

6

∫ 1

0

(
7

15
− θ − b1)2f(θ|2, 3)dθ ≥

−1

2

∫ 1

0

(
2

5
− θ − b1)2f(θ|0, 3)dθ − 1

3

∫ 1

0

(
18

25
− θ − b1)2f(θ|1, 3)dθ−

1

6

∫ 1

0

(
18

25
− θ − b1)2f(θ|2, 3)dθ,

resulting in b1 ≤ 293
2550
≈ 0.115.

Finally, t1 = 1 assigns the posteriors 1
6

to t2 = 0, 1
3

to t2 = 1 and 1
2

to t2 = 2.
The corresponding incentive constraint for t1, assuming that the other players stick
to the specified strategy profile, is:

−1

6

∫ 1

0

(
2

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0

(
18

25
− θ − b1)2f(θ|2, 3)dθ−

1

2

∫ 1

0

(
18

25
− θ − b1)2f(θ|3, 3)dθ ≥

−1

6

∫ 1

0

(
1

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0

(
7

15
− θ − b1)2f(θ|2, 3)dθ−

1

2

∫ 1

0

(
7

15
− θ − b1)2f(θ|3, 3)dθ,

resulting in b1 ≥ − 203
1650
≈ −0.12 which is satisfied per assumption.

To summarize, the above strategy profile constitutes an equilibrium for b2, b3 ≤
0.14, and for b1 ≤ 0.115. The expected utility of the DM is = −0.0396.

Implementation of the same equilibrium outcome in the line (Figure 5b):

Consider the following strategy profile. Expert 3 communicates his signals to
expert 2. If expert 2’s summary statistic is 0, he sends p2 to expert 1; otherwise he
sends p′2. Expert 1 sends one out of the four messages to the decision maker: p1 if
(s1 = 0, p2), p

′
1 if (s1 = 0, p′2), p

′′
1 if (s1 = 1, p2) and p′′′1 if (s1 = 1, p′2). The decision

maker chooses:

y(p1) =
1

5
, y(p′1) =

7

15
, y(p′′1) =

2

5
and y(p′′′1 ) =

18

25
.
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The incentive constraints for experts 3 and 2 are the same as in network in Figure
5a because both experts remain pivotal for the same information sets of the decision
maker. However, the bias constraints for expert 1 get tighter. In particular, his
tightest constraint for the upward deviation is defined for t1 = (s1 = 1, p2), which
prevents deviation to the message (s1 = 0, p′2):

−
∫ 1

0

(
2

5
− θ − b1)2f(θ|1, 3)dθ ≥ −

∫ 1

0

(
7

15
− θ − b1)2f(θ|1, 3)dθ,

or:

2

5
+

7

15
− 2

2

5
− 2b1 ≥ 0,

which results in b1 ≤ 0.033.
The tightest constraint for the downward deviation of expert 1 prevents deviation

from t1 = (s1 = 0, p′2) to (s1 = 1, p2):

−2

3

∫ 1

0

(
7

15
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0

(
7

15
− θ − b1)2f(θ|2, 3)dθ ≥

−2

3

∫ 1

0

(
2

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0

(
2

5
− θ − b1)2f(θ|2, 3)dθ,

which can be written as:

2

3

( 7

15
+

2

5
− 2

2

5
− 2b1

)
+

1

3

( 7

15
+

2

5
− 2

2

5
− 2b1

)
≥ 0,

or:
b1 ≥ −0.033. Therefore, the binding constraint for expert 1 shows that he is

incentivized to communicate according to the specified strategy profile in a line for
a strictly smaller range of biases, compared to the network in Figure 5a.

Proof of Lemma 1:

Let P−(i,j)(Q) denote the strategy profile of all experts apart from the experts i
and j, which is defined as P−(i,j) = Πl∈NePl(Q), l 6= i, l 6= j.

Since we assume that in Q expert i is informed about expert j’s type, we can ex-
press the type space of i as Ti(Q) = P̃i(Q)×Pj(Q), where P̃i(Q) captures the private
signal of i and potentially some further information depending on the connections
in Q (the exact information which i receives beyond his own private signal and pj is
inessential). The incentive constraints of tj ∈ Tj(Q) can be expressed in terms of his
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expectation over the types of expert i, and therefore in terms of i’s strategy given
ti ∈ pi and tj ∈ pj:

−
∑

p̃i∈P̃i(Q)

Pr(p̃i|tj)
∑

p∈PDM (Q)

Pr(p|pi(p̃i, pj), P−(i,j)(Q))
∑
k∈p

Pr(k|ti)
∫ 1

0

(y(p)−θ−bj)2f(θ|k, n)dθ ≥

−
∑

p̃i∈P̃i(Q)

