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Abstract

We document negative autocorrelation in judgment and decision-making in three field con-
texts: refugee judges, baseball umpires, and loan officers. Previous research on the hot hand
fallacy suggests that agents often think of sequential streaks of 0’s or 1’s as evidence of bias even
though such streaks are likely to occur through flips of a fair coin. We hypothesize that the hot
hand fallacy and active response to fairness perceptions lead agents to engage in cold hand, i.e.
negatively autocorrelated, decision-making. A judge worried about becoming or appearing too
lenient or tough if she issues a streak of affirmative or negative decisions may actively adjust her
decisions in the opposite direction. We find evidence of negative autocorrelation, particularly
among moderate decision-makers, and stronger effects after recent streaks of decisions and in
situations when agents face weak incentives for accuracy. We show that our findings are un-
likely to be driven by sequential contrast effects and we build a model suggesting the degree of
coarse-thinking agents must engage in to explain our results.
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1 Introduction

Decision-makers often operate under uncertainty about what is fair and just. In particular, a judge

may be worried that she is becoming or appearing too lenient or tough if she issues a streak of

yes or no decisions. We hypothesize that the hot hand fallacy and active response to fairness

perceptions lead agents to engage in cold hand, i.e. negatively autocorrelated, decision-making.

Empirical research has well documented the hot-hand fallacy, i.e. the belief that a person who has

experienced success with a random event will have a greater chance of success in subsequent events

(Gilovich et al. 1985; Malkiel 1995) as well as the gambler’s fallacy, i.e. the belief that a certain

outcome is “due” after a long streak of another outcome (Tversky and Kahneman 1974). These

behavioral biases are typically attributed to over-inference from recent streaks of 0’s or 1’s, even

though streaks are likely to occur by chance (Rabin 2002). Agents believe that randomly ordered

sequences should have a high rate of alternation while streaks of 0’s or 1’s are evidence of unfairness

or underlying skill/bias.

In this paper, we present evidence that misperception of randomness lead to “cold-handed”

decision-making. If cases are ordered randomly, a judge’s decision on the previous case should not

predict her decision on the next case if decisions are made based upon case merits, controlling for

the underlying rate of approval. However, a judge worried that she is becoming or appearing too

lenient or tough if she issues a streak of yes or no decisions may engage in negatively autocorrelated

decision-making, and fairness considerations may perversely lead to unfair outcomes.

We document cold-hand decision-making in three unique high-stakes settings: the universe of

administrative data on refugee court asylum decisions in the US (presented here for the first time),

umpire calls in baseball games, and data from a field experiment by Cole et al. (forthcoming)

in which Indian loan officers review loan applications. We use these three datasets to show that

cold hand bias occurs in a wide variety of contexts and also because each setting offers unique

benefits in terms of data analysis. Asylum court decisions offer high frequency decisions that can

be linked to judge characteristics. However, the data lacks detailed information about applicant

quality, so we cannot assess exactly which decisions represent mistakes. In the baseball data, we

have the exact pitch location, so we can control for quality and detect whether the pitch quality

itself is negatively autocorrelated. In the loan officers field experiment, we have random assignment
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of quality of loan applications, and can test how decision-making varies across different monetary

incentive schemes. In all three settings, we find evidence of negative autocorrelation in decision

making. We estimate that up to 5 percent of decisions are reversed due to cold hand bias. Cold

hand bias is significantly stronger among moderate decision-makers who may be ambiguity averse,

after recent streaks of past decisions, and in situations in which agents face weak incentives for

accuracy. We also link biographical data to decision-makers and corroborate prior research that

suggests inexperience magnifies cognitive biases (Krosnick and Kinder 1990; Chen and Berdejó

2013). Finally, we show that our findings of negatively autocorrelated decisions are unlikely to be

explained by an alternative behavioral bias: sequential contrast effects. We also conduct tests to

show that our results are not driven by non-random variation in underlying case quality. In other

words, decisions are negatively autocorrelated but underlying case quality is not.

Our research contributes to the literature on perceptions of fairness. Perceptions of fairness

(Rabin 1993) have been incorporated into theoretical and experimental economics, although field

data has been relatively scarce (for important exceptions and more general discussion, see Mas

(2006); Levitt and List (2007); and Fehr et al. (2009)). Recent theoretical and methodological

advances suggest that fairness norms are driven by both social audience and self-image concerns.

