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Abstract

This paper explores the origins of bureaucratic complexity in public policy. In
a model of incremental policymaking where entanglements between policy elements
complicate attempts to undo existing policy, policymakers are biased towards increas-
ing policy complexity – especially when policy is already complex. Policy evolution
is thus path-dependent: simple policies remain simple, whereas complex policies be-
come more complex. Complexity emerges and persists under political conflict be-
tween ideologically-extreme policymakers, andwhen legislative frictions impede pol-
icymaking. Patience is not a virtue: farsighted policymakers deliberately engage in
obstructionism, introducing complex policies to hinder future opponents.

JEL Classification: C73, D72, D73
Keywords: kludges, bureaucracy, extremism, obstructionism, organizational change,
kludgeocracy

1 Introduction
The complexity of public policy imposes significant costs on society. The United States
Internal Revenue Service estimated that the various costs of tax compliance exceeded $168
billion in 2010, which was fifteen percent of total tax receipts for that year.1 In many areas
of policy ranging from the tax code to education to healthcare, such complexity is pervasive
and persistent.

This paper studies the evolution of policy complexity. It develops a theory where policy
complexity emerges in the course of political conflict. Successive policymakers modify
policy in pursuit of their own policy goals; they do so by layering new rules upon existing
policy. As layers of rules accumulate, so does policy complexity.

*Kawai: k.kawai@unsw.edu.au; Lang: ruitian.lang@anu.edu.au; Li: hongyi@unsw.edu.au. We thank
Robert Akerlof, Alessandro Bonatti, Steve Callander, Heng Chen, Sven Feldmann, Robert Gibbons, Richard
Holden, Anton Kolotilin, Jin Li, Hodaka Morita, Carlos Pimienta, Eric van den Steen, Peter Straka, Birger
Wernerfelt, the MIT Organizational Economics Lunch, and the Hitotsubashi Theory Workshop for com-
ments and suggestions; and Adam Solomon for excellent research assistance.

1This may not be too surprising, given that the U.S. tax code contains more than four million words.
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A key aspect of our theory is that new rules take the form of kludges: piecemeal modi-
fications that patch over old programs rather than replace them. Kludges serve to remedy
flaws in the implementation of existing policy, or even cancel out their impact. As such,
they improve on existing policy, but do so in an inelegant and inefficient fashion relative
to the alternative – to completely rewrite existing policy, unburdened by legacy concerns.2

We model a setting where policy control shifts intermittently between two rival poli-
cymakers. While in control, each policymaker may add or delete policy rules to achieve
his ideological goal. By complexitywe mean the measure of rules that make up policy (e.g.,
the number of lines in the tax code). In this setting, kludges are rules that are added to
cancel out the ideological impact of old rules without having to delete those old rules. In
other words, kludges allow policymakers to avoid elaborate policy overhauls, at the cost of
excessive policy complexity.

This narrative has, so far, not yet addressed why policymakers may favor adding new
rules as kludges, rather than deleting and replacing existing rules. Our theory incorpo-
rates features of the legislative process that are conducive to kludges. First, policymaking
is incremental: rules may only be added or deleted gradually. Interest groups may op-
pose adding new rules that they dislike or deleting old rules that they like. Such resistance
constrains policymakers with limited political capital from undertaking radical overhauls;
instead, they make incremental changes.3

Further, rules are entangled with one another. Each rule is designed to fit well with
the rest of policy – either by legislative intent, or through subsequent administrative and
judicial interpretation of enacted legislation. Rulesmay rely on features of other rules, or fill
gaps in other rules, or build uponother rules tomodify their effect. Such interdependencies
between rules create entanglements that hinder the undoing of existing policy. Deletion
of a rule may cripple other dependent rules which rely on the functionality of the deleted
rule. Consider theAlternativeMinimumTax (AMT) in theU.S. TaxCode. Many observers
deem the AMT to be an unsatisfactory solution to the problems it was intended to solve,
but also believe that it will be difficult to undo or significantly edit the AMT because many
other aspects of the federal tax system have come to rely on the AMT.

In this paper, such entanglements aremodeled as an exogenous constraint on the ability
of policymakers to precisely undo existing policy. Essentially, an existing rule cannot be
deleted without also deleting other rules that are (randomly) entangled with the targeted
rule.

Consequently, each policymaker faces a trade-off between improving his ideological
position and reducing policy complexity. He may add new rules that favor his ideological
position. Or, he may delete rules that detract from his position. Deletion has the benefit
of reducing complexity. However, the deletion process is stymied by entanglement. Un-
favorable rules cannot be deleted surgically; they may be entangled with favorable rules

2One example of policy kludge is the U.S. Affordable Care Act (ACA) of 2010, which introduced mech-
anisms (including mandates, subsidies and insurance exchanges) to fill gaps in the existing patchwork of
private and public insurance options. A common view of both proponents and opponents was that the ACA
is excessively complex compared to alternatives such as a single-payer healthcare system. These alternatives,
however, would have required a politically infeasible complete overhaul of healthcare policy.

3For recent discussion, see As Levy and Razin (2013) and Teles (2013). Further, besides political con-
straints, cognitive limitations may introduce uncertainty about the impact of large-scale policy changes and
thus force policymakers to focus on making small ‘local’ changes to policy (see, e.g., Lindblom 1959, Bendor
1995, Callander 2011a and Callander 2011b).
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which have to be deleted as well, thus slowing progress towards – or even moving policy
away from – the policymaker’s position. Entanglements thus induce a bias towards adding
rather than deleting rules.

In this setting, we analyze the long-run evolution of policy under political conflict.
The main dynamic effects are not driven by strategic interactions between policymakers.
In fact, for most of this paper, we completely ignore strategic interactions by focusing on
myopic policymakers. We demonstrate how, and under what circumstances, complexity
may emerge and persist from such myopic dynamics.

We show that when complexity is high, all parties are particularly prone to adding
further complexity in the form of kludges. Consequently, policy outcomes exhibit path
dependence: simple policies remain simple, whereas complex policies may become more
complex.

When complexity is high, policy evolution switches intermittently between two phases.
In one phase, the policymaker in control adds rules to shift policy towards his favored po-
sition, increasing complexity as he does so. In the other phase, the policymaker in control
has attained his policy goals, and deletes rules to reduce complexity. So, long-run out-
comes are determined by the tug-of-war between these two phases, which exert opposite
forces on complexity. If the first force is more powerful than the second, then complexity
may accumulate and become unbounded over the long-run – in which case we say that
policy becomes kludged.

Having identified this tension, we characterize conditions under which policy may be-
come kludged. One set of comparative static results relates to political institutions:

• Policy is likely to become kludged if parties hold control for relatively equal periods, i.e.,
political power is relatively balanced.

• Policy is likely to become kludged if power transitions between parties occur frequently;
for example, if electoral terms are short.

• Policy is likely to become kludged if legislative friction is high; that is, if the legislative
process is slowed by procedural hurdles such as veto points.

The same institutional features that generate kludged policies also serve to reduce ide-
ological polarization in policy outcomes. Indeed, our results highlight a tradeoff in the
design of political institutions between policy outcomes that are simple but ideologically
polarized, and outcomes that are complex but ideologically moderate.

Thus, viewed through the lens of our theory, the American political system is geared
towards generating ideologically moderate political outcomes (relative to the preferences
of its political parties) – but with the downside of complex, kludged public policy. After
all, American electoral competition has historically been relatively balanced and volatile,
with control over the presidency and congress switching regularly between the two major
parties over the past decades. Further, many hurdles in the American legislative process,
such as supermajority voting requirements, a proliferation of veto points, and filibuster
rules, hinder the creation of new laws and the undoing of existing laws. Conversely, a
planner who prioritizes complexity reduction over ideological moderation should design
political institutions that weaken (or even eliminate) political competition and minimize
legislative frictions.
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Another set of comparative statics relates to political preferences. We show that pol-
icy is likely to become kludged as parties’ preferences become more polarized – that is,
as the ideological distance between parties’ favoured positions increases, and also as par-
ties’ preferences over positions become more intense. These results suggest the following
connection between two trends inAmerican politics: an inexorable increase in policy com-
plexity over recent decades (Teles 2013) may have been driven by increasing polarization
in political preferences over the same period.4

Later in the paper, we move to a setting with forward-looking parties, so that strate-
gic interactions come into play. Here, the main lesson is that patience is not a virtue. A
forward-looking party may engage in obstructionism: he makes policy changes not to
achieve his own policy goals, but rather to hinder his opponent’s future policy moves.
Specifically, in a conflict between ideologically zealous policymakers, parties exhibit strate-
gic extremism. Each policymaker pursues policy positions that are even more ideologically
extreme than his preferences would naively dictate. This serves to “shift the goalposts”
against his opponent, which ensures that policy remains relatively close to the policy-
maker’s preferred positions in the medium run.5 Such strategic extremism has long-run
consequences for policy complexity. In particular, we show that relative to the myopic
case, strategic extremism may increase the probability that policy becomes kludged.

Literature Review Most closely related is Ely (2011), who studies how inefficiency – in
the form of kludged designs – may arise and persist in single-player adaptive processes.
Ely considers a genetic code – a set of genes – that performs well if each gene aligns appro-
priately with the environment, as mediated by the alignment of a particular ‘master gene’.
A code is kludged if the ‘master gene’ is poorly-aligned with the external environment. In
an evolutionary setting where the genetic code grows increasingly long while being sub-
ject to fitness selection over random mutations, Ely focuses on showing that kludge may
persist indefinitely: even though mutations may be arbitrarily large and thus a mutation
that unkludges the codewhilemaintaining internal alignment will eventually occur for any
fixed code length, the increase in code length over time ensures that such mutations grow
increasingly rare, and in fact may never occur. Ely (2011) shares with our paper the cen-
tral conceit of kludges: that interdependencies between elements make kludges difficult
to undo, and that increases in complexity lengthen the process of undoing kludges. But
our approach differs in various ways; we highlight three clear distinctions here. First, Ely
introduces a ‘mechanical’ evolutionary force that increases complexity over time, whereas
in our model, players endogenously choose whether to increase complexity. This differ-
ence reflects ourmodel’s central focus on understanding the origins of complexity, whereas
complexity in Ely (2011) is principally a device to inhibit unkludging.6 Second, we con-
sider a two-player game between policymakers with conflicting objectives to highlight the
role of political competition in producing kludges; in a one-player version of our model,

4McCarty, Poole, and Rosenthal (2016) find that American political parties have become increasingly
extreme since the 1970s; Azzimonti (2015) finds that political disagreement between parties has intensified
in the same period.

5Glaeser, Ponzetto, and Shapiro (2005) present a voting model where politicians may declare extreme
positions (relative to the voting public) to pander to their base. In contrast, in our model, politicians may
implement extreme policies (relative to their own preferences).

6Relatedly, whereas unkludged codes can be arbitrarily complex in Ely (2011), kludge and complexity are
essentially synonymous in our model.
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kludges would never persist. Third, moving beyond the focus in Ely (2011) on a single
myopic player, we discuss how strategic motives may lead to kludges.

Like our paper, Gratton, Guiso, Michelacci, and Morelli (2015) study the dynamics of
policy complexity. In their model, policymakers enact legislation purely to bolster their
reputation with the public. Reputational incentives to avoid bad legislation are muted if
existing policy is already complex, potentially leading to a ‘complexity trap’ that is superfi-
cially reminiscent of ourmodel’s path dependence result – albeit via a differentmechanism.

A number of other papers from various literatures explore the idea that incremen-
tal rule development may be path-dependent. Callander and Hummel (2014) consider a
modelwhere successive policymakerswith conflicting preferences strategically experiment
to find their preferred policy. The first policymaker benefits from a ‘surprising’ experiment
outcome, because it deters experimentation by the second policymaker and thus preserves
any policy gains by the first policymaker. Ellison and Holden (2013) study a model of en-
dogenous rule development where there are exogenous constraints on the extent to which
new rules may ‘overwrite’ old rules. Compared to these models, our paper introduces
path dependence through a distinct mechanism – entanglement – and thus produces very
different implications.

Our results on strategic extremism are also related to the literature on agenda-setting
in politics. Chen and Eraslan (2015) consider amodel where competing policymakers take
turns to address outstanding policy issues; their key assumption is that an issue that has
previously been addressed cannot be revisited by succeeding policymakers. Buisseret and
Bernhardt (2015) consider a related setting where this period’s policy outcome is deter-
mined by the interaction between an agenda-setter and a decision-maker, and serves as an
endogenous status quo for the next period.7 A number of interesting strategic effects arise
in these settings; for example, in opposition to the strategic extremism effect of the present
paper, dynamic concerns in Buisseret and Bernhardt (2015)may restrain the agenda-setter
from aggressive policy-setting. These papers do not address policy complexity, which is of
course the central focus of the present paper. Further, unlike these other papers, the status-
quo effect in the present paper is technological; any changes to policy take time for future
policymakers to undo, which drives the dynamics of policy position and complexity.

2 Model
Policy The policy is a set of infinitesimal rules. Each rule’s ideological direction is either
positive (+) or negative (−). The policy is summarized as a pair of numbers p = (𝑝+, 𝑝−),
where 𝑝𝑗 ≥ 0 is the mass of rules with direction 𝑗 ∈ {+, −}. The policy’s position is the
difference between the masses of positive and negative rules,

𝑝 = 𝑝+ − 𝑝−;

and the policy’s complexity is its total mass, denoted as

‖p‖ = 𝑝+ + 𝑝−.
7Other papers in this literature include Bernheim, Rangel, and Rayo (2006) and Messner and Polborn

(2012), and Levy and Razin (2013).
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Policy evolves in continuous time, 𝑡 ≥ 0. Sowewrite, for example,p(𝑡) = (𝑝+(𝑡), 𝑝−(𝑡));
but we will often conveniently suppress the time-dependence of policy variables. We take
the initial policy p(0) as given.

Players and Preferences There are two parties, +1 and −1, generically identified as 𝑖. The
instantaneous payoff of party 𝑖 ∈ {+1, −1} is a function of policy position and complexity:

𝑢𝑖 (p) = −𝑧𝑖 |𝑝 − 𝑝∗𝑖 | − ‖p‖ (1)

where 𝑝∗𝑖 ∈ ℝ is his positional ideal, |𝑝 − 𝑝∗𝑖 | is the absolute value of 𝑝 − 𝑝∗𝑖 , and 𝑧𝑖 > 1 is
his ideological zeal. That is, parties dislike policy positions that are distant from their ideal,
and dislike complex policies. We assume that 𝑝∗+1 > 0, 𝑝∗−1 < 0; and that 𝑧+1 > 1, 𝑧−1 > 1.8

Some descriptive terminology: parties with small (large) |𝑝∗𝑖 | are calledmoderates (ex-
tremists). Parties with high 𝑧𝑖 are zealous. A policy with position 𝑝 = 𝑝∗𝑖 is 𝑖-ideal.

Each party 𝑖maximizes his discounted payoff,

max𝔼[∫
∞

0
𝑢𝑖 (p(𝑡)) 𝑒−𝑟𝑖𝑡𝑑𝑡] .

Most of this paper considers myopic parties: 𝑟+1, 𝑟−1 →∞. Two features of myopic behav-
ior are convenient. First, strategic interactions vanish: the myopic party 𝑖 is unconcerned
about what his opponent −𝑖 does after 𝑖 loses control. Second, only the neighbourhood
of the current policy p(𝑡) is relevant, because only nearby policies can be attained in the
near future. In particular, as 𝑟𝑖 → ∞, party 𝑖’s problem reduces to maximizing the rate of
change of his payoff,

max { 𝑑𝑑𝑡𝑢𝑖 (p(𝑡))} . (2)

Policymaking Technology At any time 𝑡, one party 𝑖(𝑡) ∈ {+1, −1} is in control. Control
transitions from 𝑖 to −𝑖 are random and arrive at rate 𝜆𝑖 > 0. Without loss of generality,
party +1 starts the game in control: 𝑖(0) = +1. We interpret 𝜆𝑖 as 𝑖’s political vulnerability.

At each time 𝑡, party 𝑖(𝑡) chooses non-negative addition rates 𝛼+(𝑡), 𝛼−(𝑡) and deletion
rates 𝛿+(𝑡), 𝛿−(𝑡) which move (𝑝+, 𝑝−):

𝑑
𝑑𝑡𝑝𝑗(𝑡) = 𝛼𝑗(𝑡) − 𝛿𝑗(𝑡) for each 𝑗 ∈ {+, −}, (3)

subject to a flow constraint, reflecting the party’s limited capacity to make policy changes,
where 𝛾−1 parametrizes the degree of legislative friction:

𝛼+(𝑡) + 𝛼−(𝑡) + 𝛿+(𝑡) + 𝛿−(𝑡) ≤ 𝛾, (4)
𝛿𝑗(𝑡) = 0 if 𝑝𝑗(𝑡) = 0 for 𝑗 ∈ {+, −},

8 The assumption 𝑧𝑖 > 1 ensures that parties have sufficiently intense preferences over ideological posi-
tion, and thus face a nontrivial tradeoff between adding and deleting rules. Alternatively, one might posit
that payoffs are quadratic in position, 𝑢𝑖 (p) = −𝑧𝑖 (𝑝∗𝑖 − 𝑝)2 − ‖p‖, so that party 𝑖’s positional preferences
intensify as policy strays from 𝑝∗𝑖 . This alternative formulation is analytically and expositionally less conve-
nient, but produces qualitatively similar results.
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and an entanglement constraint on the direction of rule deletion:

𝛿+(𝑡)
𝛿−(𝑡)
= 𝑝+(𝑡)𝑝−(𝑡)
. (5)

In words, the entanglement constraint states that deleted rules must have the same pro-
portions, by direction, as existing rules. This specification of the entanglement constraint
is quite tight: given (total) deletion rate

𝛿(𝑡) = 𝛿+(𝑡) + 𝛿−(𝑡),

each of 𝛿+(𝑡) and 𝛿−(𝑡) are fully determined from (5). Consequently, we may use 𝛿(𝑡) to
summarize the pair of deletion rates (𝛿+(𝑡), 𝛿−(𝑡)).

Discussion of the Entanglement Constraint The entanglement constraint (5) captures,
in reduced form, the notion of dependencies between rules. The premise is that parties
cannot surgically target specific rules for deletion: a party who targets rule 𝜋 for deletion
has to also delete other rules that are entangled with 𝜋.

The specific form of (5) is a tractable depiction of severe entanglement, whereby each
rule is entangled with many other rules. If policy is severely entangled, then deletions will
mostly be “indirect” (i.e., of rules entangled with targeted rules) rather than “direct” (i.e., of
targeted rules). Consequently, parties will have little control over the directions of deleted
rules, especially if they have limited knowledge about which rules are entangled with each
other. The overall composition of deleted rules will match the composition of the policy
as a whole, rather than the direction of those rules targeted for deletion. This notion is
captured succinctly by our entanglement constraint (5).

In Appendix A, we argue that our formulation of the entanglement constraint is quite
natural. We present two alternative approaches to model the notion of policy entangle-
ments, and show that both models generate our entanglement constraint under assump-
tions that reflect severe entanglement.

Appendix A.1 considers a linear network. Rules are totally ordered along a line. A
party who seeks to delete a rule 𝜋 first has to delete all the rules above 𝜋 in the ordering.
This model produces (5) as a limiting outcome when the number of rules is large.

Appendix A.2 considers a random network where any two rules are connected with
some small probability. Dependencies are captured by the network structure: when a pol-
icymaker targets a rule𝜋 for deletion, he also has to delete all of𝜋’s neighbours. Thismodel
produces (5) at the limit where each rule has infinitely many neighbours. Away from this
limit, so that entanglement is not severe, a looser version of the entanglement constraint
is obtained; we show that our results continue to hold there as well.

Policy Simplicity and Efficiency The following terminology will be helpful. Let the pol-
icy’s positive-simplicity be the ratio of position to complexity, 𝑝‖p‖ . (Conversely, negative-
simplicity is defined as − 𝑝‖p‖ .) So, a policy that is very 𝑗-simple (𝑗-simplicity close to one)
consists mostly of direction-𝑗 rules.9

9Indeed, 𝑗-simplicity (𝑗 𝑝‖p‖ =
𝑝𝑗−𝑝−𝑗
𝑝𝑗+𝑝−𝑗 ) is just the difference between the proportion of direction-𝑗 and the

proportion of direction-(−𝑗) rules in the policy.
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Correspondingly, let the policy’s simplicity be |𝑝|‖p‖ , where |𝑝| = |𝑝+ −𝑝−| is the absolute
value of position. That is, policy is simple if most rules have the same direction. Restated
slightly, policy is simple if complexity ‖p‖ is low relative to |𝑝|. At the extreme, if all rules
have the same direction, then |𝑝| = ‖p‖, and we say that policy is perfectly simple.

Notice that any policy p that is not perfectly simple, so that |𝑝| < ‖p‖, is inefficient in
the following sense: an alternative policy that achieves the same position 𝑝 – but has lower
complexity – can be constructed by deleting equal masses of positive and negative rules
from p. Indeed, both parties dislike complexity and thus are strictly better off under this
alternative policy than under p.

3 Myopic Dynamics
This section considers myopic parties, whomaximize their objective (2) subject to the flow
and entanglement constraints: (4) and (5).

3.1 Short-Run Dynamics
We start by characterizing each parties’ optimal addition and deletion choices at each in-
stant, which determine howpolicyp evolves in the short run. This sets the stage for Section
3.2 to discuss long-run outcomes.

It is also instructive to rewrite the law of motion (3) in terms of complexity ‖p‖ and
position 𝑝.

