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Abstract

We explore the evolution of a firm’s organization and performance. The owner and her employee
play an infinitely repeated trust game in which the owner benefits from delegation only if the
employee honors her trust by choosing her preferred project. The owner, however, cannot
observe whether this project is available. We characterize the optimal relational contract and
highlight two implications. First, profits decline over time as the firm’s organization evolves
from flexibility to rigidity. Second, which type of rigid organization the firm converges to—and
thus its long run profitability—is determined by random events in its early history.



1 Introduction

“A good relationship takes time” is popular advice among therapists and advice columnists. A

common rationale is that relationships are based on trust and that building trust takes time. Once

partners trust each other, they can motivate cooperation by rewarding good behavior today with

the promise to take various actions in the future.

At some point, however, the future becomes the present and yesterday’s promises become today’s

obligations. A relationship can then get bogged down by the need to fulfill the very promises that

ensured its success early on. Time therefore need not be the friend of a good relationship. Instead,

it can be its foe, as many readers and clients of the before-mentioned experts will attest.

In this paper we argue that such dynamics do not only arise in personal relationships but are also

a feature of optimally managed relationships between firms and their employees. In particular, we

argue that firms often motivate their employees to make “good”decisions by linking their future

discretion to their current decisions. Essentially, firms pay their employees with control rather

than cash. The optimal allocation of control then needs to balance the desire to influence current

decisions with the need to reward or punish past decisions. We show that under the optimal

allocation of control, the owner of a firm is able to motivate her employee to make good decisions

early on in their relationship. Eventually, however, the owner either has to reward the employee

by permanently giving him more discretion than she would if she were not obligated by her past

promises, or she has to punish him by giving him permanently less discretion. In either case,

the owner is no longer able to make effi cient use of the employee’s information, the firm’s decision

making becomes inertial, and its performance declines. We then show that these dynamics speak to

both the failure of established firms to adapt to changes in their environments and to the emergence

of persistent organizational and performance differences between seemingly similar firms.

The problems that Apple Computer experienced in the 1990s provide an example for the type

of dynamics that motivate this paper. As Sull (1999) observes:

“Managers can also find themselves constrained by their relationships with employees, as the

saga of Apple Computer vividly illustrates. Apple’s vision of technically elegant computers and

its freewheeling corporate culture attracted some of the most creative engineers in the world, who

went on to develop a string of smash products including the Apple II, the Macintosh, and the

PowerBook. As computers became commodities, Apple knew that its continued health depended on

its ability to cut costs and speed up time to market. Imposing the necessary discipline, however, ran

counter to the Apple culture, and top management found itself frustrated whenever it tried to exert

more control. The engineers simply refused to change their ways. The relationships with creative
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employees that enabled Apple’s early growth ultimately hindered it from responding to environmental

changes”(Sull 1999, p.7).

In contrast to the standard intuition that “a good relationship takes time”some relationships

therefore get worse over time. And they get worse, in particular, because the discretion firms

promise their employees initially ends up constraining their ability to respond to changes in their

environments later on.

The model we examine is an infinitely repeated game between the owner of a firm and her

employee. At the beginning of the stage game, each party decides whether to enter the relationship.

If both do enter, the owner either centralizes—in which case she chooses a status quo project herself—

or she delegates—in which case the employee chooses between his preferred project and, if available,

the owner’s. Each party prefers his or her preferred project to the status quo and the status quo

to the other parties’preferred project. The stage game is therefore essentially a trust game. In

contrast to a standard trust game, however, only the employee can observe whether the owner’s

preferred project is available. If the employee chooses his preferred project, the owner therefore

does not know if he betrayed her trust or simply had no choice.

Notice that the model rules out monetary transfer. This assumption is the defining charac-

teristic of the literature on delegation that builds on Holmstrom (1977, 1984) (for surveys see, for

instance, Bolton and Dewatripont (2013) and Gibbons, Matouschek, and Roberts (2013)). And it

is based on the view that a variety of practical factors often make it diffi cult to pay for decisions.

Even if firms cannot pay for decisions, though, they should be able to motivate decision mak-

ing through other means. As Prendergast and Stole (1999) observed, for instance: “A striking

characteristic of work life is that one cannot reward individuals in cash for some things, but can

compensate them in other ways”(Prendergast and Stole 1999, p.1007). Similarly, Cyert and March

(1963) observed some fifty years ago that “a significant number of these payments [within organi-

zations] are in the form of policy commitments” (Cyert and March 1963, p. 35). In this paper we

argue that these policy commitments often take the form of future control rights. The question

then is how the relationship evolves if the owner motivates the employee with the promise of such

control rights rather than cash.

To answer this question, we characterize the optimal relational contract, that is, the Perfect

Public Equilibrium that maximizes the owner’s expected payoff. We show that the owner initially

delegates to the employee with the understanding that he chooses her preferred project whenever

it is available. To motivate the employee to do so, the owner keeps track of how often he chooses

each project. If the employee chooses the owner’s preferred project suffi ciently often, in a sense
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that we make precise below, the owner eventually rewards him by delegating to him permanently.

And if the employee does not choose her preferred project suffi ciently often, the owner instead

punishes him by either centralizing permanently, or even terminating the relationship, where the

type of punishment if depends on the parameters of the game. In contrast to the well-known

equilibria in Green and Porter (1984), therefore, the parties do not alternate between reward and

punishment phases. Instead, the owner delays rewards and punishments for as long as possible and

then, eventually, administers them with maximum force, that is, permanently.

Inertia and Decline A key feature of the optimal relational contract is that the firm’s perfor-

mance always declines over time. Notice that this is the case even if the employee performs well

initially and there is thus no need to punish him. To see this, note that if the employee performs

well initially, the owner has to reward him eventually and the optimal way to do so is to delegate to

him permanently. Once the owner delegates to him permanently, however, the employee no longer

uses his information in the firm’s favor and, as a result, its performance declines. Eventually,

therefore the relationship between the owner and the employee gets bogged down by the need to

fulfill the very promises that ensured its success early on.

The result that the firm inevitably gets worse at making use of the employee’s information

speaks to the observation that many firms appear to become more inertial over time. Bower and

Christensen (1996), for instance, observe that "One of the most consistent patterns in business is

the failure of leading companies to stay at the top of their industries when technologies or markets

change." Similarly, Kreps (1996) argues that "It is widely held that organizations exhibit substantial

inertia in what they do and how they do it (Hannan and Freeman, 1984). In the face of changing

external circumstances, organizations adapt poorly or not at all; the economy and/or market evolves

as much or more through changes in the population of live organizations than through changes in the

organizations that are alive" (Kreps 1996, p.577). Our model suggests that the inertia of established

firms might be the result of the promises that allowed these firms to adapt when they were still

young. The flexibility of young firms, and the inertia of established ones, are then two sides of the

same coin.

A striking observation that our main model cannot account for is that some firms seem to fail

to adapt to information even when that information is publicly available (Schaefer 1998). Sears,

for instance, only closed its troubled catalog business after analysts had recommended they do so

for many years (Scussel 1991). We explore this issue in our main extension in which we allow for a

publicly observable project to become available at a random time. There show that even though the

owner would always adopt this project if it were available from the start, she may only do so with
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some delay, and potentially never do so, if it becomes available later on. The same mechanism

that can generate inertia with respect to private information can therefore also generate inertia

with respect to public information.

Persistent Organizational and Performance Differences Another key feature of the

optimal relational contract is that it generates multiple, long run steady states that are associated

with different organizational structures. The model therefore provides a rationale for the widely

held view that firms’ structures depend on their histories. To once again quote Kreps (1996):

"Organizational policies/procedures tend to be derived from the early history of the organization

(Stinchcombe, 1965; Hannan and Freeman, 1977) and to be derived (or at least crystallized out of)

specific noteworthy events in the early history of the organization (Schein, 1983)" (Kreps 1996, p.

577).

Since the different organizational structures are associated with different payoffs, the model

also speaks to the observation that there are large and persistent performance differences across

firms within narrowly defined industries (for a survey see, for instance, Syverson (2011)). Recent

empirical evidence suggests that some of these differences are due to differences in how firms are

organized (see, in particular, Bloom et al. (2007, 2013) and, for a survey, Gibbons and Henderson

(2012)). If this is so, however, then why don’t less successful firms simply imitate the organizational

practices of their more successful rivals? After all, such practices are not protected by patents.

Our model suggests that one reason may be that firms’histories serve as an endogenous barrier

to imitation. One firm may, for instance, be able to centralize decision making without triggering

resentment among its employees. In another, and seemingly identical firm, however, employees may

view decentralization as their reward for previous achievements.

Transfers and other Loose Ends To conclude the introduction we want to briefly address

two assumptions that might otherwise distract the reader. The first is that the owner cannot use

any monetary transfers to motivate the employee. This assumption is stronger than what we need

for our results. In particular, we show in an extension that as long as the employee is liquidity

constrained, the owner could not do any better, and for some discount rates would do strictly worse,

if she motivated the employee with cash rather than control.

The second assumption is that we model delegation as a trust game. We do so because it is a

well known game that captures the basic problem with delegation. Modeling delegation as a trust

game, however, requires an assumption that is not common in the literature on delegation, which

is that a particular project—the status quo project—is only available to the owner. One justification

for this assumption is that the opportunity to choose the status quo project may be “fleeting”and
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thus no longer available once the owner has delegated to the employee. Even though we think this

is plausible, we also examine an extension in which we allow the status quo project to be available

to the employee. We show that permanent centralization is then no longer a long run steady state.

The result that the firm’s performance always declines over time, and that it does so even if the

employee performs well initially, however, continues to hold.

2 The Model

A risk-neutral principal and a risk-neutral agent are in an infinitely repeated relationship. Time is

discrete and we denote it by t = {1, 2, ...}. We first describe the stage game and then move on to
the repeated game. In the description of the stage game, we omit time subscripts for convenience.

Stage Game At the beginning of the stage game, the principal and the agent simultaneously

decide whether to enter the relationship. We denote their entry decisions by ej ∈ {0, 1} for
j = P,A, where ej = 1 denotes entry. If at least one party decides not to enter, both realize a zero

payoff and time moves on to the next period.

If, instead, both parties do decide to enter, the principal next decides whether to delegate the

right to choose a project to the agent. We denote the delegation decision by d ∈ {0, 1}, where d = 1

denotes delegation. Moreover, we denote both projects and project choices by k and the principal’s

and the agent’s stage game payoffs, conditional on both parties having entered the relationship, by

Π (k) and U (k).

If the principal decides not to delegate to the agent, she chooses a safe project k = S that

generates payoffs Π (S) = U (S) = a > 0. If, instead, the principal does delegate to the agent, the

agent can choose between up to two projects. One of these projects is the agent’s preferred project

k = A and the other is the principal’s preferred project k = P . The agent’s preferred project

gives the agent a payoff U (A) = B and the principal a payoff Π (A) = b, where B > a > b > 0.

Analogously, the principal’s preferred project gives the principal a payoffΠ (P ) = B and the agent

a payoffU (P ) = b. Delegation therefore takes the form of a trust game in which the principal only

benefits from delegation if she can trust the agent to choose her preferred project. The assumption

that payoffs are symmetric facilitates the exposition but it is not important for our results. We

summarize the stage game payoffs in Figure 1.

The key feature of the game is that the principal’s preferred project is not always available and

that only the agent can observe whether it is available. The principal therefore cannot distinguish

a betrayal of her trust from a lack of opportunity to cooperate. In particular, the principal’s
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preferred project is only available with probability p ∈ (0, 1), where the availability is independent

across periods. Other than the availability of the principal’s preferred project, all information is

publicly observable.

Finally, after the parties have realized their payoffs, they observe the realization x of a public

randomization device, after which time moves on to the next period.

The Repeated Game The principal and the agent have a common discount factor δ ∈ (0, 1).

At the beginning of any period t the principal’s expected payoff is given by

πt = (1− δ) Et

[ ∞∑
τ=t

δτ−teP,teA,tΠ (kt)

]
and the agent’s expected payoff is given by

ut = (1− δ) Et

[ ∞∑
τ=t

δτ−teP,teA,tU (kt)

]
.

Note that we multiply the right-hand side of each expression by (1− δ) to express payoffs as per-
period averages.

