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Remember teamwork begins by building
trust. And the only way to do that is to
overcome our need for invulnerability.

Patrick Lencioni, The Five Dysfunctions of
a Team: A Leadership Fable

1 Introduction

Teams are formed in all kinds of circumstances. They can be found within firms to
tackle complicated problems, academics have co-authors to jointly work on research
projects, lawyers or doctors form partnerships, and potential entrepreneurs start
a firm with friends instead of pursuing their ideas alone.1 Due to its importance,
economists have widely analyzed teamwork, thereby mainly focussing on two con-
flicting aspects. On the one hand, technological benefits and specialization render
teamwork necessary in situations that involve complex or risky tasks. On the other
hand, teamwork is associated with a free-rider problem: Because each member’s
contribution is a public good, an underprovision of contributions can result (see
Alchian and Demsetz, 1972). Starting with Holmstrom (1982) – who shows in a
static setting that the first-best is impossible to reach if no surplus is destroyed –
the literature has tried to identify ways to overcome this public good problem. More
recently, benefits of teamwork different from technological aspects have come into
focus.2 For example, internal monitoring and peer pressure can foster cooperation
within a team and consequently increase productivity (Baron and Kreps, 1999).

This paper derives another inherent – and rather intuitive – benefit of teams: Driven
by repeated interaction and mutual monitoring, teamwork can also boost motivation
and help to overcome problems of self-control and procrastination. In a situation
where individuals have present-biased preferences, any effort that is costly today
but rewarded at some later point in time is too low from the perspective of earlier
periods. As an example, take our daily work on research projects. Many distrac-
tions keep us from being focused and motivated – in particular since most of the
rewards of doing research are not realized immediately (we all know how long it can
take until an article is published). There are ways to increase our commitment, like
conference deadlines or tools that temporarily block access to distracting websites.
Arguably the mostly used remedy to tackle motivational issues is the collaboration
with co-authors. Besides spurring our creativity and plenty other advantages, such
a cooperation can also serve as a commitment device to overcome self-control prob-
lems. Promises made to our co-authors motivate us, in particular if we also want to
work with them in the future. Formally, we show that cooperation in teams can be

1Lazear and Shaw (2007) show that almost all US firms use teams in one form or the other.
2Outside economics these aspects have been analyzed for much longer.
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enforced – even though the standard free-rider problem is present and teamwork ren-
ders no technological benefits – because an agent’s outside option after a deviation,
a reversion to individual (under-) production in the future, is rather unattractive
from today’s perspective. We also show that even if teamwork renders technological
benefits, the performance of a team of agents with self-control problems can actually
be better than the performance of a team of “normal” (fully time-consistent) agents.

Empirical research on teamwork shows that the free-rider problem indeed is an issue.
Encinosa, Gaynor, and Rebitzer (2007) analyze the behavior of medical groups and
show that it reduces productivity in teams. Nalbantian and Schotter (1997) compute
lab experiments and show that free-riding problems are prevalent in teams and
reduce productivity. Erev, Bornstein, and Galili (1993) use real-world experiments
involving picking oranges. There, group compensation is associated with a 30%
lower production than individual compensation.

However, there also is plenty of evidence that teamwork can be beneficial even in the
absence of exogenous technological benefits. Hamilton, Nickerson, and Owan (2003)
show that a switch from individual- to team-output contracts in a garment firm
improved worker productivity by 14%. Chan, Li, and Pierce (2012); Pizzini (2010)
observe similar results in field experiments. In Jones, Kalmi, and Kauhanen (2010),
the introduction of teamwork in a Finnish food-processing plant had a substantially
positive impact on workers’ efficiency, but only if combined with a group system of
performance-related pay.

A potential explanation for inherent benefits of teamwork is the existence of peer
pressure and internal monitoring in repeated interactions. This is supported by Mas
and Moretti (2009), who show that a worker’s productivity in a team is increased if he
can be seen by another worker, in particular if both interact frequently. Furthermore,
the availability of peers might give rise to a competition effect that can help to
overcome self-control problems. Gneezy and Rustichini (2004), for example, provide
evidence that young boys run races faster when running with another boy than when
running alone.

In this paper, we show that the availability of peers helps to overcome self-control
problems not only by competitive means, but that internal monitoring can also
induce cooperation. Thereby, we develop an infinite-horizon model of two agents
who can repeatedly work on individual projects and have present-biased preferences.
Since production is costly today but rewards are realized one period later, an agent
works less hard than he would have liked from the perspective of any earlier pe-
riod. We assume that agents are sophisticated in the sense of O’Donoghue and
Rabin (1999), i. e., aware of their time-inconsistency. Furthermore, no exogenous
commitment device exists which agents might use to bind their future selves. How-
ever, forming a team can serve as an endogenous commitment device to increase
individual effort levels. Thereby, agents jointly work on a project, share potential
benefits, and make a mututal promise to work harder. Since effort is not verifiable
but can only be observed by one’s co-worker, the promise to work harder has to be
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self-enforcing, i. e., optimal from an individual’s perspective. This is possible be-
cause any deviation is followed by a loss of trust between agents and a reversion to
individual production. Future individual production, though, is regarded as subop-
timal from an agent’s perspective today. It is thus possible to enforce higher effort
levels within a team, even though the latter is associated with the standard free-
rider problem of team production. Since in the benchmark case teamwork renders
no technological benefits, teamwork is therefore not possible for “normal” agents
with time-consistent preferences. In this case, individual production is already at
its first-best as regarded from any period, and a deviation therefore not costly. If
teamwork is associated with technological benefits (like economies of scale), though
– implying that also “normal” agents would rather work within a team than pur-
suing individual projects – agents with present-biased preferences might actually
perform better. This is again driven by the lower outside option of hyperbolic agents
and holds as long as the technological benefits of teamwork are not too large.