Andreoni and Bernheim (2009) model the desire to be perceived as fair in the utility function,

which gives rise to a signaling game wherein the dictator’s choice affects others’ inferences about

his taste for fairness. Investigation of these issues in the field is challenging due to the fact that

methodological designs rely on varying the probability that nature intervenes with a decision.1

Our research question differs from these studies because we focus on fairness perceptions that

perversely lead to unfair or mistaken decision-making. In contrast with previous lab studies, we

explore high-stakes decision-making in real-world or field settings. Our research also contributes

the sizable psychology literature using vignette studies with small samples of judges that suggest

unconscious heuristics (e.g., anchoring, status quo bias, availability) can play a large role in judicial
1Andreoni and Bernheim (2009)conduct an experiment where nature sometimes intervenes, choosing an unfavor-

able outcome for the recipient, and the recipient cannot observe whether nature intervened. They document that
subjects are more likely to choose the unfair split, the higher the likelihood that nature intervenes, and interpret
fairness behavior as being driven, in part, to subjects’ desire to appear fair to others. Chen and Schonger (2013)
conduct an experiment where nature sometimes intervenes and makes the decision-maker’s choice non-consequential
in the strong sense of being not implemented. They document that subjects are more likely to choose the fair split,
the higher the likelihood that nature intervenes. Investigation of perceptions of fairness or duty-based motivations
in the field is challenging due to the fact that these experimental designs rely on varying the probability that nature
intervenes with a decision.
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decision-making (see, e.g., Guthrie et al. 2000). To the best of our knowledge, no prior study has

used high-frequency judicial decision-making to study whether the kind of phenomenon we describe

carries out into actual behavior.

2 Model

2.1 Rational agent

Consider a judge whose job is to decree whether to grant or deny, approve or reject, or call strike (in)

or ball (out). We compare what a rational agent would do relative to someone who engages in coarse

thinking (Rabin 2002) when evaluating a series of balls that may be insider or outside a boundary.

Suppose the balls are generated by a random process {yt}Mt=1 that consists of a sequence of i.i.d.

Bernoulli(α) trials, where α is the probability that the ball falls within the boundaries; in other

words, suppose we have a finite sequence of draws {yt}Mt=1 where yt = {0, 1} (with 1 corresponding

to “in” and 0 corresponding to “out”), P (yt = 1) = α ∈ (0, 1) and yt ⊥ yt+1∀t ∈ {1, ...,M} , M ∈ N.

The rational agent understands that the yt are i.i.d. and behaves accordingly.

2.2 Coarse-thinker

There are different degrees of coarse-thinking indexed by N ∈ N, N ≥ 6;2 as will be clear during

the course of the model, the lower N the higher the level of coarse thinking.

For rounds t = 3m − 2, m ∈ N, the coarse-thinker believes that balls that she perceives as

uncertain are drawn from an urn containing αN “in” signals and (1− α)N “out” signals.

For rounds t = 3m − 1, m ∈ N, the coarse-thinker believes that balls that she perceives as

uncertain are drawn from an urn containing αN −yt−1 “in” signals and (1− α)N − (1− yt−1) “out”

signals.

For rounds t = 3m, m ∈ N, the coarse-thinker believes that balls that she perceives as uncertain

are drawn from an urn containing αN−yt−1−yt−2 “in” signals and (1− α)N−(1− yt−1)−(1− yt−2)

“out” signals.

The notation is identical to that of Rabin (2002).
2N ≥ 6 because after two draws, the agent must still have a non-zero probability of believing either signal will be

drawn next.

3



3 Predictions

3.1 The coarse-thinker’s decisions show a higher degree of negative autocorre-

lation than the rational thinker’s decisions

Lemma 1 Suppose a coarse-thinker is given an sequence of balls {yt}3M+2
t=1 , M ∈ N, and has

to decree whether each ball is “in” or “out”. A coarse-thinker believes that the probability that

yt 6= yt+1 is greater than the same probability calculated by a rational agent; i.e. Pc (yt 6= yt+1) >

Pr (yt 6= yt+1) where c indexes the coarse-thinker and r indexes the rational agent.