We follow the literature on imperfect public monitoring and define a relational contract as a

pure-strategy Perfect Public Equilibrium (henceforth PPE) in which the principal and the agent

play public strategies and, following every history, the strategies are a Nash Equilibrium. Public

strategies are strategies in which the players condition their actions only on publicly available

information. In particular, the agent’s strategy does not depend on her past private information.

Our restriction to pure strategy is without loss of generality because our game has only one-sided

private information and is therefore a game with the product structure (see, for instance, p.310 in

Mailath and Samuelson (2006)). In this case, there is no need to consider private strategies since

every sequential equilibrium outcome is also a PPE outcome (see, for instance, p.330 in Mailath

and Samuelson (2006)).

Formally, let ht+1 = {eP,τ , eA,τ , dτ , kτ , xτ}tτ=1 denote the public history at the beginning of any

period t + 1 and let Ht+1 denote the set of period t + 1 public histories. Note that H1 = Φ. A

public strategy for the principal is a sequence of functions {EP,t, Dt,KP,t}∞t=1, where EP,t : Ht →
{0, 1},Dt : Ht ∪ {eP,τ , eA,τ} → {0, 1},KP,t : Ht ∪ {eP,τ , eA,τ , dt} → KP , and where KP = {S} is the
set of projects available to the principal. Similarly, a public strategy for the agent is a sequence

of functions {EA,t,KA,t}∞t=1, where EA,t : Ht → {0, 1} and Kt : Ht ∪ {eP,τ , eA,τ , dt} → KA,t, and
where KA,t ∈ {{A} , {A,P}} is the set of projects available to the agent.

We define an "optimal relational contract" as a PPE that maximizes the principal’s average

per-period payoff. Our goal is to characterize the set of optimal relational contracts.
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3 Benchmarks

The model we just described makes three key assumptions: (i.) the stage game is infinitely repeated,

(ii.) the principal cannot observe the projects that are available to the agent, and (iii.) transfers

are not feasible. We will see below that all three assumptions are crucial for our results. To

highlight the role of these assumptions, and to get familiar with the model, we start by considering

three benchmarks in which we relax each of the three assumptions in turn.

The Static Game Suppose first that the parties play the stage game only once. The game they

play is then essentially a trust game. We say "essentially" because it differs from the standard

version of a trust game in two ways. First, before the principal and the agent play the trust game,

each has the opportunity to opt out. We allow the parties to opt out since employees can always

leave their firms and managers can typically fire their workers. Because the parties can opt out,

there is an equilibrium in which neither party enters the relationship. We will see below that, in

the repeated game, the parties use this equilibrium to deter publicly observable deviations, such as

the principal not delegating to the agent when she is supposed to do so.

The second difference between the stage game and a standard trust game is that the principal

cannot observe the actions that are available to the agent. If the game is played only once, this

difference is irrelevant since the agent will always betray the principal’s trust, no matter what the

principal can observe. Anticipating this behavior by the agent, the principal does not trust the

agent in the first place. The second equilibrium of the static game is therefore one in which both

parties enter the relationship and the principal does not delegate to the agent. This, of course,

corresponds to the equilibrium of a standard trust game. And it captures, albeit in a stark way,

the view that a principal is more likely to delegate to an agent if she can trust him not to take

advantage of his delegated powers.

The Game with Public Information Suppose now that the stage game is infinitely repeated,

as in our main model. In contrast to our main model, however, suppose that the principal can

observe the projects that are available to the agent. In the Appendix we show that the optimal

relational contract then depends on whether the discount factor is above a critical value that lies

strictly between zero and one. If the discount factor is below the critical value, the principal

cannot do better than to centralize in every period. If it is above the critical value, however,

the principal can do better by having both parties play standard trigger strategies. Under these

strategies, the principal starts out by delegating to the agent with the understanding that he will
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choose the principal’s preferred project whenever it is available. The principal will continue to do

so unless the agent ever violates this understanding, in which case she opts out of the relationship

in all future periods. In response, the agent chooses the principal’s preferred project whenever it is

available. In the game with public information, there therefore always exists an optimal relational

contract that is stationary and does not involve any punishment on the equilibrium path. We will

see below that this is not the case in our main model, in which the principal cannot observe the

projects that are available to the agent.

The Game with Transfers Suppose now that the principal cannot observe the projects that

are available to the agent, as in our main model. In contrast to our main model, however, suppose

that the principal can use monetary transfers to motivate the agent. In particular, suppose that

at the beginning of the stage game, the principal can make a take-it-or-leave-it offer to the agent in

which she can contractually commit to a fixed wage and promise to pay a bonus. In the Appendix

we show that, as in the game with public information, the optimal relational contract depends

on whether the discount rate is above a critical value that lies strictly between zero and one. If

the discount rate lies below the critical value, the principal cannot do better than to centralize in

every period. If it lies above the critical value, however, the principal can do better by having

both parties play standard trigger strategies. The principal again starts out by delegating to the

agent. In contrast to the game with public information, however, she now offers to "pay" him

a wage equal to −B and promises to pay him a bonus equal to (B − b) whenever he chooses the
principal’s preferred project. In response, the agent accepts the offer and chooses the principal’s

preferred project whenever it is available, unless the principal ever reneges on her promise to pay

the bonus, in which case the agent opts out of the relationship in every future period. In the game

with transfers, as in the game with public information, there therefore always exists an optimal

relational contract that is stationary and does not involve any punishment on the equilibrium path.

As mentioned above, this is not the case in our main model, in which the principal cannot rely on

transfers to motivate the agent.

4 Preliminaries

In this section, we characterize the PPE payoff set. We first list the constraints that payoffs have

to satisfy to be in the PPE payoff set. In Section 4.2 we then derive a constrained maximization

problem that characterizes the payoff frontier and show that it fully determines the optimal rela-

tional contract. In Section 5 we can then characterize the optimal relational contract by solving
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this problem.

4.1 The Constraints

We denote the PPE payoff set by E . Any payoff pair (u, π) ∈ E is either generated by pure actions
or by randomization between two equilibrium payoff pairs that are each generated by pure actions.

There are four sets of pure actions. First, both parties enter the relationship after which the

principal delegates to the agent with the understanding that he chooses the principal’s preferred

project whenever it is available. We call this set of actions "cooperative delegation" and denote

it by DC . Second, both parties enter the relationship after which the principal delegates to the

agent with the understanding that he can always choose his preferred project. We call this action

"uncooperative delegation" and denote it by DU . Third, both parties enter the relationship after

which the principal centralizes and chooses the safe project. We call this action "centralization"

and denote it by C. Finally, neither party enters the relationship. We call this set of actions

"exit" and denote it by E. In the remainder of this section we first discuss the constraints that

have to be satisfied for a payoff pair (u, π) ∈ E to be generated by one of these four sets of pure
actions. We then conclude the section by stating the constraint that has to be satisfied if the

payoff pair is generated by randomization.

Centralization A payoffpair (u, π) can be supported by centralization if the following constraints

are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need to be PPE payoffs.

The continuation payoffs uC and πC that the parties realize under centralization therefore have to

satisfy the self-enforcement constraint

(uC , πC) ∈ E . (SEC)

(ii.) No Deviation: To ensure that neither party deviates, we need to consider both off- and on-

schedule deviations. Off-schedule deviations are deviations that both parties can observe. There

is no loss of generality in assuming that if an off-schedule deviation occurs, the parties terminate

the relationship by opting out in all future periods, as this is the worst possible equilibrium that

gives each party its minmax payoff.

The principal and the agent can deviate off-schedule by opting out of the relationship. If either

party does so, he or she realizes a zero payoff this period and in all future periods. Since the

payoffs from the three projects are strictly positive, the parties therefore do not have an incentive

to deviate off-schedule by opting out of the relationship.
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The principal could also deviate off-schedule by delegating. There is no loss of generality in

assuming that the agent will then choose his preferred project. By deviating, the principal would

therefore reduce her current payoff from a to b < a, after which she would make a zero payoff in

all future periods. The principal therefore never wants to deviate off-schedule by delegating.

On-schedule deviations are deviations that are privately observed. Since the principal does

not have any private information, and the agent does not get to choose a project, there are no

on-schedule deviations in the case of centralization.

(iii.) Promise Keeping: Finally, the consistency of the PPE payoff decomposition requires that

the parties’payoffs are equal to the weighted sum of current and future payoffs. The promise-

keeping constraints

π = (1− δ) a+ δπC (PKPC)

and

u = (1− δ) a+ δuC (PKAC)

ensure that this is the case.

Cooperative Delegation A payoff pair (u, π) can be supported by cooperative delegation if the

following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need to be PPE payoffs.

Let (u`, π`) denote the parties’continuation payoffs if the agent chooses his preferred project and let

(uh, πh) denote their payoffs if he chooses the principal’s preferred project. The self-enforcement

constraint is then given by

(uh, πh) , (u`, π`) ∈ E , (SEDC )

where E is the PPE payoff set.
(ii.) No Deviation: As in the case of centralization, the principal and the agent never want to

deviate off-schedule by opting out of the relationship since doing so gives them a zero payoff. The

principal may, however, want to deviate off-schedule by not delegating to the agent, in which case

she realizes payoff a this period and a zero payoff in all future periods. To ensure that she does

not want to do so, the reneging constraint

p [(1− δ)B + δπh] + (1− p) [(1− δ) b+ δπl] ≥ (1− δ) a (NRDC )

has to be satisfied.

Since the principal does not have any private information, she cannot engage in any on-schedule

deviations. The agent, however, may choose his preferred project when the principal’s preferred
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project is available. To ensure that he does not want to do so, the incentive constraint

(1− δ) b+ δuh ≥ (1− δ)B + δu` (ICDC )

has to be satisfied.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = p [(1− δ)B + δπh] + (1− p) [(1− δ) b+ δπ`] (PKPDC )

and

u = p [(1− δ) b+ δuh] + (1− p) [(1− δ)B + δu`] . (PKADC )

Uncooperative Delegation A payoff pair (u, π) can be supported by uncooperative delegation

if the following constraints are satisfied.

(i.) Feasibility: We denote the continuation payoffs under uncooperative delegation by (uDU , πDU ).

The self-enforcement constraint is then given by

(uDU , πDU ) ∈ E . (SEDU )

(ii.) No Deviation: As in the case of cooperative delegation, the principal and the agent never

want to deviate off-schedule by opting out of the relationship since doing so gives them a zero payoff

both this period and in all future periods. The principal may, however, want to deviate off-schedule

by not delegating to the agent. To ensure that she does not want to do so, the reneging constraint

(1− δ) b+ δπDU ≥ (1− δ) a. (NRDU )

has to be satisfied.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = (1− δ) b+ δπDU . (PKPDU )

for the principal and

u = (1− δ)B + δuDU (PKADU )

for the agent.
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Exit A payoff pair (u, π) can be supported by exit if the following constraints are satisfied.

(i.) Feasibility: We denote the continuation payoffs under centralization by (uE , πE). The

self-enforcement constraint is then given by

(uE , πE) ∈ E . (SEE)

(ii.) No Deviation: The principal and the agent can deviate off-schedule by entering the

relationship. If the principal or the agent does so, he or she realizes a zero payoff this period and

in all future periods. The parties therefore do not have an incentive to deviate by entering the

relationship. There are no other off- or on-schedule deviations in this case

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = δπE (PKPE)

for the principal and

u = δuE . (PKAE )

for the agent.

Randomization Finally, a payoff pair (u, π) can be supported by randomization. In this case,

there exist two distinct PPE payoffs (ui, πi) ∈ E , i = 1, 2 such that

(u, π) = α (u1, π1) + (1− α) (u2, π2)

for some α ∈ (0, 1) .

4.2 The Constrained Maximization Problem

We now use the techniques developed by Abreu, Pearce, and Stacchetti (1990) to characterize the

PPE payoff set and, in particular, its frontier.

For this purpose, we define the payoff frontier as

π (u) ≡ sup
{
π′ :

(
u, π′

)
∈ E
}
,

where E is the PPE payoff set. We also define

u = inf{u : (u, π) ∈ E}

and

u = sup{u : (u, π) ∈ E}
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as the smallest and the largest PPE payoff for the agent.

We can now state our first lemma, which establishes several properties of the PPE payoff set.