Related Literature. This paper contributes and relates to three strands of lit-
erature – team incentives, relational contracts and present-biased preferences. Op-
timal incentive giving in teams has been widely analyzed (starting with Holmstrom
(1982)). This literature, though, mainly assumes that teams are formed exogenously
and only joint performance schemes are feasible. Recently, a couple of papers have
shown that the underlying free-rider problem can be overcome if team members are
able to (partially) observe the performance of their peers and hence form relational
contracts with each other. Che and Yoo (2001) show that given a team is formed
exogenously, joint performance evaluation might be optimal, even though the princi-
pal observes individual performance signals. The resulting free-rider problem can be
overcome by peer pressure and mutual monitoring, arising from repeated interaction
and a relational contract formed between agents. Kvaløy and Olsen (2006) extend
Che and Yoo’s paper by assuming that the (imperfect) signal the principal receives
is non-verifiable as well, and the relationship between principal and agents is also
governed by relational contracts. They identify instances for which joint perfor-
mance evaluation (compared to relative and independent performance evaluation)
is optimal and show that this depends on the interaction between agents’ discount
factor and agents’ productivities. Furthermore, Rayo (2007) derives optimal asset
ownership if a verifiable joint performance scheme exists but relational contracts
between agents are feasible.3

The literature has also identified instances where endogenous team formation can
be optimal. Itoh (1991) shows that teamwork may induce agents to help each other.
Bar-Isaac (2007) develops a reputational model where it can be optimal to form

3Mohnen, Pokorny, and Sliwka (2008) and Bartling (2011) use different arguments than peer
pressure and mutual monitoring and show that social preferences can also render joint performance
evaluation optimal. There, players’ preferences for equal outcomes can channel incentives in a way
to overcome the free-rider problem.
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a team in order to maintain reputational incentives for older workers who want
to sell a firm whose personal reputation is not at stake anymore. Corts (2007)
shows that teamwork can help to overcome multitasking problems, by grouping
tasks with a lower and those with a higher impact on observable signals. Mukherjee
and Vasconcelos (2011) extend Corts’ model by assuming that observable signals
are not verifiable. Because teamwork requires higher maximum payments, it is also
associated with a higher reneging temptation. Hence, teamwork only works if a
firm’s discount factor is sufficiently large. Extending the literature on endogenous
team formation, and using relational contracts between team members as well, we
show that teamwork can also enhance productivity if individuals have self-control
problems.

Furthermore, we contribute to the literature on inconsistent time preferences and
self-control problems. Strotz (1955) is the first to formalize this aspect by noting
that an individual’s discount rate between two periods might depend on the time
of evaluation. He further discusses differences between those who recognize this
inconsistency – and hence might try to bind their future selves – and those who do
not. Phelps and Pollak (1968) state that in particular growth models should take the
possibility of inconsistent time preferences into account as this affects savings. They
also develop the base workhorse model to analyze inconsistent time preferences,
namely that an individual always gives extra weight to utility now over any future
period, but weighs all future instances equally. Laibson (1997) shows that illiquid
assets can serve as a commitment device to bind future selves. O’Donoghue and
Rabin (1999) focus on the distinction between individuals who are aware of their
time inconsistency and those who are not; they label the former “sophisticated” and
the latter “naive.” They show that sophisticated agents are better off (compared
to naive ones) when costs are immediate but rewards delayed, whereas naive agents
are generally better off if rewards are immediate but costs delayed.

A huge amount of evidence confirms that people make decisions that are not con-
sistent over time, for example when using credit cards or signing up for health clubs
(DellaVigna and Malmendier, 2004, 2006). More recently, experimental evidence
from the field and the lab used real-effort tasks to directly identify self-control prob-
lems. Kaur, Kremer, and Mullainathan (2010, 2013) perform a field experiment
involving full-time workers in an Indian data entry firm. Quantity and quality of
output can be easily measured, and workers receive a piece rate. The existence of
self-control problems is supported by the observation that workers increase effort
as the payday gets closer. In addition, many workers select an offered commitment
device that would be dominated for individuals with exponential preferences. Fur-
thermore, Augenblick, Niederle, and Sprenger (2013) perform a real-effort task lab
experiment. There, participants show a significant present-bias as well, and many
of them demand a binding commitment device if it is offered. Clearly, self-control
problems exist. Many people are aware of that and opt for a commitment device
whenever available. We contribute to this literature showing that by forming a
team, individuals can create an implicit commitment device. Thereby, they use the
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benefits of future cooperation as a collateral to overcome self-control problems. In
addition, we show that people with present-biased preferences can actually perform
better than those without and – to our knowledge – are the first to derive such a
result. It is driven by individuals with self-control problems being hurt more by a
breakdown of teamwork.