𝑑
𝑑𝑡‖p(𝑡)‖ = 𝛼+(𝑡) + 𝛼−(𝑡) − 𝛿(𝑡), (6a)

𝑑
𝑑𝑡𝑝(𝑡) = 𝛼+(𝑡) − 𝛼−(𝑡) − 𝛿(𝑡)

𝑝(𝑡)
‖p(𝑡)‖ . (6b)

Figure 1 illustrates. Complexity ‖p‖ increases at unit rate when adding rules in either di-
rection, and decreases at unit rate when deleting rules. Position 𝑝 increases (decreases)
at unit rate when adding positive rules (negative rules). The effect of deletion on posi-
tion 𝑝 is more subtle. Under deletion, position shifts at rate − 𝑝(𝑡)‖p(𝑡)‖ : equal in magnitude
to the policy’s simplicity, and with opposite sign. For example, with a relatively positive-
simple policy, deletion would shift position “downwards” relatively quickly, as many more
positive rules than negative rules are deleted. This has a straightforward geometric inter-
pretation, highlighted in Figure 1: deletion moves p towards the empty policy (0, 0). Note
that |𝑝(𝑡)|‖p(𝑡)‖ ≤ 1: the rate at which position shifts under deletion is (weakly) lower than un-
der addition. Only for perfectly simple policies does deletion shift position as rapidly as
addition (in the corresponding direction).

For concrete exposition, focus on party 𝑖 = +1.10 Figure 2 illustrates party +1’s optimal
strategy by depicting, as a function of complexity ‖p‖ and position𝑝, the direction inwhich
policy evolves.

Start with policies that lie “below” of +1’s ideal (𝑝 < 𝑝∗+1). Here, party +1’s payoff func-
tion (1) simplifies to

𝑢+1 (p) = 𝑧+1(𝑝 − 𝑝∗+1) − ‖p‖;
10The focus on party +1 is without loss of generality; by symmetry, party +1’s and party −1’s optimal

strategies are identical, up to a reversal of directions + and −.
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Figure 1: ( 𝑑𝑑𝑡‖p‖, 𝑑𝑑𝑡𝑝) under addition and deletion.

Player +1’s payoff improves as complexity ‖p‖ decreases, and as position 𝑝 increases to-
wards 𝑝∗+1. Combining this observation with the laws of motion (6a) and (6b) yields

𝑑
𝑑𝑡𝑢+1 (p) = 𝛼+ (𝑧+1 − 1) + 𝛼− (−𝑧+1 − 1) + 𝛿(−𝑧+1

𝑝
‖p‖ + 1) . (7)

This representation clarifies the pros and cons of adding versus deleting elements. Party +1
has two partially conflicting goals: to increase position 𝑝 towards his ideal, and to reduce
complexity. Clearly, adding negative rules is never optimal for +1: complexity increases
and position moves “downward”, away from 𝑝∗+1. The relevant tradeoff for +1 is between
adding (positive) rules and deleting rules. Deletion reduces complexity. But, relative to
positive addition, deletion slows or even reverses the shift in position towards +1’s ideal,
especially if policy is highly positive-simple (so that deleted rules are mostly positive).

Given this tradeoff, party +1 optimally deletes rules iff policy is sufficiently negative-
simple, so that deleted rules are mostly negative (and thus are “bad” for +1); specifically,
iff − 𝑝‖p‖ > 1 − 2𝑧+1 . This deletion region, shaded grey in Figures 2a and 2b, shrinks as 𝑧+1
increases: a zealous party prioritizes positional gains over complexity reduction, and thus
favors positive addition over deletion. On the other hand, wherever policy is sufficiently
positive-simple (and lies below 𝑝∗+1), party +1 optimally adds positive rules.

(a) 𝑧+1 > 2 (b) 𝑧+1 < 2

Figure 2: Party +1’s optimal strategy

The case where position lies above +1’s ideal (𝑝 > 𝑝∗+1) is identical, except that direc-
tions are reversed: +1 has to move “downward” to get closer to his ideal. Here, party +1
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optimally deletes rules iff p is sufficiently positive-simple ( 𝑝‖p‖ > 1− 2𝑧−1 ), and optimally
adds negative rules otherwise.

To summarize our discussion above, the following proposition specifies party 𝑖’s opti-
mal choice at non-ideal positions (𝑝 ≠ 𝑝∗𝑖 ). It states that 𝑖 deletes rules if a sufficiently large
proportion of rules are “bad” for him, and adds rules otherwise. Given party 𝑖 and policy
p, let 𝑗 = sgn (𝑝 − 𝑝∗𝑖 ) be the direction from party 𝑖’s ideal 𝑝∗𝑖 to the policy’s position 𝑝;
that is, the direction of “bad” rules.

Proposition 1a. Suppose that party 𝑖 is in control and that policy p is not 𝑖-ideal (𝑝 ≠ 𝑝∗𝑖 ).

1. If policy is sufficiently 𝑗-simple (𝑗 𝑝‖p‖ > 1− 2𝑧𝑖 ), then party 𝑖 deletes rules: 𝛿 = 𝛾.

2. Otherwise, if 𝑗 𝑝‖p‖ < 1− 2𝑧𝑖 , then party 𝑖 adds direction-𝑗 rules: 𝛼𝑗 = 𝛾.

The final case consists of policies at party +1’s ideal (𝑝 = 𝑝∗+1). Here, +1 has achieved
his ideal position, and thus seeks to reduce complexity as quickly as possible while shifting
position as slowly as possible. Thus, he optimally deletes rules if he is not too zealous and
if policy is not too simple, so that deletion does not shift position away from his ideal
too quickly. Otherwise, he instead chooses an appropriate combination of addition and
deletion to maintain position at his ideal while reducing complexity.11

Proposition 1b. Suppose party 𝑖 is in control and policy p is 𝑖-ideal, 𝑝 = 𝑝∗𝑖 .

1. If policy is sufficiently simple ( |𝑝|‖p‖ > 1− 2𝑧𝑖 ), then party 𝑖 reduces complexity while stay-
ing on his ideal:

(𝛼𝑗, 𝛼−𝑗, 𝛿) = 𝛾 ⋅ ( |𝑝|‖p‖+|𝑝| , 0,
‖p‖
‖p‖+|𝑝|) , so that

𝑑
𝑑𝑡‖p(𝑡)‖ = −𝛾

‖p‖−𝑝
‖p‖+𝑝 and 𝑑

𝑑𝑡𝑝(𝑡) = 0.

2. Otherwise, if |𝑝|‖p‖ < 1− 2𝑧𝑖 , then party 𝑖 deletes rules: 𝛿 = 𝛾.

3.2 Path Dependence and Kludge
We now consider long-run policy dynamics. To move beyond the short run, we have to
account for how political competition – as captured by the (random) switches of control
between parties – affects the evolution of policy.

We will make two points about long-run outcomes. First, policy complexity is path-
dependent: the starting point of policy strongly influences the long-run distribution of
complexity. Second, there is a tight long-run relationship between complexity and the
distribution of policy positions.

The following terminology hints at the outcomes we will be analyzing. We say that
policy becomes kludged if lim𝑡→∞ ‖p(𝑡)‖ = ∞. We will focus on two statistics for the

11At the perfectly simple 𝑖-ideal policy, where 𝑝sgn(𝑖) = 𝑝∗𝑖 , party 𝑖 cannot reduce complexity any further
without moving away from his ideal, and policy stagnates: 𝑑𝑑𝑡𝑝 = 𝑑𝑑𝑡‖p‖ = 0.
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long-run distribution of complexity: the probability 𝜅 that policy becomes kludged, and a
binary indicator𝐾 for the possibility of kludge,

𝜅 = Pr [ lim
𝑡→∞
‖p(𝑡)‖ = ∞] and 𝐾 = {0 ∶ 𝜅 = 0

1 ∶ 𝜅 > 0
.

As a preliminary, observe that any starting policy eventually becomes regular, i.e., po-
sitioned at or between the parties’ ideals: 𝑝 ∈ [𝑝∗−1, 𝑝∗+1]. This is unsurprising. If policy
position lies outside the ideals, then both parties will act to shift policy position in the
same direction – towards the positional interval [𝑝∗−1, 𝑝∗+1], where both ideals lie. Only for
regular policies does positional conflict arise between the parties’ preferences, leading to
interesting dynamics.

Remark 1.

1. Suppose that policy p(𝑡) is regular, i.e., 𝑝(𝑡) ∈ [𝑝∗−1, 𝑝∗+1]. Then policy (surely) remains
regular forever.

2. Suppose that policy p(𝑡) is not regular. Then policy (surely) becomes regular at some
random time 𝜏 > 𝑡, and remains regular thereafter.

Remark 1 permits us to restrict attention to regular policies. We do so henceforth.

Our first result highlights one aspect of path dependence: simple policies remain simple.
Let the basin B be the set of regular policies at which at least one party chooses to delete
rules (c.f. Propositions 1a and 1b):

B = {p ∶ (− 𝑝‖p‖ ≥ 1− 2𝑧+1 or
𝑝
‖p‖ ≥ 1− 2𝑧−1 ) and 𝑝 ∈ [𝑝

∗
−1, 𝑝∗+1]} . (8)

Policies that are trapped within the basin can never escape, and tend to grow simpler over
time. (See Figure 3.)

Proposition 2. Suppose that policy lies within the basin: p(𝑡) ∈ B.

1. Policy (surely) remains within the basin forever: p (𝑡′) ∈ B for all 𝑡′ ≥ 𝑡.

2. Policy (almost surely) becomes perfectly simple at some random time 𝜏 ≥ 𝑡.

3. A perfectly simple policy (surely) remains perfectly simple forever.

If both parties are sufficiently zealous (𝑧+1 > 2 and 𝑧−1 > 2), then the basin B consists of
relatively simple policies. In this case, the intuition for Proposition 2 can be cleanly stated:
sufficiently simple policies grow (weakly)monotonically simpler. This is because neither party
benefits from reducing simplicity by ‘contaminating’ a sufficiently simple policy with new
rules of the minority type. (See Figure 3a.)

To fix ideas, consider a (regular) policy that is highly positive-simple. From Party +1’s
perspective, the policy’s position is either at or below his ideal (𝑝 ≤ 𝑝∗+1). He adds positive
rules if 𝑝 < 𝑝∗+1. He reduces complexity, while maintaining position, if 𝑝 = 𝑝∗+1. In either
case, simplicity increases. From Party −1’s perspective, the policy’s position is above his
ideal (𝑝 > 𝑝∗−1). He faces a tradeoff between adding negative rules and deleting rules. But,
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because policy is mostly positive-simple, deletion (of mostly positive rules) is optimal for
−1. This leaves policy simplicity unchanged.

Given these incentives, simple policies grow progressively simpler as control changes
hands between the two parties. In fact, any policy within B eventually becomes perfectly
simple, and remains so. In other words, B serves as a basin of attraction for the set of
perfectly simple policies.12

(a) 𝑧+1 > 2, 𝑧−1 > 2 (b) 𝑧+1 > 2, 𝑧−1 < 2

Figure 3: Basin B (shaded grey region)

As parties become less zealous, the basin expands to include less-simple policies. If
either party is insufficiently zealous (𝑧+1 ≤ 2 or 𝑧−1 ≤ 2), the basin even contains all poli-
cies below or above the ‖p‖-axis (𝑝 ≤ 0 or 𝑝 ≥ 0). (See Figure 3b.) In this case, the basin
becomes infinite in extent. Consequently, any starting policy inevitably becomes captured
within B. Long-run dynamics are mundane in this case.

Remark 2. Suppose that 𝑧+1 ≤ 2 or 𝑧−1 ≤ 2. Then any policy p(𝑡) (almost surely) becomes
perfectly simple at some random time 𝜏 ≥ 𝑡, and remains perfectly simple thereafter.

Hereafter, our analysis will focus on the case where both parties are sufficiently zealous
(𝑧+1 > 2 and 𝑧−1 > 2).

Outside the basin B, how does policy complexity evolve? In particular, does policy
always move into the basin and remain perfectly simple forever? Or, conversely, does
complexity increase unboundedly?

Propositions 1a and 1b tell us that outside B, each party 𝑖 adds rules towards his ideal,
and focuses on reducing complexity when at his ideal. This leads, in equilibrium, to the
following laws of motion for position and complexity. For regular p(𝑡) ∉ B, position 𝑝
moves towards (and stops at) 𝑝∗𝑖 while party 𝑖 is in control:

𝑑
𝑑𝑡𝑝(𝑡) = 𝛾 ⋅

{{
{{
{

1 ∶ 𝑝(𝑡) ∈ [𝑝∗−1, 𝑝∗+1) and 𝑖(𝑡) = +1
−1 ∶ 𝑝(𝑡) ∈ (𝑝∗−1, 𝑝∗+1] and 𝑖(𝑡) = −1
0 ∶ 𝑝(𝑡) = 𝑝∗𝑖(𝑡)

. (9a)

12As we will see shortly, this statement is somewhat imprecise. Depending on parameter values, the basin
of attraction for the set of perfectly simple policies is either B or the larger set of all regular policies.
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Whereas, complexity ‖p‖ decreases when position is at either ideal, and increases when
position is between ideals;13 see Figure 4.

𝑑
𝑑𝑡‖p(𝑡)‖ = 𝛾 ⋅ {

1 ∶ 𝑝(𝑡) ∈ (𝑝∗−1, 𝑝∗+1) or 𝑝(𝑡) = 𝑝∗−𝑖(𝑡)
− ‖p(𝑡)‖−|𝑝(𝑡)|‖p(𝑡)‖+|𝑝(𝑡)| ∶ 𝑝(𝑡) = 𝑝

∗
𝑖(𝑡)

. (9b)

Figure 4: Increasing complexity outside the basin.

This short-run relationship between complexity and position, as expressed by (9b),
extends naturally into the long-run. To state the long-run result precisely, first note that
outside the basin B, the long-run behavior of position 𝑝 can be described in terms of its
steady-state distribution.

Lemma 1. Let 𝑞(𝑡) ∈ [𝑝∗−1, 𝑝∗+1] be the random process that obeys, for all 𝑡 ≥ 0, the law of
motion specified by (9a). Then the Markov process (𝑞(𝑡), 𝑖(𝑡)) is uniquely ergodic, i.e., has a
unique invariant (steady-state) distribution.

Let 𝐹(⋅) be the steady-state marginal distribution of 𝑞(𝑡) from Lemma 1. Define

𝜇 = ∫
[𝑝∗−1,𝑝∗+1]
𝑣(𝑞)𝑑𝐹(𝑞) where 𝑣(𝑞) ≡ {1 ∶ 𝑝

∗
−1 < 𝑞 < 𝑝∗+1

−1 ∶ 𝑞 = 𝑝∗+1 or 𝑝∗−1
.

We may interpret 𝜇 as the long-run average drift of complexity ‖p‖ outside the basin B

(given the normalization 𝛾 = 1). Alternatively, and equivalently, −𝜇 represents the long-
run average frequency of ideal positions: it captures how much time 𝑝 spends at ideals
instead of between ideals. Our next result builds on this equivalence and points out that
kludge is possible if and only if ideal positions are achieved infrequently, so that complexity
drifts upward in the long-run.14

13 The exception to this rule is the case where party 𝑖 is in control and policy is at −𝑖’s ideal: 𝑝 = 𝑝∗−𝑖, in
which case complexity increases ( 𝑑𝑑𝑡‖p‖ = 1). But this case may essentially be ignored, because policy spends
zero time in this region of the state space: if party 𝑖 takes control at −𝑖’s ideal 𝑝∗−𝑖 outside B, he adds 𝑗-rules
and instantaneously moves policy away from 𝑝∗−𝑖.

14One might wonder whether our interpretation of 𝜇 as the long-run average drift of complexity is inac-
curate, given that the rate at which complexity ‖p‖ decreases at ideals, | 𝑑𝑑𝑡‖p(𝑡)‖| =

‖p‖−|𝑝|
‖p‖+|𝑝| , is smaller than

the rate at which complexity increases between ideals, | 𝑑𝑑𝑡‖p(𝑡)‖| = 1. However, this difference vanishes at
the high-complexity limit: ‖p‖−|𝑝|‖p‖+|𝑝| → 1 as ‖p‖ → ∞. Indeed, the long-run statistics that we calculate are
determined by the dynamics of policy at this high-complexity limit. Our interpretation of 𝜇 as the drift of
complexity reflects this insight.
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Proposition 3. Suppose that both parties are sufficiently zealous (𝑧+1 > 2 and 𝑧−1 > 2), and
that the starting policy p(0) is regular and not in the basinB.

1. If 𝜇 > 0, then 𝐾 = 1 and policy (almost surely) becomes kludged or perfectly simple.

2. If 𝜇 < 0, then 𝐾 = 0 and policy (almost surely) becomes perfectly simple.

Proposition 3 is a limited result in some respects. It does not fully characterize the
probability 𝜅 that kludge occurs, and solves instead for the less-informative binary statistic
𝐾. This limitation arises because the policy process (p(𝑡), 𝑖(𝑡)) is non-ergodic (i.e., path-
dependent), so that long-run distributional outcomes such as 𝜅 are difficult to directly
characterize.

In other respects, Proposition 3 is quite powerful. It links𝐾 to the long-run properties
of the (modified) position process (𝑞(𝑡), 𝑖(𝑡)), which is ergodic andwhich permits a closed-
form solution for the long-run distribution – derived in LemmaB.1b in theAppendix. This
enables a rich set of sharp comparative statics results about how 𝐾 changes with model
primitives, which we explore in Section 3.3.

Let’s return to our discussion of path dependence. Proposition 2 showed that simple
policies grow simpler over time. If 𝜇 > 0, then the (loose) converse holds as well: complex
policies tend to grow more complex. This is illustrated crudely by Proposition 3, which
shows that any policy outside the basinB of relatively simple policiesmay become kludged.
The following result is a cleaner formulation of the same basic points. If the initial policy
has low (high) complexity, then the probability that policy eventually becomes kludged is
low (high).

Proposition 4. Fix a starting policy that is neutral and not perfectly simple: 𝑝(0) = 0 and
‖p(0)‖ > 0. Suppose that 𝑧+1 > 2 and 𝑧−1 > 2, and that 𝜇 > 0, so that 𝐾 = 1. Then

𝜅 → 0 as ‖p(0)‖ → 0,
𝜅 → 1 as ‖p(0)‖ → ∞.

Such path dependence has policy implications. Because complexity begets further
complexity, one-time interventions to reduce complexity may produce long-run gains that
are underestimated in static analyses. As a concrete example, a simplification of the tax
code obviously reduces the costs of tax compliance, and has an additional potential ben-
efit: it may potentially prevent the tax code from growing ever more complex, or at least
may slow the growth of said complexity.

3.3 Comparative Statics: The Politics of Kludges
For convenient exposition, relabel some of the model’s primitives as follows. Define

volatility: 𝜆 = √𝜆+1𝜆−1,
imbalance: 𝛬 = max {𝜆+1𝜆−1 ,

𝜆−1
𝜆+1 } ,

distance: 𝛥∗𝑝 = 𝑝∗+1 − 𝑝∗−1,

where 𝜆, the (geometric) average of control change arrival rates, captures the volatility of
political control; where 𝛥∗𝑝, the difference between parties’ ideals, captures the ideological
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distance between parties; and where 𝛬 captures the degree of power imbalance between
parties. Further, label the following increasing function of 𝛬 as

�̃� =
{{
{{
{

1 if 𝛬 = 1
log 3−𝛬−13−𝛬
√𝛬−√𝛬−1

if 1 < 𝛬 < 3
+∞ if 𝛬 ≥ 3

.

Propositions 5a and 5b encapsulate our comparative statics for complexity. We first
state the results, then discuss the intuition.

Proposition 5a. Suppose that both parties are sufficiently zealous (𝑧+1 > 2 and 𝑧−1 > 2), and
that the starting policy p(0) is regular and not in the basinB.

1. If 𝛥∗𝑝 𝜆 > 𝛾 �̃�, then𝐾 = 1 and policy (almost surely) becomes kludged or perfectly simple.

2. If 𝛥∗𝑝 𝜆 < 𝛾 �̃�, then 𝐾 = 0 and policy (almost surely) becomes perfectly simple.

Proposition 5b. Suppose that the conditions of Proposition 5a.1 are satisfied, so that𝐾 = 1.
Then 𝜅 is increasing in 𝑧+1 and 𝑧−1.

Proposition 5a follows closely from Proposition 3. It specifies conditions under which
the long-run frequency of ideal positions is low (or high) enough that (outside the basin
B) complexity 𝑝 drifts upward (or downward) in the long-run, 𝜇 > 0 (or 𝜇 < 0). This
equivalence helps us to understand the comparative statics specified in Proposition 5a.

As imbalance 𝛬 in political power increases, ideal positions are attained more fre-
quently, so the complexity statistic 𝐾 decreases. The intuition is clearest when 𝜆+1𝜆−1 is small
and 𝛬 is large, so that party +1 has much more influence over policy than party −1 on
average. In that case, policy spends more time at +1’s ideal than anywhere else. See Figure
5.

Figure 5: Large power differential leads to less kludge.

As legislative friction 𝛾−1 increases, ideal positions are attained less frequently, and 𝐾
increases. The intuition is clearest when 𝛾−1 is low. In this case, each party 𝑖 can rapidly
change position while in power; he quickly reaches his ideal and spends most of his time
there, reducing complexity. Conversely, when friction is high, each party spendsmore time
moving (slowly) towards his ideal.

As political volatility 𝜆 increases, ideal positions are attained less frequently, and 𝐾
increases. With high volatility, each party spends little time in control. He is thus unlikely
to reach his ideal, and spends little time on average there, before he loses control.15

15In fact, an increase in volatility 𝛬 is equivalent to an increase in friction 𝛾−1 (and a corresponding time
dilation); both changes result in less policy change for each control interval.
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As ideological distance 𝛥∗𝑝 increases, ideal positions are attained less frequently, and𝐾
increases. The intuition is clearest if 𝛥∗𝑝 is small. In that case: whenever either party 𝑖 takes
control, for any (regular) starting position, he quickly reaches his ideal and stays there for
most of his time in control. Conversely, if 𝛥∗𝑝 is large, then each party starts off further
from his ideal on average, and thus spends less time at his ideal.