LEMMA 1. The PPE payoff set E has the following properties: (i.) it is compact, (ii.) π(u) is

concave, (iii.) the payoff pair (u, π) belongs to E if and only if u ∈ [0, B] and π ∈ [bu/B, π (u)].

The first part of the lemma shows that the PPE payoff set is compact. This result follows

immediately from the assumption that there is only a finite number of actions. And it implies

that for any u ∈ [u, u] the payoff pair (u, π (u)) is in the PPE payoff set. The second part of the

lemma shows that the payoff frontier is concave, which follows directly from the availability of a

public randomization device. Finally, the third part shows that the smallest PPE payoff for the

agent is zero and the largest is B. It also shows that, for any u ∈ [0, B], the smallest PPE payoff

for the principal is bu/B and that, for any π ∈ [bu/B, π (u)], the payoff pair (u, π) is in the PPE

payoff set.

A key implication of the first lemma is that to describe the PPE payoff set, we only need to

characterize its frontier. To do so, we need to determine, for each (u, π (u)) ∈ E , whether it is
supported a pure action j ∈ {C,DC , DU , E} or by randomization. Moreover, if it is supported by a
pure action j, we need to specify the associated continuation payoffs. The next lemma characterizes

the principal’s continuation payoff for any of the agent’s continuation payoffs, regardless of the

actions that the parties take.

LEMMA 2. For any (u, π(u)), the continuation payoffs are also on the frontier.

The lemma shows that payoffs on the frontier are sequentially optimal. This is the case since the

principal’s actions are publicly observable. It is therefore not necessary to punish her by moving

below the PPE frontier. This feature of our model is similar to Spear and Srivastava (1987) and the

first part of Levin (2003) in which the principal’s actions are also publicly observable. In contrast,

joint punishments are necessary when multiple parties have private information as, for instance, in

Green and Porter (1984), Athey and Bagwell (2001), and the second part of Levin (2003).

Having characterized the principal’s continuation payoff for any of the agent’s continuation

payoffs in the previous lemma, we now state the agent’s continuation payoffs associated with each

action in the next lemma.

LEMMA 3. For any payoff pair (u, π(u)) on the frontier, the agent’s continuation payoffs satisfy

the following conditions:

(i.) If the payoff pair is supported by centralization, the agent’s continuation payoff satisfy

δuC (u) = u− (1− δ) a.

13



(ii.) If the payoff pair is supported by cooperative delegation, the agent’s continuation payoff can be

chosen to satisfy

δu` (u) = u− (1− δ)B

and

δuh (u) = u− (1− δ) b.

(iii.) If the payoff pair is supported by uncooperative delegation, the agent’s continuation payoff

satisfy

δuDU (u) = u− (1− δ)B.

(iv.) If the payoff pair is supported by exit, the agent’s continuation payoff satisfy

δuE (u) = u.

In the cases of centralization, uncooperative delegation, and exit, the agent’s continuation pay-

offs follow directly from the promise-keeping constraints PKAC and PK
A
DU . In the case of coop-

erative delegation, instead, the agent’s continuation payoffs follow directly from combining the

promise-keeping constraints with the agent’s incentive constraint ICDC , where we take the incen-

tive constraint to be binding. To see that we can do so, suppose that the incentive constraint

is not binding. We can then reduce uh and increase u` in such a way that u remains the same,

and all the relevant constraints continue to be satisfied. Since the PPE frontier is concave, such a

change makes the principal weakly better off.

Next we can use Lemmas 2 and 3 to derive explicit expressions for the principal’s expected

payoff for a given action and a given expected payoff for the agent. For this purpose, let πj (u) for

j ∈ {C,DC , DU , E} be the highest payoff to the principal given action j and agent’s payoff u. We
then have

πC (u) = (1− δ) a+ δπ (uC (u)) ,

πDC (u) = p [(1− δ)B + δπ (uh (u))] + (1− p) [(1− δ) b+ δπ (u` (u))] ,

πDU (u) = (1− δ) b+ δπ (uDU (u)) ,

and

πE (u) = δπ (uE (u)) .

We can now state the next lemma which describes the constrained maximization problem that

characterizes the payoff frontier.
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LEMMA 4: The PPE frontier π (u) is the unique function that solves the following problem. For

all u ∈ [0, B]

π (u) = max
qj≥0,uj∈[0,B]

∑
j∈{C,DC ,DU ,E}

qjπj (uj)

such that ∑
j∈{C,DC ,DU ,E}

qj = 1

and ∑
j∈{C,DC ,DU ,E}

qjuj = u.

The lemma shows that any payoff pair on the frontier is generated either by a pure action j—in

which case the weight qj is equal to one—or by randomization—in which case qj is less than one. We

obtain the frontier by choosing the weights optimally. Notice that the frontier can be thought of

as a fixed point to an operator. We show in the proof that the fixed point is unique even though

the operator is not a contraction mapping. In the next section, we solve the problem in the lemma

to characterize the PPE frontier and thus the optimal relational contract.

5 The Optimal Relational Contract

In this section we characterize the optimal relational contract, that is, the PPE that maximizes the

principal’s expected payoff. For this purpose, we first characterize the payoff frontier by solving

the constrained-maximization problem in Lemma 4.

LEMMA 5. There exist two cut-off levels uCD ∈ (a, δa+(1− δ)B) and ūCD = (1− δ) b+ δB such

that the PPE payoff frontier π (u) is divided into four regions:

(i.) For u ∈ [0, a], π (u) = u, and (u, π (u)) is supported by randomization between exit and

centralization.

(ii.) For u ∈ [a, uCD], π (u) = ((uCD − u) a+ (u− a)π(uCD)) / (uCD − a) and (u, π (u)) is

supported by randomization between centralization and cooperative delegation.

(iii.) For u ∈ [uCD, ūCD], π (u) = πCD (u), and (u, π (u)) is supported by cooperative delegation.

(iv.) For u ∈ [ūCD, B], π (u) = ((B − u)π(ūCD) + (u− ūCD) b) / (B − ūCD) and (u, π (u)) is

supported by randomization between cooperative and uncooperative delegation.

We illustrate the lemma in Figure 1. The lemma shows that the payoff frontier is divided into

four regions. In three of these four regions, payoffs are supported by randomization and, as a

result, the payoff frontier is linear. In any such region, payoffs can be supported by multiple types
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of randomizations. Since for all such randomizations payoffs end up at one of the endpoints of the

region eventually, we assume that the parties randomize between the endpoints immediately. In

the remaining region, payoffs are supported by pure actions and the payoff frontier is concave.

Figure Y: This figure illustrates the feasible stage-game payoffs, the PPE payoff frontier, and the actions that support

each point on the frontier. The dotted linear segments are supported by public randomization between their two

endpoints, and this public randomization occurs at the end of the period.

We can now describe the optimal relational contract and how it evolves over time.

PROPOSITION 1. First period: The agent’s and the principal’s payoffs are given by u∗ ∈
[uCD, ūCD] and π (u∗) = πDc (u∗). The parties engage in cooperative delegation. If the agent

chooses the principal’s preferred project, his continuation payoff is given by

uh (u∗) = (u∗ − (1− δ) b) /δ > u∗.

If, instead, the agent chooses his own preferred project, his continuation payoff is given by

u` (u∗) = (u∗ − (1− δ)B) /δ < u∗.

Subsequent periods: The agent’s and the principal’s payoffs are given by u ∈ {0, a}∪[uCD, ūCD]∪
{B} and π (u). Their actions and continuation payoffs depend on what region u is in:
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(i.) If u = 0, the parties exit. The agent’s continuation payoff is given by uE (0) = 0.

(ii.) If u = a, the parties engage in centralization. The agent’s continuation payoff is given by

uC (a) = a.

(iii.) If u ∈ [uCD, ūCD], the parties engage in cooperative delegation. If the agent chooses the

principal’s preferred project, his continuation payoff is given by uh (u) > u. If, instead, the agent

chooses his own preferred project, his continuation payoff is given by u` (u) < u.

(iv.) If u = B, the parties engage in uncooperative delegation. The agent’s continuation payoff

is given by uDU (B) = B.

The proposition shows that the principal starts out by engaging in cooperative delegation. To

motivate the agent to choose her preferred project whenever it is available, the principal increases

his continuation value whenever he chooses her preferred project and she decreases his continuation

value whenever he does not.

To see how the principal optimally increases the agent’s continuation value, suppose the agent

chooses the principal’s preferred project for a number of consecutive periods. The principal then

continues to engage in cooperative delegation, and the agent’s continuation value continues to

increase, until the parties reach a period in which the continuation value passes the threshold ūCD.

At the end of that period, the parties engage in randomization to determine their actions in the

following period. Depending on the outcome of this randomization, the principal either continues

to engage in cooperative delegation or she moves to uncooperative delegation, that is, she allows

the agent to choose his preferred project even if her preferred project is available. Finally, once

the principal has moved to uncooperative delegation, she stays there in all subsequent periods.

To see how the principal optimally decreases the agent’s continuation value, suppose instead

that the agent chooses his own preferred project for a number of consecutive periods. The principal

then continues to engage in cooperative delegation, and the agent’s continuation value continues to

decrease, until the parties reach a period in which the continuation value falls below the threshold

uCD. At the end of that period, the parties engage in one of two types of randomization to

determine their actions in the following period. If u ∈ [a, uCD], the principal either continues to

engage in cooperative delegation or she moves to centralization. And if, instead, u ∈ [0, a), the

principal either moves to centralization or she exits the relationship in the next period. Finally,

once the principal has moved to either centralization or exit, she stays there in all subsequent

periods.

A key feature of the optimal relational contract is that once the principal chooses an action

other than cooperative delegation, she takes that action in all future periods. It is therefore not
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optimal for the parties to cycle between reward and punishment phases, as in the well known

class of equilibria that Green and Porter (1984) first introduced. To see why such equilibria are

not optimal, notice that both rewards—letting the agent choose his preferred project even when the

principal’s is available—and punishments—opting out or centralizing—are costly for the principal. The

threat to retract a previously promised reward, and the promise to retract a previously threatened

punishment, however, do not impose any costs on the principal, yet they motivate the agent just

the same. Delaying rewards and punishments therefore creates an additional and costless tool that

the principal can use to motivate the agent. Because of this benefit, the principal wants to delay

them as much as she can.

The above proposition leaves open two questions about the long-run outcome of the relationship.

First, does the principal always end up administering a punishment or reward? And if she ever

does administer a punishment, does it take the form of termination or centralization? The next

proposition answers these questions.

PROPOSITION 2: In the optimal relational contract, the principal chooses cooperative delegation

for the first τ periods, where τ is random and finite with probability one. Moreover, there exists

a threshold p∗ such that the relationship never terminates if p ≤ p∗. If, instead, p > p∗, pun-

ishment can take the form of either termination or centralization, depending on the history of the

relationship.

The proposition shows that the answer to the first question—whether the principal always ends up

administering a punishment or reward—is yes. And it shows that the answer to the second question—

whether the punishment takes the form of termination or centralization—is that it depends on the

probability p that the principal’s preferred project is available. Having characterized the optimal

relational contract, we now turn to its implications, which we already sketched and discussed in

the introduction.

The first implication is that the principal’s payoff declines over time, even if the relationship

does not terminate. In particular, the principal’s first period payoffπ (u∗) is strictly larger than the

payoffs that the principal realizes once the relationship has converged to permanent centralization—

in which case the principal makes a < π (u∗)—or permanent delegation—in which case she makes

b < π (u∗). The principal’s payoff declines over time, because the firm gets worse at using the

agent’s information. And the firm gets worse at using the agent’s information because, eventually,

the principal either has to reward the agent—by letting him choose any project—or punish him—

by choosing a project herself. In either case, the firm’s decision no longer reflect the agent’s

information.
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The second implication is that the organizational structure that the firm converges to, and thus

the long run payoff that the principal realizes, depend on random events in the firm’s early history.

In particular, whether the firm converges to permanent centralization—in which case the principal’s

payoff is given by a—or whether it converges to permanent decentralization—in which case it is given

by b < a—depends on the randomly determined availability of projects in the periods before the

firm converges to either organization. This suggests that persistent performance differences across

seemingly identical firms may be due to persistent organizational differences which, in turn, may

be due to random differences in the early history of those firms.