Finally, we relate to the literature on relational contracts. Relational contracts are
implicit arrangements based on observable but non-verifiable information. Theo-
retical foundations have been laid by Bull (1987) and MacLeod and Malcomson
(1989) and later extended for the case with imperfect public monitoring by Levin
(2003). This triggered various developments of the baseline model, thereby provid-
ing many explanations for real-world phenomena. As in Che and Yoo (2001), we do
not analyze relational contracts between a principal and one or many agents, but
assume that two identical individuals interact. There, we show that adding behav-
ioral assumptions to relational contracting framework can yield new and interesting
implications.

2 The Model

The Economy. Consider two risk-neutral agents i = {1, 2} who live for infinitely
many periods, t ∈ {0, 1, . . .}. Each agent has access to an inexhaustible amount of
projects. At each date, he can work on exactly one. An agent chooses an effort
level et for his current project (we add an index for the agent when necessary).
The payoff at date t + 1 equals V with probability et, otherwise zero. Hence, an
agent can influence his success probability by increasing his effort. Effort leads to
an immediate cost c · e2t/2 at date t, with c > 0. Below we will impose further
restrictions on c to guarantee interior solutions.

There are no technological linkages of projects across periods. The effort spent on
a project in period t does not affect the likelihood that the project is successful in
any later period. If an agent finishes one project, or abandons it, he can start a new
project.

Agents discount future costs and future utilities in a quasi-hyperbolic way accord-
ing to Laibson (1997); O’Donoghue and Rabin (1999). Immediate utilities are not
discounted. Utilities after t periods are discounted with a factor β δt, with β and
δ in (0; 1]. Consequently, an agent’s preferences are dynamically inconsistent. At
date t = 0, an agent would pay β δ for a dollar at date t = 1, and at date t = 1 he
would pay β δ for a dollar at date t = 2. However, at date t = 0, he would give up
β δ2 instead of β2 δ2 for a dollar at date t = 2. In addition, we assume that agents
are aware of their time-inconsistency, which according to O’Donoghue and Rabin
(1999) is referred to as sophistication. In addition, there is no formal device for an
agent to commit to any specific effort level.
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Organization and Relational Contracts. At the beginning of every period
t ≥ 1, agents decide whether they pursue projects on their own, i.e., engage in
individual production, or whether they form a team. The latter implies that both
agents jointly work on one project, and that the payoff V – if realized – is shared
equally. For now, we assume that there are no economies (or diseconomies) of scale
(or scope) from teamwork.4 The same amount of work can get done and costs of
effort are the same. Hence, given agent 1 chooses effort e1,t and agent 2 chooses
e2,t, the joint expected payoff – realized in period t+ 1 – is (e1,t + e2,t)V , and each
expects to receive (e1,t + e2,t)V/2.

Formally, teamwork implies that at the beginning of any period t ≥ 1, both agents
simultaneously decide whether they want to form a team in the respective period
or not. Only if both agree, the team is formed and a joint project chosen (since all
projects are identical with respect to effort costs, payoffs and success probabilites,
any project can be the joint one); otherwise, agents work on individual projects.
We assume that in a given period t where a team has been formed, both agents
can only work on the joint project, i.e., there is short-term commitment (our results
would be qualitatively the same without any commitment of players). Furthermore,
starting a team involves an agreement that a realized payoff is shared equally – and
this agreement is automatically enforced.5 After a team has been formed and a joint
project chosen, both agents simultaneously make their effort choices.

Only short-term contracts to start a team are feasible. Thereby, it is irrelevant
whether this restriction also applies to individual projects or not (i.e., payoffs from
a project that has been assigned a team project in a given period might have to
be shared in any future period they are realized). It just is impossible to write
a profit-sharing agreement involving all of an agent’s potential projects. In other
words, after agents have formed a team in a period t, they are always able to revert
to individual production in future periods.6

Our definition of teamwork is solely made for concreteness. Any arrangement where
one agent uses part of his effort in order to benefit the other agent would yield
identical results. For example, one agent might directly spend some of his working
time on one of the other agent’s projects, and vice versa. Agents could also focus on
different topics and explain their insights to each other. Plain profit sharing would
also be feasible, as well as any combination of these aspects (like sharing the outputs
of two projects and alternate working on it).

4This assumption is relaxed in section 4 below.
5We do not further pursue the exact enforcement mechanism. For example, these contracts

could be court-enforceable. Thinking of researchers working on a joint project, enforcement could
also be driven by reputational costs if one tried to unilaterally remove the co-author’s name from
a paper.

6Thinking of researchers, one researcher could abandon the project with one co-author and start
working on a new project.
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Finally, no formal contracts can be used to determine an agent’s effort.7 However,
both agents can observe each other’s effort, rendering mutual monitoring feasible.
This implies that agents can form a relational contract specifying effort levels within
the team. This relational contract is formed at the beginning of the game. For any
period t, it specifies the actions both agents are supposed to take along the whole
path of the game – contingent on the realized history up to period t. The relational
contract implicitly determines when a team is supposed to be formed, as well as
each agent’s effort level on and off the equilibrium path. Both agents’ contingent
action plans, i.e. their strategies, have to be optimal for any feasible history, i.e.,
form a subgame perfect equilibrium of the dynamic game. However, given players’
time inconsistency, we require a subgame perfect equilibrium to constitute a Nash
equilibrium at each subgame, given players’ preferences once a respective subgame
is reached.