Proof

Rational agent The rational agent understands that yt ⊥ yt+1∀t ∈ {1, ..., 3M + 2}

Pr (yt+1 6= yt) =

1∑
i=0

P (yt+1 6= yt|yt = i)P (yt = i) =

=
1∑
i=0

P (yt+1 = 1− i)P (yt = i) =

= P (yt+1 = 1)P (yt = 0) + P (yt+1 = 0)P (yt = 1) =

= α (1− α) + (1− α)α = 2α (1− α)

Therefore, Pr (yt+1 6= yt) = 2α (1− α)

Coarse-thinker Disregarding the first and last element in the sequence, we can divide the

sequence {yt}3M+2
t=1 in chunks with 3 observations each (i.e. (y1, y2, y3) , (y4, y5, y6) etc.); the coarse

thinker believes the various triplets are statistically independent. Then, if we take a yt in the

sequence at random while excluding the first and last element, the yt is equally likely to be in the

first position of the triplet, in the second position of the triplet or in the third position. Therefore, all

the yt that have both a predecessor and a successor fall in three mutually exclusive and exhaustive

cases, namely t ∈ {n|n = 3m− 1,m ∈ N}, t ∈ {n|n = 3m− 2,m ∈ N} and t ∈ {n|n = 3m,m ∈ N},

with

P (t ∈ {n|n = 3m− i,m ∈ N}) =
1

3
, i = {0, 1, 2}
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In order to find Pc (yt 6= yt+1), we condition on the position of t within the triplet: first position in

the triplet, second position in the triplet or third position in the triplet

Pc (yt+1 6= yt) =
2∑
i=0

P (yt+1 6= yt|t ∈ {n|n = 3m− i,m ∈ N})P (t ∈ {n|n = 3m− i,m ∈ N}) =

=
1

3

2∑
i=0

P (yt+1 6= yt|t ∈ {n|n = 3m− i,m ∈ N})

Let’s start by considering the first position in the triplet; i.e. let’s start with P (yt+1 6= yt|t ∈ {n|n = 3m− 2,m ∈ N}):

P (yt+1 6= yt|t ∈ {n|n = 3m− 2,m ∈ N}) =

=
1∑
i=0

P (yt+1 6= yt|yt = i, t ∈ {n|n = 3m− 2,m ∈ N})P (yt = i|t ∈ {n|n = 3m− 2,m ∈ N}) =

=
1∑
i=0

P (yt+1 = 1− i|yt = i, t ∈ {n|n = 3m− 2,m ∈ N})P (yt = i|t ∈ {n|n = 3m− 2,m ∈ N}) =

= (1− α)
αN

N − 1
+ α

(1− α)N

N − 1
= 2α (1− α)

N

N − 1

Let’s now consider the second position in the triplet; i.e. let’s consider P (yt+1 6= yt|t ∈ {n|n = 3m− 1,m ∈ N}):

P (yt+1 6= yt|t ∈ {n|n = 3m− 1,m ∈ N}) =

=

1∑
i=0

1∑
j=0

P (yt+1 = 1− i|yt−1 = j, yt = i, t ∈ {n|n = 3m− 1,m ∈ N})P (yt−1 = j, yt = i|t ∈ {n|n = 3m− 1,m ∈ N}) =

= (1− α)
(1− α)N − 1

N − 1

αN

N − 2
+α

(1− α)N

N − 1

αN − 1

N − 2
+(1− α)

αN

N − 1

(1− α)N − 1

N − 2
+α

αN − 1

N − 1

(1− α)N

N − 2
=

= 2 (1− α)
(1− α)N − 1

N − 1

αN

N − 2
+ 2α

(1− α)N

N − 1

αN − 1

N − 2
=

=
2α (1− α)N

(N − 1) (N − 2)
[(1− α)N − 1 + αN − 1] =

= 2α (1− α)
N

N − 1
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Let’s finally consider the third position in the triplet; i.e. let’s consider P (yt+1 6= yt|t ∈ {n|n = 3m− 1,m ∈ N}):

P (yt+1 6= yt|t ∈ {n|n = 3m,m ∈ N}) =

=

1∑
i=0

1∑
j=0

1∑
k=0

[P (yt+1 = 1− i|yt−2 = k, yt−1 = j, yt = i, t ∈ {n|n = 3m,m ∈ N})×

P (yt−2 = k, yt−1 = j, yt = i|t ∈ {n|n = 3m,m ∈ N})] =

=
1∑
i=0

1∑
j=0

1∑
k=0

[P (yt+1 = 1− i|t ∈ {n|n = 3m,m ∈ N})P (yt−2 = k, yt−1 = j, yt = i|t ∈ {n|n = 3m,m ∈ N})] =