Proposition 5b states that as parties becomes more zealous, kludge becomes less likely.
The logic of this result differs from those of Proposition 5a: a change in zealousness has
no effect on the frequency of ideal positions and thus no effect on the drift of complexity.
Instead, an increase in zealousness shrinks the basinB. Consequently, policy becomes less
likely to enter the basin and get trapped; rather, policy is more likely to ‘escape’ and become
kludged.

A second set of comparative statics relate to policy polarization; that is, the long-run
extent to which policy deviates from a ‘neutral’ position. To measure policy polarization,
let’s adopt the normalization 𝑝∗+1 = −𝑝∗−1, so that the midpoint 𝑝 = 0 between ideals is
neutral. Let𝐻 be the steady-state marginal distribution of |𝑝(𝑡)| ∈ [0, 𝑝∗+1] under the law
of motion (9a). In fact,𝐻 is a natural long-run measure of policy polarization: recall that
policy eventually becomes either kludged or perfectly simple, and that𝑝(𝑡) obeys the law of
motion (9a) in either case. Accordingly, we say that polarization increases if𝐻(⋅) increases
in the sense of first-order stochastic dominance.

Proposition 6. Suppose that 𝑝∗+1 = −𝑝∗−1. Then, policy polarization is:

(i) increasing in imbalance 𝛬,
(ii) constant in zealousness 𝑧+1 and 𝑧−1.

Further fixing 𝛬 = 1 (political power is balanced), policy polarization is:

(iii) decreasing in friction 𝛾−1,
(iv) decreasing in volatility 𝜆,
(v) increasing in ideological distance 𝛥∗𝑝 = 2𝑝∗+1.

Our comparative statics for complexity and our comparative statics for polarization are
closely related. To start, consider those primitives corresponding to technological aspects
of political and legislative processes (𝛬, 𝛾−1, 𝜆). As recorded in Table 1, any change to one
of these primitives that decreases polarization also increases complexity.

Because our measure of deviation |𝑝| is maximized at either ideal, an increase in polar-
ization corresponds (informally speaking) to an increase in −𝜇, the fraction of time spent
at ideal positions relative to between-ideal positions – and thus in a decrease in long-run
complexity, as measured by𝐾. That is, holding the ideological distance 𝛥∗𝑝 fixed, polariza-
tion reduces complexity.

The comparative static effects of changes to political preferences (𝛥∗𝑝, 𝑧+1, 𝑧−1) differ
from those of changes to political processes. (i) A decrease in ideological distance 𝛥∗𝑝 re-
duces both polarization and complexity. This is because 𝛥∗𝑝 has opposite effects on −𝜇
and polarization. A decrease in 𝛥∗𝑝, by reducing the time taken to travel between ideals,
ensures that policy spends more time at than between ideals, thus increasing −𝜇 and (con-
sequently) decreasing complexity. But a decrease in 𝛥∗𝑝 also forces policy to move within a
narrower range of positions, and thus mechanically decreases polarization. (ii) A decrease
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in zealousness 𝑧+1, 𝑧−1, while decreasing complexity (Proposition 5b), has no effect on po-
larization. After all, changes in zealousness preserve the law of motion (9a) and thus also
the long-run distribution of position 𝑝.

parameter symbol complexity polarization

institutions
volatility 𝜆 ↗ ↘
friction 𝛾−1 ↗ ↘

imbalance 𝛬 ↘ ↗

preferences
distance 𝛥∗𝑝 ↗ ↗

zealousness 𝑧+1, 𝑧−1 ↗ →

Table 1: Comparative Statics for Long-Run Outcomes

Policy Implications Our comparative statics provide some prescriptions for the design
of political institutions. A patient planner who seeks to reduce long-run complexity should
remove legislative impediments to rulemaking such as supermajority rules and vetoes (i.e.,
increase 𝛾). She should reduce political volatility, perhaps by increasing the length of elec-
tion cycles (i.e., reduce 𝜆). Perhaps controversially, rather than balancing power between
political parties, she should instead design political institutions that favour one party over
others (i.e., increase 𝛬); stated crudely, she should support autocracies over democracies.
However, ourmodel suggests that such changes to the political processmay not be costless,
even in the long run: decreasing complexity in this fashion may come with an increase in
polarization.

On the other hand, a planner can avoid the complexity-polarization tradeoff by ma-
nipulating political preferences. We prefer to think of such preference manipulation in
terms of cultural change: by fostering a moderate political culture and curbing the ex-
tremist tendencies of political parties (reducing 𝛥∗𝑝), a polity may reduce both complexity
and polarization in policy.

4 Strategic Extremism
This section considers strategic behavior by non-myopic parties. We will show that ide-
ologically zealous (high 𝑧𝑖) parties may engage in strategic extremism: i.e., move towards
extreme positions that lie beyond their ideals. Such strategic extremism may increase pol-
icy complexity.

We consider the limit where both parties are infinitely zealous, but nonetheless care in-
finitesimally about complexity. This simplification renders the problemparticularly tractable
by reducing the associated two-dimensional optimal control problem (over ‖p‖ and 𝑝) to a
one-dimensional problem (over 𝑝). Importantly, as we will argue, this simplification pre-
serves the essential dynamic forces in our model, and thus allows us to cleanly highlight
the impact of strategic interactions on long-run outcomes.

Start by introducing purely positional preferences: 𝑢𝑖 (p(𝑡)) = − |𝑝∗𝑖 − 𝑝(𝑡)|, so each
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party 𝑖maximizes

𝔼[−∫
∞

0
|𝑝∗𝑖 − 𝑝(𝑡)| 𝑒−𝑟𝑖𝑡𝑑𝑡] .

We restrict attention to strategies where each party 𝑖 has a favoured position 𝑝∗∗𝑖 called his
target and – subject to the flow constraint (4) and entanglement constraint (5) – moves
towards it as quickly as possible:

𝑑
𝑑𝑡𝑝(𝑡) = 𝛾 ⋅

{{
{{
{

1 ∶ 𝑝(𝑡) < 𝑝∗∗𝑖
−1 ∶ 𝑝(𝑡) > 𝑝∗∗𝑖
0 ∶ 𝑝(𝑡) = 𝑝∗∗𝑖

. (10)

Note that (10) does not specify how complexity evolves, and thus does not uniquely define
a strategy. For example, if 𝑝∗∗𝑖 > 0 and p(𝑡) contains only negative rules, then (10) may be
satisfied either by adding positive rules or by deleting (negative) rules.

Let’smechanically introduce an infinitesimal distaste for complexity. Suppose that each
party minimizes 𝑑𝑑𝑡‖p‖ = 𝛼+ + 𝛼− − 𝛿 given the constraint (10). With this additional
assumption, the strategy is uniquely defined. The strategy adds complexity everywhere –
except at perfectly simple policies with opposite sign to 𝑝∗∗𝑖 and at 𝑝∗∗𝑖 itself, where the
strategy reduces complexity as quickly as possible. That is,

𝑑
𝑑𝑡‖p(𝑡)‖ = 𝛾 ⋅

{{{{{
{{{{{
{

1 ∶ 𝑝 ≠ 𝑝∗∗𝑖 and |𝑝| < ‖p‖
sgn (𝑝) sgn (𝑝∗∗𝑖 − 𝑝) ∶ 𝑝 ≠ 𝑝∗∗𝑖 and |𝑝| = ‖p‖
− ‖p‖−𝑝‖p‖+𝑝 ∶ 𝑝 = 𝑝∗∗𝑖 and |𝑝| ≤ ‖p‖
0 ∶ 𝑝 = 𝑝∗∗𝑖 and |𝑝| = ‖p‖

. (11)

We say that a strategy is focused on a target 𝑝∗∗𝑖 if it obeys constraints (10) and (11). Figure
6 depicts focused strategies for party +1. We show in the Appendix that a (subgame per-
fect) equilibrium in focused strategies always exists (Lemma B.6f). Hereafter, we restrict
attention to equilibria in focused strategies, and refer to them simply as equilibria.

(a) myopic strategy: 𝑝∗∗+1 = 𝑝∗+1 (b) strategic extremism: 𝑝∗∗+1 > 𝑝∗+1

Figure 6: Focused Strategies for Party +1

Focused strategies are very similar to optimal myopic strategies, especially for highly
zealous parties. Indeed, inspecting Figure 2, we see that a myopic strategy is identical to
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a focused strategy which targets the party’s ideal (𝑝∗∗𝑖 = 𝑝∗𝑖 ) everywhere except the slivers
of policies containing mostly “bad” rules (𝑗 𝑝‖p‖ < 1 − 2𝑧𝑖 where 𝑗 = sgn (𝑝 − 𝑝∗𝑖 )). These
slivers narrow as zealousness 𝑧𝑖 increases; at the limit of infinite zealousness, 𝑧𝑖 →∞, the
difference between the optimal myopic strategy and the focused strategy vanishes. There,
focused strategies generalize themyopic strategy by allowing the party to target a non-ideal
position.

Consequently, with focused strategies, the dynamics of complexity from the myopic
setting of Section 3 are essentially preserved, with the twist that parties’ targets act as “en-
dogenous ideals”. Complexity increases when policy lies between targets, and decreases
when policy is at either target. Thus a version of Proposition 5a holds in this setting, with
targets taking the place of ideals: the average drift 𝜇 of complexity – and thus the long-run
complexity statistic 𝐾 – increases with the distance between players’ targets, denoted as

𝛥∗∗𝑝 = |𝑝∗∗+1 − 𝑝∗∗−1 | .

Proposition 7. Suppose that both parties play focused strategies, and that the starting policy
is not perfectly simple (|𝑝(0)| < ‖p(0)‖).

1. If 𝛥∗∗𝑝 𝜆 > 𝛾 �̃�, then 𝐾 = 1.

2. If 𝛥∗∗𝑝 𝜆 < 𝛾 �̃�, then 𝐾 = 0.

Given that target locations affect long-run complexity, we seek to understand how
strategic considerations affect the parties’ equilibrium target choices. Myopic play serves
as a benchmark: strategic considerations are absent there, and parties choose their ideals
as targets, i.e., 𝛥∗∗𝑝 = 𝛥∗𝑝. (See Figure 6a.)

We say that party 𝑖 engages in strategic extremism if he chooses a target that is more
extreme than his ideal: that is, if his ideal 𝑝∗𝑖 lies between his target and his opponent’s
target.

Proposition 8. In any equilibrium, both parties always engage in (weak) strategic extremism:
𝑝∗∗+1 ≥ 𝑝∗+1 and 𝑝∗∗−1 ≤ 𝑝∗−1. (See Figure 6b.)

Combined, Propositions 7 and 8 deliver the main lesson of this section. By taking
extreme positions, parties push their targets apart:

𝑝∗∗−1 ≤ 𝑝∗−1 < 0 < 𝑝∗+1 ≤ 𝑝∗∗+1 ,
so
𝛥∗∗𝑝 ≥ 𝛥∗𝑝.

This in turn increases (weakly, and sometimes strictly) the average drift 𝜇 of complexity,
and correspondingly the long-run complexity statistic 𝐾. To summarize: strategic behav-
ior takes the form of strategic extremism, which may generate long-run policy complexity.

To understand the logic of strategic extremism, consider the tradeoff that party +1
faces between targeting his ideal position 𝑝∗+1 versus a more extreme position 𝑝∗∗+1 > 𝑝∗+1.
Intuitively, an extreme target “shifts the goalposts” upwards. This initial upward shift puts
policy further from his ideal 𝑝∗+1 in the short run. But, after party −1 takes control and
moves policy below 𝑝∗+1, the initial shift becomes advantageous for +1 because policy is
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now closer to 𝑝∗+1 than it would have been under the counterfactual where no initial shift
occurred. This advantage is maintained even after subsequent control changes, at least
until policy reaches the other target 𝑝∗∗−1 or moves back above 𝑝∗+1. Strategic extremism is
optimal if the later benefits outweigh the earlier costs.16

Because strategic extremism entails short-run costs and medium-run benefits, it arises
only if players are sufficiently patient. (Indeed, we already know from Section 3 that my-
opic parties do not engage in strategic extremism.) The following proposition presents a
version of this intuition. Given targets 𝑝∗∗+1 and 𝑝∗∗−1 , define a binary indicator for strategic
extremism:

𝜙 = {1 if 𝛥∗∗𝑝 > 𝛥∗𝑝
0 if 𝛥∗∗𝑝 = 𝛥∗𝑝

.

Proposition 9. Fix 𝑝∗+1, 𝑝∗−1, and 𝜆+1 ≠ 𝜆−1, so that parties have unequal durations. There
exists 𝛾 < ∞ such that the following hold if friction is high (𝛾−1 > 𝛾−1):

1. There is a unique pair of equilibrium targets, (𝑝∗∗+1 , 𝑝∗∗−1 ).

2. 𝜙 is weakly decreasing in the parties’ discount rates 𝑟+1 and 𝑟−1.

3. For sufficiently small discount rates, strategic extremism occurs: 𝜙 = 1.

So, given that strategic extremism occurs only if players are sufficiently patient, kludge
may occur with patient players despite being impossible under myopic players. From the
perspective of a planner who dislikes complexity, patience is not necessarily a virtue.

5 Concluding Remarks
Throughout this paper, we have emphasized the applications of our model to public policy.
However, we view our model as also being relevant to other settings where the design of
complicated contracts or policies involves political or ideological disagreement; for exam-
ple, in the politics of organizational design, or in the decentralized development of open-
source software. In particular, the insights we derive in themodel can be straightforwardly
reinterpreted for an organizational context. For example, our results on long-run kludge
suggest that political conflict between different factions within an organization may give
rise to persistently inefficient bureaucratic routines and procedures within the organiza-
tion.

In ourmodel, the structure and density of entanglement – as captured by the entanglement
constraint – is specified exogenously. This captures crudely the premise that entanglements
between elements of complicated systems are difficult to anticipate, and arise inevitably
during the design process.17 A more nuanced approach would be to partially endogenize
entanglement; for example, by allowing parties to reduce or increase the entanglement of

16Under stronger assumptions, wemay also quantify the extent of strategic extremism by each party,𝛥∗∗𝑖 =
|𝑝∗∗𝑖 − 𝑝∗𝑖 |. For example, in the Appendix (Proposition B.1), we calculate 𝛥∗∗𝑖 at the asymptotic limit where
𝛥∗𝑝 and 𝛾−1 are large. We show that a more vulnerable party (high 𝜆𝑖) engages in more strategic extremism
(high 𝛥∗∗𝑖 ).

17Readers who have written and debugged computer programs will surely sympathize with this premise.
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new rules from a ‘baseline’ level, perhaps at a cost. Such an setting may produce additional
insights. For example, policymakers may deliberately enact highly-entangled rules, so as
to obstruct their rivals from undoing those rules in the future.
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A The Entanglement Constraint
This appendix presents two distinct microfoundations for the entanglement constraint (5).
The second formulation (Appendix A.2) allows us to parametrize the degree of entangled-
ness, and derive comparative statics.

A.1 Linear Network
Here, the policy is a set of rules endowed with a total order ≻. We say that 𝜋′ depends on 𝜋
if 𝜋 ≻ 𝜋′. We start by describing the policymaking technology in a discrete setting where
each rule has small but positive mass 𝜖, and time proceeds in discrete intervals of length
𝜖/𝛾. (We will interpret 𝛾 later.) This discrete setting serves to build intuition for the role
of dependencies in our analysis. We subsequently focus on the limit 𝜖 → 0, where the
policymaking technology simplifies to a tractable continuous formulation. As before, 𝑝𝑗
denotes the mass of 𝑗-rules in p, and ‖p‖ = 𝑝+ + 𝑝−.

A new rule 𝜋 added at time 𝑡 is uniformly randomly allocated a position in the or-
der ≻. That is, at the moment of addition, 𝜋 is equiprobably 𝑘-th in the ordering for all
𝑘 ∈ {1, 2, ..., |p(𝑡)|}, where |p(𝑡)| is the number of rules in p(𝑡) (including 𝜋). Ordering is
pairwise persistent: if 𝜋 ≻ 𝜋′ at time 𝑡, then 𝜋 ≻ 𝜋′ for all future times 𝜏 that 𝜋, 𝜋′ ∈ p(𝜏).
For simplicity of exposition, consider a single party who is always in control. At the start
of each interval, the policymaker may choose any of the following actions, which is then
realized at the end of the interval.

1. Add a new 𝑗-rule in either direction 𝑗 ∈ {+, −}.

2. Delete the ≻-maximal rule.

At time 𝑡, the party observes the direction of each rule in p(𝑡) and the history of all added
and deleted rules up till time 𝑡, but does not observe the ordering between rules. So, if he
chooses “delete” at the start of a time interval, then he observes which rule was ≻-maximal
(and thus was deleted) only at the end of the interval.

In general, one might expect the party’s beliefs about the dependency ordering ≻ to
evolve in a complicated fashion. Conveniently, our technical assumptions allow us to ab-
stract from the details of (beliefs about) the ordering.

Remark A.1. At any time-𝑡 history, from the policymaker’s perspective, every permutation of
the dependency ordering over p(𝑡) is equally likely.

So, rules are indistinguishable beyond their direction: all positive rules look alike, and
all negative rules look alike. Consequently, the policymaker’s beliefs are summarized by
the masses (𝑝+, 𝑝−) of positive and negative rules.

Now, we calculate how 𝑝+ and 𝑝− change over a single time interval under addition
and deletion. Let 𝛥𝑝𝑗 denote the change in 𝑝𝑗 over a single time interval.

If the party adds a 𝑗-rule, then (remembering that 𝛥𝑡 = 𝜖/𝛾)

𝛥𝑝𝑗 = 𝛾𝛥𝑡 and 𝛥𝑝−𝑗 = 0.
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If the party deletes the ≻-maximal rule, it is equally likely to be any of the existing rules in
p(𝑡). So, deletion preserves (in expectation) the ratio of positive to negative rules in the
policy:

𝔼 [𝛥𝑝𝑗] = −𝛾
𝑝𝑗
‖p‖ 𝛥𝑡 for each 𝑗 ∈ {+, −}.

More generally, if party mixes over positive rule addition, negative rule addition, dele-
tion, and doing nothing, then he can achieve (in expectation) any convex combination of
addition and deletion outcomes:

𝔼 [𝛥𝑝𝑗] = (𝛼𝑗 −
𝑝𝑗
‖p‖𝛿)𝛥𝑡 for each 𝑗 ∈ {+, −}, (12a)

for any

𝛼+ ≥ 0, 𝛼− ≥ 0, 𝛿 ≥ 0 such that
𝛼+ + 𝛼− + 𝛿 ≤ 𝛾.

(12b)

Now, focus on the limit 𝜖 → 0, so that each rule becomes infinitesimally small and
time is continuous. Here, the laws of motion (12a)–(12b) can be expressed in differential
form. The party chooses addition and deletion rates 𝛼+(𝑡) ≥ 0, 𝛼−(𝑡) ≥ 0, 𝛿(𝑡) ≥ 0 which
determine the velocity of (𝑝+, 𝑝−):

𝑑
𝑑𝑡𝑝𝑗(𝑡) = 𝛼𝑗(𝑡) −

𝑝𝑗(𝑡)
‖p(𝑡)‖𝛿(𝑡) for each 𝑗 ∈ {+, −}, (13a)

subject to a flow constraint

𝛼+(𝑡) + 𝛼−(𝑡) + 𝛿(𝑡) ≤ 𝛾. (13b)

Together, Equations (13a) and (13b) are equivalent to the law of motion (3) and entangle-
ment constraint (5).

A.2 Random Network
We start with an informal description of the model.

A policy is a continuum of infinitesimal rules. We adopt the convenient expositional
convention that each rule has (infinitesimal)mass 𝜖. Rules are linked to form an undirected
network. Whenever a new rule 𝜋 is created, it randomly forms a link to each existing rule
with (infinitesimal) probability 𝜌𝜖. So, each new rule 𝜋 forms 𝜌 links (in expectation) per
unit mass of existing rules. We interpret 𝜌 as the degree of entangledness. Once formed,
links between pairs of rule persist until one or both rules in the pair are deleted.

As in Appendix A.1, consider a single party who is always in control. The party can add
rules in either direction, but cannot precisely target a given rule for deletion. Specifically,
if the party targets a rule 𝜋 to be deleted, the direct neighbours of 𝜋 will also be simultane-
ously deleted. As before, themaximum rate of addition and deletion (of all rules, including
the neighbours of rules targeted for deletion) is mass 𝛾 per unit time.

When formalizing this description, we distinguish between rules added at different
times when describing the policy. Say that a rule has vintage-𝜏 if it was added at time 𝜏.
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Define 𝑚𝑗(𝑡, 𝜏) to be the “quantity” of vintage-𝜏 𝑗-rules that remain at time 𝑡 ≥ 𝜏. Specify
the law of motion of𝑚𝑗(𝑡, 𝜏) to be

𝑝𝑗(𝑡, 𝜏) = 𝛼𝑗 (𝜏) − ∫
𝑡

𝜏
𝛿𝑗( ̃𝑡, 𝜏)𝑑 ̃𝑡, (14)

where 𝛼𝑗 (𝜏) is the time-𝜏 addition rate for 𝑗-rules and 𝛿𝑗( ̃𝑡, 𝜏) is the time- ̃𝑡 deletion rate
for 𝑗-rules of vintage 𝜏. That is, the time-𝑡 quantity of vintage-𝜏 rules equals the time-𝜏
addition rate, less the total quantity of vintage-𝜏 rules deleted up till time 𝑡.

Let ̂𝛿+(𝑡, 𝜏) and ̂𝛿−(𝑡, 𝜏) be the time-𝑡 rate at which the party targets vintage-𝜏 rules for
deletion. Let the network structure be characterized by 𝜌(𝑗, 𝜏, ̃𝑗, ̃𝜏), which represents the
density of connections between 𝑗-rules of vintage-𝜏 and ̃𝑗-rules of vintage- ̃𝜏. To capture
the idea that immediate neighbours of deleted rules must also be deleted, we specify that
the vintage-𝜏 deletion rate accounts both for directly targeted rules, and for neighbours of
targeted rules from other vintages:

𝛿𝑗(𝑡, 𝜏) = ̂𝛿𝑗(𝑡, 𝜏) + 𝑝𝑗(𝑡, 𝜏) ∑
̃𝑗
∫
𝑡

0
𝜌(𝑗, 𝜏, ̃𝑗, ̃𝜏) ̂𝛿 ̃𝑗(𝑡, ̃𝜏) 𝑑 ̃𝜏.