3 Equilibrium

There are two fundamentally different types of equilibrium: one in which agents
form teams, and one in which they do not. We discuss both in this order. To make
sure that we always have an interior solution, we assume for the remainder of this
paper that

δ V

c
<

1

2
.

3.1 Individual Production and Self-Control Problems

First, we derive effort levels if agents work on their own. Since there is no com-
mitment on any effort level, an agent decides how much he wants to work at the
beginning of any period t, maximizing his discounted utility

ut = β δ et V −
c · e2t

2
. (1)

The solution to individual production, eI , is the same in every period and equals

eI =
β δ V

c
. (2)

In each period, the agent will spend this effort eI . However, reasoning over how
much effort he wants to spend in the future, he would come to a different result.

7Our results would still hold if an agent’s effort were verifiable – if in that case the punishment
after a deviation were restricted.
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Thinking at date t how much he wants to work at a future date t̂ > t, he will
maximize

ût = β δt̂−t
(
δ et̂ V −

c · e2
t̂

2

)
. (3)

For any period t̂ > t this is maximized by first-best effort eFB, i.e., by

eFB =
δ V

c
. (4)

In other words, the agent is lazy and procrastinates. At any given date t, he plans
to relax today (et = eI) and work hard starting tomorrow (et̂ = eFB for all t̂ >
t). However, when tomorrow comes, he again opts for an easygoing job that day
(et+1 = eI), once more delaying the hard work for the day after.

3.2 Team of Agents

Consider the following relational contract formed at date t = 0: In every period
t ≥ 0, the agents form a team involving one joint project on which both work
simultaneously. In addition, agent i is supposed to exert team-effort eT in period
t. For tractability, we focus on symmetric equilibria where effort eT is the same
among agents. Furthermore, relational contracts can be stationary, i. e., team-effort
is the same in every period,8 allowing us to omit time subscripts.9 To support
team-effort eT , we have to specify what happens after a deviation. There are two
possibilities for an agent to deviate. First, an agent could refuse to join the team.
Second, after forming the team, the agent could provide an effort level different
from eT . Given any such deviation, we follow Abreu (1988) who shows that any
observable deviation should be responded by the strongest feasible punishment. In
our case, that means that cooperation within the relational contract irretrievably
breaks down, and agents could either resume to individual production or stick to
teamwork – with effort levels determined by the static Nash equilibrium. Due to the
free-rider problem, static Nash effort is one half of indivdiual production. Hence,
individual production is preferred by agents compared to teamwork when the static
Nash equilibrium is played by both of them.10

8This is because agents are risk-neutral and information is symmetric. For a further elaboration
on this issue see Levin (2003).

9However, this does not hold for period t = 0, the first period of the game. There, it is
optimal for agents to only induce effort levels eI . Full stationarity, though, could be gained by
assuming that production is only possible from period t = 1 onwards. Since the exact specification
is irrelevant for our main results, the following analysis only considers periods t ≥ 1.

10This is formally shown below, in Lemma 4, and holds as long as teamwork renders no technolog-
ical benefits. With technological benefits, teamwork – with both agents exerting effort determined
by the static Nash equilibrium – might be chosen even after a deviation.
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In the following we analyze whether such a relational contract can be sustained as
a subgame perfect equilibrium, and in particular whether team effort eT can exceed
the effort level of individual production, eI or might even reach eFB – the first-best
effort as regarded from the point of view of earlier periods. There, note that eFB

also is an agent’s preferred symmetric future effort level given a team is formed: In
a period t and thinking about his preferred effort level at a future date t̂ > t, he

maximizes ûTt = β δt̂−t
[
δ
(
eT
t̂

+ eT
t̂

)
V/2− c ·

(
eT
t̂

)2
/2
]
, which is solved for eFB.

Now, once a team has been formed and given agents stick to their agreement, an
agent’s expected discounted utility stream in a period t ≥ 1 is

UT = β δ eT V − c · (eT )2

2
+
∞∑
t=1

β δt
(
δ eT V − c · (eT )2

2

)
= β δ eT V − c · (eT )2

2
+

β δ

1− δ
(
δ eT V − c · (eT )2

2

)
. (5)

UT can only be enforced by a relational contract if a deviation is never optimal. As
laid out above, an agent has two options to deviate. He can either refuse to join the
team in a given period, or provide an effort level different from eT once the team has
been formed. Both deviations trigger a break-down of cooperation in all subsequent
periods. If an agent refuses to join the team, he will work on an individual project
and choose an effort level eI . Hence, an agent’s expected discounted utility stream
in the case he refuses to join the team is

U I = β δ eI V − c · (eI)2

2
+
∞∑
t=1

β δt
(
δ eI V − c · (eI)2

2

)
= β δ eI V − c · (eI)2

2
+

β δ

1− δ
(
δ eI V − c · (eI)2

2

)
. (6)

Joining the team but subsequently deviating in his effort choice, an agent would exert
the static Nash effort level (denoted eN), given the other agent chooses eT . eN is

obtained by maximizing−c·(eN)2/2+β δ
(
eN+eT

)
V/2, which yields eN = β δ V/2 c.

