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Abstract

We reframe an important debate between Pigou and Knight about the need for govern-

ment intervention in allocating congestible resources like roads. Knight showed that private

toll-setting would achieve an efficient allocation if some motorists commuted to work on an

alternative route that was uncongestible. Government intervention was unnecessary. Others

have shown that Knight’s laissez-faire solution fails if the other road was also congestible but

marred their demonstration by excluding private toll-setting on that road as well. We consider

a game with simultaneous toll-setting on every congestible road. When we discover that the

laissez-faire allocation is inefficient, we consider how the government can improve the private

allocation by providing motorists an actual or potential alternative to the privately-priced, con-

gestible resources. Our results apply to a wide range of allocation problems involving congestion:

simultaneous tuition setting in private (or charter) schools when students can instead attend

a public-school or simultaneous prize-setting in contests to cure diseases when researchers can

instead work at NIH. 164 words
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1 Introduction

Consider a market where N identical buyers each purchase one unit of a good from one of

n(<< N) heterogeneous producers. Producers set prices and sell imperfect substitutes. A seller can

steal a fraction of his rivals’ customers by marginally reducing his price. Buyers impose externalities

on each other in the sense that, at fixed prices, a decision by one buyer can harm other buyers.

Given the externalities and the price-setting, the sufficient conditions of the First Welfare Theorem

are clearly violated, and, from the perspective of the Arrow-Debreu model, efficiency of the market

allocation seems unlikely.

Knight (1924), one of the intellectual founders of the Chicago School, provided an example of an

economy with both price-setting and a particular class of externalities but where the decentralized

equilibrium is nonetheless efficient. Knight considered the allocation of motorists (buyers) between

a free, uncongestible road and a faster road subject to a congestion externality. Pigou (1920)

had pointed out that if each motorist simultaneously chooses his own route to work, the resulting

Nash equilibrium allocation of motorists fails to minimize the total wages lost commuting since a

motorist choosing the congestible road disregards the impact of his choice on the commute time of

fellow motorists. Pigou had suggested that efficiency could be restored through a government tax

at the “Pigouvian level” on motorists using the congestible road. In response, Knight pointed out

that government intervention is unnecessary: if ownership of the congestible road were assigned

to a self-interested private agent, he would offer to sell to each motorist one-time access to his

property and at the toll-revenue maximizing price an efficient allocation would result without any

government intervention.

Knight appeared to win the debate. Pigou dropped the congestible roads example from subse-

quent editions of his textbook, The Economics of Welfare.1 In our view, Pigou’s apparent capitu-

lation in this debate was far too hasty. The debate overstated the efficiency of the market solution

and understated the value of government intervention.

Knight’s idea has been applied in countless other contexts. If fishermen can choose whether

1Cheung (1973) (footnote 2) interprets Pigou’s withdrawal of the highway example from his opus as an attempt
to avoid further criticism by Knight.
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to fish on one of several congestible lakes or to take a job at a low fixed wage, for example, the

fishermen will allocate themselves among the lakes and wage job in a way that equalizes earnings

from each activity. But this allocation fails to maximize their aggregate earnings since no one takes

account of the negative impact his own presence has on the productivity of the others fishing on

the same lake. Instead of a lake-specific government tax to restore efficiency, however, disciples

of Knight recommend empowering one individual per lake to set a fee that must be paid to gain

access to the lake since the revenue-maximizing fee on each lake would supposedly be set equal to

the lake-specific Pigouvian tax.

Or, to take a thoroughly modern example, suppose there are N biomedical researchers, each

of whom can be deployed to discover the cure for one of n(<< N) diseases. Discovering a cure

for each disease has a specified social value as does working for NIH. This is a congestion problem

since when any researcher seeks the cure for a given disease he reduces the chance that another

person will be the first to discover that cure, an effect that the planner would take into account

but that a private agent would ignore when deciding which activity to pursue. A planner could

work out how many of the researchers should be deployed in each activity to maximize expected

social welfare and the government could set “Pigouvian prizes” to achieve this efficient allocation.

However, disciples of Knight would argue that the government is not needed; private agents would

find it in their own interest to offer Pigouvian prizes to the first discoverer of cures in exchange for

the property right to produce the resulting drug. Will competing prize setters in theory achieve

the efficient allocation?2

Following Pigou’s argument for government taxes and Knight’s rebuttal in favor of private toll

setters, a large literature has developed on both sides (Lindsey 2006). Early work by Buchanan

(1956) and Mills (1981) identified that Knight’s argument depended upon competition because in

its absence a private road supplier would have some degree of monopoly power (Edelson 1971).

Seminal papers by Vickrey (1963) and Walters (1961) formalized Pigou’s initial argument that

roads are goods that are misallocated in the absence of a market. Buchanan (1965) re-imagined

this argument by framing roads as club goods, an intellectually attractive approach which many

2Prizes are becoming an important mechanism in many areas. See Brennan et al. 2011 for a partial list.
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others followed (Ellickson, Grodal, Scotchmer and Zame (1999)).3 Following Knight’s critique, work

by Rothbard (1978), Block (1979, 1980, 1996), and Cadin and Block (1997) continued to describe

the benefits private roads would have on efficient capacity and operations. Fielding and Klein

(1993) re-imagined the private roads argument suggesting franchising as a practical mechanism.

These arguments were continued by Roth (2006), Klein and Majewski (2006), Button (2004), and

Foldvary (2006). The support of privatization of roads also stemmed from work following Coase

(1960) (Winston and Yan 2011).4

Edelson (1971) finds that Knight’s private solution is inefficient when it is extended to have

two congestible roads but his demonstration is marred by his assumption that only one of the

congestible roads has a toll setter. This formulation insures that Knight’s solution fails. Consider,

for example, the very special case of two identical roads. Since they are congestible, a planner

would put half the motorists on each of them. The identical allocation would arise if each road

had its own toll setter since Bertrand competition would result in a unique and symmetric Nash

equilibrium. Thus, in this case, Knight’s idea continues to work. However, Edelson would conclude

that Knight’s proposal would fail because, with no toll setter allowed on the second road, the

exercise of unchecked market power by the toll setter results in inefficiently low use of that road.

To analyse Knight’s private solution fairly, every congestible road should have its own independent

toll setter.

In our formulation, we assume there are n congestible roads each with its own profit-maximizing

toll setter. They set tolls simultaneously and engage in Bertrand competition to attract the N mo-

torists. We assume these motorists also have access to an uncongestible alternative with exogenous

cost c. By varying c we are able to investigate (1) the Knight-Pigou case (sufficiently low c)), (2)

the case where no motorist would ever use the uncongestible alternative (prohibitively high c) and

(3) an intermediate cases. This allows us to clarify whether competition between two, or more, toll

3The competitive equilibria of clubs is also discussed by Berglas (1976), Berglas (1981), Berglas and Pines (1981),
Boadway (1980), Berglas, Helpman and Pines (1982), Hillman and Swan (1983), Sandler and Tschirhart (1980),
Scotchmer (1994), and Scotchmer and Wooders (1987). Seegert (2014) discusses the equilibria in clubs in the context
of cities.

4There is a large literature following Coase (1960) that considers the problem of congestion as one of ill de-
fined property rights. Solutions include transferable discharge permits (Crocker 1966, Dales 1968) accounting for
concentration in the permit and product market (Malueg 1990) and transaction costs (Stavins 1995).
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setters always restores efficiency.5

We conclude that Knight’s private solution is inefficient even when there is a toll setter on every

congestible road.Toll-setting does result in efficient allocation in the limit of a large economy, an

interesting complement to Edgeworth’s (1881) result about core convergence in replica economies.

But in the more realistic circumstance of a finite economy, toll-setting will not in general achieve

efficiency.

We then go on to show how this inefficient purely private solution can be improved if the gov-

ernment offers motorists an uncongestible alternative. Our results are important for the allocation

of other congestible resources including the airline market discussed by Brueckner (2002) and Pels,

Nijkamp and Rietveld (2000) and the electrical power industry discussed by Borenstein, Bushnell

and Stoft (2000). The government can sometimes improve allocative efficiency by supplying con-

sumers with an alternative to what the private sector provides. If the congestion in the busy New

York–Washington corridor was resolved by allowing independent toll-setting on alternative con-

gestible routes, allocative efficiency could be improved if the government provided a train running

with sufficient frequency that motorists considered it a viable alternative to driving on congested

tollroads and then parking in congested lots. The express package delivery services (FedEx, UPS,

DHL, etc.) may function more efficiently if the U.S. postal service provided consumers with an

alternative, private and charter schools may function more efficiently if students have available the

public school alternative, private contests to discover disease cures function more efficiently because

contestants have the alternative of working for NIH instead, and so forth. In the body of the paper,

we confine our attention to Kinght’s original context—highway congestion. We will return to other

applications in the concluding section and the appendix.

We proceed as follows. In section 2, we introduce notation, set up the model, and show that

Knight’s response to Pigou generalizes to the case with n congestible toll roads and an outside

option inexpensive enough to be utilized. In section 3, we clarify that with no outside option (or,

equivalently, with a sufficiently unattractive outside option), the allocation need not be efficient.

5Previous studies have considered duopoly cases with congestible goods for example Braid (1986) and Van Dender
(2005).
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Section 4 contains a positive and normative analysis of duopoly toll setting as the attractiveness of

the outside option is varied exogenously; comparative statics for the generalization of this model

to oligopoly toll setting is relegated to the appendix. In section 5, we use our findings to suggest

a new role the government can play in a mixed economy: supplying an uncongestible alternative

sufficiently attractive to provide either actual or potential competition to alter the behavior of

private toll setters. In our concluding section, we consider other applications of our results.

2 Model Setup

Consider drivers trying to get from the same starting point to the same destination using one

of several roads. Assume that each motorist earns the same wage. Measure the time cost of delay

in each driver’s commute in dollars of forgone wages. Classify each road the motorists might take

as either congestible or uncongestible. On a congestible road, the commute time depends on the

number of drivers using the same road. Denote the cost per motorist to commute on road i (again

denominated in dollars) as Ai(xi) where xi is the number of drivers on road i.6 We assume below

that (1) Ai(·) is differentiable, (2) it is strictly increasing, and (3) xiAi(xi) is strictly convex for

i = 1, . . . , n. Thus as the number of drivers on road i increases so does the cost each driver pays in

lost wages.7 On an uncongestible road, the commute time is constant regardless of the number of

drivers on the road. We denote the cost in wages foregone of using the fastest of the uncongestible

roads as c; if there are slower uncongestible roads, we disregard them as motorists would never use

them.