Define the mass of 𝑗-rules at time 𝑡 to be the total quantity of rules, integrated over all
vintages: 𝑚𝑗(𝑡) = ∫

𝑡
0 𝑚𝑗(𝑡, 𝜏)𝑑𝜏. Applying (14), we get

𝑚𝑗(𝑡) = ∫
𝑡

0
𝛼𝑗 (𝜏) 𝑑𝜏 − ∫

𝑡

0
𝛿𝑗( ̃𝑡) 𝑑 ̃𝑡, where 𝛿𝑗(𝑡) = ∫

𝑡

0
𝛿𝑗(𝑡, 𝜏)𝑑𝜏.

In differential form, this replicates (3) from Section 2:
𝑑
𝑑𝑡𝑝𝑗(𝑡) = 𝛼𝑗(𝑡) − 𝛿𝑗(𝑡).

Naturally, we interpret 𝛿𝑗(𝑡) to be the rate at which 𝑗-rules are being deleted.
We specify that at each time 𝑡, the party chooses addition rates 𝛼+(𝑡) and 𝛼−(𝑡), and

vintage-specific deletion rates ̂𝛿+(𝑡, 𝜏) and ̂𝛿−(𝑡, 𝜏), subject to the familiar flow constraint
(4) on the overall rate of addition and deletion:

𝛼+(𝑡) + 𝛼−(𝑡) + 𝛿+(𝑡) + 𝛿−(𝑡) ≤ 𝛾. (15)

Our key simplifying assumption is that the density of links across vintages and direc-
tions of rules is completely homogenous: 𝜌(𝜏, ̃𝜏, 𝑗, ̃𝑗) ≡ 𝜌 > 0. In that case, some algebra
reveals that the deletion rate is

𝛿𝑗(𝑡) = ̂𝛿𝑗(𝑡) + 𝜌 𝑚𝑗(𝑡) ( ̂𝛿+(𝑡) + ̂𝛿−(𝑡)) , where ̂𝛿𝑗(𝑡) = ∫
𝑡

0
̂𝛿𝑗(𝑡, 𝜏)𝑑𝜏. (16)

Thus, the deletion rates 𝛿+(𝑡) and 𝛿−(𝑡) are determined entirely by the targeted deletion
rates ̂𝛿+(𝑡) and ̂𝛿−(𝑡). In other words, it does not matter which rules to target; the only
relevant decision is how many rules to delete.

Further, inspection of (16) indicates that the party can, by appropriately choosing dele-
tion rates ̂𝛿+(𝑡) and ̂𝛿−(𝑡), achieve any combination of deletion rates 𝛿+(𝑡) and 𝛿−(𝑡) satis-
fying

𝛿+(𝑡)
𝛿−(𝑡)
∈ [1 + 𝜌𝑝+(𝑡)𝜌𝑝−(𝑡)

, 𝜌𝑝+(𝑡)1 + 𝜌𝑝−(𝑡)
] . (17)

Accordingly, we may restate the laws of motion as follows.
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At each time 𝑡, the party chooses addition rates 𝛼+(𝑡) and 𝛼−(𝑡) and deletion
rates 𝛿+(𝑡) and 𝛿−(𝑡), subject to the flow constraint (15) and the entanglement
constraint (17).

Notice that (17) is a relaxed version of Section 2’s entanglement constraint, (5). At the limit
𝜌 → ∞, where the network density becomes large, (17) tightens into (5).

Our results from Section 3 continue to hold in this setting, even with finite entangled-
ness 𝜌. As before, suppose that both parties are myopic. Define the basin B, as before, to
be the set of regular policies where at least one party deletes rules. Here :

B = {p ∶ ( 𝜌𝑝+1 + 𝜌‖p‖ <
1
𝑧+1

or
𝜌𝑝−
1 + 𝜌‖p‖ >

1
𝑧−1
) and 𝑝 ∈ [𝑝∗−1, 𝑝∗+1]}

The basin B expands as entangledness 𝜌 decreases. This is intuitive: as the entanglement
constraint loosens, the ability of each party to target rules for deletion improves, and thus
deletion becomes optimal over a larger range of policies. Proposition 2 continues to hold
in this setting: any policy in B remains forever in B.

Outside the basinB, the laws of motion (9a) and (9b) continue to hold. Consequently,
all of our results about kludge – Propositions 3, Proposition 4, 5a, 5b, and 6 – are preserved.
Further, we may show that kludge increases with entangledness 𝜌:

Proposition A.1. Suppose 𝐾 = 1. Then 𝜅 is decreasing in 𝜌.

Theproof is almost identical to that of Proposition 5b, and thus is omitted. An increase
in entangledness 𝜌 shrinks the basin B. Consequently, policy becomes less likely to enter
the basin and get trapped; rather, policy is more likely to ‘escape’ and become kludged.

B Proofs

Short-Run Dynamics
Notation Denote the convex closure of a set 𝑋 as Conv(𝑋). Denote the sequence of
times at which control changes hands from party 𝑖 to party −𝑖 as 𝑡𝑖1, 𝑡𝑖2, .... Throughout, we
assumeWLOG that party+1 has control at 𝑡 = 0; so, 0 < 𝑡+11 < 𝑡−11 < 𝑡+12 < 𝑡−12 ...; notice that
the sequence of transition times {𝑡+11 , 𝑡−11 , 𝑡+12 , 𝑡−12 ...} fully determines the equilibrium path
(p(𝑡), 𝑖(𝑡)). Define 𝛥𝑡+1𝑘 ≡ 𝑡+1𝑘 − 𝑡−1𝑘−1 and 𝛥𝑡−1𝑘 ≡ 𝑡−1𝑘 − 𝑡+1𝑘 to be the sequences of durations
for which each party was in control.

Proof of Propositions 1a and1b Focus onparty+1; the calculation for party−1 is similar.
Start with the case 𝑝 ∈ [𝑝∗−1, 𝑝∗+1). There, party +1’s problem is to maximize the (linear)
objective

𝜕
𝜕𝑡𝑢+1 (p(𝑡)) = 𝑧+1

𝑑
𝑑𝑡𝑝 − 𝑑𝑑𝑡‖p‖

subject to the constraint (2), which corresponds in ( 𝑑𝑑𝑡𝑝, 𝑑𝑑𝑡‖p‖)-space to a triangle

Conv({𝑣+, 𝑣−, 𝑣𝛿}) with vertices
𝑣+ = 𝛾 ⋅ (1, 1), 𝑣− = 𝛾 ⋅ (−1, 1), 𝑣𝛿 = 𝛾 ⋅ (𝑝/‖p‖, −1).
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A linear objective over a simplex is, of course, maximized at one of the vertices of the
simplex. Some algebra reveals that vertex 𝑣+ is optimal (maximizes the objective) when
− 𝑝‖p‖ > 1− 2𝑧+1 ; otherwise, vertex 𝑣− is optimal.

The case 𝑝 = 𝑝∗+1 is slightly more involved. Here, the objective is no longer linear in
( 𝑑𝑑𝑡𝑝, 𝑑𝑑𝑡‖p‖); specifically,

𝜕
𝜕𝑡𝑢+1 (p(𝑡)) = 𝑧+1|

𝑑
𝑑𝑡𝑝| − 𝑑𝑑𝑡‖p‖.

Notice, however, that this objective is linear on each of the half-planes 𝑑𝑑𝑡‖p‖ ≤ 0 and on
𝑑
𝑑𝑡‖p‖ ≥ 0. The intersection of each half-plane with the triangle Conv({𝑣+, 𝑣−, 𝑣𝛿}) defines
two simplices in ( 𝑑𝑑𝑡𝑝, 𝑑𝑑𝑡‖p‖)-space over which the objective function is linear:

𝜕
𝜕𝑡𝑢+1 (p(𝑡)) = −𝑧+1

𝑑
𝑑𝑡𝑝 − 𝑑𝑑𝑡‖p‖ over Conv({𝑣+, 𝑣𝑚+, 𝑣𝑚−}) and

𝜕
𝜕𝑡𝑢+1 (p(𝑡)) = 𝑧+1

𝑑
𝑑𝑡𝑝 − 𝑑𝑑𝑡‖p‖ over Conv({𝑣−, 𝑣𝛿, 𝑣0−, 𝑣0+}) where

𝑣0− = 𝛾 ⋅ (0, − ‖p‖−|𝑝|‖p‖+|𝑝|) and 𝑣0+ = 𝛾 ⋅ (0, 1).

Consequently, the objective function is maximized on one of the vertices of the two sim-
plices. Some further algebra reveals that vertex 𝑣𝛿 is optimal if − 𝑝‖p‖ < 1 − 2𝑧+1 ; otherwise,
vertex 𝑣0− is optimal.

One final point: when 𝑝 = ‖p‖ = 𝑝∗+1, vertex 𝑣0− results in 𝑑𝑑𝑡𝑝 = 𝑑𝑑𝑡‖p‖ = 0, and thus
is equivalent to stagnation: 𝛼𝑗 = 𝛼−𝑗 = 𝛿 = 0. ■

Path Dependence and Kludge
Proof of Remark 1 Remark 1.1 follows immediately from Propositions 1a and 1b, so we
only prove Remark 1.2 here. WLOG, consider the case where 𝑝 > 𝑝∗+1. Similarly to the
proof of Propositions 1a and 1b, we may characterize each parties optimal strategy.

• If 𝑝−‖p‖ < 1𝑧+1 , then party +1 deletes rules, thus moving towards his ideal: (𝛼+, 𝛼−, 𝛿) =
𝛾 ⋅ (0, 0, 1), so 𝑑𝑑𝑡𝑝 = −

‖p‖−𝑝
‖p‖+𝑝 .

• If 𝑝−‖p‖ > 1𝑧+1 , then party +1 adds negative rules: (𝛼+, 𝛼−, 𝛿) = 𝛾 ⋅ (0, 1, 0), so 𝑑𝑑𝑡𝑝 = −1.

• −1 always adds negative rules: (𝛼+, 𝛼−, 𝛿) = 𝛾 ⋅ (0, 1, 0), so 𝑑𝑑𝑡𝑝 = −1.

The take-away point is that policy position always shifts negatively: 𝑑𝑑𝑡𝑝 ≤ −
‖p‖−𝑝
‖p‖+𝑝 . In fact,

we may show by induction that ‖p(𝑡)‖ ≤ ‖p(0)‖ + 𝑝(0) − 𝑝∗+1; consequently, 𝑑𝑑𝑡𝑝(𝑡) ≤
− ‖p(0)‖+𝑝(0)−𝑝

∗
+1−𝑝(0)

‖p(0)‖+𝑝(0) = −
‖p(0)‖−𝑝∗+1
‖p(0)‖+𝑝(0) for all 𝑡 ≥ 0. We conclude that policy reaches the +1-

ideal position 𝑝 = 𝑝∗+1 in finite time. ■

Proof of Proposition 2 Proposition 2.3 follows directly from Proposition 1a: consider a
perfectly simple policy consisting purely of 𝑗-rules, 𝑚−𝑗 = 0, and let 𝑗 = sgn 𝑖. Then party
𝑖 adds 𝑗-rules, whereas party −𝑖 deletes 𝑗-rules. In either case, policy remains perfectly
simple.
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Next, consider Proposition 2.1. Given 𝑗 = sgn 𝑖, let B𝑖 be the set of policies at which
party 𝑖 deletes rules,

B𝑖 = {p ∶
𝑝𝑗
‖p‖ <
1
𝑧𝑖

and 𝑝 ∈ [𝑝∗−1, 𝑝∗+1]} ;

note thatB = B+1∪B−1. Consider, WLOG,B+1. Assume for now that 1𝑧+1 +
1
𝑧−1 < 1. Here,

B+1 and B−1 do not intersect, except at the empty policy p = (0, 0). Consequently, policy
dynamics within B+1, other than at the empty policy, take the following form:

• If 𝑝 > 𝑝∗−1, then party −1 adds negative rules, so 𝑑𝑑𝑡𝑝+ = 0, 𝑑𝑑𝑡𝑝− = 1, 𝑑𝑑𝑡‖p‖ = 1.
Calculations reveal 𝑑𝑑𝑡

𝑝+(𝑡)
‖p(𝑡)‖ =

−𝑝+
‖p‖2 ≤ 0.

• If 𝑝 = 𝑝∗−1 < 0, then party −1 reduces complexity, so 𝑑𝑑𝑡𝑝 = 0, 𝑑𝑑𝑡‖p‖ < 0. We
immediately see that 𝑑𝑑𝑡

𝑝+(𝑡)
‖p(𝑡)‖ = 12 𝑑𝑑𝑡 (

𝑝(𝑡)
‖p(𝑡)‖ + 1) < 0.

• Party +1 always deletes rules, so 𝑑𝑑𝑡𝑝 = −𝑝/‖p‖, 𝑑𝑑𝑡‖p‖ = −1. Clearly, 𝑑𝑑𝑡
𝑝+(𝑡)
‖p(𝑡)‖ =

1
2
𝑑
𝑑𝑡 (
𝑝(𝑡)
‖p(𝑡)‖ + 1) = 0.

In all cases (except the empty policy), 𝑝+(𝑡)‖p(𝑡)‖ is weakly decreasing; so policy remains within
B+1.

Now, relax the assumption that 1𝑧+1 +
1
𝑧−1 < 1. Policy dynamics remain the same as

above, except that at the intersection of B+1 and B−1, party −1 deletes rules (instead of
adding rules or reducing complexity), so that 𝑑𝑑𝑡

𝑝+(𝑡)
‖p(𝑡)‖ = 0. Clearly, this does not change

our conclusion, as policy remains within B+1.
Our argument so far for Proposition 2.1 has neglected the empty policy; but this case

is covered by Proposition 2.1. Both parties add rules at the empty policy, so policy remains
perfectly simple (𝑝/‖p‖ = 1) and thus remains in B.

Finally, consider Proposition 2.2. Note that the complexity of any policy inB is bounded
above by some 𝑐. Note, also, that if policy is initially in B𝑖, then it always remains within
B𝑖 unless policy becomes perfectly simple. Because the time periods between changes
of control are i.i.d. and exponentially distributed, almost surely, the following event will
eventually occur: (i) party 𝑖 is in control at time 𝑡, (ii) policy p(𝑡) is inB, and (iii) 𝑖 retains
control for a period of at least 𝑐. But because party 𝑖 deletes rules from policy until he loses
control, at time 𝑡 + ‖p(𝑡)‖, he reaches the empty policy (which is perfectly simple). ■

Proof of Remark 2 Consider the case where 𝑧+1 = 2. We will generalize to the case
where 𝑧+1 < 2 later. The focus on 𝑧+1 is WLOG. Given 𝑧+1 = 2, B+1 takes the form
{p ∶ 0 ≥ 𝑝 ≥ 𝑝∗−1}. As a result, policy avoids the basin only if position remains forever
within the interval 0 < 𝑝 ≤ 𝑝∗+1.

Outside the basin, party −1 adds negative rules. If −1 is ever in control for a contiguous
period of longer than 𝑝∗+1/𝛾, then he will decrease policy position by at least 𝑝∗+1, and thus
move policy into the basin. Such an event occurs with probability 𝑒−𝜆

−1
−1𝑝∗+1/𝛾 > 0 each time

that −1 regains control. Since −1 regains control an infinite number of times almost surely,
it follows that policy will almost surely enter the basin.
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For the case 𝑧+1 < 2, notice that B+1 expands as 𝑧+1 decreases; so the argument above
continues to hold. ■
To prove Lemma 1 and Proposition 3, let’s introduce some tools.

Lemma B.1a. There exists 𝜏 > 0 and 𝜉 > 0 such that for all (𝑞(0), 𝑖(0)),

Pr [(𝑞(𝜏), 𝑖(𝜏)) = (𝑝∗+1, +1)] ≥ 𝜉.

Proof. Choose 𝜏 = (𝑝∗+1 −𝑝∗−1)/𝛾+ 𝜖 for some 𝜖 > 0. Consider a history such that for some
𝑡0 < 𝜖, 𝑖(𝑡) = +1 for all 𝑡 ∈ [𝑡0, 𝜏]. Then, obviously, (𝑞(𝜏), 𝑖(𝜏)) = (𝑝∗+1, +1). Further, the
probability of such a history is at least 𝜉 = 𝑒−𝜆+1𝜏 (1 − 𝑒−𝜆−1𝜖). ■

Proof of Lemma 1
LemmaB.1a ensures that, in the language of ergodic theory, the entire state space [𝑝∗−1, 𝑝∗+1]×
{+1, −1} is small with respect to the process (𝑞(𝑡), 𝑖(𝑡)). Lemma 1 then follows immediately
from standard results in ergodic theory – see, for example, Bhattacharya and Majumdar
(2003, Corollary 3.3). ■

Lemma B.1b. The unique invariant (steady-state) distribution𝐺 of the process (𝑞(𝑡), 𝑖(𝑡)) on
[𝑝∗−1, 𝑝∗+1] × {+1, −1} has density

𝑔(𝑞, +1) ≡ 𝑔(𝑞, −1) ≡ 𝐴𝑒
𝜆+1−𝜆−1
𝛾 𝑞 (18a)

for 𝑝∗−1 ≤ 𝑞 ≤ 𝑝∗+1, where 𝐴 is a normalizing constant, and has atoms

𝛥𝐺 (𝑝∗+1, +1) =
𝛾
𝜆+1
𝑔(𝑝∗+1, +1) and 𝛥𝐺 (𝑝∗−1, −1) =

𝛾
𝜆−1
𝑔(𝑝∗−1, −1) (18b)

at the each party’s ideal, (𝑝∗−1, −1) and (𝑝∗+1, +1).

Proof. The steady-state distribution of (𝑞, 𝑖) is invariant to the law of motion (9a) of 𝑞(𝑡)
and of 𝑖(𝑡). For 𝑞 < 𝑝∗+1, over a small time interval 𝛥𝑡, the net change in the probability
mass of [𝑞, 𝑞 + 𝛥𝑞] × {+1}must be zero; that is,

[𝛾 𝑔(𝑞, +1) 𝛥𝑡 − 𝛾 𝑔(𝑞 + 𝛥𝑝, +1) 𝛥𝑡] + [𝜆−1𝑔(𝑞, −1) 𝛥𝑞 𝛥𝑡 − 𝜆+1𝑔(𝑞, +1) 𝛥𝑞𝛥𝑡] ≈ 0.

Taking the limit 𝛥𝑞, 𝛥𝑡 → 0, we get

𝛾𝑔𝑞(𝑞, +1) = 𝜆−1𝑔(𝑞, −1) − 𝜆+1𝑔(𝑞, +1) and (19)
𝛾𝑔𝑞(𝑞, −1) = 𝜆−1𝑔(𝑞, −1) − 𝜆+1𝑔(𝑞, +1) (20)

for 𝑞 ∈ [𝑝∗−1, 𝑝∗+1], where (20) holds by a symmetric argument. Solving the differential
equations (20) and (19) simultaneously reveals that

𝑔(𝑞, +1) ≡ 𝑔(𝑞, −1) ≡ 𝐴𝑒
𝜆−1−𝜆+1
𝛾 𝑞

for some constant 𝐴.
Notice that we have implicitly assumed that there are no atoms on [𝑝∗−1, 𝑝∗+1) × {+1} or

(symmetrically) on (𝑝∗−1, 𝑝∗+1] × {−1}. This holds because, if (𝑞, +1) were an atom, then the
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law of motion (9a) dictates (impossibly) that (𝑞′, +1) would also be an atom for all 𝑞′ in
some right-neighbourhood of 𝑞.

Finally, consider the (potential) atoms 𝛥𝐺 (𝑝∗+1, +1) and 𝛥𝐺 (𝑝∗−1, −1). Over a small
time interval 𝛥𝑡, the net change in the probability mass of each atom must be zero; that is,

𝜆+1𝛥𝐺 (𝑝∗+1, +1) 𝛥𝑡 − 𝛾𝑔(𝑝∗+1, +1)𝛥𝑡 ≈ 0,
𝜆−1𝛥𝐺 (𝑝∗−1, −1) 𝛥𝑡 − 𝛾𝑔(𝑝∗+1, +1)𝛥𝑡 ≈ 0

or, more compactly,

𝛥𝐺 (𝑝∗+1, +1) =
𝛾
𝜆+1
𝑔(𝑝∗+1, +1) and 𝛥𝐺 (𝑝∗−1, −1) =

𝛾
𝜆−1
𝑔(𝑝∗−1, −1).

■

Define a class of simulacra 𝑐𝜀(𝑡) of the ‘true’ complexity process ‖p(𝑡)‖, each of which
is coupled to the position simulacrum 𝑞(𝑡): for 𝜀 ≥ 0,

𝑑
𝑑𝑡𝑐𝜀(𝑡) ≡ 𝑣𝜀(𝑞(𝑡))

where

𝑣𝜀(𝑞) ≡ 𝛾 ⋅ {
−(1 − 𝜀) ∶ 𝑞 ∈ {𝑝∗−1, 𝑝∗+1}
1 ∶ 𝑞 ∈ (𝑝∗−1, 𝑝∗+1)

.

The parameter 𝜀 captures how quickly the complexity simulacrum 𝑐 decreases whenever
the position simulacrum 𝑞 is at either ideal. Conveniently, denote 𝑐(𝑡) ≡ 𝑐0(𝑡). Notice that
at the extreme 𝜀 = 0, 𝑣0(𝑞) ≡ 𝑣(𝑞): the complexity simulacrum behaves as true complexity
does at the limit ‖p‖ → ∞.