Afterwards, the team breaks down and both agents work on individual projects from
then on. Hence, an agent’s expected discounted utility stream given he joins the
team but then underprovides effort is

UD = β δ
(
eN + eT

) V
2
− c · (eN)2

2
+
∞∑
t=1

β δt
(
δ eI V − c · (eI)2

2

)
= β δ

(
eN + eT

) V
2
− c · (eN)2

2
+

β δ

1− δ
(
δ eI V − c · (eI)2

2

)
. (7)

To sustain teamwork, an agent’s equilibrium utility stream within the team has to
be larger than given any possible deviation. Hence, an incentive compatibility (IC)
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constraint must be satisfied,

UT ≥ max
{
U I , UD

}
. (IC)

However, we can show that only for UD ≥ U I positive effort can be enforced within
a team. Otherwise, team-effort would have to be so low that forming a team would
in any case be dominated by individual production.

Lemma 1 For UD < U I , forming a team cannot be optimal.

All omitted proofs can be found in the appendix.

Therefore, the (IC) constraint becomes UT ≥ UD, or

(
β δ eT

V

2
− c · (eT )2

2

)
−
(
β δ eN

V

2
− c · (eN)2

2

)
+

β δ

1− δ

[(
δ eT V − c · (eT )2

2

)
−
(
δ eI V − c · (eI)2

2

)]
≥ 0 (IC)

Here, the first line captures the standard free-rider problem of teamwork (and is
negative for eT 6= eN); the second line gives the value of future cooperation, evaluated
today. Only if the second line dominates, teamwork is feasible. If (IC) is not satisfied,
no team is formed, and both agents have utilities U I .

Note that the (IC) constraint must hold in every period t. This implies that –
different from many other (formal) commitment devices analyzed in the literature
– teamwork has to be optimal for every future self of an agent (taking every future
self’s continuation utility into account), not only for the period-0 self.

3.3 Results

In the following, we analyze what can be achieved within a team and what is not
feasible, without making any claim which equilibrium is actually chosen (with the
exception that we focus on symmetric equilibria). As a first result, we can show
that if agents do not exhibit inconsistent time preferences, forming a team is not
feasible.

Lemma 2 For β = 1, no positive effort level can be enforced within a team.

Obviously, a team is not needed if β = 1. We show that forming a team even is not
possible in that case. This is driven by two aspects. On the one hand, the standard
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free-rider problem of team production is present, making an underprovision of effort
optimal in the short run. On the other hand, an agent’s outside option is already
at the first best. Hence, a breakdown of the team is associated with no costs and a
deviation always more tempting than working for the joint project.

Furthermore, teamwork is only (potentially) feasible for effort levels strictly above
eI .

Lemma 3 No effort level eT ≤ eI can be enforced within a team.

The intuition of Lemma 3 is similar to the one driving Lemma 2. For eT ≤ eI ,
continuation utilities of individual production are higher than those of teamwork.
Together with the free-rider problem, this indicates that teamwork is not only not
worthwhile, but not even feasible for eT ≤ eI . Lemma 2 also implies that if a team
can be formed, the associated effort is higher than eI , and teamwork can help agents
to overcome their self-control problems.

In a next step, we show that forming a team teamwork is indeed feasible for β < 1
and that first-best effort eFB might eventually be reached if δ is sufficiently large.

Proposition 1 For every β < 1 and any effort level eT ∈ (eI , eFB], eT can be
enforced within a team if δ is sufficiently close to 1.

For δ sufficiently large, today’s value of future cooperation becomes so large that
it necessarily dominates today’s deviation gain. Proposition 1 establishes our first
main result – that teamwork can help to overcome self-control problems. The next
proposition makes the feasibility of teamwork more precise.

Proposition 2 Positive effort within a team can be enforced if and only if δ ≥ δ =
(4− 3β) / (8− 11β + 4β2).

To obtain δ, we derive the level of team-effort that maximizes the left-hand-side
of the (IC) constraint, denoted eT . Since it is unique, teamwork is only feasible if
the (IC) constraint holds for eT . Two aspects are important. First of all, δ < 1
for β < 1, hence agents with self-control problems can generally form productive
teams. Furthermore, dδ/dβ ≥ 0, implying that a lower β generally makes it easier
to enforce any effort within a team.

The latter point is not that straightforward, since a lower β generally has two coun-
tervailing effects. On the one hand, it reduces eI and an agent’s outside option,
thereby relaxing the (IC) constraint. On the other hand, the future becomes less
valuable, which tightens the (IC) constraint. However, at the threshold δ only effort
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eT can just be enforced, which is increasing in β (furthermore, eT → 0 for β → 0).
Therefore, a lower β implies that the critical threshold of δ above which a team can
be formed is reduced, however the enforceable effort at this threshold goes down.

The blue line in the following graph gives δ as a function of β; the shaded region
gives all combinations of δ and β for which positive effort within a team can be
enforced.

Figure 1: Region where Positive Team-Effort is Feasible
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We are particularly interested in the conditions for which a given effort level eT can
be enforced, especially for first-best effort eFB = δV

c
. In this case, the (IC) constraint

becomes

− (2− β)2 + δ
(
4− 7β2 + 4β3

)
≥ 0.