Pr(p̃i|tj)
∑

p∈PDM (Q)

Pr(p|pi(p̃i, p′j), P−(i,j)(Q))
∑
k∈p

Pr(k|ti)
∫ 1

0

(y(p)−θ−bj)2f(θ|k, n)dθ,

where p′j 6= pj, and p′j is the next highest message to pj such that by deviation j
expects a change in decision maker’s policy (otherwise the deviaion leaves j’s payoffs
unaffected). The upper bias threshold of j which supports Pj(Q) is denoted by b′j
and solves the following problem.

b′j = argmin
bj∈R

{
−

∑
p̃i∈P̃i(Q)

Pr(p̃i|tj)
∑

p∈PDM (Q)

Pr(p|pi(p̃i, pj), P−(i,j)(Q))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bj)2f(θ|k, n)dθ =

−
∑

p̃i∈P̃i(Q)

Pr(p̃i|tj)
∑

p∈PDM (Q)

Pr(p|pi(p̃i, p′j), P−(i,j)(Q))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bj)2f(θ|k, n)dθ |for all tj ∈ Tj(Q), tj ∈ pj, ti ∈ Ti(Q), ti ∈ pi
}
. (6)

The upper bias threshold of i which supports Pi(Q) is denoted by b′i and solves
the following problem for a given pj:

b′i = argmin
bi∈R

{ ∑
p∈PDM (Q)

Pr(p|pi(p̃i, pj), P−(i,j)(Q))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bi)2f(θ|k, n)dθ =∑
p∈PDM (Q)

Pr(p|p′i, P−(i,j)(Q))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bi)2f(θ|k, n)dθ | ti ∈ Ti(Q), ti ∈ pi
}
, (7)

59



where p′i ∈ Pi(Q) is the next highest message to pi(p̃i) such that by deviation i
expects a change in decision maker’s policy (otherwise the deviaion leaves j’s payoffs
unaffected). Before comparing b′i and b′j notice that

1. In equilibria with strategic coarsening of information by at least one of the
experts, and an equilibrium partition PDM(Q) = {p1, .., pl} with v ≥ 3, the
difference (y(pv+1) − y(pv)), v ∈ {1, .., l − 1}, is in general different for every
distinct v.

2. Expert j is uncertain about the exact realization of p̃i. Different realizations
of p̃i can result in different y(pv) on path.

As a result, it has to be true that b′i ≤ b′j since i conditions his deviation on a
particular tuple (p̃i, pj) whereas expert j only observers tj = pj. By a symmetric
argument, b′′i ≥ b′′j , where b′′i (b′′j ) is the lower bias threshold for expert i (j) which
makes the strategy Pi(Q) (Pj(Q)) incentive compatible.

Q.E.D.

Proof of Lemma 2:

Fix an equilibrium strategy profile in a network Q ∈ Q, P (Q), which involves
strategic coarsening of information such that there is an expert i ∈ N e who receives
full information from some other expert j ∈ Hji(Q). If eji = 1, then the Lemma is
satisfied.

If |Hji(Q)| > 2, there is at least one other expert on the path Hji(Q), strictly

between j and i. Denote the set of those experts by N̂ . The communication strategy
of every j′ ∈ N̂ can be written as Pj′(Q) = Pj(Q)×{Pj′(Q)\Pj(Q)}. This is because
by assumption j′ truthfully communicates the message sent by expert j, pj.

Fix any j′ ∈ N̂ and suppose that Pj′(Q) is supported by the biases within an
interval [bj′ , bj′ ] ⊂ R.

Next, take a link in Q going out from j, delete it, and create a new directed
link from j to i, eji = 1. Denote the new network by Q′ (clearly Q = Q′ if j is
directly connected to i in Q), and assume the following strategy profile: for every i′ ∈
{N e \ N̂}, Pi′(Q′) = Pi′(Q), and expert j′ uses the strategy Pj′(Q

′) = Pj′(Q)\Pj(Q).
In words, experts on the path Hji(Q) which were strictly between i and j in Q,
communicate the same information in the new network Q′ compared to Q, only
without the message of expert j. Moreover, all the other experts have the same
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communication strategies as before. Clearly, the incentive constraints of the experts
outside of N̂ remain the same.