2.1 The Planning Problem

As a benchmark, consider how a planner would allocate N motorists to the n << N congestible

and one uncongestible roads to minimize the total cost of commuting in terms of foregone wages (or,

equivalently, work hours lost commuting):
∑n

i=1 xiAi(xi) + (N −
∑n

j=i xi)c. Since the minimand

in the planning problem is strictly convex, the solution to the n first-order conditions is unique.

6Throughout we treat the number of drivers on road i (denoted x1) as a real number rather than an integer.
7We discuss the role of the uncongestible road in section 4 by exogenously varying its commute time.
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The planner can equivalently be regarded as maximizing the time saved over sending everyone on

the uncongestible, slow road: cN − {
∑
Ai(xi)xi + (N −

∑
xi)c}. To maximize the time saved, the

planner would minimize the commute time (the expression in braces). Alternatively, by using road

i instead of the uncongestible road, xi motorists save Ri(xi) = xi(c− Ai(xi)). The planner can be

regarded as maximizing the aggregate time saved by using the n congestible roads:
∑

iRi(xi).

If the planner finds it optimal to use the uncongestible road (N −
∑n

i=1 xi > 0), then he will

set the marginal cost equal across all roads:

Ai(x
s
i ) + xsiA

′
i(x

s
i ) = c where (1)

N −
n∑
i=1

xi > 0.

2.2 The Knight-Pigou Controversy

Pigou and Knight focused on the case where there are two roads, one congestible and the other

uncongestible. Pigou pointed out that the free movement of drivers across the two roads would

lead to the commute times being equal, A1(x1) = c. Since it violates equation (1), this allocation

is inefficient. The inefficiency is due to an externality each driver on the congestible road imposes

on the other drivers on the congestible road by slowing down traffic. To restore efficiency, Pigou

proposed that the government set a toll per motorist of θP1 = xs1A
′
1(x

s
1) for each motorist using the

congestible road. Faced with this “Pigouvian” tax, drivers would allocate themselves across the

two roads such that the full cost of using each road was the same: A1(x1) + θP1 = c. This would

insure efficiency since, given that θP1 = xs1A
′
1(x

s
1), the number of motorists on the two roads would

satisfy equation (1). Clearly, if there are n > 1 congestible roads, Pigou’s solution generalizes.

Knight replied that government intervention was unnecessary to achieve efficiency. If the con-

gestible road was privately owned, its owner would charge an entry fee to maximize his toll revenue

and would inadvertently induce the efficient allocation of motorists between the two roads. To

demonstrate Knight’s claim, consider the toll setter’s maximization problem:

π1(θ) = θ1x1(θ1) = x1(θ1)(c−A1(x1(θ1)) with respect to θ1. (2)
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Inadvertently the toll setter maximizes the savings in commute time from using the congestible

road, R(xi), which, as shown previously, is the social planner’s objective function. Hence, the toll

setter’s objective function is a strictly convex function which achieves its global maximum at xs1.

One intuition for Knight’s result is that for any θ1 chosen by the toll setter, the payoff of the N

motorists does not change: collectively, the motorists always lose $ Nc (in wages and tolls) and the

other toll setters receive the same payoffs. So when the toll setter varies his decision variable to

maximize his own payoff, he inadvertently maximizes the sum of everyone’s payoff.8

Knight’s argument generalizes. Suppose instead there were n roads congestible to different

degrees and one uncongestible road. Competitive toll setters will again inadvertently induce self-

interested motorists to allocate themselves in a way that minimizes the total time lost commuting.

Once again, private toll setters would set exactly the same tolls as the government tax authority.

To verify this claim, assume that every toll setter chooses the Pigouvian toll (denoted θPj )

where θPj = xsjA
′
j(x

s
j) for j = 1, . . . , n. Suppose one of the n players (player i) considers a uni-

lateral deviation. If he lowers his toll, motorists are attracted to his roadway until the increased

congestion makes it no longer more attractive than the uncongestible, toll-free road; if he raises

his toll, motorists leave his roadway until its reduced congestion makes it just as attractive as the

uncongestible, toll-free road. When he varies his toll, motorists reallocate themselves between his

road and the uncongestible road. But as long as any motorist remains on the uncongestible road,

changes in his toll affect neither (1) the number of motorists using each of the other n−1 congestible

roads nor (2) the revenue each of the n− 1 other toll setters collects.

As long as any motorist remains on the uncongestible road A(xi(θi)) + θi = c and the number

of motorists on road i just depends on the toll θi. As in Knight’s case (n = 1), xi(θi) is a strictly

decreasing function of the one variable, θi.

The toll setter i (i = 1, . . . , n) wants to maximize:

πi(θi) = θixi(θi) = xi(θi)(c−Ai(xi(θi)) with respect to θi. (3)

8The maximum point found in this section assuming a “sufficiently fast” uncongestible road is the global maximum,
which we show in Appendix A.
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Once again, the toll setter’s maximand is πi(θi) = Ri(xi(θi)), which reaches a global maximum

when the number of motorists on the congestible road is socially optimal because it is the planner’s

objective function.9

3 Assigning Property Rights Does Not Always Eliminate Ineffi-

ciency

The assignment of property rights cannot always solve this externality problem, however. Con-

sider the case in which there are two roads, both congestible. To test Knight’s proposal fairly, we

depart from Edelson and assume that there is an independent toll-setter on each road. Will com-

peting, self-interested toll setters achieve an efficient allocation without government intervention?

The planner would divide the N motorists across the two roads so that the marginal cost

of adding an additional motorist to either road was the same: A1(x
s
1) + x1A

′
1(x

s
1) = A2(x

s
2) +

xs2A
′
2(x

s
2) where xs1 + xs2 = N. In equilibrium motorists’ choose the cheaper road causing the cost

per motorist to equalize on the two roads, A1(x1) + θ1 = A2(x2) + θ2. The planner could, therefore,

achieve the efficient solution by setting the Pigouvian tolls θP1 = xs1A
′
1(x

s
1) and θP2 = xs2A

′
2(x

s
2).

What allocation would occur in the Nash equilibrium of the toll-setting game? Toll setter 1

would entertain a conjecture (θ̄2) about the toll on the other road and would maximize his revenue

(θ1x1). At an optimum, θ1 +x1(
dθ1
dx1

) = 0. That is, if he lowered his toll enough to attract one more

motorist, the gain in revenue from that one motorist (θ1) must exactly balance the loss incurred

on the x1 inframarginal motorists. To obtain an explicit expression for dθ1
dx1

, we totally differentiate

the equation indicating that the cost per customer is identical on the two roads and the equation

indicating that all motorists use one of these two roads, concluding that − dθ1
dx1

= A′1(x1) +A′2(x2).

The change in the toll required to attract one more motorist differs from the earlier case with an

uncongestible road (− dθ1
dx1

= A′1(x1)) because the motorists now must be attracted from the other

congestible road. Further as the congestion lessens on the other congestible road a deeper cut in

the toll is required to attract the same number of motorists.

9The details are the same as in the case of one congestible road and are explicitly given in Appendix A.
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Since each player’s conjecture about the toll of his rival is correct in a Nash equilibrium, the

following 4 equations must hold.:

θ∗1 = x∗1(A
′
1(x
∗
1) +A′2(x

∗
2)) (4)

θ∗2 = x∗2(A
′
1(x
∗
1) +A′2(x

∗
2))

A1(x
∗
1) + θ∗1 = A∗2(x

∗
2) + θ∗2

x∗1 + x∗2 = N.

The pair of private tolls defined in the first two equations no longer leads to the efficient allocation

of drivers (except in that artificial but instructive case where the two roads are identical).10

We have shown that private toll-setting is inefficient if there exists no uncongestible road. But

the inefficiency remains if we added an uncongestible third road provided it was sufficiently slow.

We make this statement precise in the next section.

3.1 The Uncongestible Road and “Competitive Conditions”

Therefore there is something important in having an uncongestible road fast enough to be part

of the planners solution. Its presence allows the assignment of property rights to solve the market

inefficiency. We conclude the section by illuminating this issue.

Knight’s elaboration of Pigou’s example is frequently taken as evidence that the assignment of

property rights insures efficiency. But Knight (1924, p. 591) refers to “competitive conditions” that

seem to acknowledge that it is not the mere assignment of property rights that insures efficiency.

Indeed, Knight and later followers implicitly recognize that efficiency is unlikely to result from use

of the price system unless competitive conditions prevail. But it is unclear what would constitute

competitive conditions when both roads are to some extent congestible.

10If the roads are identical, the planner would put an equal number of motorists on each of them. Since in that
case, x∗1A

′
2 (x∗2) = x∗2A

′
1(x∗1) an equal division is what would occur in the unique Nash equilibrium as well. Note that

even if the roads were identical, Edelson would have concluded that Knight’s solution is inefficient since less than
half of the motorists would choose the one road with the toll. A finding of inefficiency would occur in this case not
because Knight’s proposed solution fails but because Edelson has introduced an artifact by treating the identical
roads asymmetrically. The role of heterogeneity is discussed further in section ??.
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Suppose there is no uncongestible road but instead there are M times as many motorists and

M times as many congestible roads of each type. We know from the current section that if M = 1,

toll setters competing for the business of the motorists will not in equilibrium achieve an efficient

allocation of motorists. In the Appendix B, we consider the case where M grows without bound.

We show that in this case the incentive for toll setters to deviate unilaterally from an efficiency-

inducing toll profile disappears. This provides one concrete definition of competitive conditions.

Intuitively, for any M, the efficient number of motorists on any road of a given type does not

change. Moreover, for any profile of tolls, the number of motorists choosing a roadway of a given

type does not change. What changes is the rate at which a toll setter on a road of a given type

anticipates that he will lose customers if he marginally increases his toll. For small M, this rate

of loss is dampened since every competing road is rendered less attractive as the motorists fleeing

the increased toll add to its congestion. But as M grows, the fleeing motorists locate on so many

different roads that the additional congestion imposed on any one of them becomes negligible. In

the limit, therefore, it is as if the alternative to any individual toll setter’s road is a completely

uncongestible alternative.