Lemma B.2a. Consider the simulacrum process with 𝜀 = 0. Suppose 𝑧+1 > 2 and 𝑧−1 > 2,
which ensures that B is finite in extent. Select sufficiently large 𝑐 so that B ⊂ {p ∶ ‖p‖ < 𝑐}.
Fix a start time 𝑡0 ≥ 0, and suppose initial conditions are identical for the true and simu-
lacrum process, as follows: ‖p(𝑡0)‖ ≡ 𝑐(𝑡0) and 𝑝(𝑡0) = 𝑞(𝑡0) > 𝑝. Consider any history up
to time 𝑇 ≤ ∞ such that 𝑐(𝑡) ≥ 𝑐 for all 𝑡 ∈ [𝑡0, 𝑇). Then 𝑞(𝑡) = 𝑝(𝑡) and 𝑐(𝑡) ≤ ‖p(𝑡)‖ for
all 𝑡 ∈ [𝑡0, 𝑇).

Proof. This result requires only a straightforward inspection of the laws of motion of p
(outsideB) and 𝑐, 𝑞: we have that 𝑑𝑑𝑡𝑝(𝑡) = 𝑑𝑑𝑡𝑞(𝑡) and 𝑑𝑑𝑡‖p(𝑡)‖ ≤ 𝑑𝑑𝑡𝑐(𝑡), so 𝑝(𝑡) ≡ 𝑞(𝑡) and
‖p(𝑡)‖ ≤ 𝑐(𝑡). ■

Lemma B.2b. Suppose 𝑧+1 > 2 and 𝑧−1 > 2. Select sufficiently small 𝜀 and sufficiently large
𝑐 so thatB ⊂ {p ∶ ‖p‖ < 𝑐} and so that 1−𝜀 < 𝑐−|𝑝|𝑐+|𝑝| for 𝑝 = 𝑝

∗
+1 and 𝑝 = 𝑝∗−1. Fix a start time

𝑡0 ≥ 0, and suppose initial conditions are identical for the true and simulacrum process, as
follows: ‖p(𝑡0)‖ ≡ 𝑐𝜀(𝑡0) ≥ 𝑐 and 𝑝(𝑡0) = 𝑞(𝑡0). Suppose that at some time 𝑇 > 𝑡0, 𝑐𝜀(𝑇) ≤ 𝑐.
Then at some time 𝜏 ∈ (𝑡0, 𝑇], ‖p(𝜏)‖ = 𝑐 and 𝑝(𝜏) = 𝑝𝑖(𝜏).

Proof. Suppose, towards a contradiction, that ‖p(𝑡)‖ > 𝑐 for all 𝑡 ∈ (𝑡0, 𝑇]. Then through-
out this time interval, 𝑑𝑑𝑡𝑝(𝑡) = 𝑑𝑑𝑡𝑞(𝑡) and 𝑑𝑑𝑡‖p(𝑡)‖ ≥ 𝑑𝑑𝑡𝑐𝜀(𝑡), so 𝑝(𝑡) ≡ 𝑞(𝑡) and 𝑐𝜀(𝑡) ≥
‖p(𝑡)‖ > 𝑐. This contradicts the assumption that 𝑐(𝑇) ≤ 𝑐. Finally, note that for ‖p‖ ≥ 𝑐,
‖p‖ decreases only while position is some ideal 𝑝∗𝑖 and 𝑖 is in control; thus whenever com-
plexity ‖p‖ attains 𝑐 from above at some time 𝜏, we must have 𝑝(𝜏) = 𝑝𝑖(𝜏). ■
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Lemma B.2c. Suppose 𝑧+1 > 2 and 𝑧−1 > 2. Select sufficiently large 𝑐 so that B ⊂ {p ∶
‖p‖ < 𝑐}. Define B′ = {p ∶ ‖p‖ ≤ 𝑐 and 𝑝 ∈ [𝑝∗−1, 𝑝∗+1] and p ∉ B}. If p(0) ∈ B′, then p(𝑡)
eventually leaves (and possibly returns to) B′ in finite time (a.s.). Further, there exists 𝑣 > 0
so that if 𝑝(0) = 𝑝𝑖(0), then with probability of at least 𝑣, p(𝑡) exits B′ by entering the basin
B.

Proof. Let 𝜏1 = 𝑝
∗
+1−𝑝∗−1
𝛾 be the amount of time taken for policy to move from ideal 𝑝∗−𝑖 to 𝑝∗𝑖

if 𝑗-rules are added at themaximum rate 𝛾. Let 𝜏𝑖 < ∞ be the time taken for policy tomove
from p = (𝑐, 𝑝∗𝑖 ) to reach B if parties reduce complexity along 𝑝∗𝑖 at the maximum rate,
𝑑
𝑑𝑡‖p‖ = −

‖p‖−|𝑝∗𝑖 |
‖p‖+|𝑝∗𝑖

. Let 𝜏2 = max{𝜏+1, 𝜏−1}. If party 𝑖 takes control at time 𝑡0 with p(𝑡0) ∈ B′

and retains control for duration 𝛥𝑡𝑖 > 𝜏1 + 𝜏2, then policy must exitB′ in one of two ways
at some 𝑡 ∈ (𝑡0, 𝑡0 + 𝛥𝑡𝑖), while 𝑖 is in control: either (i) policy complexity ‖p(𝑡)‖ exceeds 𝑐,
or (ii) policy enters the basin, ‖p(𝑡)‖ ∈ B. In other words, p(𝑡) remains in B′ forever only
if for all control durations, 𝛥𝑡𝑖𝑘 ≤ 𝜏1 + 𝜏2. But this almost never occurs; so, policy almost
surely leaves B′.

Further, suppose 𝑝(0) = 𝑝𝑖(0). If 𝑖(0) retains control for duration for at least 𝜏2, then
he will reduce complexity along 𝑝𝑖(0); by definition of 𝜏2, policy will thus enter the basinB

while 𝑖(0) is in control. This occurs with probability of at least 𝑣 = 𝑒−max{𝜆+1,𝜆−1}𝜏2 > 0. ■

Let’s introduce some further notation. For each 𝑖 ∈ {+1, −1}, define {𝜏𝑖1 < 𝜏𝑖2 < ...}
to be the subsequence of {𝑡𝑖1, 𝑡𝑖2, ...} corresponding to the times where 𝑖 loses control to
−𝑖 while the position simulacrum is at 𝑖’s ideal (i.e., 𝑞 (𝑡𝑖𝑘) = 𝑝∗𝑖 ). Note that each 𝜏𝑖𝑘 is
a stopping time relative to the filtration generated by (𝑞(𝑡), 𝑖(𝑡)). For 𝑘 = 1, 2, .., define
𝛥𝑐𝑖,𝜀𝑘 ≡ 𝑐𝜀(𝜏

𝑖
𝑘+1) − 𝑐𝜀(𝜏𝑖𝑘) to be the change in the complexity simulacrum between the 𝑘-th

and (𝑘 + 1)-th times 𝑖 loses control while at his ideal. Analogously, define 𝛥𝜏𝑖𝑘 ≡ 𝜏𝑖𝑘+1 − 𝜏𝑖𝑘.
The sequences {𝛥𝑐+1,𝜀1 , 𝛥𝑐

+1,𝜀
2 , ...} and {𝛥𝑐

−1,𝜀
1 , 𝛥𝑐

−1,𝜀
2 , ...} have the following useful prop-

erties.

Lemma B.3a. For each 𝑖 ∈ {+1, −1}, the random variables 𝛥𝑐𝑖,𝜀1 , 𝛥𝑐
𝑖,𝜀
2 , ... are i.i.d., as are the

random variables 𝛥𝑡𝑖1, 𝛥𝑡𝑖2, ....

Proof. Follows immediately from the fact that (𝑞(𝑡), 𝑖(𝑡)) is a strong Markov process and
𝑑
𝑑𝑡𝑐𝜀(𝑡) depends only on 𝑞(𝑡). ■

Lemma B.3b. inf{𝑐(𝑡) ∶ 𝑡 ≥ 0} = inf{𝑐(𝜏+11 ), 𝑐(𝜏+12 ), ...} ∪ {𝑐(𝜏−11 ), 𝑐(𝜏−12 ), ...}

Proof. This follows immediately from the fact that the complexity simulacrum increases
between ideals and decreases at ideals; and that each 𝜏𝑖𝑘 corresponds to a time at which the
position simulacrum departs 𝑖’s ideal. Consequently, {𝑐(𝜏+11 ), 𝑐(𝜏+12 ), ...}∪{𝑐(𝜏−11 ), 𝑐(𝜏−12 ), ...}
corresponds to the set of local minima of the complexity simulacrum process. ■

Lemma B.3c. 𝔼 [𝛥𝜏𝑖𝑘] < ∞ and | 𝔼 [𝛥𝑐𝑖,𝜀𝑘 ] | < ∞.

Proof. | 𝔼 [𝛥𝑐𝑖,𝜀𝑘 ] | ≤ 𝛾𝔼 [𝛥𝜏
𝑖
𝑘], so it is sufficient to prove that 𝔼 [𝛥𝜏𝑖𝑘] < ∞. The proof of

this last point involves showing that 𝛥𝜏𝑖𝑘 has exponentially-bounded tails; it is tedious and
not very insightful, and thus is omitted. ■

Lemma B.3d. For any 𝜖 ≥ 0 and every 𝑘, the following statements are equivalent:
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1. 𝔼 [𝛥𝑐+1,𝜀𝑘 ] ⪌ 0.

2. 𝔼 [𝛥𝑐−1,𝜀𝑘 ] ⪌ 0.

3. ∫ 𝑣𝜀(𝑞)𝑑𝐹(𝑞) ⪌ 0.

Proof. We show that 1 ⟺ 3; the argument that 2 ⟺ 3 is identical. From Lemma 1,
(𝑞(𝑡), 𝑖(𝑡)) is uniquely ergodic, so Birkhoff ’s ergodic theorem applies: a.s.,

lim
𝑇→∞
1
𝑇 − 𝑇0
∫
𝑇

𝑇0
𝑣𝜀(𝑞(𝑡))𝑑𝑡 = ∫ 𝑣𝜀(𝑞)𝑑𝐹(𝑞). (21)

Now, write

lim
𝑘→∞

1
𝜏𝑖𝑘+1 − 𝜏𝑖1

∫
𝜏𝑖𝑘+1

𝜏𝑖1
𝑣𝜀(𝑞(𝑡))𝑑𝑡 = lim𝑘→∞

𝑐𝜖(𝜏𝑖𝑘+1) − 𝑐𝜖(𝜏𝑖1)
𝜏𝑖𝑘+1 − 𝜏𝑖1

= lim
𝑘→∞

1
𝑘 ∑
𝑘
𝑗=1 𝛥𝑐
𝑖,𝜀
𝑗

1
𝑘 ∑
𝑘
𝑗=1 𝛥𝜏𝑖𝑗
.

Note that lim𝑘→∞ 𝜏𝑖𝑘+1 = ∞ almost surely, so the LHS converges almost surely to∫ 𝑣𝜀(𝑞)𝑑𝐹(𝑞).
By the strong law of large numbers, the RHS converges almost surely to 𝔼 [𝛥𝑐𝑖,𝜀𝑘 ]/𝔼 [𝛥𝜏

𝑖
𝑘].

So,

∫𝑣𝜀(𝑞)𝑑𝐹(𝑞) =
𝔼 [𝛥𝑐𝑖,𝜀𝑘 ]
𝔼 [𝛥𝜏𝑖𝑘]

.

The result follows. ■

Lemma B.3e.

1. Suppose 𝔼 [𝛥𝑐𝑖,𝜀1 ] > 0. Then lim𝑘→∞ 𝑐(𝜏𝑖𝑘) = ∞ a.s.. Further, for any 𝑐 < 𝑐𝑖,𝜀1 ,
inf{𝑐(𝜏𝑖𝑘)} ≥ 𝑐 with positive probability, and lim𝑐(𝜏𝑖1)−𝑐→∞ Pr [inf{𝑐(𝜏

𝑖
𝑘)} ≥ 𝑐] = 1.

2. Suppose 𝔼 [𝛥𝑐𝑖,𝜀1 ] ≤ 0. Then inf𝑘{𝑐(𝜏𝑖𝑘)} = −∞ a.s..

Proof. This lemma is simply a restatement of classic results from large deviation theory.
The cases where𝔼 [𝛥𝑐𝑖,𝜀1 ] ≷ 0 follow from the strong law of large numbers. The case where
𝔼 [𝛥𝑐𝑖,𝜀1 ] = 0 follows from the recurrence theorem. ■

Lemma B.4.

1. If∫ 𝑣𝜀(𝑞)𝑑𝐹(𝑞) > 0, thenwith positive probability, lim𝑡→∞ 𝑐𝜀(𝑡) = ∞ and 𝑐𝜀(𝑡) ≥ 𝑐𝜀(0)
for all 𝑡 ≥ 0.

2. If ∫ 𝑣𝜀(𝑞)𝑑𝐹(𝑞) < 0, then inf𝑡≥0{𝑐𝜀(𝑡)} = −∞ almost surely.

Proof. Follows immediately from Lemmas B.3b, B.3d, and B.3e. ■
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Proof of Proposition 3
∫ 𝑣(𝑞)𝑑𝐹(𝑞) > 0: The assumptions 𝑧+1 > 2 and 𝑧−1 > 2 ensure that the basin B is finite in
extent: there exists 𝑐 < ∞ such that B ⊂ {p ∶ ‖p‖ < 𝑐}. A moment of reflection reveals
that if p(0) ∉ B, then the following event occurs with positive probability: at some time
𝑡0, party +1 (WLOG) loses control to −1, and does so at a policy with +1-ideal position
𝑝(𝑡0) = 𝑝∗+1 and complexity ‖p(𝑡0)‖ ≥ 𝑐. Conditioning on this event, fix 𝑐(𝑡0) = ‖p(𝑡0)‖
and 𝑞(𝑡0) = 𝑝(𝑡0). From Lemma B.4, with positive probability, lim𝑡→∞ 𝑐(𝑡) = ∞ and
𝑐(𝑡) ≥ 𝑐(0) for all 𝑡 ≥ 𝑡0. Consequently, applying Lemma B.2a twice: (i) with positive
probability, 𝑐(𝑡) ≥ 𝑐 for all 𝑡 ≥ 𝑡0; so, (ii) with positive probability, lim𝑡→∞ ‖p‖(𝑡) = ∞. In
other words, 𝜅 > 0.
∫ 𝑣(𝑞)𝑑𝐹(𝑞) < 0: Select sufficiently small 𝜀 and sufficiently large 𝑐 so thatB ⊂ {p ∶ ‖p‖ < 𝑐}
and so that 1 − 𝜀 < 𝑐−|𝑝|𝑐+|𝑝| for 𝑝 = 𝑝

∗
+1 and 𝑝 = 𝑝∗−1. Define B′ as in Lemma B.2c. We make

the following two observations.

1. Lemmas B.4 and B.2b imply that if policy is above the complexity bound 𝑐 at some
time 𝑡, ‖p(𝑡)‖ > 𝑐, then it almost surely enters B′, and does so via one of the ideals
𝑝∗𝑖 .

2. Lemma B.2c implies that whenever policy enters B′ via one of the ideals 𝑝∗𝑖 , then it
almost surely exitsB′ (either by entering the basinB or by exceeding the complexity
bound 𝑐), and (with probability of at least 𝑣 > 0, where 𝑣 is defined as in LemmaB.2c)
does so by entering the basin B.

Combining these two observations, we conclude that policy almost surely enters the basin
eventually, and thus that 𝜅 = 0. ■

Lemma B.5. Suppose 𝜇 > 0. Consider the simulacrum process with 𝜀 = 0. Fix a start time
𝑡0 ≥ 0. For any 𝑐,

lim
𝑐(𝑡0)→∞
Pr [inf
𝑡≥𝑡0
𝑐(𝑡) ≥ 𝑐] = 1.

Proof. Let 𝜏𝑖1 ≥ 𝑡0 be the first stopping time where Party 𝑖 loses control at his ideal. We
claim that for any 𝜈 ∈ (0, 1),

lim
𝑐(𝑡0)→∞
Pr [𝑐 (𝜏+11 ) ≥ (1 − 𝜈) 𝑐 (𝑡0)] = 1, (22)

lim
𝑐(𝑡0)→∞
Pr [𝑐 (𝜏−11 ) ≥ (1 − 𝜈) 𝑐 (𝑡0)] = 1 (23)

WLOG suppose that policy hits +1’s ideal first, at time 𝜏′1; note that 𝑐 (𝜏′1) ≥ 𝑐 (𝑡0). Notice
that, subsequent to 𝜏′1, Party 𝑖 loses control with arrival rate 𝜆𝑖; so 𝑐 (𝜏′1) − 𝑐 (𝜏𝑖1) is expo-
nentially distributed with parameter 𝜆𝑖. Consequently, as 𝑐 (𝑡0) → ∞, the probability that
𝑐 (𝜏′1)−𝑐 (𝜏𝑖1) ≥ 𝜈 𝑐 (𝑡0) vanishes. Our claim (22) follows immediately. The demonstration
of the claim (23) is more involved, but proceeds similarly.
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Condition on the event that 𝑐 (𝜏𝑖1) ≥ (1 − 𝜈) 𝑐 (𝑡0) for 𝑖 ∈ {+1, −1}. As 𝑐(𝑡0) → ∞, we
have (1 − 𝜈) 𝑐 (𝑡0) − 𝑐 → ∞, so

lim
𝑐(𝑡0)→∞
Pr [inf
𝑡≥𝑡0
𝑐(𝑡) ≥ 𝑐] = lim

𝑐(𝑡0)→∞
Pr [ inf
𝑖∈{+1,−1};𝑘≥1

𝑐 (𝜏𝑖𝑘) ≥ 𝑐]

≥ lim
𝑐(𝑡0)→∞
Pr [ inf
𝑖∈{+1,−1};𝑘≥1

𝑐 (𝜏𝑖𝑘) ≥ 𝑐] = 1,

where the last equality follows from Lemma B.3e.1. At the limit 𝑐(𝑡0) → ∞, we conclude
that (unconditionally) lim𝑐(𝑡0)→∞ Pr [inf𝑡≥𝑡0 𝑐(𝑡) ≥ 𝑐] = 1. ■

Proof of Proposition 4
‖p(0)‖ → 0: Assume WLOG that Party +1 starts the game in control: 𝑖(0) = +1. We will
argue that ‖p(0)‖ → 0, the distance of the starting policy p(0) from the basin B vanishes.
Note that the regionwhere Party−1 deletes rules is bounded by the line 𝑝‖p‖ = 1− 2𝑧−1 . While
+1 remains in control, policy evolves along the line (𝑝, ‖p‖) = 𝛾 ⋅ (𝑡, 𝑡 + ‖p(0)‖). The two
aforementioned lines intersect where 𝑝 = ‖p(0)‖ 2𝑧−1−2 . That is, if +1 remains in control for
a time period longer than ‖p(0)‖ 𝛾−1 2𝑧−1−2 , then policy will enter the basin and eventually
become perfectly simple. As ‖p(0)‖ → 0, the probability that this occurs converges to one.
‖p(0)‖ → ∞: Consider the simulacrum process with 𝜀 = 0, and suppose that initial con-
ditions are identical for the true and simulacrum process: 𝑞(0) = 0 and 𝑐(0) = ‖p(0)‖. The
result then follows immediately from Lemma B.5 by choosing 𝑐 so thatB ⊂ {p ∶ ‖p‖ < 𝑐}.
■

Comparative Statics: The Politics of Kludges
Proof of Proposition 5a
From Proposition 3, the key object of interest is ∫ 𝑣 (𝑞, 𝑖) 𝑑𝐹(𝑞) (𝑞, 𝑖). We can rewrite, via
some manipulations,

∫𝑣 (𝑞, 𝑖) 𝑑𝐹(𝑞) (𝑞, 𝑖) = − (𝛥𝐺 (𝑝∗+1, +1) + 𝛥𝐺 (𝑝∗−1, −1)) + ∫
𝑝∗+1

𝑝∗−1
(𝑔(𝑞, +1) + 𝑔(𝑞, −1)) 𝑑𝑞

=
−𝛾 ( 1𝜆−1 𝑒

𝜆+1−𝜆−1
𝛾 𝑝

∗
−1 + 1𝜆+1 𝑒

𝜆+1−𝜆−1
𝛾 𝑝

∗
+1) + ∫𝑝

∗
+1
𝑝∗−1
(2𝑒
𝜆+1−𝜆−1
𝛾 𝑞)𝑑𝑞

𝛾 ( 1𝜆−1 𝑒
𝜆+1−𝜆−1
𝛾 𝑝∗−1 + 1𝜆+1 𝑒

𝜆+1−𝜆−1
𝛾 𝑝∗+1) + ∫𝑝

∗
+1
𝑝∗−1
(2𝑒
𝜆+1−𝜆−1
𝛾 𝑞) 𝑑𝑞

. (24)

The denominator of the last expression (24) is positive; we may rewrite the numerator as

𝛾
𝜆−1 − 𝜆+1

(𝑒(𝑝
∗
+1−𝑝∗−1)(𝜆−1−𝜆+1) (3 − 𝜆−1𝜆+1

) − (3 − 𝜆+1𝜆−1
)) ,

so (24) has the same sign as

(𝑝∗+1 − 𝑝∗−1) −
log 3−𝜆+1/𝜆−13−𝜆−1/𝜆+1
𝜆−1 − 𝜆+1

= 𝛥∗𝑝 −
log 3−𝛬−13−𝛬
𝜆 (√𝛬 − √𝛬−1)

.