This implies

Proposition 3 First-best effort eFB within a team can be enforced if δ ≥ δFB =
(2− β)2 / (4− 7β2 + 4β3).

Note that δFB < 1 for β ∈ (0, 1). Furthermore, δFB increases in β for large

initial values of β, and decreases for small initial values of β (formally, dδFB

dβ
=

[4 (2− β) (1− β) (−2 + 5β − β2)] / (4− 7β2 + 4β3)
2
). Therefore, more severe self-

control problems of team members can make it easier to sustain first-best effort
within a team.

For a given effort level eT , a lower β generally has two effects. On the one hand, it
directly tightens the (IC) constraint because the future becomes less valuable. On
the other hand, it relaxes the (IC) constraint by reducing off-equilibrium individual
effort levels and consequently agents’ outside options. Starting from β = 1 and
reducing β, the second effect initially dominates if eT = eFB. For rather low values
of β, the first effect dominates.

In the following Figure 2, the blue line gives δFB, and the shaded region shows all
combinations of δ and β for which eFB can be enforced.
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Figure 2: Region where the First-Best can be Attained
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Concluding, more severe self-control problems can help to improve team perfor-
mance. This is a general feature of relational contracts, which work better if agents
are vulnerable. Someone who is locked in a relationship because their outside op-
tion is unattractive is willing to sacrifice more in order to maintain cooperation. An
agent’s vulnerability might be more pronounced if finding an adequate replacement
for one’s partner is impossible or – as in our case – if being thrown back on one’s
own is particularly bad. McMillan and Woodruff (1999) provide empirical evidence
for this connection. They analyze relational contracts between firms in Vietnam,
more precisely the extent to which customers receive trade credit from their sup-
pliers (due to the unavailability of contract-enforcing institutions at the time of the
study, this aspect had to be governed by informal arrangements). They find that
customers lacking alternative suppliers get more credit – because being locked in a
relationship indicates higher trust and more future business.

4 Extension: Teamwork with Exogenous Benefits

We have shown that teamwork can help to overcome an agent’s self-control problems.
For “normal” agents, teamwork is not possible – however also not needed. In a next
step, we show that even if teamwork renders technological benefits, implying that
also normal agents would rather work within a team than on individual projects,
hyperbolic agents can perform better than normal ones. Put differently, agents can
benefit from being lazy. This is true as long as the exogenous benefits of teamwork
are not too large, and agents’ outside options are still constituted by individual
projects (and not by teamwork with inefficiently low effort). The mechanism driving
this result is equivalent to the one underlying our previous analysis: A lower β not
only reduces continuation utilities in equilibrium, but also agents’ off-equilibrium
utilities. As long as the latter aspect dominates, a lower β can induce a higher
performance within the team.

Here, we focus on one particular case of exogeonous team-benefits, and assume that
if both agents work on the joint project, the probability to generate the payoff
V in period t + 1 is (e1 + e2) (1 + α), with α ≥ 0 (and impose the assumption
δ V (1 + α)/c < 1/2 to always guarantee an interior solution). A value α = 0 yields
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the situation analyzed above; a value α > 0 could be generated by discussions of the
team members about the joint problems which deepens each agent’s understanding,
or by heterogeneities in the agents’ abilities to tackle different aspects of a project.

Now, even absent cooperation, i.e. if agents solely maximize their stage payoffs
(this situation determines the outside option in a relational contract), it might
be optimal for agents to form a team if α is sufficiently large. In this case, the
static Nash equilibrium is played, the per-period utility of agent i is uNi = −c ·
(eNi )2/2 + βδ

(
eN1 + eN2

)
(1 + α)V/2, and optimal static effort for both agents is

eN = βδ (1 + α)V/2c.

Individual production is not affected by the existence of technological team benefits.
It still yields a per-period utility uI = −c·(eI)2/2+βδeIV , and optimal effort for each
agent is eI = βδV/c. Off equilibrium, agents will work within a team if uN ≥ uI .
The relation between uN and uI hence determines the agents’ outside options when
they attempt to cooperate within a team. This is characterized by

Lemma 4 For eT = eN , teamwork is preferred for α ≥ α = 2/
√

3−1 and individual
production is preferred for α < α.

Proof of Lemma 4. This follows from plugging eN and eI into uN and uI , re-
spectively. Then, uN = 3β2δ2 (1 + α)2 V 2/8c, uI = β2δ2V 2/2c, and uN ≥ uI for
α ≥ 2/

√
3− 1. �

Before analyzing the feasibility of teamwork, we have to be precise about the defi-
nition of first-best effort in this section. First-best effort – as regarded from earlier
periods – now is different under individual production than within a team. Here,
we focus on the highest feasible payoff an agent can possibly expect, which implies
that the technological benefits of teamwork are enjoyed. Hence, we define first-best
effort levels eFB1 and eFB2 as maximizing the joint team payoff as regarded from
earlier periods, i.e.

−c · e
2
1

2
− c · e22

2
+ δ (e1 + e2) (1 + α)V,

Since a potential output V is shared equally, no other definition of first-best effort
could make both agents better off.

Therefore, the symmetric first-best effort level eFB is

eFB =
δ (1 + α)V

c
.