A thick market provides the necessary “competitive setting” (to use Knight’s phrase) for prop-

erty rights to eliminate the inefficiency because the effect of a change in toll in one road has

increasingly less effect on the number of drivers on other roads until in the limit dxj/dθi → 0. In

this case the second term that produces the wedge in − dθ1
dx1

= A′1(x1) + A′2(x2) goes to zero and

efficiency is restored.

4 An Analysis of Duopoly Toll-Setting as the Cost of the Uncon-

gestible Road Is Varied Exogenously

4.1 Overview

The analysis in section 2.2 implicitly assumed that the exogenous value of c was so low that

some the motorists utilized the uncongestible road. It concluded that private toll-setting leads

to an efficient allocation. Define c as the highest cost for which the uncongestible road would be
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utilized in equilibrium. The analysis in section 3 implicitly assumed an exogenous value of c so

high that it is as if the uncongestible road did not exist: no motorist would use it and the common

cost of commuting on the two toll roads, including tolls, was strictly cheaper than the cost of using

the uncongestible road. It concluded that, contrary to Knight’s conclusion, private toll-setting by

duopolists is typically inefficient. Define c̄ (> c) as the lowest cost for which the equilibrium has

these characteristics. It is natural to ask what happens in between (c ∈ (c, c̄).)

In this section, we analyze the subgame-perfect equilibrium of the duopoly toll-setting game

systematically for every exogenous value of c. For c in the intermediate interval (c ∈ (c, c̄)), potential

competition from the uncongestible road leads to toll-setting equilibria where the common cost on

the two roads equals the exogenous cost c even though no motorist uses the uncongestible road. As

we show, potential competition from the uncongestible road is likely to improve the social welfare

that would be generated by the private duopoly toll-setting in the absence of such competition.

We conclude the section by reinterpreting this result: although private toll-setting will lead to

an inefficient allocation of motorists if the two roads are congestible, providing motorists with an

uncongestible government alternative to the toll roads can improve on the free-market allocation

even if the government alternative is not used.

We begin by considering the best-choice problem of a toll setter given his conjecture about the

toll on the other road. This permits us to derive the shape of a toll setter’s best-reply function.

The best reply of each toll-setter consists of three regions. For simplicity, we assume that each

congestion function is linear when drawing our figures although our conclusions do not depend

on linearity. Given this assumption, each best reply turns out to be piecewise linear, with a

strategic-complements segment and a strategic-independents segment, separated from each other

by a strategic-substitutes segment. We then show how this best reply shifts if the exogenous cost c

is larger. Finally, we show how the Nash equilibrium changes as the exogenous value of c changes.

To determine the best choice of toll setter 1 for any given c, we first determine, for every

conjectured toll on road 2, how many motorists will use road 1 for each choice of θ1, and hence the

size of toll setter 1’s revenue (θ1x1). Suppose, given the conjectured toll on road 2, that the toll

on road 1 induced some of the motorists to use each of the three roads. If toll setter 1 marginally
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reduced his toll, motorists would switch to his road until the increased congestion they cause raises

the cost of traveling on it back to c. None of these additional motorists would come from toll road 2

since the conjectured toll on that road is, by assumption, unchanged and hence congestion on that

road must also be unchanged in order for its overall cost per motorist to remain the same as on the

uncongestible road (c). Since A1(x1) + θ1 = c throughout this range, dx1/dθ1 = −1/A′1(x1) < 0.

Eventually, however, there will be no more motorists to attract from the uncongestible road. At

that point, a further reduction in the toll on road 1 will begin to attract motorists from road 2. On

the interior of this region the two congestible roads have a common cost that is strictly smaller than

the exogenous cost of commuting on the uncongestible road. Since A1(x1)+θ1 = A2(N−x1)+θ̄2 ≤ c

throughout this range, dx1/dθ1 = −1/[A′1(x1)+A′2(N−x1)] < 0. So the budget constraint is kinked

at the boundary between these two regions and has a strictly smaller magnitude to the left of the

kink than to its right. Intuitively, a given reduction in θ1 will attract fewer motorists when they

come from the other toll road rather than from the uncongestible road because the other toll road

becomes more attractive as motorists leave it and consequently the commute time on it shortens.

Assume Ai(xi) = aixi + bi, where ai and bi are exogenous constants.11 Then, with θ1 on the

horizontal axis and x1 on the vertical axis, the budget constraint will be concave and will consist

of two downward-sloping linear segments— a flatter segment when θ1 is sufficiently small and a

steeper segment when θ1 is larger. If the toll conjectured for road 2 increases, the flatter portion of

the budget constraint shifts out since the same toll on road 1 will attract more motorists from road

2 because of its conjectured toll is higher; the position of the steeper part of the budget constraint

will not shift since, for any toll on road 1, the same level of congestion is required to raise the full

cost on road 1 to c. Figure 4.1 displays in (θ1, x1) space the kinked budget constraint associated

with a given toll on road 2 and shows how the flatter piece of it would shift up if the conjectured

toll is higher.

We superimpose on these constraints toll setter 1’s isorevenue curves: θ1x1 = constant for dif-

ferent constants. They can be represented as a field of rectangular hyperbolas in the first quadrant.

11The magnitude of the slope on the steeper segment is therefore 1/ai for i = 1, 2 and on the flatter segment is
1/(a1 + a2).

13



Since the slope of an indifference curve at a point (θ1, x1) is MRS(θ1, x1) = −x1/θ1, the preferences

are homothetic and convex: any given ray from the origin cuts every indifference curve at the same

slope and a flatter ray cuts the field of indifference curves where their common slope has a smaller

magnitude. Two such rays are displayed in Figure 4.1. Ray OA cuts every indifference curve with

the slope of the flatter part of the budget constraint (−1/[A′1+A′2]). Ray OB cuts every indifference

curve with the slope of the steeper part of the budget constraint (−1/A′1). Given the shape of the

indifference curves and the budget constraint, the best choice for each conjectured toll on road 2 is

unique.

Figure 4.1: Optimal Responses (θ1, x1) to Conjectured Toll on Road 2 (θ2) for an Unchanged Cost
(c) on Uncongested Road
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Fix the cost (c) of commuting on the uncongestible road. We now examine the locus of best

choices (θ1, x1) as the toll conjectured on road 2 increases. If θ2 is very low, ray OA intersects the

budget constraint on its flatter portion. This intersection point must be optimal since the indiffer-

ence curve through it will be tangent to the flatter portion of the constraint. As the conjectured

toll 2 increases, the flatter portion of the budget constraint intersects ray OA further from the

origin. The reader can imagine lines with the same slope as AC passing through the three dots on

ray OA. Each dot would denote the optimal point since the indifference curve would be tangent to

the constraint there.

Eventually the flatter portion of the budget constraint shifts out so far that it intersects ray OA
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on its steeper portion. The intersection of ray OA and the constraint is then no longer optimal since

a northwest movement along the steeper part of the constraint is strictly preferred to point A. The

optimum in this case occurs at the kink point on the budget constraint. As the conjectured toll on

road 2 increases in this region, the best choice of toll setter 1 moves up the line segment between

point A and point B. The dots along that segment indicate the best choice as the conjectured toll

on road 2 increases. Eventually, the kink point reaches B.

If the road 2 toll is conjectured to be even higher, ray OB continues to cut the budget constraint

at point B since the position of the steeper portion of the constraint does not change. In that case,

the indifference curve through point B remains tangent to the constraint at B and point B remains

optimal.

4.2 A Toll Setter’s Best Reply

As the conjectured toll on road 2 increases and toll setter 1 best responds, the number of

motorists that patronize road 1 (x1) monotonically increases. As for the toll he sets in response

to the conjectured increase in θ2, it first increases (until point A is reached), then decreases (until

point B is reached), and finally remains constant. As a result, the best reply of toll setter 1 has

a strategic-complements segment, a strategic-substitutes segment and finally a segment reflecting

strategic independence.

We depict this best reply in Figure 4.2. If Ai(xi) for i = 1, 2 is linear, the slope on this first

segment is dθ2/dθ1 = 2. Hence, the slope on the strategic-complements segment is constant and

independent of c.12 Points on the strategic-substitutes segment of toll setter 1’s best reply must

12The flatter piece of the budget constraint satisfies A1(x1) + θ1 = A2(N − x1) + θ2. The tangency condition is
1/[A′1(x1)+A′2(x2)] = x1/θ1. Assuming the two congestion functions are linear, we can eliminate x1 using the tangency
condition and can differentiate to obtain dθ2/dθ1 = 2; the slope of the other best reply in the strategic-complements
region is dθ2/dθ1 = 1/2.
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satisfy the following equations:

x1 + x2 = N (5)

A1(x1) + θ1 = c (6)

A2(x2) + θ2 = c. (7)

If the congestion functions are linear, equations (6) and (7) will be linear and the system can be

solved, for any given c, to determine the optimal θ1 for any given θ2. Differentiating, we conclude

that on this segment dθ2/dθ1 = −A′1/A′2. Hence, the slope on this segment is also constant and is

independent of c.13 In the strategic-independence region, the best reply of toll setter 1 in θ1 − θ2

space is a vertical line.

Figure 4.2: How The Best Reply of Toll Setter 1 (BR1) Shifts as the Exogenous Cost (c) Increases
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The best reply of toll setter 2 to any conjectured θ1 can be deduced in the same manner. It

will be piecewise linear, with the piece closest to the origin reflecting strategic complements, the

next piece reflecting strategic substitutes, and the piece farthest from the origin reflecting strategic

independence. Every point on the strategic-substitutes segment of toll setter 2’s best reply must

satisfy exactly the same three equations (5)-(7). Hence, both the strategic-substitutes segment for

13The characterization of the equilibria in the linear example is done in Appendix C.
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toll setter 1 and the strategic-substitutes segment for toll setter 2 must lie on the same line in (θ1, θ2)

space. But the two segments may be disjoint or may only partially overlap. If Ai(xi) for i = 1, 2 is

linear, toll setter 2’s best reply has a slope of 1/2 in its strategic complements region, A′1/A
′
2 in its

strategic substitutes region, and a slope of zero in its strategic independence region.