Also, and related, the model suggests an explanation for why some under-performing firms do

not copy the organizational practices of their more successful rivals, even though such practices

are not protected by patents. In particular, it suggests that such firms may not imitate their

more successful rivals since their seemingly ineffi cient organizations are either a reward for past

successes or a punishment for past failures. In either case, employees would view the adoption of

a different organizational structure as the violation of a mutual understanding and punish the firm

accordingly. A firm’s history can therefore serve as a barrier to organizational imitation.
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6 Failure to Adapt to Public Information

Business history is littered with established firms that failed to adapt to changes in their environ-

ments (see, for instance, Bower and Christensen (1996)). In the previous section we argued that

this failure to adapt may be the price that established firms have to pay for their ability to adapt

when they were still young. A key feature of our main model, however, is that the changes in the

environment that the firm fails to adapt to are privately observed by the employee. As such, our

main model cannot account for the apparent failure of some firms to adapt to changes even when

they are publicly observable. In the Introduction we mentioned Sears’failure to close its catalog

business as one example (Scussel 1991). Schaefer (1998) discusses another example:

“As an example [of firms that are unable to make seemingly obvious changes until the survival

of the organization is threatened] consider the differences in product development processes be-

tween General Motors and Toyota. For years prior to 1991, auto-industry analysts had highlighted

Toyota’s insistence on “design for manufacturability” as an important cost-saving device. GM,

although burdened with the highest costs and slowest product development processes in the industry,

retained an organizational structure in which the design group operated autonomously. Only after

record-breaking losses of $4.5 billion in 1991 and $23.5 billion in 1992 did GM undertake a series

of changes that forced designers to report directly to engineering.”(Schaefer 1998, p. 251-252).

In line with our main model, this discussion suggests that GM failed to adopt more effi cient

design practices since it had delegated those choices to the design group. In contrast to our main

model, the availability of those more effi cient practices was not privately observed by that group

and, instead, had been publicized by analysts for years.

In this section, we show that the same forces that cause the firm to become inertial with respect

to the employee’s private information can also make it inertial with respect to information that is

publicly available. In particular, we show that if the owner pays the employee with control rather

than cash, she may find it optimal to promise that she will delay the adoption of a profitable project

that will become available at some point in the future. And she may do so, even when the owner

can observe when the project has become available and, once it has, could simply choose it herself.

Specifically, we now consider an extension of our main model in which the periods are divided

into a pre-opportunity phase and a post-opportunity phase. The only difference between the stage

game in the post-opportunity phase and the one in the main model is that the owner can now choose

between two projects: the status quo and a new project that gives the owner a payoff πN and the

employee a payoff uN . And the only difference between the stage game in the pre-opportunity
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phase and the one in the main section is that at the end of the stage game in period t, just before

the realization of the public randomization device, nature determines whether the stage game in

t+ 1 will again be in the pre-opportunity phase or be the first in the post-opportunity phase. The

probability that the game transitions to the post-opportunity phase is given by q ∈ (0, 1), which is

independent across periods.

To make the analysis interesting, we assume that the new project is neither too attractive nor

too unattractive to both parties. Specifically, we assume that the employee’s payoff from the new

project uN satisfies uN ∈ (uCD, ūCD), where uCD and ūCD are the threshold values of u between

which cooperative delegation is optimal in our main model. This assumption ensures that there

is a trade-off between motivating the employee and choosing the new project. We also assume

that πN ∈ (π∗, π (uN ) +D] for some D > 0, where π∗ is the principal’s highest equilibrium payoff

in the main model. The assumption that πN > π∗ ensures that the new project is suffi ciently

profitable so that, if it were available in the first period, the owner would choose it immediately.

The assumption that πN ≤ π (uN ) + D, in turn, ensures that the project is not so profitable that

the owner would always choose it, no matter when it becomes available.

Notice that the game is now a random game rather than a repeated one. To characterize

the optimal relational contract, we therefore have to characterize two payoff frontiers: πPre(·)—
the payoff frontier in the pre-opportunity phase—and πPost (·)—the frontier in the post-opportunity
phase. Since the game transitions from the pre- to the post-opportunity phase, but not the reverse,
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we first characterize πPost (·) and then πPre(·).

Figure X: This figure illustrates the PPE payoff frontier for the baseline model and the PPE payoff frontier as well

as the actions that support each point on the frontier for phase 2 of the current extension.

We characterize πPost (·) formally in Appendix B. Figure x illustrates its main features and
compares them to those of the payoff frontier π (·) in our main model. One difference is that

πPost (·) is everywhere above π (·). This reflects the fact that the owner’s payoff from the new

project πN is higher than her highest equilibrium payoff in the main model. In fact, πN is highest

payoff on the post-opportunity frontier. As we claimed above, the owner would therefore always

choose the new project if it were available in the first period. Another difference between the payoff

frontiers is that the payoffs from the new project (uN , πN ) are on πPost (·) but not π (·). This is the
case since choosing the new project can be sustained as a sub-game perfect equilibrium of the stage

game in the post-opportunity phase but obviously not in the main model. Finally, for values of

u around uN , the frontier payoffs in the post-opportunity phase are not supported by cooperative

delegation as they are in the main model. Instead, they are supported by randomization between
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cooperative delegation and choosing the new project.

Figure W: This figure illustrates the PPE payoff frontiers for the baseline model and for phases 1 and 2 of the current

extension. It also describes the actions that support each point on the phase-1 frontier.

Consider now the payoff frontier in the pre-opportunity phase. We illustrate its main features in

Figure Y and once again relegate the formal analysis to Appendix B. The figure shows the payoff

frontier in the pre-opportunity phase looks very similar to the one in the main model. Recall,

however, that in the main model, payoffs on the frontier are supported by continuation payoffs that

are again on the same frontier. In the pre-opportunity phase, in constrast, they are supported by

continuation payoffs that are either on the frontier of the pre-opportunity phase or on the frontier

of the post-opportunity phase. As the game evolves during the pre-opportunity phase, it can

therefore become necessary to distort the continuation payoff that the employee receives if the new

project becomes available away from uN . From Figure x, however, it then follows that there is at

least some chance that the owner will not choose the new project as soon as it becomes available

and may, in fact, never do so. Our next proposition provides conditions under which this is indeed

the case.

PROPOSITION 3: For each uN ,

(i.) There exists a π(uN ) such that for all πN ∈ (π(uN ), π(uN )), there exists a history hT such
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that Pr
(
uT = ũN |hT

)
< 1, where T is the first period in the post-opportunity phase and hT is the

history of public outcomes up to period T.

(ii.) There exists a π̂(uN ) ≤ π(uN ) such that for all πN ∈ (π(uN ), π̂(uN )), there exists history

of path hT such that Pr
(
ut = uN |hT

)
= 0 for all t ≥ T .

The first part of the proposition provides conditions under which the owner does not choose the

new project as soon as it becomes available. Suppose, for instance, that the employee has chosen

the owner’s preferred project suffi ciently often in the pre-opportunity phase so that his continuation

payoffs (in case the new project becomes available) exceed uN . The owner is then rewarding the

employee for his good performance in the pre-opportunity phase by promising not to choose the

new project as soon as it becomes available.

The second part of the proposition shows that the owner may in fact promise never to adopt

the new project. Suppose, for instance, that the employee has chosen the owner’s preferred project

so often during the pre-opportunity phase that his continuation payoff (in case the new preoject

beomces available) does not only exceed uN but is actually equal to B. The owner is then rewarding

the employee for his excellent performance in the pre-opportunity phase by promising him that he

will always be able to choose his own preferred project, even if the new project becomes available.

7 Extensions

In this section, we examine two of the assumptions that our main results are based on. The first

is that no transfers are allowed between the principal and the agent. The second is that the safe

project is fleeting: when the principal delegates to the agent, the agent cannot choose the safe

project.

7.1 Transfers from Principal to Agent

Suppose that at the end of period t, the principal can pay the agent a non-negative transfer wt ≥ 0

contingent upon the agent’s project choice. The relational contract therefore specifies a bonus

scheme and an action to be taken in each period. Denote by πT (u) the PPE payoff frontier of this

extended game with transfers. The main result in this section is that allowing transfers from the

principal to the agent does not affect the results of Propositions 2 or 3.

PROPOSITION 4: πT (u) = π (u). Moreover, the optimal relational contract specified in the game

with no transfers is also an optimal relational contract when transfers from the principal to the

agent are allowed.
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In the baseline model, the agent is rewarded for choosing the principal’s preferred project

through an increase in the probability that he will be able to choose his own project indefinitely in

the future. When the agent chooses his own preferred project, he is punished through an increase in

the probability that the safe action will be chosen indefinitely in the future. Since both cooperative

delegation and uncooperative delegation yield a total surplus of b+B in each period, rewards are

simply a reallocation of total surplus from the principal to the agent, while punishments actually

result in a decrease in total surplus.

If unrestricted transfers from the agent to the principal were allowed, then surplus-destroying

punishments could be avoided by requiring such transfers when the agent chooses his own preferred

project. Consequently, the principal would be indifferent between rewarding the agent through

increases in his continuation payoff or through monetary transfers. However, when unrestricted

transfers from the agent to the principal are not possible, punishment requires surplus destruction,

and it requires more surplus destruction the lower is the agent’s continuation payoff, because the

payoff frontier is concave. Conversely punishments are less costly the greater is the agent’s contin-

uation payoff, and it follows that rewarding the agent with an increase in his continuation payoff

is preferable to rewarding him with money.

This result is obtained in part because total surplus under the agent’s preferred action is the

same as under the principal’s preferred action. If, instead, payoffs for the agent’s preferred action

are (BA, bA) and for the principal’s preferred action are (bB, BB) with total surplus lower under

the agent’s preferred action (i.e., BA + bA < BP + bP ), then rewarding the agent with an increase

in his continuation payoff results in surplus destruction. If transfers are costly, so that it costs the

principal 1 + κ dollars to transfer 1 dollar to the agent, then as long as 1 + κ ≥
∣∣∣BP−bABA−bP

∣∣∣, monetary
transfers will not be used in an optimal relational contract.

7.2 Safe Project Always Available

In the baseline model, whenever the principal delegates to the agent, the agent does not have the

option of choosing the safe project. That is, the set of projects that the agent can choose from in

period t is KA,t ∈ {{A} , {A,P}}. As a result, punishment takes the form of centralization: the

principal does not delegate, and the principal chooses the safe project. But if the agent has the

option to choose the safe project, then punishment may instead take the form of constrained

delegation in which the principal delegates to the agent with the understanding that if the prin-

cipal’s preferred project is not available, the agent will choose the safe project rather than his own

preferred project.
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Formally, suppose that KA,t ∈ {{S,A} , {S,A, P}}, where Pr [KA,t = {S,A, P}] = p. There are

now five sets of actions that may be used in equilibrium. In addition to "cooperative delegation,"

"uncooperative delegation," "centralization," and "exit," the players may also choose "constrained

delegation," in which the principal delegates to the agent with the understanding that the agent

will choose the principal’s preferred project whenever it is available and will choose the safe project

otherwise. We denote constrained delegation by j = CDD. When parties engage in constrained

delegation, and the agent’s promised utility is u, the promise-keeping constraint is

u = (1− p) ((1− δ) a+ δuCDD,` (u)) + p ((1− δ) b+ δuCDD,h (u)) ,

and the agent will choose the principal’s preferred project whenever it is available as long as

(1− δ) b+ δuCDD,h (u) ≥ (1− δ) a+ δuCDD,` (u) .

Consequently, continuation payoffs can be chosen to make this inequality hold with equality:

δuCDD,` (u) = u− (1− δ) a

δuCDD,h (u) = u− (1− δ) b.

We denote the PPE payoff frontier of this extended game by πS (u). Lemma 7 in the appendix

characterizes the frontier of the game when the safe project is always available, and figure W below

illustrates a number of its properties.

Figure W: These figures illustrate the PPE payoff frontiers for the baseline model and for the extended model in

which the safe project can be chosen by the agent. They also describe the actions that support each point on the
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frontier. The figure on the left illustrates the PPE frontier and actions for the case in which constrained delegation

is chosen in the first period. The figure on the right illustrates the PPE frontier and actions for the case in which

cooperative delegation is chosen in the first period.