Denoting equilibrium effort within a cooperative team eT , an agent’s equilibrium
utility stream is

UT = −c · (eT )2

2
+ βδeT (1 + α)V + β

δ

1− δ

(
δeT (1 + α)V − c · (eT )2

2

)
. (8)

14



As before, an agent who deviates can either underprovide effort within the team
(given the other agent chooses eT ) or immediately go for an individual project.
However, as underproviding effort within a team is the “optimal” deviation for
α = 0 (as shown in Lemma 1 above), the same is true for larger values of α. After
a deviation and the subsequent breakdown of cooperation, though, either teamwork
or individual production might be optimal, depending on whether α is above α.

An agent’s deviation utility is hence given by

UD = max{−c · (eN)2

2
+ βδ

V

2

(
eN + eT

)
(1 + α) + β

δ

1− δ

(
δeN (1 + α)V − c · (eN)2

2

)
,

−c · (eN)2

2
+ βδ

V

2

(
eN + eT

)
(1 + α) + β

δ

1− δ

(
δeIV − c · (eI)2

2

)
}.

(9)

In the following, we treat both cases separately to precisely analyze the impact of
an agent’s time inconsistency on cooperation within a team.

4.1 Outside Option is Individual Production, i.e. α < α

In this case, the (IC) constraint boils down to

(
βδeT (1 + α)

V

2
− c · (eT )2

2

)
−
(
βδeN (1 + α)

V

2
− c · (eN)2

2

)
+β

δ

1− δ

[(
δeT (1 + α)V − c · (eT )2

2

)
−
(
δeIV − c · (eI)2

2

)]
≥ 0. (IC’)

Generally, a lower α helps to enforce cooperation within a team, irrespective of
whether agents exhibit time-inconsistencies or not. Hence, a larger α lets potential
benefits of a lower β diminish. However, as long as α is not too large, the performance
of teams with time-inconsistent agents can still be substantially better than of teams
without inconsistencies. To show this, we focus on first-best effort eFB and the
conditions under which it can be enforced. For eFB, the (IC’) constraint becomes

− (1 + α)2 (2− β)2 + δ
[
(1 + α)2

(
4 + β2

)
− 4 (2− β) β2

]
≥ 0.

A larger α generally relaxes the constraint (unless (2− β)2 > δ (4 + β2), when how-
ever the (IC’) constraint for eFB cannot hold in any case), for all degrees of agents’
self-control problems. To make our point that agents can benefit from being lazy,
we focus on situations where eFB cannot be enforced for β = 1. For β = 1, the

15



condition becomes δ ≥ (1 + α)2 /
(
5 (1 + α)2 − 4

)
. Put differently, first-best effort is

not feasible for a team of “normal” agents whenever (1 + α)2 < 4δ/ (5δ − 1). Hence,
let us assume that this is case and show that first-best can be enforced for β < 1.

Example 1. As a first example, take δ = 0.9 (1 + α)2 /
(
5 (1 + α)2 − 4

)
, i.e.,

(1 + α)2 = 4δ/ (5δ − 0.9) – and enforceable effort is strictly below eFB for β = 1.
Define δ

′FB as the discount level where (IC’) evaluated at eFB holds as an equality.
Here, we have

δ
′FB =

4 (2− β)2 − 3.6 (2− β) β2

4 [(4 + β2)− 5 (2− β) β2]
.

It can be shown that there exists a β < 1 such that δ
′FB ≤ 1 for β ≤ β, and δ

′FB > 1
for β > β. Hence, there exist values δ < 1 for which first-best effort can be enforced
for some β < 1. All respective combinations of δ and β are depicted in the following
Figure 3, constituting the shaded region.

Figure 3: Region where the First-Best can be Attained
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Example 2. As another example, assume δ = 0.8 (1 + α)2 /
(
5 (1 + α)2 − 4

)
, i.e.,

(1 + α)2 = 4δ/ (5δ − 0.8). Again define δ
′FB as the discount level where (IC’) eval-

uated at eFB holds as an equality, yielding

δ
′FB =

4 (2− β)2 − 3.2 (2− β) β2

4 [(4 + β2)− 5 (2− β) β2]
.

It can again be shown that there exist combinations of δ < 1 and β < 1 such that
first-best effort can be enforced. The shaded region in the following Figure 4 gives
all that combinations of δ and β.

16



Figure 4: Region where the First-Best can be Attained
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4.2 Outside Option is Teamwork

A team’s outside option is constituted by teamwork of α ≥ α (and if deviating
agents can not be replaced11). In this case, the (IC) constraint is

(
βδeT (1 + α)

V

2
− c · (eT )2

2

)
−
(
βδeN (1 + α)

V

2
− c · (eN)2

2

)
+β

δ

1− δ

[(
δeT (1 + α)V − c · (eT )2

2

)
−
(
δeN (1 + α)V − c · (eN)2

2

)]
≥ 0.

(IC”)

Here, a lower β cannot yield a better team performance. This is driven by the
difference between utilities in and out-of equilibrium already being quite large when
agents choose teamwork in any case. Different from above – where the outside option
is constituted by individual production – the left hand side of (IC) now is continuous
in eT ≥ eN . For β = 1, first-best effort can already be enforced for the relatively
low discount factor δ = 0.5. Therefore, if α is large enough to render teamwork
the optimal off-equilibrium choice, the additional commitment by a lower β is not
needed. Then, the negative effect – driven by a larger discounting of future utilities
– dominates.