The result then follows from Proposition 3. ■
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Proof of Proposition 5b
Denote the parties’ zealousness as z = (𝑧+1, 𝑧−1). We say that z′ > z if 𝑧′+1 ≥ 𝑧+1 and
𝑧′−1 ≥ 𝑧−1, with at least one strict inequality. Relabel the basin as B (z) to highlight its
dependence on parties’ zealousness. Our assumptions 𝑧+1 > 2 and 𝑧−1 > 2 ensure that
B (z) is a compact set. Also, B (z) increases (strictly) in z: if z′ < z, then B (z′) ⊂ B (z).

A historyℎ is an infinite sequence of control durations {𝛥𝑡+11 , 𝛥𝑡−11 , 𝛥𝑡+12 , 𝛥𝑡−12 , ...}, whereas
a 𝑘-truncated history ℎ𝑘 is characterized by the first 2𝑘 durations of control,

{𝛥𝑡+11 , 𝛥𝑡−11 , ..., 𝛥𝑡+1𝑘 , 𝛥𝑡−1𝑘 } .

Combined with the model’s primitives, a history ℎ determines the (equilibrium) path of
policy for all time 𝑡 ≥ 0, whereas a truncated history ℎ𝑘 determines the path of policy up
till time 𝑡𝑘 = 𝛥𝑡+11 + ... + 𝛥𝑡−1𝑘 . For 𝑡 ≤ 𝑡𝑘, we write p (𝑡; ℎ𝑘, z) to denote the time-𝑡 policy
under truncated history ℎ𝑘, given that parties have zealousness z. Correspondingly, we
write P(ℎ𝑘; z) = ∪𝑡≤𝑡𝑘p(𝑡; ℎ𝑘, z) to denote the set of all policies attained under ℎ𝑘 up until
(and including) time 𝑡𝑘.

Note that P(ℎ𝑘, z) is compact. Suppose that P(ℎ𝑘, z) does not intersect with the basin
B (z); i.e., policy does not enter the basin at any time 𝑡 ≤ 𝑡𝑘. Then P(ℎ𝑘, z) is ‘uniformly
continuous’ in ℎ𝑘, in the following sense. For any neighbourhood of P(ℎ𝑘, z), there ex-
ists a neighbourhood of ℎ𝑘 (with respect to the usual topology on ℝ𝑘) such that for ev-
ery 𝑘-truncated history ℎ′𝑘 in this neighbourhood, P(ℎ′𝑘, z) lies within the aforementioned
neighbourhood of P(ℎ𝑘). Similarly, P(ℎ𝑘, z) is ‘pointwise continuous’ in ℎ𝑘, in the follow-
ing specific sense: for any 𝑙 ≤ 𝑘, treating 𝑡𝑙 as a function of ℎ𝑘, p(𝑡𝑙; ℎ𝑘, z) is continuous in
ℎ𝑘.

A preliminary observation is that fixing a history ℎ, if policy ever enters the basinB (z)
given zealousness z, then it enters the (larger) basinB (z′) given zealousness z′ ≤ z. Thus
the probability that policy ever enters the basin is weakly decreasing, and 𝜅 is weakly in-
creasing, in zealousness z. It remains to show that 𝜅 is strictly increasing in z.

Choose z and z′ such that z′ < z. Choose 𝜌 > 0 and 𝑐 > 0 such that 𝜅 ≥ 𝜌 for any
regular starting policy with ‖p‖ ≥ 𝑐. Choose 𝑘 ≥ 2 and a 𝑘-truncated history ℎ𝑘 with the
following properties. First, P(ℎ𝑘; z) does not intersect with B (z). Second, for some 𝑙 < 𝑘,
p(𝑡𝑙; ℎ𝑘, z) lies within the interior of B (z′). Third, at time 𝑡𝑘, complexity strictly exceeds
𝑐: that is, ‖p(𝑡𝑘; ℎ𝑘, z)‖ > 𝑐.

By continuity ofP(ℎ𝑘, z) in ℎ𝑘 (both uniform and pointwise), we can construct a neigh-
bourhood 𝐻𝑘 of ℎ𝑘 such that these three properties also hold for any truncated history
ℎ′𝑘 ∈ 𝐻𝑘. These properties, in turn, imply the following additional properties. (i) Given
that parties have zealousness z, conditional on ℎ′𝑘, the probability 𝜅 of kludge is at least 𝜌.
(ii) Given that parties have zealousness z′, conditional on ℎ′𝑘, policy enters the basinB (z′)
and thus (almost surely) becomes perfectly simple.

Since𝐻𝑘 is a neighbourhood in the usualℝ𝑘-topology, there is a strictly positive prob-
ability mass of truncated histories ℎ′𝑘 ∈ 𝐻𝑘. Coupled with properties (i) and (ii), it follows
that there is a strictly positive probability mass of (untruncated) histories where policy be-
comes kludged given zealousness z′, but does not become kludged given zealousness z. In
other words, 𝜅 is strictly increasing in z. ■

Proof of Proposition 6
(i) Let 𝐹 and 𝑓 be the marginal steady-state distribution and density of |𝑞|. Applying
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Lemma B.1b: for all 0 ≤ 𝑞 ≤ 𝑞′ < 𝑝∗+1,

𝑓(𝑞′)
𝑓(𝑞) =

𝑒𝜆
𝛬−1/𝛬
𝛾 𝑞
′
+ 𝑒−𝜆

𝛬−1/𝛬
𝛾 𝑞
′

𝑒𝜆𝛬−1/𝛬𝛾 𝑞 + 𝑒−𝜆𝛬−1/𝛬𝛾 𝑞
and
𝛥𝐹(𝛥∗𝑝)
lim𝑞→𝛥∗𝑝 𝑓(𝑞)

=
𝛾
𝜆 (𝛬𝑒
𝜆𝛬−1/𝛬𝛾 𝑞

′
+ 1𝛬𝑒
−𝜆𝛬−1/𝛬𝛾 𝑞

′
)

𝛬𝑒𝜆𝛬−1/𝛬𝛾 𝑞 + 1𝛬𝑒
−𝜆𝛬−1/𝛬𝛾 𝑞

(25)

are both increasing in 𝛬. That is, 𝐹 satisfies the monotone-likelihood ratio property in 𝛬.
Thus, 𝐹 increases in the sense of first-order stochastic-dominance as 𝛬 increases.
(ii) This follows from the observation that the dynamics of 𝑞 are independent of 𝑧+1, 𝑧−1.
(iii)–(v) If 𝑝∗−1 = −𝑝∗+1 and 𝛬 = 1, then (25) simplifies further: for all 0 ≤ 𝑞 ≤ 𝑞′ < 𝑝∗+1,

𝑓(𝑞′)
𝑓(𝑞) =1 and

𝛥𝐹 (𝑝∗+1)
lim𝑞→𝑝∗+1 𝑓(𝑞)

= 𝛾𝜆, so that (26)

𝐹(𝑞) =
{
{
{

𝑞
𝛥∗𝑝+ 𝛾𝜆
∶ 𝑝 < 𝛥∗𝑝

1 ∶ 𝑝 = 𝛥∗𝑝
. (27)

By inspection, 𝐹 increases in the sense of first-order stochastic-dominance as 𝛾 increases,
as 𝜆 decreases, and as 𝛥∗𝑝 increases. ■

Strategic Extremism
For this Appendix, we say that an equilibrium is Markov Perfect if the evolution of posi-
tion 𝑑𝑑𝑡𝑝(𝑡) depends only on the payoff-relevant state variables (𝑝(𝑡), 𝑖(𝑡)). In particular,
equilibria in focused strategies are Markov Perfect.

Lemma B.6a. If a focused strategy profile with targets (𝑝∗∗+1 , 𝑝∗∗−1 ) is a Markov Perfect Equi-
librium, then 𝑝∗∗+1 ≥ 𝑝∗+1 and 𝑝∗∗−1 ≤ 𝑝∗−1.

Proof. Let 𝑎𝑖(𝑝) be the rate at which party 𝑖 shifts policy position when he is in power and
the current policy position is𝑝. AMarkov strategy profile is described by two functions 𝑎+1
and 𝑎−1. Let 𝑉𝑖𝑗(𝑝0) be party 𝑖’s expected payoff when party 𝑗 is in power and the current
policy bias is 𝑝0. Let 𝑇𝑗 be the first time when 𝑗 loses power to the other party. Then

𝑉𝑖𝑗(𝑝) = 𝐸 [−∫
𝑇𝑗

0
𝑒−𝑟𝑖𝑡|𝑔𝑗(𝑡, 𝑝) − 𝑝∗𝑖 |𝑑𝑡 + 𝑒−𝑟𝑖𝑇𝑗𝑉𝑖,−𝑗(𝑔𝑗(𝑇𝑗, 𝑝))] ,

where 𝑔𝑗(𝑡, 𝑝) evolves according to the law of motion

𝑑𝑔𝑗
𝑑𝑡 (𝑡, 𝑝) = 𝑎𝑗(𝑔𝑗(𝑡, 𝑝)),

with initial condition 𝑔𝑗(0, 𝑝) = 𝑝. The expectation in the expression of 𝑉𝑖𝑗 is taken over
𝑇𝑗. For notational simplicity, the dependence of 𝑉 and 𝑔 on 𝑎 has been suppressed. Sub-
stituting in the probability density of𝑇𝑗 and performing a change of order of integral yields
that

𝑉𝑖𝑗(𝑝) = ∫
∞

0
[−|𝑔𝑗(𝑡, 𝑝) − 𝑝∗𝑖 | + 𝜆𝑗𝑉𝑖,−𝑗(𝑔𝑗(𝑡, 𝑝))]𝑒−(𝑟𝑖+𝜆𝑗)𝑡𝑑𝑡, for every 𝑝0 ∈ ℝ. (28)
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The Bellman equation associated with this integral is18

− |𝑝0 − 𝑝∗𝑖 | + 𝜆𝑗𝑉𝑖,−𝑗(𝑝0) − (𝑟𝑖 + 𝜆𝑗)𝑉𝑖𝑗(𝑝0) + 𝑉′𝑖𝑗(𝑝0)𝑎𝑗(𝑝0) = 0, for every 𝑝0 ∈ ℝ. (29)

By the standard theory of optimal control, the optimal control satisfies the conditions that
𝑎𝑖(𝑝) = 𝛾 if 𝑉′𝑖𝑖 (𝑝) > 0 and 𝑎𝑖(𝑝) = −𝛾 if 𝑉′𝑖𝑖 (𝑝) < 0. Now consider the special case where
(𝑎+1, 𝑎−1) is a focused strategy with targets (𝑝∗∗+1 , 𝑝∗∗−1 ) and is an MPE. Then 𝑎+1(𝑝) = 𝛾
when 𝑝 < 𝑝∗∗+1 and 𝑎−1(𝑝) = −𝛾 when 𝑝 > 𝑝∗∗−1 . Therefore, Eq. (29) implies that

𝛾𝑉′𝑖,+1(𝑝) = |𝑝 − 𝑝∗𝑖 | − 𝜆+1𝑉𝑖,−1(𝑝) + (𝑟𝑖 + 𝜆+1)𝑉𝑖,+1(𝑝), for 𝑝 < 𝑝∗∗+1 ; (30)
𝛾𝑉′𝑖,−1(𝑝) = −|𝑝 − 𝑝∗𝑖 | + 𝜆−1𝑉𝑖,−1(𝑝) − (𝑟𝑖 + 𝜆−1)𝑉𝑖,−1(𝑝), for 𝑝 > 𝑝∗∗−1 ; (31)
0 = |𝑝∗∗𝑗 − 𝑝∗𝑖 | + 𝜆𝑗𝑉𝑖,−𝑗(𝑝∗∗𝑗 ) − (𝑟𝑖 + 𝜆𝑗)𝑉𝑖𝑗(𝑝∗∗𝑗 ). (32)

In equilibrium, 𝑉′𝑖𝑖 (𝑝)𝑎𝑖(𝑝) ≥ 0 for every 𝑝. Therefore, Eq. (29) implies that

|𝑝 − 𝑝∗𝑖 | − 𝜆𝑖𝑉𝑖,−𝑖(𝑝) + (𝑟𝑖 + 𝜆𝑗)𝑉𝑖𝑖(𝑝) = 𝑉′𝑖𝑖 (𝑝)𝑎𝑖(𝑝) ≥ 0 for every 𝑝 ∈ ℝ. (33)

When 𝑝 = 𝑝∗∗𝑖 , the left hand side vanishes as 𝑎𝑖(𝑝∗∗𝑖 ) = 0. Therefore, 𝑝∗∗𝑖 is a global
minimum of the left hand side (as a function of 𝑝). Moreover, 𝑉′𝑖𝑖 (𝑝∗∗𝑖 ) = 0. (If 𝑉′𝑖𝑖 (𝑝∗∗𝑖 ) >
0, then 𝑎𝑖(𝑝∗∗𝑖 ) should be 𝛾; assuming that 𝑉′𝑖𝑖 (𝑝∗∗𝑖 ) < 0 leads to a similar contradiction.)
Differentiating the left hand side of Eq. (33) at 𝑝∗∗𝑖 yields that

𝑉′𝑖,−𝑖(𝑝∗∗𝑖 )
{{
{{
{

= −𝜆−1𝑖 , if 𝑝∗∗𝑖 < 𝑝∗𝑖 ;
∈ [−𝜆−1𝑖 , 𝜆−1𝑖 ], if 𝑝∗∗𝑖 = 𝑝∗𝑖 ;
= 𝜆−1𝑖 , if 𝑝∗∗𝑖 > 𝑝∗𝑖 .

(34)

Suppose that 𝑝∗∗+1 < 𝑝∗+1. Then 𝑔−1(𝑡, 𝑝) = max{𝑝 − 𝛾𝑡, 𝑝∗∗−1 } < 𝑝∗+1 when 𝑝 < 𝑝∗∗+1 . There-
fore,

𝑉+1,−1(𝑝) = ∫
∞

0
[−(𝑝∗+1 − 𝑔−1(𝑡, 𝑝)) + 𝜆−1𝑉+1,+1(𝑔−1(𝑡, 𝑝))]𝑒−(𝑟+1+𝜆−1)𝑡𝑑𝑡, for 𝑝 ∈ (𝑝∗∗−1 , 𝑝∗∗+1 ).

By assumption, 𝑉′+1,+1(𝑝) ≥ 0 for every 𝑝 < 𝑝∗∗+1 . Therefore, the terms in the bracket are
increasing in 𝑔−1(𝑡, 𝑝). Since 𝑔−1(𝑡, 𝑝) = max{𝑝 − 𝛾𝑡, 𝑝∗∗−1 }, 𝑔−1(𝑡, 𝑝) is non-decreasing in
𝑝. Therefore, 𝑉+1,−1(𝑝) is non-decreasing in 𝑝, contradicting the result that 𝑉′+1,−1(𝑝∗∗+1 ) =
−𝜆−1+1. The assumption that 𝑝∗∗−1 > 𝑝∗−1 leads to a similar contradiction. ■

It will be shown in Lemma B.6c that a focused strategy profile with targets (𝑝∗∗+1 , 𝑝∗∗−1 )
forms a Markov Perfect Equilibrium if and only if 𝑝∗∗𝑖 = 𝐵𝑅𝑖(𝑝∗∗−𝑖 )where the best response
functions 𝐵𝑅+1 and 𝐵𝑅−1 will be defined from the functions𝐻+1 and𝐻−1 to be introduced

18Formally, the Bellman equation can be drived as follows: replace 𝑝 in Eq. (28) with 𝑔𝑗(𝑠, 𝑝) and 𝑔𝑗(𝑡, 𝑝)
with𝑔𝑗(𝑠+𝑡, 𝑝) and rewrite Eq. (28) as𝑉𝑖𝑗(𝑔𝑗(𝑠, 𝑝))𝑒−(𝑟𝑖+𝜆𝑗)𝑠 = ∫

∞
𝑠 [−|𝑔𝑗(𝜏, 𝑝)−𝑝

∗
𝑖 |+𝜆𝑗𝑉𝑖,−𝑗(𝑔𝑗(𝜏, 𝑝))]𝑒−(𝑟𝑖+𝜆𝑗)𝜏𝑑𝜏

where 𝜏 = 𝑠 + 𝑡. Differentiating both sides with respect to 𝑠 at 𝑠 = 0 yields the Bellman equation.
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shortly. Define

𝐴𝑖 =(
𝑟𝑖 + 𝜆+1 −𝜆+1
𝜆−1 −(𝑟𝑖 + 𝜆−1)

) , for 𝑖 ∈ {−1, +1}; (35)

𝐿𝑖(𝑝) =∫
𝑝

0
𝛾−1| ̃𝑝 − 𝑝∗𝑖 |𝑒−𝛾

−1 ̃𝑝𝐴𝑖 ( 1−1 )𝑑 ̃𝑝, for 𝑖 ∈ {−1, +1}; (36)

1+1 =(
1
0 ) ; (37)

1−1 =(
0
1 ) ; (38)

𝐻+1(𝑝, 𝑝′, 𝜂) =1⊤−1𝑒𝛾
−1(𝑝−𝑝′)𝐴+1 ( −|𝑝′ − 𝑝∗+1|

|𝑝′ − 𝑝∗+1| + 𝛾𝜆−1+1𝜂
) + 1⊤−1𝑒𝛾

−1𝑝𝐴+1𝐴+1[𝐿+1(𝑝) − 𝐿+1(𝑝′)] − |𝑝 − 𝑝∗+1|;

(39)

𝐻−1(𝑝, 𝑝′, 𝜂) =1⊤+1𝑒𝛾
−1(𝑝−𝑝′)𝐴−1 ( −|𝑝

′ − 𝑝∗−1| − 𝛾𝜆−1−1𝜂
|𝑝′ − 𝑝∗−1|

) + 1⊤+1𝑒𝛾
−1𝑝𝐴−1𝐴−1[𝐿−1(𝑝) − 𝐿−1(𝑝′)] + |𝑝 − 𝑝∗−1|.

(40)

In the last two equations, 1⊤𝑖 denotes the transpose of 1𝑖.

Lemma B.6b. For every 𝑝 ≤ 𝑝∗−1,𝐻+1(𝑝, 𝑝∗+1, 0) < 0 and𝐻+1(𝑝, 𝑝′, 1) is strictly increasing
in 𝑝′ for 𝑝′ ≥ 𝑝∗+1. For every 𝑝 ≤ 𝑝∗−1 and 𝑝′ ≥ 𝑝∗+1,𝐻+1(𝑝, 𝑝′, 𝜂) is strictly increasing in 𝜂.
Finally, 𝐻+1(𝑝, 𝑝′, 1) → ∞ as 𝑝′ → ∞. Similarly, for every 𝑝 ≥ 𝑝∗+1, 𝐻−1(𝑝, 𝑝∗−1, 0) > 0
and𝐻−1(𝑝, 𝑝′, 1) is strictly increasing in 𝑝′ for 𝑝′ ≤ 𝑝∗−1. For every 𝑝 ≥ 𝑝∗+1 and 𝑝′ ≤ 𝑝∗−1,
𝐻−1(𝑝, 𝑝′, 𝜂) is strictly decreasing in 𝜂. Finally,𝐻−1(𝑝, 𝑝′, 1) → −∞ as 𝑝′ → −∞.

Proof. First perform the eigenvalue decomposition of 𝐴𝑖:

𝐴𝑖 =
1

𝜆−1(𝜇𝑖+ − 𝜇𝑖−)
( 𝜇𝑖+ + 𝑟𝑖 + 𝜆−1 𝜇𝑖− + 𝑟𝑖 + 𝜆−1𝜆−1 𝜆−1

)( 𝜇𝑖+ 𝜇𝑖−
)( 𝜆−1 −𝜇𝑖− − 𝑟𝑖 − 𝜆−1−𝜆−1 𝜇𝑖+ + 𝑟𝑖 + 𝜆−1

) ,

where
𝜇𝑖± =
1
2 [𝜆+1 − 𝜆−1 ±

√(𝜆−1 − 𝜆+1)2 + 4𝑟2𝑖 + 4(𝜆−1 + 𝜆+1)𝑟𝑖] (41)

are the eigenvalues of 𝐴𝑖. Note that 𝜇𝑖+ > 0 > 𝜇𝑖− for 𝑖 ∈ {+1, −1}. To avoid confusion, the
eigenvalue 𝜇𝑖+ when 𝑖 = +1 will be written as 𝜇++ and the same rule applies to the other
three eigenvalues as well as 𝜉𝑖± and 𝜁𝑖± to be introduced below. Using this decomposition,
𝐻𝑖 can be rewritten as

𝐻+1(𝑝, 𝑝′, 𝜂) = (𝜇++ − 𝜇+−)−1 [(𝑟+1 + 2𝜆−1 + 𝜇+−)𝜉++(𝑝, 𝑝′) − (𝑟+1 + 2𝜆−1 + 𝜇++)𝜉+−(𝑝, 𝑝′)] +

+(𝜇++ − 𝜇+−)−1 [(𝑟+1 + 𝜆−1 + 𝜇++)𝑒𝛾
−1(𝑝−𝑝′)𝜇+− − (𝑟+1 + 𝜆−1 + 𝜇+−)𝑒𝛾

−1(𝑝−𝑝′)𝜇++] 𝛾𝜆−1+1𝜂;

𝐻−1(𝑝, 𝑝′, 𝜂) = (𝜇−+ − 𝜇−−)−1 [(𝑟−1 + 2𝜆+1 − 𝜇−−)𝜉−+(𝑝, 𝑝′) − (𝑟−1 + 2𝜆+1 − 𝜇−+)𝜉−−(𝑝, 𝑝′)] +

+(𝜇−+ − 𝜇−−)−1 [(𝑟−1 + 𝜆+1 − 𝜇−+)𝑒𝛾
−1(𝑝−𝑝′)𝜇−− − (𝑟−1 + 𝜆+1 − 𝜇−−)𝑒𝛾

−1(𝑝−𝑝′)𝜇−+] 𝛾𝜆−1−1𝜂,

where

𝜉𝑖±(𝑝, 𝑝′) = 𝛾−1𝜇𝑖± ∫
𝑝

𝑝′
𝑒𝛾
−1(𝑝− ̃𝑝)𝜇𝑖± | ̃𝑝 − 𝑝∗𝑖 |𝑑 ̃𝑝 + |𝑝 − 𝑝∗𝑖 | − 𝑒𝛾

−1(𝑝−𝑝′)𝜇𝑖± |𝑝′ − 𝑝∗𝑖 |.
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Splitting the first integral at 𝑝∗𝑖 and integrating by parts yields that

𝜉+±(𝑝, 𝑝′) = 𝛾𝜇−1+1,± [1 + 𝑒𝛾
−1(𝑝−𝑝′)𝜇+± − 2𝑒𝛾

−1(𝑝−𝑝∗+1)𝜇+±] ; (42)

𝜉−±(𝑝, 𝑝′) = −𝛾𝜇−1−1,± [1 + 𝑒𝛾
−1(𝑝−𝑝′)𝜇−± − 2𝑒𝛾

−1(𝑝−𝑝∗−1)𝜇−±] . (43)

When 𝑝 ≤ 𝑝∗−1 and 𝑝′ ≥ 𝑝∗+1, 𝑒𝛾
−1(𝑝−𝑝′)𝜇+− > 𝑒𝛾

−1(𝑝−𝑝′)𝜇++ , and |𝑟+1+𝜆−1+𝜇++| > |𝑟+1+𝜆−1+
𝜇+−|, so

𝜕𝐻+1
𝜕𝜂 (𝑝, 𝑝

′, 𝜂) = (𝜇++−𝜇+−)−1 [(𝑟+1 + 𝜆−1 + 𝜇++)𝑒𝛾
−1(𝑝−𝑝′)𝜇+− − (𝑟+1 + 𝜆−1 + 𝜇+−)𝑒𝛾

−1(𝑝−𝑝′)𝜇++] 𝛾𝜆−1+1 > 0.