Delegating to the agent with the understanding that the agent will choose the safe project

whenever the principal’s preferred project is not available yields higher profits for the principal

than centralization does. As a result, the PPE payoff frontier lies above the point (a, a), and

centralization will never be chosen in equilibrium. The frontier consists of five regions. In the

first region, the parties randomize between exit and constrained delegation in the next period. In

the second region, parties engage in constrained delegation. In the third region, parties random-

ize between constrained delegation and cooperative delegation in the next period. In the fourth

region, parties engage in cooperative delegation, and in the fifth region, they randomize between

cooperative delegation and uncooperative delegation. It may be the case that the highest point on

the frontier lies in region 2 or in region 4, depending on the parameters of the model.

We can now describe the optimal relational contract and how it evolves over time.

PROPOSITION 5. When delegative control is allowed, the optimal relational contract satisfies the

following.

First period: The agent’s and the principal’s payoffs are given by u∗ ∈ [uCDD, ūCDD] ∪
[uCD, ūCD] and π (u∗) = max{πDCD (u) , πDC (u∗)}. The parties engage in either delegative control
or cooperative delegation. In either case, if the agent chooses the principal’s preferred project, his

continuation payoff increases and drops otherwise.

Subsequent periods: The agent’s and the principal’s payoffs are given by u ∈ [uCDD, ūCDD]∪
[uCD, ūCD] ∪ {B} and π (u). Their actions and continuation payoffs depend on what region u is

in:

(i.) If u = 0, the parties exit. The agent’s continuation payoff is given by uE (0) = 0.

(ii.) If u ∈ [uCDD, ūCDD], the parties engage in constrained delegation. If the agent chooses

the principal’s preferred project, his continuation payoff is given by uDCDh (u) > u. If, instead,

control is used, his continuation payoff is given by uDCD` (u) < u.

(iii.) If u ∈ [uCD, ūCD], the parties engage in cooperative delegation. If the agent chooses the

principal’s preferred project, his continuation payoff is given by uDCh (u) > u. If, instead, the agent

chooses his own preferred project, his continuation payoff is given by uDC` (u) < u.

(iv.) If u = B, the parties engage in uncooperative delegation. The agent’s continuation payoff

is given by uDU (B) = B.

The proposition shows that the principal starts out by engaging in either constrained delegation
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or cooperative delegation. As in the baseline model, to motivate the agent to choose her preferred

project whenever it is available, the principal increases his continuation value whenever he chooses

her preferred project, and she decreases his continuation value when he chooses his own preferred

project (under cooperative delegation) or the safe project (under constrained delegation). The

short-run dynamics are similar whether the optimal relational contract begins with constrained

delegation or with cooperative delegation.

When the agent is able to choose the safe project, the principal has two tools available to

punish the agent. Under cooperative delegation, if the agent has chosen his own preferred project

suffi ciently often, his continuation payoff falls, and eventually the principal has to alter his choice

of project in order to reduce the agent’s per-period payoff. She does so by effectively restricting

the set of projects that the agent can choose from and removing the agent’s preferred project from

this set. Reduced discretion can therefore be a punishment for poor performance under cooperative

delegation.

Similarly, under constrained delegation, if the agent has chosen the safe project suffi ciently

often, his continuation payoff falls. Eventually, the principal has to punish the agent, and she does

so by choosing exit with some positive probability. If the agent has chosen the principal’s preferred

project suffi ciently often, his continuation payoff increases, and the principal eventually rewards

him with increased discretion, allowing him to choose his own preferred project when her preferred

project is not available. Finally, as in the baseline model, the possibility of the relationship moving

into uncooperative delegation serves as a potential reward for the agent. We now describe the

long-run dynamics in the following proposition.

PROPOSITION 6: In the optimal relational contract, the principal chooses either cooperative dele-

gation or constrained delegation for the first τ periods, where τ is random and finite with probability

one. For t > τ , the relationship results in either termination or entrenchment, depending on the

history of the relationship. Both possibilities occur with positive probability for all p ∈ (0, 1).

Proposition 6 shows that, as in the baseline model, the relationship eventually settles into one of

two steady states: termination or entrenchment. Since centralization is never chosen in equlibrium,

the relationship can never settle into permanent centralization.
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8 Conclusions

Firms often motivate decision making by their employees with control rather than cash. In choosing

the allocation of control, such firms then have to balance the desire to influence current decision

making with the need to reward or punish past decision making. In this paper we explored the

allocation of control that strikes this balance optimally. For this purpose, we developed a simple,

dynamic model of delegation and showed that under the optimal allocation of control, the owner

of a firm is able to motivate her employees to make good decisions early on in their relationship.

Eventually, however, the owner either has to reward the employee by permanently giving her more

discretion than she would if she were not obligated by her past promises, or she has to punish him

by giving him permanently less discretion. In either case, the owner is no longer able to make

effi cient use of the employee’s information, the firm’s decision making becomes inertial, and its

performance declines. We then showed that our model speaks to the failure of established firms to

adapt to changes in their environments, even when those changes are publicly observed. And we

showed that it provides a rationale for persistent differences in the organization and performance

of seemingly similar firms that various studies have documented over recent years.

The empirical literature on the allocation of control within firms is very small and, to our

knowledge, there are no papers that explore how this allocation evolves over time. There is,

however, some recent empirical evidence which does suggest that dynamic considerations may be

playing an important role in the allocation of control. In particular, Bloom et al. (2012) provide

evidence for the intuitive observation that trust facilitates delegation and, through this channel,

can have a positive impact on firm performance. Even though their data is cross-sectional, they

acknowledge at the end of their paper that trust is an inherently dynamic issue: "we have considered

trust as being exogenously endowed on firms and countries due to long-run effects of history and

culture (such as religion). But corporate cultures do change over time, and modeling the endogenous

evolution of trust and incentives to invest in it would be a fascinating avenue for future research."

Since we model delegation explicitly as a trust game, our model allows us to take a first step

in this direction. Viewed through this lens, our model suggests that trust and delegation are

interdependent and that they may evolve over time in ways that are perhaps counter-intuitive,

at least at first. To see this, note that under the optimal relational contract, the owner starts

out trusting her employee to act in her interest. Eventually, however, the owner has to either

reward the employee by giving him more discretion or punish him by taking away his discretion

entirely. In either case, the owner no longer trusts the employee to take her interests into account.

Trust therefore unambiguously declines over time. Yet, the employee’s discretion actually increases
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whenever the owner has to reward him for his performance early on. These dynamics contrast

with the tempting view that since trust develops gradually and facilitates delegation, both should

increase over time. And they suggest that the interdependence between trust and delegation is

less obvious than it may at first appear and thus benefit from further, careful examination.
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Appendix A: (Incomplete)

8.1 Additional Formal Results

LEMMA 6: There exist four cutoffs uCD, ūCD, uN , ūN such that the PPE payoff frontier π2 (u) is

divided into six regions:

(i.) For u ∈ [0, a], π2 (u) = u and (u, π2 (u)) is supported by randomization between exit and

centralization.

(ii.) For u ∈ [a, uCD], π2 (u) = ((uCD − u) a+ (u− a)π2 (uCD)) / (uCD − a) and (u, π2 (u)) is

supported by randomization between centralization and cooperative delegation.

(iii.) For u ∈ [uCD, uN ], π2 (u) = π2,DC (u) and (u, π2 (u)) is supported by cooperative delega-

tion.

(iv − a.) For u ∈ [uN , ũN ], π2 (u) = ((ũN − u)π2 (uN ) + (u− uN ) π̃N ) / (ũN − uN ) and (u, π2 (u))

is supported by a randomization between cooperative delegation and the new project.

(iv − b.) For u ∈ [ũN , ūN ], π2 (u) = ((ūN − u) π̃N + (u− ũN )π2 (ūN )) / (ūN − ũN ) and (u, π2 (u))

is supported by a randomization between cooperative delegation and the new project.

(v.) For u ∈ [ūN , ūCD], π2 (u) = π2,DC (u) and (u, π2 (u)) is supported by cooperative delegation.

(vi.) For u ∈ [ūCD, B], π2 (u) = ((B − u)π2 (ūCD) + (u− uCD) b) / (B − uCD) and (u, π2 (u))

is supported by a randomization between cooperative and uncooperative delegation.

LEMMA 7: The PPE frontier π(u) can be divided into five regions.

π(u) =



uπ(uCD)/uCD
πCD(u)((

uDC − u
)
π(ūCD) + (u− ūCD)π(uDC )

)
/
(
uDC − ūCD

)
πDC (u)

((B − u)π(ūDC ) + (u− ūDC ) b) / (B − ūDC )

u ∈ [0, uCD);

u ∈
[
uCD , ūCD

]
;

u ∈ (ūCD , uDC );

u ∈
[
uDC , ūDC

]
;

u ∈ (ūDC , B],

where uCD ≥ (1− δ) a and ūDC = (1− δ) b+ δB.

8.2 Proofs

LEMMA 1. The PPE payoff set E has the following properties: (i.) it is compact, (ii.) π(u) is

concave, (iii.) the payoff pair (u, π) belongs to E if and only if u ∈ [0, B] and π ∈ [bu/B, π (u)].

Proof of Lemma 1: Part (i.): Note that there are finite number of actions the players can take, and

standard arguments then imply that the PPE payoff set E is compact. Part (ii.): the concavity of
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π follows immediately from the availability of the public randomization device. Part (iii.): Notice

that both (0, 0) and (B, b) are PPE payoffs sustained by termination and entrenchment respectively.

In addition, there exists no actions that give the the agent payoffs below 0 or above B. This implies

that if (u, π) ∈ E, then u ∈ [0, B] . Moreover, one must have π ≤ bu/B because no payoff below the

line segment joining (0, 0) and (B, b) is feasible. Next, given the public randomization device, any

payoff on the line segment between (0, 0) and (B, b) can be supported as a PPE payoff. In other

words, (u, bu/B) is a PPE payoff for any u ∈ [0, B]. Finally, the randomization between (u, bu/B)

and (u, π (u)) allows us to obtain any payoff (u, π) for all π ∈ [bu/B, π (u)] . �

LEMMA 2: For any payoff (u, π(u)) on the frontier, the equilibrium continuation payoffs remain

on the frontier.

Proof of Lemma 2 : To show that for each payoff (u, π(u)) on the frontier, the equilibrium

continuation payoffs remain on the frontier, it suffi ces to show that this is true if (u, π(u)) is

supported by a pure action. Suppose (u, π(u)) is supported by control. Let (uC , πC) be the

associated continuation payoff. Suppose to the contrary of the claim that πC < π(uC). Now

consider an alternative strategy profile that also specifies control but in which the continuation

payoff is given by (uC , π̂C) , where π̂C = πC + ε and where ε > 0 is small enough such that

πC + ε ≤ π (uC). It follows from the promise-keeping constraints PKP
C and PK

A
C that under this

alternative strategy profile the payoffs are given by û = u and π̂C = π(u) + δε > π(u). It can be

checked that this alternative strategy profile satisfies all the constraints and therefore constitutes

a PPE. Since π̂C > π(u), this contradicts the definition of π(u), thus it must be that πC = π(uC).

The argument is identical when (u, π(u)) is supported by cooperative or uncooperative delegation.

�

LEMMA 3: In addition, the following hold.

(i.) If (u, π(u)) is supported with cooperative delegation, the Subordinate’s continuation payoff

can be chosen by

uh (u) =
u− (1− δ) b

δ
;

u` (u) =
u− (1− δ)B

δ
.

(ii.) If (u, π(u)) is supported with uncooperative delegation, the Subordinate’s continuation pay-

off is given by

uDU (u) =
u− (1− δ)B

δ
.
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(iii.) If (u, π(u)) is supported with control, the Subordinate’s continuation payoff is given by

uC (u) =
u− (1− δ) a

δ
.

Proof of Lemma 3: For part (i.), let (u, π(u)) be associated with the continuation payoffs

(u`, uh, π (u`) , π (uh)). Suppose that for this PPE the ICDC is slack, that is, (1− δ) b + δuh >

(1− δ)B + δu`. Now consider an alternative strategy profile with continuation payoffs given by

(û`, ûh, π (û`) , π (ûh)), where û` = u` + pε and ûh = uh − (1− p) ε for ε > 0. It follows from

the promise-keeping constraints PKP
DC

and PKA
DC

that, under this strategy profile, the payoffs are

given by û = u and

π̂ = p [(1− δ)B + δπ (ûh)] + (1− p) [(1− δ) b+ δπ (ûl)] .