4.3 Nash Equilibrium for a Given Exogenous c

The three panels of Figure 4.3 depict the two toll setter’s best-reply functions and their inter-

sections. The two functions are drawn for some c < c and therefore intersect where each function

reflects strategic independence. This is the region discussed by Knight and Pigou and in section

2.2. At the opposite extreme (c > c̄) each function would intersect in its upward-sloping region. In

this region, private sector toll-setting is inefficient as shown in section 3.

In between (c ∈ (c, c̄)), the two best-replies overlap in their strategic-substitutes region. Con-

sequently, there is a continuum of equilibria in this case. No motorist uses the uncongestible, slow

road. But if either toll setter raised his toll unilaterally even slightly, some of his customers would

switch to the uncongestible road.
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Figure 4.3: Best Replies When c Is Low, Middle and High
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The Nash equilibrium is unique in two of the three regions. If c < c, toll setter 1’s best reply

continues up vertically and toll setter 2’s best reply continues to the right horizontally so they

cannot cross a second time with one or both tolls larger. Moreover, on the interior of this region

the two strategic-substitutes segments must be disjoint. If c > c̄, the best replies intersect in their

respective strategic-complements segments. Their respective strategic-substitutes regions are again

disjoint and so there can be no other Nash equilibrium.

If c ∈ (c, c̄), the two downward-sloping pieces partially overlap. Hence, in this range, a given c

can generate a continuum of equilibria. Consider two equilibria associated with the same c. These

can be visualized as lying on line segment AB in Figure 4.1. The equilibrium with the smaller toll
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on road 1 will have more motorists on road 1, a larger toll on road 2, and fewer motorists on road 2.

In each equilibrium, the total cost on each road (inclusive of the tolls) will be c. Since the planner’s

optimization problem results in a unique number of motorists on each road, all (or all but one) of

the Nash equilibria in the strategic-substitutes region are inefficient. 14 Thus, there remains an

efficiency rationale for government intervention.

It is instructive to understand how the equilibrium changes as c varies. If c is higher, the steeper

piece of the budget constraint in Figure 4.1 will be further from the origin but will still have the

same slope. Consequently, this shifted-out steeper portion of the constraint will intersect ray OB

at a larger θ1. Moreover, the largest θ2 that generates an optimum where ray OB intersects the

budget constraint is also larger. Finally, this shifted-out portion will intersect ray OA further from

the origin.

Hence, the new strategic-complements portion coincides with the previous strategic-complements

portion but ends at a point further from the origin. The strategic-substitutes segment is therefore

further from the origin and has the same slope as before; but the kink where the reaction function

becomes vertical occurs at a larger θ1 and a larger θ2. We illustrate how the best reply of toll setter

1 shifts as c varies in Figure 4.2. For later use, we have indicated the locus of kinks (where the best

reply of toll setter 1 turns vertical) that would be traced out as c varies.

As for the best reply of toll setter 2, as c is increased, the new strategic-complements portion

also coincides with the previous strategic-complements portion but ends further from the origin.

The strategic-substitutes segment has the same slope as before and is again a segment of the same

line from which toll setter 1’s strategic substitutes piece is extracted. The kink where the reaction

function of toll setter 2 becomes horizontal occurs at a larger θ2 and a larger θ1. Figure 4.4 shows

how the equilibrium tolls change as c varies. For later use, we have indicated the locus of kinks

(where the best reply of toll setter 2 turns horizontal) that would be traced out as c varies.

14Hence, Knight’s belief that self-interested toll-setting by the private market must insure efficiency is mistaken.
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Figure 4.4: Tolls Set by Duopolists in Response to Actual or Potential Government Competition
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4.4 Nash Equilibria as c Varies

Figure 4.4 plots the Nash equilibria in (road 1 toll, road 2 toll) space for any c. For any c,

the best reply of toll setter 1 can be constructed as follows: begin at BR1 on the diagram and

follow the positively-sloped linear segment rising toward point D; when that segment intersects the

negatively-sloped segment determined by the given c, follow that segment to the northwest until

it intersects the “Locus of vertical Segments of BR1”; the remaining segment of toll setter 1’s best

reply extends vertically upward from that intersection point. Similarly, for any c, the best reply of

toll setter 2 can be constructed as follows: begin at BR2 on the diagram and follow the positively-

sloped linear segment rising toward point B; when that segment intersects the negatively-sloped

segment determined by the given c, follow that segment to the northwest until it intersects the

“Locus of Horizontal Segments of BR2”; the remaining segment of toll setter 2’s best reply extends

horizontally to the right.

For any c, the pair of tolls that forms a Nash equilibrium is at the intersection point(s) of the

two best replies. If the strategic-substitutes segment induced by c is on the origin side of point A,

then the best replies intersect once in their strategic independents region and nowhere else. If the

strategic-substitutes segment induced by c is northeast of point C, then the best replies intersect
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once in their strategic complements region and nowhere else. Finally, if the strategic substitutes

segment induced by c lies in the intermediate range between points A and C, then there is a

continuum of Nash equilibria associated with that exogenous c.

The continuum of equilibria is contained in the area ABCD, which is bounded on two sides

by the strategic-complements segment of each best reply and on the other two sides by the locus

of kinks between the strategic substitutes and strategic independence segment of each best reply.

Within area ABCD, toll pairs lying on a line of slope 1 induce subgame-perfect equilibria with an

unchanging number of motorists on each road. Two such lines are depicted in the diagram. As one

moves from point A to point F, for example, each toll setter increases his toll by the same amount

and therefore motorists have no incentive to switch to the other road. Hence, aggregate commute

time remains minimized. However, toll pairs on this line closer to point F induce equlibria where

the payoffs to motorists are reduced by exactly as much as payoffs to toll setters are increased.

We have also drawn a line parallel to AF through point C, the situation with no uncongestible

road. The allocation of motorists is unchanging in all the equilbria induced by toll pairs lying on

this line since it slopes up at 45◦. Hence they all have the same aggregate commute time as in the

equilibrium where no uncongestible road is available. Now consider any point lying strictly north

of a point on this line but still within area ABCD. Since toll 2 is higher and toll 1 is unchanged,

this equilibrium will have more motorists on road 1 and fewer on road 2 than at point C. In any

such equilibrium the aggregate commute time is even longer than if there were no uncongestible

road. This explains why some of the shaded region in Figure 4.5 lies above the higher of the two

horizontal lines.15

Figure 4.5 depicts the aggregate commute time (total man-hours lost commuting) in the effi-

cient solution and the toll-setting equilibrium as the exogenous speed on the uncongestible road

is changed. The aggregate commute time in the planning solution is strictly increasing in c until

c = c and is constant thereafter since the planner finds the uncongestible road too slow to utilize.

Aggregate commute time in the toll-setting equilibrium coincides with that in the planning solution

15In the case where both congestible roads are symmetric points A and C lie on the 45◦ line from the origin. In
this case, the efficient allocation is feasible for any c ∈ [c, c̄].
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for c ≤ c. At the other extreme (c > c̄), aggregate commute time is strictly higher than in the

planning solution.

In the intermediate region, there is a continuum of equilibria. For some c, there exists a pair of

tolls that forms a Nash equilibrium and that achieves the aggregate commute time of the planning

solution. But there are also equilibria, for other values of c with aggregate commute times even

longer than in the solution with no uncongestible road.

Figure 4.5: Commute Time as Speed on Uncongestible Road Varies
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If c is in the intermediate third interval, some novel benefits of the uncongestible road appear.

In this case, all of the motorists utilize the congestible roads, but nonetheless the total cost on the

roads is equal to that on the uncongestible road. Therefore, there is a kink in the condition toll

setters face. If they raise their toll, they push drivers onto the uncongestible road; in contrast, if

they lower their toll, they pull drivers off of the other congestible roads.

Lower Toll:

θi
∂xi
∂θi

+ xi > 0

A′i(xi)dxi + dθi = −dA′j(xj)dxi
∂xi
∂θi

=
−1

(A′i(xi) +A′j(xj))
(8)
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Raise Toll:

θi
∂xi
∂θi

+ xi < 0

A′i(xi)dxi + dθi = 0
∂xi
∂θi

=
−1

A′i(xi)
(9)

Nash Equilibrium Tolls:

θi ∈
[
A′i(xi)xi, (A

′
i(xi) +A′j(xj))xi

]
(10)

These conditions produce a set of toll-setting equilibria that can be supported when c ∈ (c, c̄).

It can easily be shown that (i) for any c ∈ (c, c̄) there always exists at least one equilibrium; (ii)

in any such equilibrium, the uncongestible road is always empty; (iii) in any such equilibrium,

the total cost to motorists equals the time cost on the uncongestible road; and (iv) for any given

c ∈ (c, c̄) there is no equilibrium such that the uncongestible road is ignored by the toll setters.

The total commute time in this scenario depends on the specific equilibrium.

To summarize, Knight’s contention that government intervention is unnecessary in congestion

problems because private toll setters can be relied upon to set access fees on the various congestible

resources at the same levels as the government is mistaken. As Figure 4.5 makes clear, his novel

contention is correct for c ≤ c and is surprising given the first welfare theorem. But it is not

generally true. In particular, it is false if c > c.

When “competitive conditions” exist assigning property rights does restore efficiency. As we

have seen, in this context “competitive conditions” mean either that there exists a sufficiently at-

tractive uncongestible option or that there exist enough competing toll setters (formalized as a

replica economy). However, there are many real-world examples of congestion where such “com-

petitive conditions” do not exist.

In these cases, assigning property rights alone will, contrary to Knight’s contention, fail to re-

store efficiency and there is a role for the government. As Pigou originally asserted, the government

could restore efficiency by imposing road-specific taxes. Our analysis suggests, however, a new type
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of government intervention: the government can provide an uncongestible option.

5 Lessons for Government Intervention

Suppose there were several congestible routes connecting Washington, D.C., and New York. If

competing private toll setters required payment for access to each route, competition between the

toll setters would not minimize aggregate time wasted commuting. Suppose, however, that the

government provided a slow but uncongestible alternative—a train. A train is uncongestible since

it can be any length. If the time between one train and the next was sufficiently short, the average

commute time on the uncongestible road would be fast enough that the toll setters would set their

tolls at the Pigouvian levels. If trains were scheduled less frequently, however, fewer commuters

would use them. Suppose the frequency was diminished just to the point where no commuter used

the train: c = c.