Therefore, 𝐻+1(𝑝, 𝑝′, 𝜂) is strictly increasing in 𝜂. A symmetric argument implies that
𝐻−1(𝑝, 𝑝′, 𝜂) is strictly decreasing in 𝜂 when 𝑝 ≥ 𝑝∗+1 and 𝑝′ ≤ 𝑝∗−1.

In what follows, fix a 𝑝 ≤ 𝑝∗−1. Then

𝜉+±(𝑝, 𝑝∗+1) = ∫
𝑝∗+1

𝑝
𝑒𝛾
−1(𝑝− ̃𝑝)𝜇+1±𝑑 ̃𝑝.

Therefore, 0 < 𝜉++(𝑝, 𝑝∗+1) < 𝜉+−(𝑝, 𝑝∗+1), and thus

𝐻+1(𝑝, 𝑝∗+1, 0) = −(𝜇++−𝜇+−)−1(𝑟+1+2𝜆−1+𝜇++)[𝜉+−(𝑝, 𝑝∗+1)−𝜉++(𝑝, 𝑝∗+1)]−𝜉++(𝑝, 𝑝∗+1) < 0.

Moreover, as 𝑝′ → ∞, 𝜉++(𝑝, 𝑝′) remains bounded while 𝜉+−(𝑝, 𝑝′) → ∞. It follows
immediately that

lim
𝑝′→∞
𝐻+1(𝑝, 𝑝′, 1) = ∞.

Taking derivative with respect to 𝑝′ on both sides of Eq. (42) yields that

𝜕𝜉+1±
𝜕𝑝′ (𝑝, 𝑝

′) = −𝑒−𝛾
−1(𝑝′−𝑝)𝜇+1± .

Therefore, for 𝑝 ≤ 𝑝∗−1 and 𝑝′ ≥ 𝑝∗+1,

𝐻+1,2(𝑝, 𝑝′, 1) = (𝜇++ − 𝜇+−)−1 (𝜁+−𝑒−𝛾
−1(𝑝′−𝑝)𝜇+− − 𝜁++𝑒−𝛾

−1(𝑝′−𝑝)𝜇++) , (44)

where𝐻+1,2 denotes the partial derivative of𝐻+1 with respect to its second argument, and

𝜁++ = (𝑟+1 + 2𝜆−1 + 𝜇+−) − (𝑟+1 + 𝜆−1 + 𝜇+−)𝜆−1+1𝜇++;
𝜁+− = (𝑟+1 + 2𝜆−1 + 𝜇++) − (𝑟+1 + 𝜆−1 + 𝜇++)𝜆−1+1𝜇+−.

Now 𝜁+− > 0 and 𝑒−𝛾
−1(𝑝′−𝑝)𝜇+− > 𝑒−𝛾

−1(𝑝′−𝑝)𝜇++ when 𝑝′ ≥ 𝑝∗+1. Moreover,

𝜁+− − 𝜁++ = (𝜇++ − 𝜇+−)[1 + 𝜆−1+ (𝑟+1 + 𝜆−1)] > 0.

Therefore, 𝜕𝐻+1𝜕𝑝′ (𝑝, 𝑝
′, 1) > 0 and thus𝐻+1(𝑝, 𝑝′, 1) is strictly increasing in 𝑝′ for 𝑝′ ≥ 𝑝∗+1

and 𝑝 ≤ 𝑝∗−1.
All the assertions about𝐻−1 can be proved with a symmetric argument. ■
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Fix a 𝑝 ≤ 𝑝∗−1. If 𝐻+1(𝑝, 𝑝∗+1, 1) ≥ 0, then there exists a unique 𝜂+1 ∈ (0, 1] such that
𝐻+1(𝑝, 𝑝∗+1, 𝜂+1) = 0. In this case, define 𝐵𝑅+1(𝑝) = 𝑝∗+1. If𝐻+1(𝑝, 𝑝∗+1, 1) < 0, then there
exists a unique 𝑝′ ∈ (𝑝∗+1,∞) such that 𝐻+1(𝑝, 𝑝′, 1) = 0. Define 𝐵𝑅+1(𝑝) = 𝑝′ in this
case. Define 𝐵𝑅−1 in a similar fashion.

Lemma B.6c. The focused strategy with targets (𝑝∗∗+1 , 𝑝∗∗−1 ) is a Markov Perfect Equilibrium
of the one-dimensional game if and only if 𝑝∗∗𝑖 = 𝐵𝑅𝑖(𝑝∗∗−𝑖 ) for 𝑖 ∈ {−1, +1}.

Proof. Let

�⃗�𝑖(𝑝) = (
𝑉𝑖,+1(𝑝)
𝑉𝑖,−1(𝑝)

) .

Then Eqs. (30) and (31) can be rewritten as

�⃗�′𝑖 (𝑝) = 𝛾−1𝐴𝑖�⃗�𝑖(𝑝) + 𝛾−1|𝑝 − 𝑝𝑖| (
1
−1 ) , for every 𝑝 ∈ (𝑝∗∗−1 , 𝑝∗∗+1 ),

where𝐴𝑖 is defined in Eq. (35). If �⃗�𝑖(𝑝′) is known, the solution to this differential equation
is

�⃗�𝑖(𝑝) = 𝑒𝛾
−1(𝑝−𝑝′)𝐴𝑖�⃗�𝑖(𝑝′) + 𝑒𝛾

−1𝑝𝐴𝑖[𝐿𝑖(𝑝) − 𝐿𝑖(𝑝′)], for every 𝑝 ∈ [𝑝∗∗−1 , 𝑝∗∗+1 ], (45)

where 𝐿𝑖 is defined in Eq. (36). Eqs. (32) (for the case where 𝑗 = 𝑖) and (34) can be
rewritten as

𝐴+1�⃗�+1(𝑝∗∗+1 ) = (
−|𝑝∗∗+1 − 𝑝∗+1|

|𝑝∗∗+1 − 𝑝∗+1| + 𝛾𝜆−1+1𝜂+1
) ;

𝐴−1�⃗�−1(𝑝∗∗−1 ) = (
−|𝑝∗∗−1 − 𝑝∗−1| − 𝛾𝜆−1−1𝜂−1
|𝑝∗∗−1 − 𝑝∗−1|

) ,

where 𝜂𝑖 ∈ [−1, 1] if 𝑝∗∗𝑖 = 𝑝∗𝑖 and 𝜂𝑖 = 1 if 𝑝∗∗𝑖 ≠ 𝑝∗𝑖 . Substituting these two equations
into Eq. (45) yields that

𝐴+1�⃗�+1(𝑝∗∗−1 ) = 𝑒𝛾
−1(𝑝∗∗−1−𝑝∗∗+1 )𝐴+1 ( −|𝑝∗∗+1 − 𝑝∗+1|

|𝑝∗∗+1 − 𝑝∗+1| + 𝛾𝜆−1+1𝜂+1
) + 𝑒𝛾

−1𝑝∗∗−1𝐴+1𝐴+1[𝐿+1(𝑝∗∗−1 ) − 𝐿+1(𝑝∗∗+1 )];

𝐴−1�⃗�−1(𝑝∗∗+1 ) = 𝑒𝛾
−1(𝑝∗∗+1−𝑝∗∗−1 )𝐴1 ( −|𝑝

∗∗
−1 − 𝑝∗−1| − 𝛾𝜆−1−1𝜂−1
|𝑝∗∗−1 − 𝑝∗−1|

) + 𝑒𝛾
−1𝑝∗∗+1𝐴−1𝐴−1[𝐿−1(𝑝∗∗+1 ) − 𝐿−1(𝑝∗∗−1 )]

Now the remaining boundary condition Eq. (32) for the case where 𝑖 ≠ 𝑗 can be rewritten
as 𝐻𝑖(𝑝∗∗−𝑖 , 𝑝∗∗𝑖 , 𝜂𝑖) = 0 for 𝑖 ∈ {−1, +1} where 𝐻𝑖 is defined in Eqs. (39) and (40). This
proves the “only if ” assertion of the lemma. Conversely, if (𝑝∗∗+1 , 𝑝∗∗−1 ) satisfies the system
that𝐻𝑖(𝑝∗∗𝑖 , 𝑝∗∗−𝑖 , 𝜂𝑖) = 0 with 𝜂𝑖 ∈ [−1, 1] when 𝑝∗∗𝑖 = 𝑝∗𝑖 and 𝜂𝑖 = 1 when 𝑝∗∗𝑖 ≠ 𝑝∗𝑖 , then
Eqs. (30)-(34) will be satisfied, implying that the focused strategy profile is an MPE. ■

Lemma B.6d. lim𝑃→∞𝐻+1(−𝑃, 𝑃, 1) = ∞, and lim𝑃→∞𝐻−1(𝑃, −𝑃, 1) = −∞.

Proof. By Eq. (42), as 𝑃 → ∞,

𝜉++(−𝑃, 𝑃) → 𝛾𝜇−1++;
𝜉+−(−𝑃, 𝑃) ∼ 𝛾𝜇−1+−𝑒−2𝛾

−1𝑃𝜇+− .
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Therefore,

𝐻+1(−𝑃, 𝑃, 1) ∼ (𝜇++ − 𝜇+−)−1[𝛾𝜆−1+1(𝑟+1 + 𝜆−1 + 𝜇++) − 𝛾𝜇−1+−(𝑟+1 + 2𝜆−1 + 𝜇++)]𝑒−2𝛾
−1𝑃𝜇+− .

Clearly, the right hand side approaches∞ as 𝑃 → ∞. A symmetric argument implies that
𝐻−1(𝑃, −𝑃, 1) → −∞ as 𝑃 → ∞. ■

Lemma B.6e. There exists a 𝑝−1,𝑐 ≤ 𝑝∗−1 such that 𝐵𝑅+1(𝑝) = 𝑝∗+1 if and only if 𝑝−1,𝑐 ≤
𝑝 ≤ 𝑝∗−1, and 𝐵𝑅′+1(𝑝) < 0 when 𝑝 < 𝑝−1,𝑐. Similarly, there exists a 𝑝+1,𝑐 ≥ 𝑝∗+1 such that
𝐵𝑅−1(𝑝) = 𝑝[∗−1 if and only if 𝑝∗+1 ≤ 𝑝 ≤ 𝑝+1,𝑐 and 𝐵𝑅′−1(𝑝) < 0 when 𝑝 > 𝑝+1,𝑐.

Proof. We only prove the assertion on 𝐵𝑅+1, as the assertion on 𝐵𝑅−1 follows from a sym-
metric argument. For every 𝑝 ≤ 𝑝∗−1, define 𝜂+1(𝑝) = 1 if 𝐵𝑅+1(𝑝) > 𝑝∗+1 and 𝜂+1(𝑝) be the
unique 𝜂 such that𝐻+1(𝑝, 𝑝∗+1, 𝜂) = 0 when 𝐵𝑅+1(𝑝) = 𝑝∗+1. Then

𝐻+1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) = 0, for every 𝑝 ≤ 𝑝∗−1. (46)

For every ̃𝑝 ∈ ℝ, 𝑝′ ≥ 𝑝∗+1 and 𝜂 ∈ [−1, 1], define

�⃗�+1( ̃𝑝; 𝑝′, 𝜂) = 𝑒𝛾
−1( ̃𝑝−𝑝′)𝐴+1𝐴−1+1 (

−|𝑝′ − 𝑝∗+1|
|𝑝′ − 𝑝∗+1| + 𝛾𝜆−1+1𝜂

) + 𝑒𝛾
−1 ̃𝑝𝐴+1[𝐿+1( ̃𝑝) − 𝐿+1(𝑝′)].

Then

�⃗�′+1( ̃𝑝; 𝑝′, 𝜂) = 𝛾−1𝐴+1�⃗�+1( ̃𝑝; 𝑝′, 𝜂) + 𝛾−1| ̃𝑝 − 𝑝∗+1| (
1
−1 ) , for every ̃𝑝 ∈ ℝ. (47)

𝐻+1(𝑝, 𝑝′, 𝜂) = 1⊤−1𝐴+1�⃗�+1(𝑝; 𝑝′, 𝜂) − |𝑝 − 𝑝∗+1|. (48)

In the first equation, �⃗�′+1 is the derivative of �⃗�+1 with respect to its first argument ( ̃𝑝 in that
equation). Therefore, for every 𝑝 < 𝑝′ the partial derivative of𝐻+1 with respect to its first
argument is

𝐻+1,1(𝑝, 𝑝′, 𝜂) = 1⊤−1𝛾−1𝐴+1 [𝐴+1�⃗�+1(𝑝; 𝑝′, 𝜂) + |𝑝 − 𝑝∗+1| (
1
−1 )] + 1

= 1 + 𝜆−11⊤+1 [𝐴+1�⃗�+1(𝑝; 𝑝′, 𝜂) + |𝑝 − 𝑝∗+1| (
1
−1 )] − (𝑟+1 + 𝜆−1)𝐻+1(𝑝, 𝑝

′, 𝜂).

Combining this result with Eq. (46) yields that

𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) = 1 + 𝜆−1𝛾−11⊤+1 [𝐴+1�⃗�+1(𝑝; 𝑝′, 𝜂) + |𝑝 − 𝑝∗+1| (
1
−1 )] . (49)

On the other hand, party +1’s value function when party −1 has target 𝑝 and party +1’s tar-
get is 𝐵𝑅+1(𝑝) satisfies the same differential equation (Bellman equation) Eq. (47) and the
sameboundary conditions at𝑝 and𝐵𝑅+1(𝑝). Therefore, on [𝑝, 𝐵𝑅+1(𝑝)], �⃗�+1(⋅; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝))
coincides with party +1’s value function. Because party +1’s flow payoff is always non-
positive,

𝑈+1,+1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) ≤ 0. (50)
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Furthermore, party +1 has the option to stay at 𝑝when receiving control at policy position
𝑝, by doing which he receives expected payoff − 1𝑟+1 |𝑝 − 𝑝

∗
+1|. (If party +1 does this, then

both parties will remain stationary at 𝑝 and the policy position will remain at 𝑝 forever.)
Therefore,

𝑈+1,+1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) ≥ −
1
𝑟+1
|𝑝 − 𝑝∗+1|. (51)

By Eq. (48), that𝐻+1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) = 0 implies that

𝜆−1𝑈+1,+1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝))−(𝑟+1+𝜆−1)𝑈+1,−1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝))−|𝑝−𝑝∗+1| = 0. (52)

Using Eq. (52) to eliminate 𝑈+1,−1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) from Eq. (49) yields that

𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) = 1+
𝜆−1(𝑟+1 + 𝜆+1 + 𝜆−1)
𝛾(𝑟+1 + 𝜆−1)

[|𝑝−𝑝∗+1|+𝑟+1𝑈+1,+1(𝑝; 𝐵𝑅+1(𝑝), 𝜂+1(𝑝))].

Combining this with Eqs. (50) and (51) yields that

1 ≤ 𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) ≤ 1 +
𝜆−1(𝑟+1 + 𝜆−1 + 𝜆+1)
𝛾(𝑟+1 + 𝜆−1)

|𝑝 − 𝑝∗+1|. (53)

In particular, 𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) > 0 for every 𝑝 ≤ 𝑝∗−1. Lemma B.6b implies that
the partial derivative of𝐻+1 with respect to its third argument (𝜂) is positive. By the Im-
plicit Function Theorem,

𝜂′+1(𝑝) = −
𝐻+1,1(𝑝, 𝑝∗+1, 𝜂+1(𝑝))
𝐻+1,3(𝑝, 𝑝∗+1, 𝜂+1(𝑝))

< 0, for every 𝑝 such that 𝐵𝑅+1(𝑝) = 𝑝∗+1.

Therefore, 𝜂+1(𝑝) is decreasing in 𝑝, and as long as 𝐵𝑅+1(𝑝) = 𝑝∗+1, 𝜂+1( ̃𝑝) will remain
below unit for every ̃𝑝 ≥ 𝑝. This proves the existence of 𝑝−1,𝑐.

Lemma B.6b also implies that𝐻+1,2(𝑝, 𝐵𝑅+1(𝑝), 𝜂+1(𝑝)) > 0. By the Implicit Function
Theorem,

𝐵𝑅′+1(𝑝) = −
𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 1)
𝐻+1,2(𝑝, 𝐵𝑅+1(𝑝), 1)

< 0, for every 𝑝 < 𝑝−1,𝑐.

■

Lemma B.6f. AMarkov Perfect equilibrium in focused strategies exists. In any such equilib-
rium, targets are weakly extreme: 𝑝∗∗+1 ≥ 𝑝∗+1 and 𝑝∗∗−1 ≤ 𝑝∗−1.

Proof. By Lemma B.6d, there exists a 𝑃 > max{|𝑝∗+1, 𝑝∗−1|} such that 𝐻+1(−𝑃, 𝑃, 1) > 0
and 𝐻−1(𝑃, −𝑃, 1) < 0. Therefore, 𝐵𝑅+1(−𝑃) < 𝑃 and 𝐵𝑅−1(𝑃) > −𝑃. By Lemma 7.4f,
𝐵𝑅+1(𝑝) < 𝑃 for every 𝑝 ∈ [−𝑃, 𝑝∗−1] and 𝐵𝑅−1(𝑝) > −𝑃 for every 𝑝 ∈ [𝑝∗+1, 𝑃]. Therefore,
the map

𝐵𝑅(𝑝+1, 𝑝−1) = (𝐵𝑅+1(𝑝−1), 𝐵𝑅−1(𝑝+1))
is a continuous map of from [𝑝∗+1, 𝑃] × [−𝑃, 𝑝∗−1] into itself. The existence of equilibrium
follows from Brouwer’s fixed-point theorem. ■

LemmaB.6g. There exists a 𝛾1 > 0 such that when 𝛾 ≤ 𝛾1, 𝐵𝑅′+1(𝑝) > −1 for every 𝑝 < 𝑝−1,𝑐
and 𝐵𝑅′−1(𝑝) > −1 for every 𝑝 > 𝑝+1,𝑐.

41



Proof. By Eq. (44), as 𝛾 → 0,

𝐻+1,2(𝑝, 𝑝′, 1) ∼ (𝜇++ − 𝜇+−)−1𝜁+−𝑒−𝛾
−1(𝑝′−𝑝)𝜇+− .

Combining this result with Eq. (53) yields that when 𝑝 < 𝑝−1,𝑐,

𝐵𝑅′+1(𝑝) = −
𝐻+1,1(𝑝, 𝐵𝑅+1(𝑝), 1)
𝐻+1,2(𝑝, 𝐵𝑅+1(𝑝), 1)

≥ −𝑀𝛾−1|𝑝 − 𝑝∗+1|𝑒𝛾
−1(𝑝∗+1−𝑝)𝜇+− ,

for some constant𝑀 > 0. (We have used the fact that 𝐵𝑅+1(𝑝) ≥ 𝑝∗+1. The right hand
side is strictly increasing in |𝑝 − 𝑝∗+1| when |𝑝 − 𝑝∗+1| > −𝛾𝜇−1+−. Therefore, when 𝛾 <
−𝜇+−(𝑝∗+1 − 𝑝∗−1),

𝐵𝑅′+1(𝑝) ≥ −𝑀𝛾−1(𝑝∗+1 − 𝑝∗−1)𝑒𝛾
−1(𝑝∗+1−𝑝∗−1)𝜇+− , for every 𝑝 < 𝑝−1,𝑐.

The limit of the right hand side as 𝛾 → 0 is zero, so 𝐵𝑅′+1(𝑝) > −1 for every 𝑝 < 𝑝−1,𝑐 when
𝛾 is below some threshold. A symmetric argument proves the assertion on 𝐵𝑅−1. ■

The following lemma is concerned with the dependence of𝐻𝑖(𝑝, 𝑝′, 𝜂) on 𝑟𝑖. Themake
the dependence explicit, the function will be written as𝐻𝑖(𝑝, 𝑝′, 𝜂; 𝑟𝑖) in the lemma and its
proof.

Lemma B.6h. Assume that 𝜆+1 ≠ 𝜆−1. There exists a 𝛾2 > 0 such that when 𝛾 ≤ 𝛾2, the
following hold:

1. There exists a 𝑟+1,𝑐 < ∞ such that𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1) > 0 for every 𝑝 ≤ 𝑝∗−1 and 𝑟+1 >
𝑟+1,𝑐; if𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1) = 0 for some𝑝 ≤ 𝑝∗−1 and 𝑟+1 ≤ 𝑟+1,𝑐, then 𝜕𝐻+1𝜕𝑟+1 (𝑝, 𝑝

∗
+1, 1; 𝑟+1) >

0.