As an example, take eT = eFB. Then, the (IC”) constraint boils down to

1− δ − βδ ≤ 0,

which is relaxed for larger values of β.

5 Conclusion

We have shown that teamwork can serve as an implicit commitment device to over-
come problems of procrastination and self-control. Even if teamwork renders tech-

11If it were possible to replace a deviating agent and if an agent’s deviation was observable by
all others, individual production could always constitute the outside option.
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nological benefits, the team-performance of “lazy” agents can actually be better
than of agents without self-control problems. Next steps might be to analyze asym-
metric equilibria and characterize the Pareto frontier. Furthermore, we might allow
for heterogenous agents and analyze who should be matched with whom. In addi-
tion, it might be worthwhile to consider uncertainty concerning a project’s success
probability, which is resolved over time. We plan to pursue these issues in the future.
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A Appendix - Omitted Proofs

Proof of Lemma 1. UD ≥ U I is equivalent to eT ≥ 3
4
β δ V
c

. To show that the case
UD < U I is not relevant for us, assume that we want to enforce team effort ẽT <
3
4
β δ V
c

. Then, the (IC) constraint amounts to β δ ẽT V − c·(eT )2

2
+ β δ

1−δ

(
δ ẽT V − c·(eT )2

2

)
≥ β δ eI V − c·(eI)2

2
+ β δ

1−δ

(
δ eI V − c·(eI)2

2

)
. Note that β δ eT V − c·(eT )2

2
is maximized for

eT = eI = β δ V
c

, hence β δ ẽT V − c·(eT )2

2
< β δ eI V − c·(eI)2

2
. δ eT V − c·(eT )2

2
is concave

in eT and maximized for eT = eFB > eI ; hence, δ ẽT V − c·(eT )2

2
< δ eI V − c·(eI)2

2
as

well, and the (IC) constraint cannot hold for eT < 3
4
β δ V
c

. �

Proof of Lemma 2. Note that in this case, eI = eFB, and the (IC) constraint

can be written as β δ eT V
2
− c·(eT )2

2
−
(
β δ eN V

2
− c·(eN )2

2

)
+ δ

1−δ

[(
δeTV − c·(eT )2

2

)
−
(
δeFBV − c·(eFB)2

2

)]
≥ 0. eFB maximizes δeV − c·e2

2
,

hence
(
δeTV − c·(eT )2

2

)
−
(
δeFBV − c·(eFB)2

2

)
≤ 0, with a strict inequality for eT 6=

eFB; eN maximizes β δ e V
2
− c·e2

2
, hence β δ eT V

2
− c·(eT )2

2
−
(
β δ eN V

2
− c·(eN )2

2

)
≤ 0,

with a strict inequality for eT 6= eN . Since eFB 6= eN , at least one inequality has to
be strict. Therefore, the left hand side of the (IC) constraint is strictly negative for
any eT ≥ 0. �

Proof of Lemma 3. The proof is almost equivalent to the proof of Lemma 1:
Assume that eT ≤ eI (note that we already showed that eT ≥ 3

4
eI , implying UD >

U I). Because eI ≤ eFB, the second line of the (IC) constraint,
(
δeTV − c·(eT )2

2

)
−(

δeIV − c·(eI)2
2

)
≤ 0 for eT ≤ eI , with a strict inequality for eT 6= eI ; the first line

of the (IC) constraint, β δ eT V
2
− c·(eT )2

2
−
(
β δ eN V

2
− c·(eN )2

2

)
≤ 0, with a strict

inequality for eT 6= eN . Since eI 6= eN , , at least one inequality has to be strict.
Therefore, the left hand side of the (IC) constraint is strictly negative for eT ≤ eI .�

Proof of Proposition 1. Recall the (IC) constraint, β δ eT V
2
− c·(eT )2

2
−
(
β δ eN V

2
− c·(eN )2

2

)
+ δ

1−δ

[(
δeTV − c·(eT )2

2

)
−
(
δeIV − c·(eI)2

2

)]
≥ 0.

The second line of the (IC) constraint,
(
δ eT V − c·(eT )2

2

)
−
(
δ eI V − c·(eI)2

2

)
, is strictly

positive for any β < 1 and eI < eT ≤ eFB. Following Lemmas 1 and 2, the first
line of the (IC) constraint is negative but bounded. Hence, for δ → 1, the (IC)
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constraint is satisfied for any eT with eI < eT ≤ eFB. �

Proof of Proposition 2. First, we derive the level of eT that maximizes the left-
hand-side of the (IC) constraint. Only if (IC) holds for this effort level, positive
effort within a team can at all be enforced.

The first derivative of the left-hand-side of (IC) with respect to eT is β δ V
2
− c · eT +

β δ
1−δ

(
δ V − c · eT

)
, hence the left-hand-side of (IC) is maximized for eT =

β δ V
2
(1+δ)

c(1−δ+β δ)
(the second-order condition holds since the second derivative of the left-hand-side
of (IC) with respect to eT equals −c1−δ+β δ

1−δ < 0).

Plugging this value into (IC) and re-arranging gives

−4 + 3β + 8δ − 11βδ + 4β2 δ ≥ 0,

which yields δ. �
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