However, the experts in N̂ face more relaxed incentive constraints in Q′ compared
to Q, since in the former case they do not observe the message of expert j. To see
why, notice that the upper bias of j′ in Q′, denoted by b′j′ , is determined by the
following minimization program. For tj′ ∈ pj′ and pj′ , p

′
j′ ∈ Pj′(Q′), pj′ 6= p′j′ , where

p′j′ is the next highest message to pj′ ( such that by deviation j′ expects a change in
decision maker’s policy), the bias threshold b′j′ is such that

b′j′ = argmin
bi∈R

{ ∑
p∈PDM (Q′)

Pr(p|pj′(tj′), Pj(Q′), P−(i,j)(Q′))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bj′)2f(θ|k, n)dθ =∑
p∈PDM (Q′)

Pr(p|p′i, P−(i,j)(Q′))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − b′j′)2f(θ|k, n)dθ |for all ti′ ∈ Tj′(Q′), tj′ ∈ pj′
}
. (8)

For pj ∈ Pj(Q) and p̂j′ ∈ Pj′(Q) the upper bias threshold supporting the strategy
Pj′(Q), denoted by bj′ , is such that

bj′ = argmin
bi∈R

{ ∑
p∈PDM (Q′)

Pr(p|p̂j′(tj′ , pj), P−(i,j)(Q′))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bj′)2f(θ|k, n)dθ =∑
p∈PDM (Q′)

Pr(p|p̂′j′ , P−(i,j)(Q′))
∑
k∈p

Pr(k|ti)

∫ 1

0

(y(p)− θ − bj′)2f(θ|k, n)dθ |for all ti′ ∈ Tj′(Q′), tj′ ∈ pj′
}
, (9)

where p̂′j′ ∈ Pj′(Q) is the next highest message to p̂j′ such that by deviation j′

expects a change in decision maker’s policy (otherwise the deviaion leaves the payoff
of j′ unaffected).

Notice that in equilibria with strategic coarsening of information by at least one
of the experts, and an equilibrium partition PDM(Q) = {p1, .., pl} with v ≥ 3, the
difference (y(pv+1)− y(pv)), v ∈ {1, .., l− 1}, is in general different for every distinct
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v. Since an Q expert j′ is uncertain about the message of j, and in Q′ expert j′

observes the exact message of j, comparing (8) and (9) we see that bj′ ≤ b′j′ .
Q.E.D.

Proof of Lemma 3:

Suppose that an optimal network Q features n′ 6= n non-babbling experts and
a group G with |G| > 3 which includes j, j′ ∈ N ′ who have no incoming links
and have outgoing links to the group leader, iG. Since j and j′ do not babble,
Pj(Q) = Pj′(Q) = {{0}, {1}}. Take any message profile of the experts within G
other than j, j′ and denote it by p ∈ Πi∈{Ni(Q)\{j,j′}}Pi(Q). For a given private signal
of the group leader, siG ∈ {0, 1}, and any k ∈ {0, 1} and k′ ∈ {0, 1}, then it must be
true for a type of iG, tiG ∈ TiG(Q):

tiG(siG , pj = k, pj′ = k′, p) = tiG(siG , pj = k′, pj′ = k, p),

Therefore, the communication strategy of iG must be such that

piG(siG , pj = k, pj′ = k′, p) = piG(siG , pj = k′, pj′ = k, p), piG ∈ PiG(Q)

since otherwise two types of iG with the same beliefs over {0, 1}n′ would take two
different equilibrium actions which is not incentive compatible.

Since Tj(Q) = Tj′(Q) = {{0}, {1}}, j and j′ have the same ex ante beliefs over
the entire signal space {0, 1}n. As their messages are treated symmetrically in the
communication strategy of iG, their communication strategies are supported by the
same range of biases.

Finally, since in equilibrium iG receives truthful information about the exact
types of j and j′, conditions of Lemma 1 apply. It means that the range of biases
supporting PiG(Q) is weakly included into the range of biases supporting Pj(Q) or
Pj′(Q).

Q.E.D.

Proof of Proposition 4:

Fix any network Q ∈ Q and any equilibrium decision maker’s partition of {0, 1}n,
PDM(Q). Notice that per definition the decision maker can commit to implement any
partition PDM of {0, 1}n. Each pool of the partition consists of a subset of {0, 1}n,
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such that for every element of {0, 1}n within any given pool, each of the digits can
be mapped back to each experts’ private signals. Thus, if every expert truthfully
reveals his private signals, this generates partition PDM .

Notice that in a direct mechanism each expert only observes his own private
signal whereas in a network Q which is not a star, there is at least one expert which
observes at least one further signal additional to his own private signal. According to
Lemma 2, if the experts’ strategy profile generating the partition PDM(Q) involves
strategic coarsening of information by at least one expert, the bias range supporting
the equilibrium strategy of each expert in a network Q is weakly included into the
bias range supporting the expert’s equilibrium strategy in a network Q. Therefore,
the outcome of a network Q is implementable in a direct mechanism but the converse
is not true.

Q.E.D.
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