From the concavity of π it then follows that

π̂ ≥ (1− δ) b+ δ((1− p)π (u`) + pπ (uh)) = π (u) .

It can be checked that for suffi ciently small ε this alternative strategy profile satisfies all the

constraints and therefore constitutes a PPE. Since π̂ ≥ π (u) this implies that for any PPE with

payoffs (π, u(π)) for which IC is not binding there exists another PPE for which ICDC
is binding

and which gives the parties weakly larger payoffs. Notice that when ICDC
is binding, we have

uh (u) = (u− (1− δ) b) /δ and u` (u) = (u− (1− δ)B) /δ. This proves part (i.). Parts (ii.) and

(iii.) follow directly from the promise-keeping constraints PKA
DU

and PKA
C.�

LEMMA 4: The PPE frontier π (u) is the unique function that solves the following problem. For

all u ∈ [0, B]

π (u) = max
qj≥0,uj∈[0,B]

∑
j∈{C,DC ,DU ,E}

qjπj (uj)

such that ∑
j∈{C,DC ,DU ,E}

qj = 1

and ∑
j∈{C,DC ,DU ,E}

qjuj = u.

Proof of Lemma 4: Since the frontier is Pareto effi cient, by APS bang-bang result, for any

effi cient payoff pair, only using the extreme points of the payoff set is suffi cient. Replacing the sup

with max is valid since the payoff set is compact. To establish the uniqueness, we just observe

that the problem is now a maximization problem on a compact set, even if the maximizers are not

unique, the maximum is.
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Next, instead of proving Lemma 5 directly, we establish alternative Lemma 5A-5C, which leads

to Lemma 5′. Lemma 5′ provides a complete characterization of the PPE payoff frontier for all

p ∈ (0, 1) , which includes the case of p ≤ 1/2 (Lemma 5).

LEMMA 5A: There exists a cutoff value ūCD = (1− δ) b + δB such that πDU (u) = π (u) if and

only if

u ∈ [(1− δ)B + δūCD, B].

Proof of Lemma 5A: First, notice that πDU (B) = π (B) . Next, recall that πDU (u) = (1− δ) b+
δπ (uDU (u)) . Taking the right derivative, we have

π′+DU (u) = δπ′+ (uDU (u))u′+DU (u) = π′+ (uDU (u)) ≥ π′+ (u) ,

where we used the fact that if u < B, uUD (u) < u, and therefore π′+ (uDU (u)) ≥ π′+ (u) by

concavity of the frontier. Since π′+DU (u) ≥ π′+ (u) for all u < B, there exists u∗ such that

πDU (u) = π (u) if and only if u ∈ [u∗, B]. Next, we show that u∗ = (1− δ)B + δūCD.

To do this, we first show that there exists some u < B such that πDU (u) = π (u) , i.e., u∗ <

B. We prove this by contradiction. Suppose to the contrary that πDU (u) < π (u) for all u <

B. Choose a small enough ε > 0 such that (B − ε, π (B − ε)) cannot be supported by pure
actions. Notice that such ε exists, because by assumption (B − ε, π (B − ε)) is not supported
by DU , and if it were supported by C or DC , then the agent’s continuation payoffs (uC and uh)

must exceed B, leading to a contradiction. This implies that (B − ε, π (B − ε)) must be supported
by randomization, and therefore the frontier is a straight line between B − ε and B. Let the

slope of the payoff frontier between (B − ε, π (B − ε)) and (B, b) as s. It then follows that for all

u ∈ [B − δε,B) (i.e. uUD (u) ≥ B − ε), we have

πDU (u) = π (u) = b+ s(u−B).

This contradicts the assumption that πDU (u) < π (u) for all u < B.

The above shows that πDU (u) = π (u) for u ∈ [u∗, B], where u∗ < B. It follows that for all

u ∈ [u∗, B], π′+DU (u) = π′+ (uDU (u)) = π′+ (u) . Since π is concave, this implies that the slope

of π is constant for all Subordinate’s payoffs in (uDU (u) , u). It is then immediate that π (u) is a

straight line between [u−1
DU

(u∗), B]. Let (u′, π (u′)) be the left end point of the line segment. Notice

that (u′, π (u′)) is an extremal point of the payoff frontier, it must be supported by pure action.

Moreover, it cannot be supported by uncooperative delegation, because u′ ≤ u−1
DU

(u∗) < u∗. This
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implies that (u′, π (u′)) is supported by either cooperative delegation or control. Next, we show

that (u′, π (u′)) cannot be supported by control, so we must have π (u′) = πDC (u′) .

Suppose to the contrary that π (u′) = πC (u′) . Notice that

u′ = (1− δ) a+ δuC
(
u′
)

;

π
(
u′
)

= (1− δ) a+ δπ
(
uC
(
u′
))
,

which implies that

u′ − a = δ
(
uC
(
u′
)
− a
)

;

π
(
u′
)
− a = δ

(
π
(
uC
(
u′
))
− a
)
.

Now take any u ∈ (max{a, u′}, B). We have uC (u) > u, and the above implies that

π (u)− a
u− a =

π (uC (u))− a
uC (u)− a =

π (uC (u))− π (u′)

uC (u)− u =
π (u)− b
u−B ,

where the last inequality holds, because π is a straight line to the right of u′ and u > u′. The

equalities then imply that (u, π (u)) lies on the line segment between (a, a) and (B, b) for all u ∈
[a,B], which contradicts [NOTE: Assumption X] (B − a ≤ (1−δ)

δ (B − b)). This implies that

π (u′) > πC (u′) , and we must have π (u′) = πDC (u′) .

Finally, we show that u′ = ūCD, i.e., uh(u′) = B. By SECD, the continuation payoff uh(u′)

satisfies uh(u′) ≤ B. Now suppose to the contrary that uh (u′) < B. Recall that s is the

slope of the payoff frontier between (u′, π (u′)) and (B, b). Now consider an alternative strategy

profile that is supported by cooperative delegation and whose continuation payoffs are given by

(û`, ûh, π (û`) , π (ûh)), where û` = u`(u
′) + ε and ûh = uh(u′) + ε for small ε > 0. It follows from

the promise-keeping constraints PKP
CD and PK

A
CD that, under this strategy profile, the payoffs are

given by û = u′ + δε and

π̂ = p [(1− δ)B + δπ (ûh)] + (1− p) [(1− δ) b+ δπ (û`)]

= π
(
u′
)

+ pδ
[
π
(
uh
(
u′
)

+ ε
)
− π

(
uh
(
u′
))]

+ (1− p) δ
[
π
(
u`
(
u′
)

+ ε
)
− π

(
u`
(
u′
))]

> π
(
u′
)

+ δsε.

Notice that the strict inequality follows, because s is the smallest slope of π, and since u` (u′) < u′,

we have π (u` (u′) + ε)−π (u` (u′)) > sε by the definition of u′. It can be checked that for suffi ciently
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small ε this alternative strategy profile satisfies all the constraints and therefore constitutes a PPE.

This implies that

π
(
u′
)

+ δsε < π̂ ≤ π
(
u′ + δε

)
= π(u′) + δsε,

where the weak inequality follows from the definition of π and the equality follows from that π

is a straight line with slope s to the right of u′. Since the above chain of inequalities lead to a

contradiction, we must have uh(u′) = B, or equivalently, u′ = ūCD. �

LEMMA 5B: There exists a cutoff probability level p∗∗ > 1/2 such that the following hold.

(i.) If p ∈ (p∗∗, 1), πC(u) < π(u) for all u ∈ [0, B].

(ii.) If p ∈ (0, p∗∗], there exists uC ≤ a ≤ uC such that πC(u) = π(u) if and only if u ∈
[(1− δ) a+ δuC , (1− δ) a+ δuC ]. In addition, uC = 0 if and only if p ≤ 1/2.

Proof of Lemma 5B: First, we show that if π(a) < a, then πC(u) < π(u) for all u ∈ [0, B].

To prove this, we show that if that πC(u) = π(u) for some u 6= a, then π(a) = a. Now suppose

there exists u > a such that πC(u) = π(u). Since u > a, we have uC (u) = (u− (1− δ) a) /δ > u.

Recall that πC (u) = (1− δ) a+ δπ (uC (u)). Taking left derivatives, we have

π
′−
C (u) = π

′− (uC (u)) ≤ π′− (u) ,

where the inequality follows because the payoff frontier is concave and uC (u) > u. Since π is

concave, the above then implies that π is a straight line in [uC (u) , u], and πC (u′) = π (u′) for

all u′ ∈ [uC (u) , u]. Repeating the argument at uC (u) , we get that πC (u′′) = π (u′′) for all

u′′ ∈ [uC(uC (u)), uC (u)]. Using the argument repeatedly and using the fact that π is continuous

at a, we then have that πC (u′) = π (u′) for all u′ ∈ [a, u]. It follows that

π (a) = πC (a) = (1− δ) a+ δπ (uC (a)) = (1− δ) a+ δπ (a) ,

which implies that π(a) = a, contradicting the assumption that π(a) < a. This proves that if

π(a) < a, then πC(u) < π(u) for all u > a. The identical argument as above can be used to show

that if π(a) < a, then πC(u) < π(u) for all u < a. This finishes showing that if π(a) < a, then

πC(u) < π(u) for all u ∈ [0, B].

Next, when π(a) = a, define uC = max{u : πC(uC(u)) = π(uC(u))}. Notice that the argument
above implies that π′(u) is the same for all u between a and uC , and this shows that π is a line

segment in [a, uC ]. Similarly, define uC = min{u : πC(uC(u)) = π(uC(u))}, and we then have that
π is a line segment in [uC , a].
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Notice that when p ≤ 1/2, the set of feasible payoffs lie below the 45 degree line for u ∈ [0, a].

In addition, payoffs on the 45 degree line with end points in (0, 0) and (a, a) can be implemented

by the randomization between the two end points (that are both PPE payoffs). This implies that

π(u) = u for all u ∈ [0, a] and immediately implies that uC = 0.

Finally, we will show in the proof of next lemma that there exists p∗∗ > 1/2 such that π(a) > a

if and only p > p∗∗. Given this result, Lemma 5B follows immediately. We prove this result in

Lemma 5C for convenience, and its proof does not depend on results established in this lemma. �

LEMMA 5C: There exists a cutoff probability level p∗∗ > 1/2 such that the following holds.

(i.) If p ∈ [p∗∗, 1), πDC (u) = π(u) if and only if u ∈ [uCD, ūCD], where u1 = (1− δ)B.
(ii.) If p ∈ [1/2, p∗∗], πDC (u) = π(u) if and only if u ∈ [uACD, ū

A
CD] ∪ [uCD, ūCD] for some

ūACD < a < uCD ≤ δa+ (1− δ)B.
(iii.) If p ∈ (0, 1/2), πDC (u) = π(u) if and only if u ∈ [uCD, ūCD] for some uCD ∈ (a, δa +

(1− δ)B].

Proof of Lemma 5C: To prove the lemma, we take the following steps.

Step 1: We establish properties of PPE payoff of a modified game.

Consider a modified game in which C is not feasible. Let πT be the associated PPE payoff

frontier of the modified game. We estabilish the following properties of πT .

A: For u ∈ [ūCD, B], where ūCD = (1− δ) b+ δB,

πT (u) =
u− ūCD
B − ūCD

b+
B − u

B − ūCD
πT (ūCD) .

B: For u ∈ [0, uCD], where uCD = (1− δ)B,

πT (u) =
u

uCD
πT (uCD) .

C: For u ∈ [uCD, ūCD],

πT (u) = p [(1− δ)B + δπT (uh (u))] + (1− p) [(1− δ) b+ δπT (u` (u))] .

The properties of πT are established in the same way as the method used here except it is

simpler. We therefore omit the proof of Step 1.