2. There exists a 𝑟−1,𝑐 < ∞ such that 𝐻−1(𝑝, 𝑝∗−1, 𝑟−1) < 0 for every 𝑝 ≥ 𝑝∗+1 and 𝑟−1 >
𝑟−1,𝑐; if𝐻−1(𝑝, 𝑝∗−1, 1; 𝑟−1) = 0 for some𝑝 ≥ 𝑝∗+1 and 𝑟−1 ≤ 𝑟−1,𝑐, then 𝜕𝐻−1𝜕𝑟−1 (𝑝, 𝑝

∗
−1, 1; 𝑟−1) <

0.

Proof. We only prove the assertion on𝐻+1. In this proof, the dependence of 𝜇++ and 𝜇+−
on 𝑟+1 will be made explicit. By Eq. (42), 𝜉++(𝑝, 𝑝∗+1; 𝑟+1) converges to a function of 𝑝while
𝜉+−(𝑝, 𝑝∗+1) ∼ −𝛾𝜇−1+−𝑒𝛾

−1(𝑝−𝑝∗+1)𝜇+−(𝑟+1). Therefore,

(𝜇++(𝑟+1) − 𝜇+−(𝑟+1))𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1)
∼ [(𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1))𝛾𝜇+−(𝑟+1)−1 + (𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1))𝛾𝜆−1+1] 𝑒−𝛾

−1(𝑝∗+1−𝑝)𝜇+−(𝑟+1).

(As 𝑟+1 → ∞, 𝑒−𝛾
−1(𝑝∗+1−𝑝)𝜇++(𝑟+1) approaches zero faster and 𝑒−𝛾

−1(𝑝∗+1−𝑝)𝜇+−(𝑟+1) approaches
infinity faster. Therefore, the concern of 𝑟+1 → ∞ does not jeopardize the above result.)
Consequently, the sign of𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1) is the same as that of

(𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1))𝜇+−(𝑟+1)−1 + (𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1))𝜆−1+1.

Note that 𝜇+−(𝑟+1) ∼ ±𝑟+1 as 𝑟+1 → ∞. Therefore, the first term in the above expression
approaches −2 as 𝑟+1 → ∞ and the second term approaches infinity as 𝑟+1 → ∞. There-
fore, 𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1) > 0 when 𝑟+1 is above some threshold 𝑟+1,𝑐 that is independent of
𝑝.
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Now consider a finite 𝑟+1. Note that

(𝜇++ − 𝜇+−)𝐻(𝑝, 𝑝∗+1, 1; ̃𝑟+1)

= ( ̃𝑟+1 + 2𝜆−1 + 𝜇+−( ̃𝑟+1)) ∫
𝑝∗+1

𝑝
𝑒−𝛾
−1( ̃𝑝−𝑝)𝜇++( ̃𝑟+1)𝑑 ̃𝑝 − ( ̃𝑟+1 + 2𝜆−1 + 𝜇++( ̃𝑟+1)) ∫

𝑝∗+1

𝑝
𝑒−𝛾
−1( ̃𝑝−𝑝)𝜇+−( ̃𝑟+1)𝑑 ̃𝑝

+ 𝛾𝜆−1+1( ̃𝑟+1 + 𝜆−1 + 𝜇++( ̃𝑟+1))𝑒−𝛾
−1(𝑝∗+1−𝑝)𝜇+−( ̃𝑟+1) − 𝛾𝜆−1+1(𝑟+1 + 𝜆−1 + 𝜇+−( ̃𝑟+1))𝑒−𝛾

−1(𝑝∗+1−𝑝)𝜇++( ̃𝑟+1).

The dependence of the 𝜇+± on ̃𝑟+1 has been made explicit. Denote the four terms on the
right hand side by𝐴( ̃𝑟+1), −𝐵( ̃𝑟+1), 𝐶( ̃𝑟+1), −𝐷( ̃𝑟+1), respectively. The choice of signs ensures
that all the four new functions are positive. First compute the derivative of 𝜇+±( ̃𝑟+1):

𝜇′+±( ̃𝑟+1) = ±𝑚+1( ̃𝑟+1) ∶= ± [(𝜆+1 − 𝜆−1)2 + 4 ̃𝑟2+1 + 4 ̃𝑟+1(𝜆+1 + 𝜆−1)]
−1/2 (2𝑟+1 + 𝜆+1 + 𝜆−1).

(The symbol “:=” means that the right hand side is the definition of the left hand side.) It
is easy to see that𝑚+1( ̃𝑟+1) > 1. Next compute the log-derivatives of the four terms:

𝑎( ̃𝑟+1) ∶= 𝐴( ̃𝑟+1)−1𝐴′( ̃𝑟+1) =
1 − 𝑚+1( ̃𝑟+1)
̃𝑟+1 + 2𝜆−1 + 𝜇+−( ̃𝑟+1)

− 𝑚+1( ̃𝑟+1)𝜇++( ̃𝑟+1)

+ 𝛾−1(𝑝∗+1 − 𝑝)𝑚+1( ̃𝑟+1) (𝑒𝛾
−1(𝑝∗+1−𝑝)𝜇++( ̃𝑟+1) − 1)

−1
;

𝑏( ̃𝑟+1) ∶= 𝐵( ̃𝑟+1)−1𝐵′( ̃𝑟+1) =
1 + 𝑚+1( ̃𝑟+1)
̃𝑟+1 + 2𝜆−1 + 𝜇++( ̃𝑟+1)

+ 𝑚+1( ̃𝑟+1)𝜇+−( ̃𝑟+1)

+ 𝛾−1(𝑝∗+1 − 𝑝)𝑚+1( ̃𝑟+1) (1 − 𝑒𝛾
−1(𝑝∗+1−𝑝)𝜇+−( ̃𝑟+1))

−1
;

𝑐( ̃𝑟+1) ∶= 𝐶( ̃𝑟+1)−1𝐶′( ̃𝑟+1) =
1 + 𝑚+1( ̃𝑟+1)
̃𝑟+1 + 𝜆−1 + 𝜇++( ̃𝑟+1)

+ 𝛾−1𝑚+1( ̃𝑟+1)(𝑝∗+1 − 𝑝);

𝑑( ̃𝑟+1) ∶= 𝐷( ̃𝑟+1)−1𝐷′( ̃𝑟+1) =
1 − 𝑚+1( ̃𝑟+1)
̃𝑟+1 + 𝜆−1 + 𝜇+−( ̃𝑟+1)

− 𝛾−1𝑚+1( ̃𝑟+1)(𝑝∗+1 − 𝑝).

It is easy to see that 𝑑( ̃𝑟+1) < 0. By assumption, 𝐴(𝑟+1) − 𝐵(𝑟+1) + 𝐶(𝑟+1) − 𝐷(𝑟+1) = 0.
Therefore, 𝐶(𝑟+1) = 𝐵(𝑟+1) − 𝐴(𝑟+1) + 𝐷(𝑟+1) > 𝐵(𝑟+1) − 𝐴(𝑟+1). It follows that

𝜕𝐻+1
𝜕𝑟+1
(𝑝, 𝑝∗+1, 1; 𝑟+1) = 𝑎(𝑟+1)𝐴(𝑟+1) − 𝑏(𝑟+1)𝐵(𝑟+1) + 𝑐(𝑟+1)𝐶(𝑟+1) − 𝑑(𝑟+1)𝐷(𝑟+1)

> (𝑐(𝑟+1) − 𝑏(𝑟+1))𝐵(𝑟+1) − (𝑐(𝑟+1) − 𝑎(𝑟+1))𝐴(𝑟+1).

Note that

𝑐(𝑟+1) − 𝑏(𝑟+1)

= (1 + 𝑚+1(𝑟+1))𝜆−1
(𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1))(𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1))

+

+𝑚+1(𝑟+1) [−
1
𝜇+−(𝑟+1)

− 𝛾−1(𝑝∗+1 − 𝑝) (𝑒−𝛾
−1(𝑝∗+1−𝑝)𝜇+−(𝑟+1) − 1)

−1
] .

The first term is independent of 𝛾 and is bounded away from zero for 𝑟+1 ∈ [0, 𝑟+1,𝑐] as its
limit when 𝑟+1 → 0 is positive. (Here the assumption that 𝜆+1 ≠ 𝜆−1 has been used.) The
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term in the bracket is positive and strictly decreasing in 𝜇+−. Its limit when 𝜇+− → 0 is
1
2𝛾
−1(𝑝∗+1 − 𝑝). Therefore,

𝑐(𝑟+1) − 𝑏(𝑟+1) >
(1 + 𝑚+1(𝑟+1))𝜆−1

(𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1))(𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1))
+ 12𝛾
−1(𝑝∗+1 − 𝑝). (54)

A similar calculation shows that 𝑎(𝑟+1) − 𝑑(𝑟+1) > 0. Therefore,

𝑐(𝑟+1)−𝑎(𝑟+1) < 𝑐(𝑟+1)−𝑑(𝑟+1) = [
1 + 𝑚+1(𝑟+1)
𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1)

− 1 − 𝑚+1(𝑟+1)𝑟+1 + 𝜆−1 + 𝜇+−(𝑟+1)
]+2𝛾−1𝑚+1(𝑟+1)(𝑝∗+1−𝑝).

(55)
The term in the bracket is independent of 𝛾 and is bounded when 𝑟+1 ∈ [0, 𝑟+1,𝑐]. Finally,

𝐴(𝑟+1)
𝐵(𝑟+1)
= 𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1)𝑟+1 + 2𝜆−1 + 𝜇+−(𝑟+1)

|𝜇+−(𝑟+1)| (1 − 𝑒−𝛾
−1(𝑝∗+1−𝑝)𝜇++(𝑟+1))

𝜇++(𝑟+1) (𝑒−𝛾−1(𝑝
∗
+1−𝑝)𝜇+−(𝑟+1) − 1)

.

Thefirst fraction is independent of 𝛾 and is bounded for 𝑟+1 ∈ [0, 𝑟+1,𝑐]. The second fraction
is actually the ratio between two integrals:

∫𝑝
∗
+1
𝑝 𝑒
−𝛾−1( ̃𝑝−𝑝)𝜇++(𝑟+1)𝑑 ̃𝑝

∫𝑝
∗
+1
𝑝 𝑒
−𝛾−1( ̃𝑝−𝑝)𝜇+−(𝑟+1)𝑑 ̃𝑝

,

which is strictly decreasing in 𝑟+1. The limit of the ratio as 𝑟+1 → 0 is

(𝜆−1 − 𝜆+1)(𝑝∗+1 − 𝑝)
𝛾 (𝑒𝛾−1(𝑝∗+1−𝑝)(𝜆−1−𝜆+1) − 1)

,

if 𝜆−1 > 𝜆+1, and
𝛾 (1 − 𝑒−𝛾

−1(𝑝∗+1−𝑝)(𝜆+1−𝜆−1))
(𝜆+1 − 𝜆−1)(𝑝∗+1 − 𝑝)

,

if 𝜆+1 > 𝜆−1. Either way, the ratio approaches zero at least as fast as 𝛾 as 𝛾 → 0. Therefore,
there exists a 𝜂 > 0 such that

𝐴(𝑟+1)
𝐵(𝑟+1)
< 𝜂𝛾, (56)

for all 𝛾 ≤ ̄𝛾 and 𝑟+1 ≤ 𝑟+1,𝑐]. Combining Eqs. (54)-(56) yields that

𝜕𝐻+1
𝜕𝑟+1
(𝑝, 𝑝∗+1, 1; 𝑟+1) > 𝑚+1(𝑟+1)𝐵(𝑟+1) [𝐸1(𝑟+1) +

1
2𝛾
−1(𝑝∗+1 − 𝑝) − 𝜂𝛾(𝐸2(𝑟+1) + 2𝛾−1(𝑝∗+1 − 𝑝))] ,

where 𝐸1(𝑟+1) is the first term on the right hand side of Eq. (54) and 𝐸2(𝑟+1) is the term in
the bracket on the right hand side of Eq. (55). Both 𝐸1 and 𝐸2 are positive and bounded.
The above inequality holds for all 𝑟+1 ∈ [0, 𝑟+1,𝑐] and 𝑝 ≤ 𝑝∗−1. The bracket on the right
hand side of the inequality approaches infinity as 𝛾 → 0. Therefore, there exists some
̄𝛾+1 ≤ ̄𝛾 such that for 𝛾 ≤ ̄𝛾+1 and 𝑝 ≤ 𝑝∗−1, that 𝐻+1(𝑝, 𝑝∗+1, 1; 𝑟+1) = 0 implies that
𝜕𝐻+1
𝜕𝑟+1
(𝑝, 𝑝∗+1, 1; 𝑟+1) > 0. ■
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Proof of Proposition 8
Proposition 8 is a corollary of Lemma B.6f. ■

Proof of Proposition 9
Let ̄𝛾 = min{𝛾1, 𝛾2}. By Lemma B.6g, the map 𝐵𝑅 ∶ (−∞, 𝑝∗−1] × [𝑝∗+1,∞) → (−∞,𝑝∗−1] ×
[𝑝∗+1,∞) defined by 𝐵𝑅(𝑝−1, 𝑝+1) = (𝐵𝑅+1(𝑝−1), 𝐵𝑅−1(𝑝+1)) is a contraction mapping.
Therefore, it has a unique fixed point. By Lemma B.6c, the game has a unique Markov
Perfect Equilibrium in focused strategies, with the unique fixed point of 𝐵𝑅 as the par-
ties’ targets. By Lemma B.6b, 𝐵𝑅+1(𝑝−1) = 𝑝∗+1 if and only if 𝐻+1(𝑝−1, 𝑝∗+1, 1) ≥ 0 and
𝐵𝑅−1(𝑝+1) = 𝑝∗−1 if and only if 𝐻−1(𝑝+1, 𝑝∗−1, 1) < 0. By Lemma B.6h, if 𝑟+1 > 𝑟+1,𝑐 and
𝑟−1 > 𝑟−1,𝑐, then 𝐵𝑅+1(𝑝−1) = 𝑝∗+1 for every 𝑝−1 ≤ 𝑝∗−1 and 𝐵𝑅−1(𝑝+1) = 𝑝∗−1 for every
𝑝+1 ≥ 𝑝∗+1 and thus (𝑝∗+1, 𝑝∗−1) is the unique equilibrium target.

Next, we show that if in the unique equilibrium (𝑝∗∗+1 , 𝑝∗∗−1 ),𝑝∗∗+1 = 𝑝∗+1 for some 𝑟+1, then
𝑝∗∗+1 = 𝑝∗+1 when 𝑟+1 increases to any ̃𝑟+1 > 𝑟+1. By Lemma B.6h,𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; 𝑟+1) ≥ 0.
Suppose that𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; ̃𝑟+1) < 0. Then let

𝑟+1,0 = sup{𝑟 ≥ 𝑟+1 ∶ 𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; ̃𝑟) ≥ 0 for every ̃𝑟 ∈ [𝑟+1, 𝑟]}.

Then since𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; 𝑟) is continuously differentiable in 𝑟,

𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; 𝑟+1,0) = 0, and
𝜕𝐻+1
𝜕𝑟+1
(𝑝∗∗−1 , 𝑝∗+1, 1; 𝑟+1,0) ≤ 0,

contradicting Lemma B.6h. Therefore,𝐻+1(𝑝∗∗−1 , 𝑝∗+1, 1; ̃𝑟+1) ≥ 0 and thus 𝐵𝑅+1(𝑝∗∗−1 ; ̃𝑟+1) =
𝑝∗+1. Since 𝑟+1 does not affect 𝐵𝑅−1, (𝑝∗+1, 𝑝∗∗−1 ) remains the unique equilibrium. A symmet-
ric argument shows that if 𝑝∗∗−1 = 𝑝∗−1 and 𝑟−1 increases to some ̃𝑟−1 ≥ 𝑟−1, then (𝑝∗∗+1 , 𝑝∗−1)
remains the unique equilibrium.

Finally, consider the behavior of𝐻+1(𝑝, 𝑝∗+1, 1) as 𝑟+1 → 0 for an arbitrary 𝑝 ≤ 𝑝∗−1. As
shown in Lemma B.6h, when 𝛾 is sufficiently small, the sign of𝐻+1(𝑝, 𝑝∗+1, 1) is the same
as the sign of

(𝑟+1 + 2𝜆−1 + 𝜇++(𝑟+1))𝜇+−(𝑟+1)−1 + (𝑟+1 + 𝜆−1 + 𝜇++(𝑟+1))𝜆−1+1. (57)

According to Eq. (41), as 𝑟+1 → 0,

(𝜇++(𝑟+1), 𝜇+−(𝑟+1)) → {
(𝜆+1 − 𝜆−1, 0) , if 𝜆+1 > 𝜆−1;
(0, 𝜆+1 − 𝜆−1) , if 𝜆+1 < 𝜆−1.

Therefore, when 𝜆+1 > 𝜆−1, the expression in Eq. (57) approaches −∞ as 𝑟+1 → 0, and
when 𝜆+1 < 𝜆−1, the expression in Eq. (57) approaches− 2𝜆−1𝜆−1−𝜆+1 +

𝜆−1
𝜆+1

as 𝑟+1 → 0. Therefore,
for𝐻+1(𝑝, 𝑝∗+1, 1) < 0 and thus 𝐵𝑅+1(𝑝; 𝑟+1) > 𝑝∗+1 as 𝑟+1 → 0 if 𝜆+1 ≠ 𝜆−1 and 𝜆+1 > 13𝜆−1.
By a symmetric argument, 𝐵𝑅−1(𝑝; 𝑟−1) < 𝑝∗−1 as 𝑟−1 → 0 if 𝜆−1 ≠ 𝜆+1 and 𝜆−1 > 13𝜆+1. To
sum up, as long as 𝜆−1 ≠ 𝜆+1, at least one party exhibits strategic extremism when both 𝑟+1
and 𝑟−1 approach zero. ■

Ths following result calculates (asymptotically) the extent of strategic extremism by
each party, 𝛥∗∗𝑖 = |𝑝∗∗𝑖 − 𝑝∗𝑖 |.
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Proposition B.1. Suppose that 𝑟+1 = 0 and that 𝜆+1 > 𝜆−1. Then the extent of strategic
extremism by party +1 is, asymptotically for large 𝛾−1 and 𝛥∗𝑝,

𝛥∗∗+1 → max{0, 𝑝∗+1 − 𝑝∗−1 + 𝛥∗∗−1 −
𝛾

𝜆+1 − 𝜆−1
+ 𝑂(𝑒−𝛾

−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))} ;

𝛥∗∗−1 → max{0,
𝛾

𝜆+1 − 𝜆−1
log [ 4𝜆−1𝜆+1 + 𝜆−1

+ 𝑂(𝛾−1𝑒−𝛾
−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))]} ,

Proof. By Eq. (41), as 𝑟+1 and 𝑟−1 approach zero,

(𝜇𝑖+, 𝜇𝑖−) → (𝜆+1 − 𝜆−1, 0), for 𝑖 ∈ {−1, +1}.

Substituting these into the expressions of𝐻+1 and𝐻−1 in the proof of Lemma B.6b yields

(𝜇++ − 𝜇+−)𝐻+1(𝑝−1, 𝑝+1, 1) →
𝛾(𝜆+1 + 𝜆−1)
𝜆+1 − 𝜆−1

− (𝜆+1 + 𝜆−1)(2𝑝∗+1 − 𝑝−1 − 𝑝+1) + 𝑂 (𝑒−𝛾
−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1)) ,

and

(𝜇−+ − 𝜇−−)𝐻−1(𝑝+1, 𝑝−1, 1)𝑒−𝛾
−1(𝑝+1−𝑝∗−1)(𝜆+1−𝜆−1)

→ 2𝛾𝜆+1
𝜆+1 − 𝜆−1

[2 − 𝑒𝛾
−1(𝑝∗−1−𝑝−1)(𝜆+1−𝜆−1)] − 𝛾𝜆+1𝜆−1

𝑒𝛾
−1(𝑝∗−1−𝑝−1)(𝜆+1−𝜆−1) + 𝑂(𝑒−𝛾

−1(𝑝+1−𝑝∗−1)(𝜆+1−𝜆−1)) ,

as 𝑟+1, 𝑟−1 → 0 and for 𝑝+1 ≥ 𝑝∗+1 and 𝑝−1 ≤ 𝑝∗−1. By construction of the best response
functions,

𝐵𝑅+1(𝑝−1) → max{𝑝∗+1, 2𝑝∗+1 − 𝑝−1 −
𝛾

𝜆+1 − 𝜆−1
+ 𝑂(𝑒−𝛾

−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))} ;

𝐵𝑅−1(𝑝+1) → min{𝑝∗−1, 𝑝∗−1 −
𝛾

𝜆+1 − 𝜆−1
log [ 4𝜆−1𝜆+1 + 𝜆−1

+ 𝑂(𝛾−1𝑒−𝛾
−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))]} .

Therefore, in the unique equilibrium when 𝛾−1(𝑝∗+1 − 𝑝−1∗)(𝜆+1 − 𝜆−1) is sufficiently big,

𝛥∗∗+1 → max{0, 𝑝∗+1 − 𝑝∗−1 + 𝛥∗∗−1 −
𝛾

𝜆+1 − 𝜆−1
+ 𝑂(𝑒−𝛾

−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))} ;

𝛥∗∗−1 → max{0,
𝛾

𝜆+1 − 𝜆−1
log [ 4𝜆−1𝜆+1 + 𝜆−1

+ 𝑂(𝛾−1𝑒−𝛾
−1(𝑝∗+1−𝑝∗−1)(𝜆+1−𝜆−1))]} ,

as 𝑟+1, 𝑟−1 → 0. ■
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