In this case, the toll-setting equilibrium is still efficient. What stops either toll setter from

unilaterally raising his toll is his recognition that he would lose too many motorists to the uncon-

gestible road for this to be profitable. Suppose now that the time between trains became longer so

that on average motorists would lose ∆ more in wages by taking a train. It is our hypothesis that

each toll setter would raise his toll by ∆, reasoning that he could safely do so without losing any

motorists to the uncongestible alternative provided the other toll setter reacted in the same way.

That is, the cost of using the uncongestible road serves as a focal point for each toll setter. If this

hypothesis is correct, then as we raise c from c toward c̄, the toll setters will respond by raising

their tolls in a way that maintains aggregate commute time at the efficient level. The government

would incur fewer costs since it would be running fewer trains and the motorists would pay more

in tolls to get to work at the same time as before.16 Toll setters would enjoy higher revenues.

16If the two roads are equally congestible, even a cost increase of c̄ − c can induce an efficient subgame perfect
equilibrium with each toll setter raising his toll by ∆ = c̄− c. If the roads are asymmetric, however, there will exist
a maximum c∗ < c̄ beyond which the equilibrium is necessarily inefficient. If the two toll setters raised their tolls by
c̄ − c∗, at least one of the toll setters would have an incentive to steal his rival’s customers by cutting his toll. For
example, point E on line AE in Figure ?? is not an equilibrium because toll setter 1 has an incentive to lower his toll
since his best reply passes to the left of point E. By doing so, he expects that the number of motorists he can attract
will rise by a larger percentage than the percentage reduction in his toll.

24



The potential competition from the government train would maintain efficiency. Despite this, no

commuter would ride the train.

This analysis demonstrates an attractive alternative to Pigouvian taxes, in which the govern-

ment provides an uncongestible outside option to discipline the market. With perfect information

the Pigouvian tax always achieves efficiency. However, there is disagreement about the practicality

of Pigouvian interventions: “Virtually every author points out that we do not know how to calcu-

late the ideal Pigouvian tax or subsidy levels in practice, but because the point is rather obvious

rarely is much made of it” (Baumol and Oates (1971)). Providing an uncongestible outside option

requires far less information and can produce the efficient allocation even when the outside option is

unused. Further, there are circumstances in which the government providing an outside option may

be the preferable, such as, providing citizens with a low-cost health care alternative to the higher

priced private system, engineers with a modest employment alternative at a national laboratory,

students with a public school alternative to privatized schools, or fishermen with steady alternative

employment.

6 Conclusion

Since congestion problems abound, our analysis also applies to other contexts and not merely

to highway commuting. To remind readers of this, we close with an application that is seemingly

very different.17 Suppose N medical researchers must be assigned to one of n < N independent

research projects, each of which seeks a cure for an different disease. A planner would choose the

labor allocation across these projects to maximize expected social surplus.

In reality, this labor allocation is performed by the private market. Private contests to stimulate

solutions to such problems are becoming ubiquitous. Suppose each private prize-setter offers a

monetary prize to the first researcher to make a well-specified discovery in exchange for the property

right to the discovery. Assume researchers can enter at most one such contest and each researcher

is equally likely to find a cure for a particular disease (although some diseases are more intractable

17We elaborate on this application in Appendix D.
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than others so simply assigning the same number (N/n) of researchers to every disease is not

optimal). Since a researcher’s chance of winning a prize in contest i is strictly decreasing in the

number of other researchers with whom he is competing, this is a congestion problem.

There exists a set of prizes that would induce the planner’s labor allocation. But private prize

setters would typically not choose these “Pigouvian prizes” and the Nash equilibrium is inefficient.

A unilateral increase in one prize would not affect that prize setter’s own payoff but it would attract

additional researchers and that would strictly benefit the N researchers and would strictly injure

each of the n− 1 other prize setters.18 Just as toll setters would tend to set their tolls inefficiently

high in the absence of government intervention, prize setters would tend to set their tolls inefficiently

low. The toll setters would exercise their oligopoly power; the prize setters would exercise their

oligopsony power. In such cases, government intervention might improve on the private market

allocation.

The government can eliminate or at least reduce the exercise of market power by providing

an alternative to the private market. If the government also has a task requiring scientists with

similar training and it is of sufficient social value that a planner would also assign some of the N

researchers to it, then (by an extension of Knight’s finding about the effect of a sufficiently fast,

uncongestible road) the Nash equilibrium of prize-setting would be efficient. But even if the social

value of the task were so low that the planner would assign no labor to it, the government can still

improve on the laissez-faire allocation. The potential competition created by the presence of the

government alternative (even if the wage is so low that the vacancy is never filled) can raise expected

social surplus compared to the laissez-faire solution and might even duplicate the planner’s labor

allocation.

University of Michigan

University of Utah.

18These effects would only be offsetting when the probability function for winning is the same at every contest and
so it is optimal for every contest to have the identical number of researchers.
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Appendix A Global Maximum With “Sufficiently Fast” Uncon-
gestible Road

The assumption that it is never advantageous for the toll setter to drive every motorist away from
his road or attract every the motorist away from the uncongestible road holds for an uncongetible
road that is “sufficiently fast.” In section 4 the optimization is done in generality for all values of the
uncongestible road. The maximum point found assuming a “sufficiently fast” uncongestible road
is the global maximum. To show this consider the first order condition in the case where there are
no motorists on the uncongestible road. In this case ∂x1/∂θ1 = −1/(A′1(x1(θ1)) + A′2(x2(θ2))) >
−1/A′1(x1(θ1)). Therefore given the necessary condition for a maximum x1 + θ1∂x1/∂θ1 = 0 it is
straightforward to show that a global deviation such that the uncongestible road is empty fails the
necessary condition for a maximum, specifically xD1 + θD1 ∂x1/∂θ1 > 0.

xD1 > xs1 Def. deviation

xs1 = θs1/(A
′
1(x1(θ

s
1)) FOC

θs1/(A
′
1(x1(θ

s
1)) > θD1 /A

′
1(x1(θ1)) know θD1 < θs1

θD1 /A
′
1(x

s
1(θ1)) > θD1 /(A

′
1(x

D
1 (θ1)) +A′2(x

D
2 (θ2))) know A′1(x1(θ1)) +A′2(x2(θ2) > A′1(x1(θ

s
1)

⇒ xD1 > θD1 /(A
′
1(x

D
1 (θ1)) +A′2(x

D
2 (θ2))) ⇒ xD1 + θD1 ∂x1/∂θ1 > 0

Appendix B Efficiency Restored in the Toll-Setting Game under
“Competitive Conditions”

Suppose instead of N motorists spread across n motorways congestible to different extents there
are MN motorists spread across n types of congestible roads, with M identical roads of each type.
We wish to show that as M → ∞, the efficient allocation of motorists can be supported as a
subgame-perfect equilibrium of the toll-setting game.19

The efficient solution in this case uniquely solves the following n+ 1 equations defining {xsi}ni=1

and λs : Ai(x
s
i ) + xsiA

′
i(x

s
i ) = λs, i = 1, . . . , n and

∑n
i=1 x

s
i = N, where λs denotes the value of the

Lagrangean multiplier at the social optimum.
Define the Pigouvian tolls as θPi = xsiA

′
i(x

s
i ) for i = 1, . . . , n. Suppose at the first stage of the

two-stage game every player but one type i chooses the Pigouvian toll while this one remaining
type i player chooses some θi ∈ [θ min

i , θ max
i ]. Define these minimum and maximum tolls follows:

θmax
1 = µ−A1(0) and θmin

1 = µ−A1(MN) where µ in the first condition is equal to min{Aj(0) +
θPj } and in the second equal to the common cost given by Aj(xj)+θPj . Then in the Nash equilibrium
of the second stage, the motorists will allocate themselves so the full cost (the toll plus the lost
wages) is the same on every motorway. Denote this common cost as µ. Then the following n + 2

19Seegert (2011) demonstrates the efficiency of this system in the limiting case in the context of a system of cities.
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equations define the n+ 2 variables xdi , {xj}nj=1, and µ

Ai(x
d
i ) + θi = µ (B.1)

Aj(xj) + xsjA
′
j(x

s
j) = µ for j = 1, . . . n (B.2)

xdi + (M − 1)xi +M
∑
j 6=i

xj = N. (B.3)

Anticipating these second-stage responses and conjecturing that the other tolls setters will
maintain their tolls at the Pigouvian level, the deviating type i player can set any toll θi in the
closed interval. A marginal increase in his toll would then cause his profits to increase at the
following rate:

∂πi
∂θi

=
∂
(
θix

d
i (θi)

)
∂θi

= xdi + θi
∂xi
∂θi

. (B.4)

Let θi = εi + θPi = εi + xsiA
′
i(x

s
i ). Differentiating (7) we obtain:

∂xi
∂θi

=

(
∂µ

∂θi
− 1

)
1

A′i(x
d
i )
. (B.5)

Substituting for θi and recognizing that as M →∞, ∂µ
∂θi
→ 0, we conclude that

∂πi
∂θi

=
xdiA

′
i(x

d
i )− xsiA′i(xsi )− εi
A′i(x

d
i )

(B.6)

If ε = 0, then the toll under consideration is the Pigouvian toll. By definition, xdi = xsi . So
the expression in (12) equals zero. If ε > 0, then the toll exceeds the Pigouvian level (θi > θPi ),
less than the efficient number of motorists take the route (xdi < xsi ), and the expression in (12)
is strictly negative. Finally, if ε < 0, then the toll is smaller than the Pigouvian level (θi < θPi ),
more than the efficient number of motorists take the route (xdi > xsi ), and the expression in (12) is
strictly positive.

It follows that for any toll θi in the closed interval, the payoff of player i is single-peaked at the
Pigouvian toll. Moreover, any toll so high that no one uses the motorway or so low that raising it
would not alter the number of motorists using his route is clearly suboptimal for toll setter i. But
these arguments apply to every toll setter. Hence, in the limit no toll setter has a strict incentive
to deviate unilaterally from the profile of Pigouvian tolls even when there is no uncongestible
motorway.