= α

[
(1− α)

(1− α)N − 1

N − 1

(1− α)N − 2

N − 2
+ α

(1− α)N

N − 1

(1− α)N − 1

N − 2
+

+ (1− α)
αN

N − 1

(1− α)N − 1

N − 2
+ α

αN − 1

N − 1

(1− α)N

N − 2

]
+

+ (1− α)

[
(1− α)

(1− α)N − 1

N − 1

αN

N − 2
+ α

(1− α)N

N − 1

αN − 1

N − 2
+ (1− α)

αN

N − 1

αN − 1

N − 2
+ α

αN − 1

N − 1

αN − 2

N − 2

]
=

= 2α (1− α)

Therefore,

Pc (yt 6= yt+1) =
1

3

[
2α (1− α)

N

N − 1
+ 2α (1− α)

N

N − 1
+ 2α (1− α)

]
=

= 2α (1− α)
3N − 1

3 (N − 1)

Finally, let’s check whether Pc (yt 6= yt+1) > Pr (yt 6= yt+1)

Pc (yt 6= yt+1) > Pr (yt 6= yt+1)

2α (1− α)
3N − 1

3 (N − 1)
> 2α (1− α)

3N − 1 > 3 (N − 1)

2 > 0

which evaluates to True. Therefore, Pc (yt 6= yt+1) > Pr (yt 6= yt+1).�
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Discussion Note that the proof does not rely on agents being equally likely to be in a period

where the coarse-thinker knows the urn is being renewed, or, where the coarse-thinker knows the

urn has had one or two draws already.

3.2 Moderate decision makers show stronger negative autocorrelation than ex-

treme decision makers

Define a moderate decision maker as the umpire for whom α = 1
2 . The intuition is that an umpire

is considered moderate if, whenever she perceives the ball as uncertain, she decrees the ball is “in”

1
2 of the times and “out” the other 1

2 of the times.

Lemma 2 Suppose a coarse-thinker is given an sequence of balls {yt}3M+2
t=1 , M ∈ N, and has to

decree whether each ball is “in” or “out”. Then, for a coarse-thinker,

arg max
α∈(0,1)

Pc (yt 6= yt+1) =
1

2

i.e. moderate coarse thinkers have the highest probability of decreeing yt 6= yt+1 among the coarse

thinkers.

Proof This is a simple maximization problem. From Lemma 1, we know that

Pc (yt 6= yt+1) = 2α (1− α)
3N − 1

3 (N − 1)

The FOC with respect to α is

dPc (yt 6= yt+1)

dα
= 0 ⇐⇒ 2

3

3N − 1

N − 1
(1− 2α) = 0

α =
1

2

The SOC with respect to α is

−4

3

3N − 1

N − 1
< 0

which is always true because N ≥ 6.
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Therefore,

arg max
α∈(0,1)

Pc (yt 6= yt+1) =
1

2

�

3.3 The coarse-thinker’s decisions show a higher degree of negative autocorre-

lation after streaks of decisions in the same direction

Lemma 3 Suppose a coarse-thinker is given an sequence of balls {yt}3M+2
t=1 , M ∈ N, and has to

decree whether each ball is “in” or “out”; then, ∃ (α, ᾱ) s.t. ∀α ∈ (α, ᾱ) and ∀N ≥ 6

Pc (yt 6= yt+1|yt = yt−1)
Pr (yt 6= yt+1|yt = yt−1)

>
Pc (yt 6= yt+1)

Pr (yt 6= yt+1)

Proof

Rational agent

Pr (yt 6= yt+1|yt = yt−1) =
P (yt 6= yt+1 ∧ yt = yt−1)

P (yt = yt−1)

Since the outcome is binary, there are two possibilities: either yt−1 and yt equal 1 and yt+1 equals

0 or viceversa. Therefore,

Pr (yt 6= yt+1|yt = yt−1) =
P (yt−1 = 0, yt = 0, yt+1 = 1) + P (yt−1 = 1, yt = 1, yt+1 = 0)