Step 2: There exists p∗∗ > 1/2 such that πT (u, p) = π (u, p) if and only if p ≥ p∗∗.
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To see this, we first show that for all u ∈ (0, B), πT (u, p) is strictly increasing in p. Consider

p1 > p2. Define the operator Tif , which maps bounded nonnegative functions on [0, B] to bounded

nonnegative functions on [0, B], as

Tif (u) =
u

uCD
f (uCD) for u ≤ uCD

Tif (u) =
u− ūCD
B − ūCD

b+
B − u

B − ūCD
f (ūCD) for ūCD ≤ u ≤ B

Tif (u) = pi [(1− δ)B + δf (uh (u))] + (1− pi) [(1− δ) b+ δf (u` (u))] for uCD ≤ u ≤ ūCD

It is clear that Ti is bounded monotone in the sense that Ti(f1) ≥ Ti(f2) whenever f1 ≥ f2 (in the

sense that f1 (u) ≥ f2 (u) for all u). Let Z(u) ≡ 0 on [0, B] , it follows that Z∗ ≡ limn→∞ Ti(z) is

a fixed point of Ti. Moreover, the fixed point is unique. Suppose to the contrary that f1 and f2

are two fixed point of Ti. Let M = supu∈[0,B]{|f1(u)− f2(u)|}. Now notice that

M = sup
u∈[uCD,ūCD]

{|f1(u)− f2(u)|}

= sup
u∈[uCD,ūCD]

{|Tf1(u)− Tf2(u)|}

= sup
u∈[uCD,ūCD]

{δ|pi (f1 (uh (u))− f2 (uh (u))) + (1− pi) (f1 (ul (u))− f2 (ul (u))) |}

≤ δpi sup
u∈[0,B]

{|f1(u)− f2(u)|}+ δ(1− pi) sup
u∈[0,B]

{|f1(u)− f2(u)|}.

≤ δM,

and this implies that M = 0. This shows that Ti has a unique fixed point.

Now let πT (u, p1) be the unique fixed point of T1 and πT (u, p2) be the unique fixed point of

T2. Notice that for each u ∈ [uCD, ūCD],

T1πT (u, p2) = p1 [(1− δ)B + δπT (uh (u) , p2)] + (1− p1) [(1− δ) b+ δπT (uh (u) , p2)]

= (p1 − p2) (1− δ) (B − b) + T2πT (u, p2)

> πT (u, p2) .

The monotonicity of T1 then implies immediately that T1πT (u, p2) > πT (u, p2) for all u ∈ (0, B).

This finishes showing that for all u ∈ (0, B), πT (u, p) is strictly increasing in p.

Next, we show that there exists p∗∗ such that πT (u, p) = π (u, p) if and only if p ≥ p∗. Choose
p∗∗ as the cutoff value such that πT (a, p∗∗) = a. This implies that when p > p∗∗, a < πT (a, p) ≤
π(a, p). By the argument in Lemma 5B, we then have that the frontier π(u, p) is not supported

by centralization for all u ∈ [0, B], and this implies that πT (u, p) = π(u, p) for all u ∈ [0, B]. This
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implies that πT (u, p) = π (u, p) for all p > p∗∗, and since both πT and π are continuous in p (by

the maximum theorem), we then also have πT (u, p) = π(u, p).

Notice that we must have p∗∗ ≥ 1/2 because otherwise (a, a) lies strictly above the set of feasible

payoffs and thus cannot be a PPE payoff. When p = 1/2, let u∗ be the maximal equilibrium payoff

of the agent such that πT (u) is on the 45 degree line. If u∗ > 0, then it satisfies uh(u∗) = u∗, which

implies that u∗ = b < a. Consequently, (a, a) again lies above (a, πT (a)) when p = 1/2. As a

result, we have p∗∗ > 1/2. By combining Step 1 and 2, this proves part (i) of Lemma 5C.

Step 3: When p < 1/2, then πDC (u) = π(u) if and only if u ∈ [uCD, ūCD] for some uCD ∈
(a, δa+ (1− δ)B].

To see this, notice that for u ∈ [uC , ūCD], where recall that uC = max{u : πC(uC(u)) =

π(uC(u))}, π(u) cannot be supported by centralization or uncooperative delegation by Step 2 and

Lemma 5A. Therefore, for any u ∈ [uC , ūCD], either π(u) = πD(u) (in which case we are done) or

there exists a ρ ∈ (0, 1) , a û1 ∈ [uC , u), and a û2 ∈ (u, ūCD] such that (i.) both (û1, π (û1)) and

(û2, π (û2)) satisfy πDC (ûi) = π(ûi) for i = 1, 2, (ii.) (u, π(u)) = ρ (û1, π (û1)) + (1− ρ) (û2, π (û2)).

Let ûih and ûil, i = 1, 2 be the agent’s associated continuation payoffs for the two PPE.

Now consider an alternative strategy profile in which cooperative delegation is chosen and

the continuation payoff given by (ûh, ûl, π(ûh), π(ûl)), where ûh = ρû1h + (1 − ρ)û2h and ûl =

ρû1l + (1− ρ)û2l. It follows from the promise keeping constraints PKPD and PKAD that under this

strategy profile the payoffs are given by û = u and

π̂ = p [(1− δ)B + δπ (ρû1h + (1− ρ)û2h)]

+ (1− p) [(1− δ) b+ δπ (ρû1h + (1− ρ)û2h)]

≥ ρπ (û1) + (1− ρ)π (û2)

= π(u).

It can be checked that this alternative strategy profile satisfies all the constraints and therefore

constitutes a PPE. Therefore, πDC (u) ≥ π̂ ≥ π(u). This proves that πDC (u) = π(u) if u ∈
[uC , ūCD].

Next, define uCD = min{u : πDC (u) = π(u)}. By the above, we see that uCD ≤ uC . In addition,
since p < 1/2, it is clear that πDC (u) < u = π(u) for all u ∈ [0, a], where the equality follows from the

proof of Lemma 5B. Therefore, uCD > a. It remains to show that πDC (u) = π(u) if u ∈ [uCD, uC ].

Suppose u = ρuCD+(1− ρ)uC. Consider a strategy profile in which cooperative delegation is chosen

and the continuation payoff given by (ûh, ûl, π(ûh), π(ûl)), where ûh = ρuh(uCD) + (1 − ρ)uh(uC)
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and ûl = ρul(uCD) + (1 − ρ)ul(uC). It follows from the promise keeping constraints PKPD and

PKAD that under this strategy profile the payoffs are given by û = u and

π̂ = p [(1− δ)B + δπ (ρuh(uCD) + (1− ρ)uh(uC))]

+ (1− p) [(1− δ) b+ δπ (ρul(uCD) + (1− ρ)ul(uC))]

≥ ρπ (uCD) + (1− ρ)π (uC)

= π(u),

where the last equality follows from the linearity of π in [uCD, uC ]. Therefore, πDC (u) ≥ π̂ ≥ π(u),

and, thus, πDC (u) = π(u). This proves that πDC (u) = π(u) for all u ∈ [uCD, ūCD].

Next, we prove uCD ≤ δa+ (1− δ)B, or equivalently, ul(uCD) ≤ a, and this finishes the proof
of Step 3. Now suppose to the contrary that ul(uCD) > a. This implies that ul(uC) > a since

uC ≥ uCD. Recall (in Lemma 5B) that π is a straight line in [a, uC ]. Denote its slope as s. Now

consider a strategy profile that is supported by delegation and whose continuation payoffs are given

by (ûl, ûh, π (ûl) , π (ûh)), where ûl = ul(uC) − ε and ûh = uh(uC) − ε for ε > 0. We choose ε

small enough so that ul(uC) − ε > a and uh(uC) − ε > uC . It follows from the promise keeping

constraints PKPD and PKAD that under this strategy profile the payoffs are given by û = uC − δε
and

π̂ = p [(1− δ)B + δπ (ûh)] + (1− p) [(1− δ) b+ δπ (ûl)]

= π (uC) + pδ [π (uh (uC)− ε)− π (uh (uC))]

+ (1− p) δ [π (u` (uC)− ε)− π (u` (uC))]

> π (uC)− δsε.

Notice that the strict inequality follows because π (u` (uC)− ε)−π (u` (uC)) = −sε (since u` (uC)−
ε > a) and π (uh (uC)− ε) − π (uh (uC)) > −sε since uh(uC) − ε > uC and π′− (u) < s for all

u > uC . It can be checked that this alternative strategy profile satisfies all the constraints and

therefore constitutes a PPE. This implies that

π (uC)− δsε < π̂ ≤ π (uC − δε) = π(uC)− δsε,

where the weak inequality follows from the definition of π and the equality follows from that π

is a straight line with slope s between a and uC . Since the above chain of inequalities lead to a

contradiction, we must have ul(uCD) ≤ ul(uC) ≤ a, or equivalently uCD ≤ δa + (1− δ)B. This
proves Step 3, and, thus, part (iii) of Lemma 5C.
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Step 4: If p ∈ [1/2, p∗), πDC (u) = π(u) if and only if u ∈ [uACD, ū
A
CD] ∪ [uCD, ūCD] for some

ūACD < a < uCD ≤ δa+ (1− δ)B, where u1 = (1− δ)B.
To prove this, notice that for u ≥ a, we can again define uCD = min{u : πD(u) = π(u), u ≥ a}.

Using the same argument as in Step 3, we can show that when u > a, πDC (u) = π(u) if and only

if u ∈ [uCD, ūCD]. Next, notice that when p ≥ 1/2, πDC (u) ≥ u for all u such that ul(u) ≥ 0 and

uh(u) ≤ a, i.e., u ∈ [(1− δ)B, (1− δ) b+ δa]. This implies that πDC (u) = π(u) for some u ∈ (0, a)

(because otherwise π(u) = u for all u ∈ (0, a)). Now define ūACD = max{u : πDC (u) = π(u), u ≤ a}
and uACD = min{u : πD(u) = π(u)}. By the same argument as in Step 3, we can show that

πDC (u) = π(u) for all u ∈ [uACD, ū
A
CD].

By the definition of uACD, it is clear that π(u) is a straight line between 0 and uACD. Let the

slope of this line segment be s. To see uACD = (1− δ)B, notice that uACD ≥ (1− δ)B because

otherwise cooperative delegation is not feasible. Suppose to the contrary that uACD > (1− δ)B.
Consider a strategy profile that is supported by delegation and whose continuation payoffs are given

by (ûl, ûh, π (ûl) , π (ûh)), where ûl = ul(u
A
CD) − ε and ûh = uh(uACD) − ε for ε > 0. We choose ε

small enough so that ul(uACD)− ε > 0. It follows from the promise keeping constraints PKPD and

PKAD that under this strategy profile the payoffs are given by û = uACD − δε and

π̂ = p [(1− δ)B + δπ (ûh)] + (1− p) [(1− δ) b+ δπ (ûl)]

= π
(
uACD

)
+ pδ

[
π
(
uh
(
uACD

)
− ε
)
− π

(
uh
(
uACD

))]
+ (1− p) δ

[
π
(
u`
(
uACD

)
− ε
)
− π

(
u`
(
uACD

))]
≥ π

(
uACD

)
− δsε.

Notice inequality follows because π is concave so s is its maximal derivative. It can be checked

that this alternative strategy profile satisfies all the constraints and therefore constitutes a PPE.

This implies that

πDC
(
uACD − δε

)
≥ π̂ ≥ π

(
uACD

)
− δsε = π

(
uACD − δε

)
,

where the equality follows from that π is a straight line with slope s between 0 and uACD. By the

above chain of inequalities, πDC
(
uACD − δε

)
= π

(
uACD − δε

)
, which lead to a contradiction because

uACD is defined as the smallest agent’s payoff such that πDC (u) = π(u).

Next, notice that we must have ūACD < a. Suppose to the contrary that ūACD = a, then by

definition we also have uCD = a, and this implies that π(u) = πDC (u) for all u ∈ [uACD, ūCD]. This

implies that π(u) = πT (u), where recall that πT (u) is defined in Step 1 (where centralization is not

used). This contradicts that assumption that p < p∗∗. Similarly, we must also have uCD > a. This

proves Step 4, and, thus, part (ii) of Lemma 5C. �
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Combining Lemma 5A-5C, we obtain the following lemma.

Lemma 5’: The PPE frontier π(u) satisfies the following.

(i.) If p ∈ [p∗∗, 1), the frontier can be divided into three regions.

π(u) =


uπ(uCD)/uCD

πDC (u)

((B − u)π(ūCD) + (u− ūCD) b) / (B − ūCD)

u ∈ [0, uCD);

u ∈ [uCD, ūCD];

u ∈ (ūCD, B],

where uCD = (1− δ)B and ūCD = (1− δ) b+ δB.