Appendix C Linear Example

Suppose the congestion on the roads are given by Ai(xi) = aixi+bi. The best response functions
are piecewise linear consisting of three parts; strategic complements, strategic substitutes, and
strategic independence. Figure 4.2 demonstrates the optimal choices for toll setter 1 as the toll on
the road 2 changes. When the toll on road 2 is low the optimal point is given by the tangency
point between the iso-toll revenue curve and the constraint if all motorists prefer two toll roads.
In this range the best reply function for toll 1 is a strategic complement to the toll on road 2.
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When the toll on road 2 is an intermediate level, such that in Figure 4.2 the flatter constraint is
between the two depicted, the optimal toll on road 1 is given by the kink point of the steeper and
flatter constraints. In this range the best reply function for toll 1 is a strategic substitute with the
toll on road 2. Finally, if the toll on road 2 is large, such that the flatter constraint is above the
constraints drawn in Figure 4.2, then the optimal point is given by point B, the tangency between
the iso-toll revenue on road 1 and the steeper constraint characterized by all motorists indifferent
between toll road 1 and the uncongestible road. In this range the best reply function is strategically
independent of the toll on road 2.

Deriving Strategic Complements: Low Values θ2.

max θ1x1

subject to a1x1 + b1 + θ1 = a2x2 + b2 + θ2 N = x1 + x2

First-order condition

−2θ1
a1 + a2

+
a2N

a1 + a2
+
b2θ2 − b1
a1 + a2

= 0

θBR1 =
a2N + b2 + θ2 − b1

2

θ2 = 2θBR1 + b1 − a2N − b2
Deriving Strategic Substitutes: Intermediate Values θ2.
The best reply function for intermediate values of θ2 is characterized by the point at which

motorists are indifferent between being on toll road 1, toll road 2, and the uncongestible road but
all motorists are on the two toll roads.

a1x1 + b1 + θ1 = a2x2 + b2 + θ2

a1x1 + b1 + θ1 = c

N = x1 + x2

Combining these three constraints produces:

θ2c
a1 + a2
a1

− b1
a2
a1
− a2
a1
θ1 − b2 − a2N.

In this range the best reply function for toll road 1 and toll road 2 are characterized by the
same three conditions, thus lie on the same line. The best reply functions of toll road 1 and toll
road 2 can overlap or be disjoint in this region as depicted in Figure 4.4.

Deriving Strategic Independence: High Values θ2.
The best reply function in this region is characterized by point B in Figure 4.2. The best reply

function can be derived from maximizing toll revenue given the constraint, a1x1 + b1 +θ1 = c. This
leads to the best reply function,
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θBR1 =
c− b1

2
.

Reaction Function Road 1
Strategic Substitutes: θ2 = ca1+a2a1

− b1 a2a1 −
a2
a1
θ1 − b2 − a2N

Strategic Complements: θ2 = 2θ1 + b1 − a2N − b2
Strategic Independence: θ1 = c−b1

2

Reaction Function Road 2
Strategic Substitutes: θ2 = ca1+a2a1

− b1 a2a1 −
a2
a1
θ1 − b2 − a2N

Strategic Complements: θ2 = a1N+b1−b2+θ1
2

Strategic Independence: θ2 = c−b2
2 .

The strategic substitutes line is the same for both road 1 and road 2, but are sometimes disjoint
and sometimes overlapping. The characterization of the best response functions are completed
by finding the kink points between the three linear pieces. The kink point between the strategic
substitutes and complement regions is found by their intersection. Similarly, the kink point between
the strategic substitutes and independence regions is found by their intersection.

Kink Point 1: Strategic Substitutes and Complements

Road 1: θ1 = (c− b1) a1+a22a1+a2
, θ2 = 2a1+2a2

2a1+a2
c− a2

2a1+a2
b1 − a2N − b2

Road 2: θ1 = 2c a1+a2a1+2a2
− b1 − b2 a1

a1+2a2
− a1N , θ2 = (c− b2) a1+a2a1+2a2

Kink Point 2: Strategic Substitutes and Independence

Road 1 Point: θ1 = c−b1
2 , θ2 = 2a1+a2

2a1
c− a2

2a1
b1 − b2 − a2N

Road 1 Line: θ2 = 2a1+a2
a1

θ1 + b1 − b2 − a2N
Road 2 Point: θ1 = a1+2a2

2a2
c− b1 − a1N − a1

2a2
b2, θ2 = c−b2

2
Road 2 Line: θ2 = a2

a1+2a2
θ1 − a2

a1+2a2
b2 + a2

a1+2a2
b1 + a1a2

a1+2a2
N

Equilibria are characterized by one of three regimes. The first regime is duopoly when the best
response functions intersect at in the region of strategic complements, when c is high. The second,
is the Knight-Pigou regime when the best response functions intersect in the region of strategic
independence, when c is low. Finally, the phantom road regime exists when the best response
functions partially overlap in the strategic substitutes region, when c is an intermediate value. In
the first two regimes the Nash equilibrium is unique and in the third there exists a continuum of
equilibria.

The lower threshold value, c, is found by intersecting the lines that characterize the kink point
between the strategic substitutes and independence and the strategic independence value for road
1. The higher threshold value, c̄, is found by intersecting the kink point 1 conditions. Together
these two thresholds in combination with the value of c determine which of the three regimes the
system is in.

Intersection Lines Characterizing Kink Point 2:

θ1 = (b2 − b1) a1
a1+a2

+
2a22a1

(a1+a2)2
N

θ1 = c−b1
2

c = (b2 − b1) 2a1
a1+a2

+
4a22a1

(a1+a2)2
N + b1
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Intersection Lines Characterizing Strategic Complements
θ2 = 2θ1 + b1 − a2N − b2
θ2 = a1N+b1−b2+θ1

2

c̄ = b1(a1+2a2)+b2(2a1+a2)
3(a1+a2)

+ (2a1+a2)(a1+2a2)
3(a1+a2)

N

Appendix D The Case of Prize-Setters Competing for N Biomed-
ical Researchers

Appendix D.1 Overview

Suppose that there are n projects to develop vaccines. Any of N > n biomedical researchers may
make a breakthrough if he works on one of the vaccine projects. A breakthrough on vaccine project
i has social value Vi. If xi biomedical researchers work on problem i, there is probability Pi(xi)
that the problem will be solved, where Pi(·) is twice differentiable, strictly increasing, strictly
concave, exogenous function bounded above by 1. Assume a biomedical researcher works on at
most one problem. If no biomedical researcher works on problem i, it will not be solved: Pi(0) = 0.
Assume that a planner can assign biomedical researchers to any of these n projects or to the
National Institutes of Health (NIH). At NIH, the social payoff per biomedical researcher is only
c. For simplicity, assume that the Inada condition holds P ′i (0) = ∞. This is sufficient to insure
that having some biomedical researchers on every project i is socially optimal whether or not
some researchers work at NIH. As more biomedical researchers are assigned to any given project,
diminishing returns sets in. If the expected marginal social value of adding another researcher to
any project is c and fewer than N researchers have been assigned, the remainder are assigned to
NIH. If more than N researchers are required to drive the expected marginal social value down to
c, then it is optimal to assign no one to NIH.20

We refer to the allocation of biomedical researchers to the n problems that maximizes the
expected social payoff,

∑n
i=1 ViPi(xi) + c(N −

∑n
i=1 xi) subject to N −

∑n
i=1 xi ≥ 0, as the socially

optimal solution (denoted xsi ). The first-order conditions for this Kuhn-Tucker problem are:

xi ≥ 0, ViP i(xi)− (c+ λ) ≤ 0, with complementary slackness (D.1)

λ ≥ 0, N −
n∑
i=1

xi ≥ 0, with complementary slackness. (D.2)

Given condition (D.1), the Inada assumption insures that xi > 0. Hence, there are two cases.
In the first, some researchers work as NIH and, since the constraint does not bind, condition (D.2)
implies that λ = 0. Therefore, ViPi(xi) = c. In the second, no researchers work at NIH and since
the constraint binds, the multiplier is weakly positive. Therefore, ViPi(xi) = c + λ ≥ c for i =
1, . . . n. Note that in either case, it is socially optimal for the expected marginal social benefit to
be equal across projects. Otherwise, a marginal expected social gain could be achieved by moving
a researcher from a project with a strictly lower marginal expected social benefit to one with a
strictly higher marginal expected social benefit.The maximand in the planning problem can also

20For additional background see Salant (2007), Kremer and Glennerster (2004), Brennan, Macauley and Whitefoot
(2011) and (n.d.).
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be written as maximizing the social surplus on each project,

n∑
i=1

xi

(
Pi(xi)

xi
Vi − c

)
, (D.3)

relative to assigning the researcher to work at NIH.
Now suppose there are n independent prize-setters, one for each technological problem, that

sets a prize Wi to the first biomedical researcher to solve problem i. Each prize setter anticipates
being able to extract the full social surplus from any discovery but must pay the researcher who
made the breakthrough in project i, Wi. Hence the expected payoff of a private prize-setter is
Pi(xi)(Vi − Wi).

21 In the first stage, prize-setter i sets the reward Wi and in the second stage
biomedical researchers decide which project to work on. Assume that each biomedical researcher
working on problem i attempts to solve it by himself and is as likely to solve it as anyone else
working on that problem. Hence, his probability of winning the prize is Pi(xi)/xi. We denote
this function as Ai(xi). Given our assumptions about Pi(·), each Ai(·) is differentiable and strictly
decreasing, with xiAi(xi) strictly concave for i = 1, . . . , n.

In the second stage equilibrium, researchers allocate themselves so that the expected payoff is
the same across all projects being worked on. There are two possible conditions, one in which some
biomedical researchers work for NIH,

WiAi(xi) = c, (D.4)

and one in which no biomedical researchers work for NIH,

WiAi(xi) = WjAj(xj). (D.5)

The key difference with these constraints is the responsiveness of biomedical researchers to
changes in a given prize. For the first constraint, when some biomedical researchers work for NIH
the responsiveness of biomedical researchers to an increase in Wi is increasing but depends only on
the total number of researchers working on that one project:

dxi
dWi

=
−Ai(xi)
WiA′i(xi)

> 0. (D.6)

This follow because, as the prize-setter increases his prize, it attracts biomedical researchers away
from NIH until the additional congestion on that project offsets the increased prize level; the
number of researchers at the other n− 1 projects does not change.