P (yt = 0, yt−1 = 0) + P (yt = 1, yt−1 = 1)
=

=
(1− α)2 α+ α2 (1− α)

(1− α)2 + α2
=

α (1− α)

(1− α)2 + α2

Coarse-thinker Disregarding the first and last element in the sequence, we can divide the

sequence {yt}3M+2
t=1 in chunks with 3 observations each (i.e. (y1, y2, y3) , (y4, y5, y6) etc.); the coarse

thinker believes the various triplets are statistically independent. Then, if we take a yt in the

sequence at random while excluding the first and last element, the yt is equally likely to be in the

first position of the triplet, in the second position of the triplet or in the third position. Therefore, all

the yt that have both a predecessor and a successor fall in three mutually exclusive and exhaustive

cases, namely t ∈ {n|n = 3m− 1,m ∈ N}, t ∈ {n|n = 3m− 2,m ∈ N} and t ∈ {n|n = 3m,m ∈ N},
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with

P (t ∈ {n|n = 3m− i,m ∈ N}) =
1

3
, i = {0, 1, 2}

In order to find Pc (yt 6= yt+1|yt−1 = yt), we condition on the position of t within the triplet:

first position in the triplet, second position in the triplet or third position in the triplet

P (yt 6= yt+1|yt−1 = yt) =
2∑
i=0

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− i,m ∈ N})P (t ∈ {n|n = 3m− i,m ∈ N}) =

=
1

3

2∑
i=0

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− i,m ∈ N})

Let’s start by considering the first position in the triplet; i.e. let’s start with P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− 2,m ∈ N}):

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− 2,m ∈ N}) =

=
1∑
i=0

1∑
j=0

1∑
k=0

[
P (yt−3 = k, yt−2 = j, yt−1 = i, yt = i, yt+1 = 1− i|t ∈ {n|n = 3m− 2,m ∈ N})

P (yt−1 = i, yt = i)

]
=

=

{[
(1− α)

(1− α)N − 1

N − 1

(1− α)N − 2

N − 2
+ α

(1− α)N

N − 1

(1− α)N − 1

N − 2
+

+ (1− α)
αN

N − 1

(1− α)N − 1

N − 2
+ α

αN − 1

N − 1

(1− α)N

N − 2

]
(1− α)

αN

N − 1
+

+

[
(1− α)

(1− α)N − 1

N − 1

αN

N − 2
+ α

(1− α)N

N − 1

αN − 1

N − 2
+

+ (1− α)
αN

N − 1

αN − 1

N − 2
+ α

αN − 1

N − 1

αN − 2

N − 2

]
α

(1− α)N

N − 1

}
/

{[
(1− α)

(1− α)N − 1

N − 1

(1− α)N − 2

N − 2
+ α

(1− α)N

N − 1

(1− α)N − 1

N − 2
+

+ (1− α)
αN

N − 1

(1− α)N − 1

N − 2
+ α

αN − 1

N − 1

(1− α)N

N − 2

]
(1− α) +

+

[
(1− α)

(1− α)N − 1

N − 1

αN

N − 2
+ α

(1− α)N

N − 1

αN − 1

N − 2
+

+ (1− α)
αN

N − 1

αN − 1

N − 2
+ α

αN − 1

N − 1

αN − 2

N − 2

]
α

}
=

=
N

N − 1

α (1− α)

(1− α)2 + α2
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Let’s move to the second position in the triplet; i.e. let’s consider P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− 1,m ∈ N}):

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− 1,m ∈ N}) =

=

1∑
i=0

[
P (yt−1 = i, yt = i, yt+1 = 1− i|t ∈ {n|n = 3m− 1,m ∈ N})

P (yt−1 = i, yt = i)

]
=

=
(1− α) (1−α)N−1

N−1
αN
N−2 + ααN−1N−1

(1−α)N
N−2

(1− α) (1−α)N−1
N−1 + ααN−1N−1

=

=
α (1− α)N

(N − 1)− 2α (1− α)N

Let’s finally consider the third position in the triplet; i.e. let’s consider P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m,m ∈ N}):

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− 1,m ∈ N}) =

=

1∑
i=0

1∑
j=0

[
P (yt−2 = j, yt−1 = i, yt = i, yt+1 = 1− i|t ∈ {n|n = 3m− 2,m ∈ N})