(ii.) If p ∈ (1/2, p∗), the frontier can be divided into six regions.

π(u) =



uπ(uACD)/uACD

πDC (u)(
(a− u)π(ūACD) +

(
u− ūACD

)
a
)
/
(
a− ūACD

)
((uCD − u) a+ (u− a)π(uCD)) / (uCD − a)

πDC (u)

((B − u)π(ūCD) + (u− ūCD) b) / (B − ūCD)

u ∈ [0, uACD);

u ∈ [uACD, ū
A
CD];

u ∈ (ūACD, a);

u ∈ [a, uCD);

u ∈ [uCD, ūCD];

u ∈ (ūCD, B],

where uACD = (1− δ)B, uCD ∈ (a, δa+ (1− δ)B) and ūCD = (1− δ) b+ δB.

(iii.) If p ∈ (0, 1/2], the frontier can be divided into four regions.

π(u) =


u

((uCD − u) a+ (u− a)π(uCD)) / (uCD − a)

πDC (u)

((B − u)π(ūCD) + (u− ūCD) b) / (B − ūCD)

u ∈ [0, a);

u ∈ [a, uCD);

u ∈ [uCD, ūCD];

u ∈ (ūCD, B],

where uCD ∈ (a, δa+ (1− δ)B) and ūCD = (1− δ) b+ δB.

PROPOSITION 2: In the optimal equilibrium, the principal chooses cooperative delegation if and

only if t ≤ τ for some random time period τ . Pr (τ <∞) = 1 so that delegation occurs with

probability 0 in the long run. In addition, there exists p∗ < p∗∗ that the following holds.

(i.) When p ≥ p∗∗, either the relationship terminates or the agent entrenches in the long run:

lim
t→∞

Pr(ut = 0) > 0, lim
t→∞

Pr(ut = B) > 0,

lim
t→∞

Pr(ut = 0) + Pr(ut = B) = 1.
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(ii.) When p ∈ (p∗, p∗∗), the relationship terminates with positive probability less than 1. When

the relationship does not terminate in the long run, principal chooses either centralization perma-

nently or uncooperative delegation permanently.

lim
t→∞

Pr(ut = 0) > 0, lim
t→∞

Pr(ut = a) > 0, lim
t→∞

Pr(ut = B) > 0,

lim
t→∞

Pr(ut = 0) + Pr(ut = a) + Pr(ut = B) = 1.

(iii.) When p ≤ p∗, the principal chooses either centralization permanently or uncooperative

delegation permanently in the long run:

lim
t→∞

Pr(ut = a) > 0, lim
t→∞

Pr(ut = B) > 0,

lim
t→∞

Pr(ut = a) + Pr(ut = B) = 1.

Proof of Proposition 2: By Assumption Y, the relationship starts with cooperative delegation.

In addition, if ever control, entrenchment, or termination is used, Lemma 5’immediately implies

that the relationship stops there forever. This establishes the existence of the random time.

Moreover, since these are the only absorbing states of the relationship, and it can be easily show

that there exists an ε > 0 and a large enough N such that the probability the relationship ends in

one of the absorbing state exceeds ε every N periods. Standard argument then implies that the

relationship ends in one of the absorbing states with probability 1, and this shows that Pr (τ <∞) =

1.

Part (i): when p ≥ p∗∗, the PPE frontier is described as in part (i) of Lemma 5’. In this case, it
is clear that the dynamics following the optimal equilibrium has only two steady states: permanent

uncooperative delegation and termination. This proves part (i).

Next, suppose p < p∗∗. Notice that the relationship starts to the right of a, and if there exists t

such that Pr(ut < a) > 0, then termination is a steady state with positive probability. Otherwise,

termination is never reached and the only two steady states are permanent centralization and

entrenchment. By Lemma 5’(part (ii) and (iii)), ul(uCD) ≤ a. It is then clear that Pr(ut < a) = 0

if and only if ul(uCD) = a. We now show below that there exists p∗ such that for all p ≤ p∗,

ul (uCD) = a.

To do this we show that if ul(uCD, p
′) = a then ul(uCD, p

′′) = a for p′′ < p′. Let s0 be the slope

between (a, a) and (uCD, π(uCD)), and s1 be the slope between (ūCD, π(ūCD)) and (B, b). Note

that both s0 and s1 depend on p. Now if ul(uCD, p
′) = a, this implies that

s0

(
p′
)
≤ (1− p′)π′−(a, p′) + p′π′−(uh(uCD), p′).
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To show that ul(uCD, p
′′) = a for p′′ < p′, it then suffi ces to show that

s0

(
p′′
)
≤ (1− p′′)π′−(a, p′′) + p′′π′−(uh(uCD), p′′).

This is because we can use the standard argument to show that π(u) is the unique fixed point of

the operator

Tf (u) = max

{
max {πC (u) , πDC (u) , πDU (u) , πE (u)} ,

maxα∈(0,1),u1,u2∈[0,B] {αf (u1) + (1− α) f (u2)}

}
,

which is monotone and nonexpansive (see an analgous argument in Step 2 in Lemma 5C).

A suffi cient condition is then given by

∂s0 (p)

∂p
> ∂

(
(1− p)π′−(a, p) + pπ′−(uh(uCD), p)

)
/∂p

for all p < p′. Notice that if ∂s0 (p) /∂p does not exist, we can replace it with the left derivative.

To see that the left derivative exists, notice that π(u) is weakly increasing in p for all u, so s0(p) is

weakly increasing in all p, and therefore, the left derivative exists. Now

∂
(
(1− p)π′−(a, p) + pπ′−(uh(uCD), p)

)
/∂p

= −π′−(a, p) + (1− p)
∂π′−(a, p)

∂p
+ π′−(uh(uCD), p) + p

∂π′−(uh(uCD), p)

∂p

≤ p
∂π′−(uh(uCD), p)

∂p
,

where the inequality follows because π′−(uh(uCD), p)−π′−(a, p) ≤ 0 by concavity of π and ∂π′−(a, p)/∂p ≤
0 because π(a, p) = a for all p < p∗ and π(u, p) is weakly increasing in p. It now follows that it

suffi ces to show that
∂s0 (p)

∂p
> p

∂π′−(uh(uCD), p)

∂p
.

To do this, notice that we can write

π′−(uh(uCD), p) = α(p)s0(p) + (1− α(p))s1(p)

for some α(p). Notice that ∂s1(p)/∂p ≤ 0 since π(u, p) increasing in p, which follows from an

argument analgous to that in Step 2 in Lemma 5C. It follows that if ∂α(p)/∂p < 0, then

p
∂π′−(uh(uCD), p)

∂p

= p

(
∂α(p)

∂p
s0(p) + α(p)

∂s0(p)

∂p
+ (1− α(p))

∂s1(p)

∂p
− ∂α(p)

∂p
s1(p)

)
≤ pα(p)

∂s0(p)

∂p

≤ ∂s0(p)

∂p
.
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To show that ∂α(p)/∂p < 0, notice that α(p) is the probability that ut falls into [0, a] before

(ūCD, B], where {ut} is a sequence of the agent payoffs starting at u1 = uCD and determined by

the transition rule that

ut+1 =

{
uh(ut)

ul(ut)

with probability p

with probability 1− p
.

Notice that we have the open bracket at u1 and closed bracket at a because we are looking at the

left derivatives here. In general, let F (u, p) be the probability that ut falls into [0, a] first before

(ūCD, B], and the sequence starts at u. In particular, let F (u, p) = 1 for u ≤ 0 and F (u, p) = 1 = 0

for u ≥ B. Now consider p1 < p2. For each pi, F (u, pi) satisifes F (u, pi) = TiF (u, pi), where Ti is

an operator on functions with ranges in [a,B] satisfying

TiF (u) =


u−a

uCD−a
F (uCD) +

uCD−u
uCD−a

piF (uh (u)) + (1− pi)F (u` (u))
B−u

B−ūCDF (ūCD) + u−ūCD
B−ūCD b

0 ≤ u < uCD

uCD ≤ u ≤ ūCD
ūCD < u ≤ B

Notice that Ti is a monotone operator and has a unique fixed point for each pi. Moreover, it is

clear that F (u, pi) is decreasing in u for each pi. Let F (u, p1) be the unique solution for F (u, p1) =

T1F (u, p1). It is clear that T2F (u, p1) ≤ F (u, p1) (since F (u, p1) is decreasing in u) for all u and it

follows that F (u, p2) ≤ F (u, p1) for all u. In particular, F (uCD, p2) ≤ F (uCD, p1) and this proves

that ∂α(p)/∂p < 0. This finishes showing that if ul(uCD, p
′) = a then ul(uCD, p

′′) = a for p′′ < p′.

As a result, there exists p∗ such that for all p ≤ p∗, ul (uCD) = a and there are two steady states

in the long run.

Finally, we show that p∗ < p∗∗. It is clear that p∗ ≤ p∗∗, so it suffi ces to rule out that p∗ = p∗∗.

Recall that at p = p∗∗, we have πT (a, p∗∗) = a, and πT (u, p∗∗) = π(u, p∗∗). We now show that

there exists some small ε > 0 such that for p = p∗∗ − ε, ul(uCD, p) < a. Then by the argument

above, we have p∗ < p∗∗ − ε. Define ua ≡ u−1
l (a) and let s(p∗∗) be the slope between (a, a) and

(ua, π(ua, p
∗∗)) . Now suppose to the contrary that that for all ε > 0, ul(uCD, p

∗∗− ε) = a. Let s(p)

be the slope between (a, a) and (ua, π(ua, p)) . Notice that for all p < p∗∗, π(a, p) = a. In addition,

π(ua, p) ≤ π(ua, p
∗∗) because π is weakly increasing in p. This implies that s(p) ≤ s(p∗∗) for all

p < p∗∗. Now there are two cases to consider. First, π(u, p∗∗) is not a straight line between a and

ua, i.e., there exists a u ∈ (a, ua) such that π(u, p∗∗) > a+ s(p∗∗) (u− a) . In this case, we have

π(u, p∗∗) > a+ s(p∗∗) (u− a) ≥ lim
ε→0

π(u, p∗∗ − ε),

which violates the continuty of π(u, p) in p. This is a contradiction.
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In the second case, π(u, p∗∗) is a straight line between a and ua. Notice that since ul(ua) = a,

we have a < ua ≤ ūCD. Lemma 5’then implies that for u ∈ (a, ua),

π′(u, p∗∗) = pπ′(uh(u), p∗∗) + (1− p)π′(ul(u), p∗∗).

Since π′(u, p∗) is a constant for u ∈ (a, ua) and because π is concave, we have that π′ is again a

constant for all u ∈ (ul(a), a). Notice that

a− ul(a) = (ua − a) /δ > ua − a.

Now either ul(a) ≥ uACD ≡ (1− δ)B or ul(a) < uACD. Recall that π
′ is a constant for u ≤ uACD,

and denote the slope of π in this region as s0. Notice that if ul(a) < uACD, we must have ul(a) = 0

since π′−(u) < s0 for all u > uACD. Now if ul(a) ≥ uACD, we then have that π
′ is a constant for

u ∈ (ull(a), ul(a)), and repeating the same argument, we must have that uln(a) = 0 for some n.

Next, we claim that uh(u1) ≥ ūCD ≡ (1− δ) b + δB. Notice that π′ is a constant for u ∈
(uh(uACD), uh(ūACD)), and

uh(ūACD)− uh(uACD) =
(
ūACD − uACD

)
/δ.

If uh(u1) ≤ ūCD, we must then also have uh(ūACD) ≤ ūCD (because π′−(u) for u < ūCD is strictly

larger than the slope of π for u ≥ ūCD.) But if π′ is a constant for u ∈ (uh(u1), uh(ūACD)), same

argument as above implies that π′ is a constant for u ∈ (ulh(uACD), ulh(ūACD)), which is a line

segment with length
(
ūACD − uACD

)
/δ2. Applying the same argument as before, this would imply

that the distance between ūACD andu
A
CD is bigger than

(
ūACD − uACD

)
/δ2, which is a contradiction.

Finally, since uACD = (1− δ)B, uh(uACD) ≥ ūCD then implies that

(1− δ) (B − b)
δ

≥ B − (1− δ)b > B − a,

which contradicts Assumption X ( (1−δ)(B−b)
δ ≤ B − a.)�
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