In contrast, the responsiveness of biomedical researchers when no biomedical researchers work
for NIH depends not only on the congestion in the prize setter’s project but also on the congestion
at the other projects,

dxi
dWi

=
−Ai(xi)

WiA′i(xi) +WjA′j(xj)
> 0. (D.7)

As prize-setter i increases his prize, he attracts biomedical researchers from the other projects,

21The assumption of full surplus extraction by the prize setter is not essential. Any increasing monotonic trans-
formation of his objective function would leave his best choice unaffected. For example, instead of payoff Ji(Wi) he
could receive (1− τi)Ji(Wi)− ki where τi ∈ (0, 1) is a tax imposed on the net proceeds of the prize setter and ki is a
payment he must make even if his contest has no winner.
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reducing their congestion and making them more attractive. Consequently, when no researchers
work at NIH, a unit increase in the prize at project i attracts fewer researchers than when they are
drawn from the NIH workforce.

Appendix D.2 Comparing the Efficient and Market Allocation of Researchers

Just as the government can set a highway-specific Pigouvian toll on each congestible road in such
a way that motorists will allocate themselves to solve the planning problem so too the government
can set project-specific prizes so that researchers will allocate themselves efficiently. That is, the
set of socially efficient prizes is defined as the set that in the second stage induces researchers to
move across projects subject to either equation (D.4) or (D.5) such that the first-order conditions
for the social optimum ViP

′
i (x

s
i ) = c or ViP

′
i (x

s
i ) = VjP

′
j(x

s
j) hold, respectively. The set of socially

efficient prizes, in both cases, is then given by W s
i = P ′i (x

s
i )Vi/Ai(x

s
i ).

We ask whether a self-interested prize-setter would have any incentive to unilaterally deviate
from the government’s solution of offering the socially optimal prize W s

i in contest i and attracting
xsi researchers as a result. Is the government needed as Pigou initially contended in the case of
roads or, as Knight contended, is the government unnecessary in a world where self-interested
independent agents set the prizes?

Consider first the case where some biomedical researchers work for NIH. In this case, the second
stage constraint is given by equation (D.4) and the responsiveness of researchers to changes in the
prize is given by equation (D.6).

Prize setter i earns profit πi = (Vi −Wi)Pi(xi(Wi)) if he chooses Wi. Hence

∂πi/∂Wi = −Pi(xi) + (Vi −Wi)P
′
i (xi)∂xi/∂Wi (D.8)

=
1

WiA′i(xi)
{−Pi(xi)WiA

′
i(xi)−Ai(xi)ViP ′i (xi) +WiAi(xi)P

′
i (xi)} (D.9)

=
1

WiA′i(xi)
{−xiAi(xi)WiA

′
i(xi)−Ai(xi)ViP ′i (xi)

+WiAi(xi)[Ai(xi) + xiA
′
i(xi)]} (D.10)

=
Ai(xi)

WiA′i(xi)
{−xiWiA

′
i(xi)− ViP ′i (xi) +WiAi(xi) +WixiA

′
i(xi)}, (D.11)

where (D.8) is obtained by differentiating to determine the expected private gain from marginally
increasing the prize, (D.9) is obtained by substituting in the researcher response in equation (D.6),
(D.10) is obtained by taking account of the fact that Pi(x) = xiAi(x), and (D.11) is obtained by

factoring out Ai(xi). At xsi ,W
s
i =

P ′i (x
s
i )Vi

Ai(xsi )
, this marginal gain from deviating from the Pigouvian

prize is:
Ai(x

s
i )

A′i(x
s
i )

{
−ViP ′i (xsi ) +Ai(x

s
i )
P ′i (x

s
i )Vi

Ai(xsi )

}
= 0. (D.12)

Hence, whenever it is socially optimal for some researchers to work at NIH, no prize setter
would have any private incentive to deviate unilaterally from the socially optimal prize in his
contest provided the other prize setters adopted the socially optimal prizes in their respective
contests. Hence, the profile of socially efficient prizes forms a Nash equilibrium in the first stage
of the two-stage game whenever it is socially efficient for some researchers to work at NIH. This is
the counterpart in contests to Knight’s conclusion about congestible roads.
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To understand this result, start with the profit-maximizing prize-setter’s objective function
Pi(xi)(Vi −Wi) and replace Wi with c/Ai(xi) from the second stage constraint, given by equation
(D.4). With some rearranging the profit-maximizing prize-setter’s objective function can be written
as xi(Ai(xi)Vi − c) = ViPi(xi)− cxi which is the social planner’s maximand in equation (D.3) and
when maximized by each independent prize-setter yields the socially efficient set of prizes.

Now consider the case where no biomedical researcher works for NIH. In this case, the second
stage constraint is given by equation (D.5) and the responsiveness of researchers to changes in the
prize is given by equation (D.7). Researchers are less responsive to an increase in the prize since as
they are attracted away from the other projects, these contests become less congested. To shorten
notation, denote by Z the fraction 1

WiA′i(xi)+WjA′j(xj)

∂πi/∂Wi = −Pi(xi) + (Vi −Wi)P
′
i (xi)∂xi/∂Wi (D.13)

= Z{−Pi(xi)(WiA
′
i(xi) +WjA

′
j(xj))−Ai(xi)P ′i (xi)(Vi −Wi)} (D.14)

= Ai(xi)Z{−xiWiA
′
i(xi)− xiA′j(xj)Wj − ViP ′i (xi) + P ′i (xi)Wi} (D.15)

= Ai(xi)Z{−Wi[xiA
′
i(xi)− xiA′i(xi)−Ai(xi)]− xiA′j(xj)Wj − ViP ′i (xi)} (D.16)

= Ai(xi)Z{WiAi(xi)− xiA′j(xj)Wj − ViP ′i (xi)}, (D.17)

where (D.13) is obtained by differentiating to determine the expected private gain from marginally
increasing the prize, (D.14) is obtained by substituting in the researcher response in equation (D.7),
and (D.15) and (D.16) are obtained by taking account of the fact that Pi(x) = xiAi(x).

Evaluated at xsi ,W
s
i =

P ′i (x
s)i)Vi

Ai(xsi )
, this expected marginal gain from deviating from the Pigouvian

prize is:

Ai(x
s
i )Z

{
−xsiA′j(xsj)P ′j(xsj)Vj

Aj(xsj)
− ViP ′i (xsi ) +

Ai(x
s
i )P

′
i (x

s
i )Vi

Ai(xsi )

}
< 0, (D.18)

since the first factor is negative and the second factor (in braces) is strictly positive.
Hence, along the constraint where no researcher would work at NIH in the socially efficient

solution, every private prize setter would have an incentive to reduce unilaterally the socially
optimal prize in his contest if he conjectured that the other prize setters had adopted the socially
optimal prizes in their respective contests. Hence, the profile of socially efficient prizes cannot form
a Nash equilibrium in the first stage of the two-stage game in this case. Private prize setting will
be inefficient.

We have found one case in which independent profit-maximizing prize-setters achieve the socially
efficient allocation of biomedical researchers and another case in which they do not, depending on
whether or not biomedical researchers worked at NIH.

So far, this element has been taken as exogenous. In what follows, however, we derive the best
response of each prize setter as a function of the exogenous variable c. As we will see, there are
not only the two regions we have discussed but an intermediate region where efficient equilibria
are possible even though no researchers work at NIH. For simplicity we limit ourselves to the case
where biomedical researchers can work at one of two projects or at NIH.
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Appendix D.3 Endogenous Determination of Whether Researchers Work at
NIH

First, consider that the prize for project 1, given a conjectured prize for project 2, induces
biomedical researchers to work at both projects and NIH. If the prize-setter for project 1 marginally
increases the prize biomedical researchers will switch to working on project 1 until the expected
benefit of working on project 1 decreased to equal the benefit of working at NIH. All of the additional
biomedical researchers working on project 1 previously worked at NIH, since the conjectured prize
for project 2 remained unchanged and thus the probability the project is solved must also remain
unchanged for the expected benefit to remain equal to the benefit of working at NIH. The case
described here is exactly the case governed by equations (D.4) and (D.6) discussed above.

Eventually, however, as the prize for project 1 increases there will be no biomedical researchers
left working at NIH. At that point, raising the prize on project 1 must cause researchers to switch
from project 2. On the interior of this region the two projects have a common expected benefit for
the biomedical researchers which is strictly higher than the benefit of working at NIH. This region
is governed by equations (D.5) and (D.7) where researchers are less responsive to changes in the
prize on project 1 than they were in the region governed by equations (D.4) and (D.6). Therefore
the constraint is kinked at the boundary between these two regions.

Figure D.1 graphs the constraint for when some biomedical researchers work at NIH (black
solid line) and two constraints when no biomedical researchers work at NIH for two different levels
of the prize for project 2 (green solid line). The further southeast of the two constraints when no
biomedical researchers work at NIH corresponds to a larger prize for project 2. The constraint
when some biomedical researchers work at NIH is steeper than the constraints if no biomedical
researchers work at NIH because the biomedical researchers are more responsive if the change in
researchers to project 1 is due to changes in researchers at NIH where the congestion on the other
projects is unaffected, equations (D.6) and (D.7).
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Figure D.1: Two Projects and NIH Constraints
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In the first stage the prize-setter maximizes their expected payoff, Pi(xi)(Vi −Wi). With some
probability their project is solved in which case they receive the social benefit Vi and must pay the
biomedical researcher that solved the problem the prize Wi. Prize-setters balance the benefits of
increasing the probability the problem is solved with the cost of increasing the prize. The slope
of the indifference curve for the prize-setter is given by differentiating the prize-setter’s objective
function U = Pi(xi)(Vi −Wi) which is,

dxi
dWi

=
Pi(xi)

P ′i (xi)(Vi −Wi)
> 0. (D.19)

Since points to the northeast have both higher xi and higher Wi, the numerator is larger, the
denominator is smaller, and hence the quotient is larger. Each indifference curve is therefore
positively sloped and strictly convex.
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Figure D.2: Two Projects, NIH Constraints, and an Indifference Curve
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Figure D.2 graphs the two constraints from the second stage and the indifference curve from the
first stage. Point A represents the point at which the constraints intersect and the indifference curve
is tangent to the constraint when all researchers work on congestible projects. Point B represents a
different point where the constraints intersect (a lower prize for project 2) and the indifference curve
is tangent to the constraint when some researchers work at NIH. Three cases exist; one with a low
prize for project 2 where the constraints intersect northeast of point B, one with an intermediate
prize for project 2 where the constraints intersect between points A and B, and one with a high
prize for project 2 where the constraints intersect southwest of point A.

As the prize for project 2 decreases in the first case, where the prize for project 2 is low, the
tangency of the indifference curve remains at point B. The best prize for the profit-maximizing
prize-setter on project 1 to set remains constant for all prize levels for project 2 lower than the
prize level with the constraint that intersects point B. In this region the best response function for
the profit-maximizing prize-setter on project 1 is strategically-independent of prize 2.

In the second case, where the prize for project 2 is an intermediate level, the indifference curve
intersects the constraint at the kink between the constraints. As the prize for project 2 decreases
the kink point moves northeast implying the best reply for the profit-maximizing prize-setter on
project 1 is to increase their prize. In this region the profit-maximizing prize-setter on project 1’s
prize is a strategic-substitute of the prize for project 2.

Finally in the third case, where the prize for project 2 is high such that no researchers work
for NIH the indifference curve is tangent to the flatter constraint given by equation (D.5). In this
region the prizes can be strategic-substitutes or strategic complements.
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Appendix D.4 Best Response Functions

This section graphs the best response functions of the prize-setters. The previous subsection
demonstrated that the best response functions exhibit regions of strategic-independence, strategic-
substitutes, and can exhibit regions of strategic-complements. Figure D.3 graphs six cases for the
best response functions. The figures on the left graph the best response functions when there
is a region that exhibits strategic-complements, while the figures on the right graph the best re-
sponse functions when the best response functions exhibit only strategic-independent and strategic-
substitutes regions. The figures on the top, middle, and bottom graph the best response functions
when the wage at NIH is low, intermediate, and high, respectively.

When the wage at NIH is low, depicted in the top two Figures of Figure D.3, the best response
functions intersect in the region of strategic-complements (left graph) or strategic-substitutes (right
graph). In both cases all researchers work on projects 1 and 2 and no researchers work at NIH.
When the wage at NIH is high, depicted in the bottom two Figures of Figure D.3, the best response
functions intersect in the region of strategic-independence. In this case researchers work at both
projects and at NIH.

When the wage at NIH is an intermediate level, depicted in the middle two Figures of Figure
D.3, the best response functions overlap in a region characterized by strategic-substitutes. In this
case all of the researchers work on projects 1 and 2 but the wage at NIH disciplines the market
because if either prize-setter unilaterally lowered their prize some researchers would switch and
work for NIH. In this case there are a continuum of equilibria which may or may not include prizes
that induce the efficient allocation of researchers across projects.
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Figure D.3: Best Response Functions
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Appendix E Comparative Statics

This section discusses the impact of (1) heterogeneity in congestion across roads, (2) the number
of motorists, and (3) the number of roads on the ability of the government to use the proposed
intervention of providing an uncongestible alternative. The discussion on heterogeneity demon-
strates under what circumstances government intervention is most useful—markets characterized
by similar or dissimilar competitors. The analysis discussing the impact of changes in the number
of motorists is important in both the short and long run as the number of motorists is likely to
differ within a given day, during rush hour, and across years. The analysis discussing the number
of roads is important in thinking about the effectiveness of the government’s uncongestible option
in different industries and dynamic industries where the number of firms is likely to change.

Appendix E.1 Impact of Heterogeneity across Roads

The efficient toll depends on the congestion on the road and therefore may differ as the conges-
tion differs. As the congestion on a road increases, xiA

′
i(xi), the efficient toll increases causing the

efficient allocation of motorists to have fewer motorists on road i and weakly more motorists on
road j, because the allocation of motorists depends on the tolls. The allocation of motorists is not
uniquely determined by a pair of tolls, in the strategic-complements case, but by the difference in
tolls. Therefore, to consider the effect of heterogeneity on the allocation of motorists, we consider
the difference in equilibrium tolls in the strategic-complements case without an uncongestible road.

θ∗1 = x1A
′
1(x1) + x1A

′
2(x2)

θ∗2 = x2A
′
2(x2) + x2A

′
1(x1)

θ∗1 − θ∗2 = θP1 − θP2 + x1A
′
2(x2)− x2A′1(x1)︸ ︷︷ ︸

Wedge

(E.1)

When the difference in tolls is equal to the difference in “Pigouvian” tolls the motorist allocation is
efficient, even if the tolls do not equal the “Pigouvian” tolls. Equation (E.1) demonstrates that the
equilibrium difference in tolls, in the strategic-complements case without an uncongestible road,
is equal to the difference in “Pigouvian” tolls plus a wedge term. Consider the case where both
congestible roads are identical. In this case the wedge is zero and the allocation of motorists is
efficient. This occurs because even though the equilibrium tolls are higher than the “Pigouvian”
tolls the increase in toll is the same for both roads.

As the roads become more heterogeneous the wedge term increases in magnitude causing the
allocation of motorists to become farther from the efficient allocation. This suggests the benefits
from government intervention are highest in cases where congestion is heterogeneous. This anal-
ysis is consistent with the literature on dynamic city growth which demonstrates heterogeneity
across cities has important implications for the effects of tax and zoning laws on the allocation of
population across cities (Seegert (2011)).

Appendix E.2 Impact on Changing the Number of Motorists: Rush Hour

Consider the impact on the equilibria found in section 4 as the number of motorists increases
but everything else is held constant—importantly the number of roads and the speed of the uncon-
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gestible road c. Equilibria exist in three regions defined by the threshold levels c and c̄, strategic
independence (c < c), substitutes(c ∈ [c, c̄]), and complements (c > c̄). Increasing the number of
motorists changes these threshold levels and therefore the set of equilibria. The threshold levels
are defined as the level of c equal to the total cost to motorists on a congestible road where the
equilibrium toll is set independently or strategically where tolls are strategic complements.

c = Ai(xi) + θi when θi = A′i(xi)xi

(E.2)

c̄ = Ai(xi) + θi when θi = (A′i(xi) +A′j(xj))xi

The effect of increasing the number of motorists on these threshold levels is determined by
totally differentiating the conditions and rearranging.

dc

dN
= (2A′i(xi) +A′′i (xi)xi)

∂xi
∂N

> 0

dc̄

dN
= (2A′i(xi) +A′j(xj) +A′′i (xi)xi)

∂xi
∂N

+A′′j (xj)xi
∂xj
∂N

> 0

The threshold levels both increase as the number of motorists increases. This implies that for
a given speed of the uncongestible road as the number of motorists increases the equilibria shift
from strategic complements to strategic substitutes to strategic independence. If the increase in
motorists is enough to shift the set of equilibria between these regions then it is possible for a
government intervention that did not discipline the market at all with fewer motorists to discipline
the market to the efficient allocation with more motorists. Even if the change is not large enough
to discipline the market to the efficient allocation it may still increase efficiency.

If the change in motorists is not large enough to change the set of equilibria then efficiency may
increase in the intermediate region if the uncongestible road disciplines the markets to a different set
of equilibria that may be more efficient. The tolls will remain efficient in the strategic-independence
region and remain inefficient in the strategic-complements regions. Within the context of rush hour,
where there is a spike in the number of motorists on the roads, this analysis suggests the government
intervention may become more effective, and will not become less effective, at disciplining the
market during rush hour especially if the change is large.

Appendix E.3 Impact on Changing the Number of Roads

Now consider the impact of the equilibria when the number of roads increases by replicating the
system of roads, but not the number of motorists, M times. The effect of replicating the number
of roads on the threshold levels is given by totally differentiating the constraints in equation (E.2).
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dc

dM
= (2A′i(xi) +A′′i (xi)xi)

∂xi
∂M

< 0

dc̄

dM
= (2A′i(xi) +A′j(xj) +A′′i (xi)xi)

∂xi
∂M

+A′′j (xj)xi
∂xj
∂M

< 0

The threshold levels decrease as the number of roads increases. Intuitively, as the number of
roads increases the time cost of commuting on any given road decreases as motorists are spread
across more roads. Therefore, the threshold time cost for some motorists to be on the uncongestible
road, c, must be lower than before. As the number of roads increases, and the speed on the
uncongestible road stays the same, eventually the uncongestible road that was being used, and
disciplining the market, no longer is fast enough to be used in equilibrium. As the number of roads
increases, the uncongestible road becomes less effective at disciplining the market.

As the number of roads increases, the government intervention becomes less effective but the
benefit from disciplining the market also decreases. As demonstrated previously as the number of
replications increases to infinity the inefficiency caused by the market decreases to zero. However,
if we consider the case in which the number of competitors decreases, for instance if one road
is unused because of construction, then the government intervention becomes more effective. If
market structure changes to consolidate the number of competitors in the market the government
intervention automatically disciplines the market more, counteracting some of the possible negative
impact of market power.

While these seem like two separate concerns it turns out that both can be summarized by the
level of congestion in the market. Congestion in the market can be thought of as the level of
negative externality motorists impose on other motorists, xiA

′
i(xi). As the number of motorists

increases, either during rush hour or across many years, the congestion in the market increases.
Conversely, as the number of competing roads increases, holding the number of motorists fixed, the
congestion decreases.

These comparative statistics reinforce the usefulness of this new government intervention. First,
demonstrated through the example of an increase in motorists, we see providing an uncongestible
alternative disciplines the market more when the number of motorists increases and congestion is
high. Second, as industries evolve, changing the number of competitors, roads in this example,
we see the government intervention disciplines the market most when the level of competition is
low, demonstrated through the example of an increase in roads. In both scenarios the government
intervention’s effectiveness at disciplining the market increases precisely when doing so is most
beneficial—when congestion is high and competition is low. Third, the ability of this government
intervention to adapt to these changing scenarios is automatic, requiring no changes in law or
additional information on how congestion has changed.
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