P (yt−1 = i, yt = i)

]
=

=

{[
(1− α)

(1− α)N − 1

N − 1

(1− α)N − 2

N − 2
+ α

(1− α)N

N − 1

(1− α)N − 1

N − 2

]
α+

+

[
(1− α)

αN

N − 1

αN − 1

N − 2
+ α

αN − 1

N − 1

αN − 2

N − 2

]
(1− α)

}
/

[
(1− α)

(1− α)N − 1

N − 1

(1− α)N − 2

N − 2
+ α

(1− α)N

N − 1

(1− α)N − 1

N − 2
+

+ (1− α)
αN

N − 1

αN − 1

N − 2
+ α

αN − 1

N − 1

αN − 2

N − 2

]
=

=
α (1− α) (N − 2)

(N − 1)− 2α (1− α)N

Therefore

P (yt 6= yt+1|yt−1 = yt) =
1

3

2∑
i=0

P (yt 6= yt+1|yt−1 = yt, t ∈ {n|n = 3m− i,m ∈ N}) =

=
1

3

[
N

N − 1

α (1− α)

(1− α)2 + α2
+

α (1− α)N

(N − 1)− 2α (1− α)N
+

α (1− α) (N − 2)

(N − 1)− 2α (1− α)N

]
=
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=
1

3
α (1− α)

[
N

N − 1

1

(1− α)2 + α2
+

2 (N − 1)

(N − 1)− 2α (1− α)N

]
Finally, let’s check whether ∃ (α, ᾱ) s.t. ∀α ∈ (α, ᾱ) and ∀N ≥ 6,

Pc (yt 6= yt+1|yt = yt−1)
Pr (yt 6= yt+1|yt = yt−1)

>
Pc (yt 6= yt+1)

Pr (yt 6= yt+1)

1
3α (1− α)

[
N
N−1

1
(1−α)2+α2

+ 2(N−1)
(N−1)−2α(1−α)N

]
α(1−α)

(1−α)2+α2

>
2α (1− α) 3N−1

3(N−1)
2α (1− α)

1

6

(
3−
√

3
)
≤ α ≤ 1

6

(
3 +
√

3
)

Letting α = 1
6

(
3−
√

3
)
≈ 0.21 and ᾱ = 1

6

(
3 +
√

3
)
≈ 0.79, we have shown that ∃ (α, ᾱ) s.t. ∀α ∈

(α, ᾱ) and ∀N ≥ 6

Pc (yt 6= yt+1|yt = yt−1)
Pr (yt 6= yt+1|yt = yt−1)

>
Pc (yt 6= yt+1)

Pr (yt 6= yt+1)

�

Discussion Extreme judges will not do streaks for any level of course thinking. As α ap-

proaches 0, the expression reduces to 3N − 2 > 3N − 1, an impossibility. When α = 1
2 , then

the expression reduces to N > 0. That is, for any finite N level of course-thinking, the perfectly

moderate judge will react to streaks. Note that the level of α where agents react to streaks indicates

the level of N degree coarse-thinking that an agent engages in.

3.4 For high N , the coarse-thinker behaves more like the rational agent

Lemma 4
d
[
Pc(yt 6=yt+1)
Pr(yt 6=yt+1)

]
dN

< 0

and

lim
N→∞

Pc (yt 6= yt+1) = Pr (yt 6= yt+1)

Proof

d
[
Pc(yt 6=yt+1)
Pr(yt 6=yt+1)

]
dN

=

d

[
2α(1−α) 3N−1

3(N−1)

2α(1−α)

]
dN

=
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=
d
[

3N−1
3(N−1)

]
dN

= − 2

3 (N − 1)2
< 0

and

lim
N→∞

Pc (yt 6= yt+1) = lim
N→∞

2α (1− α)
3N − 1

3 (N − 1)
=

= 2α (1− α) = Pr (yt 6= yt+1)

�

Discussion Experience, education, incentives could all increase N .

3.5 Self-certainty

Another way to model experience and education is that agents may be more likely to believe some

balls are certainly in or certainly out. This self-certainty would also tend to attenuate but not

reverse the predictions of the model, if these balls are not from the urn drawn with replacement.

The coarse thinker is less negatively autocorrelated compared to when the current ball comes after

an uncertain ball. The intuition is that there is no information obtained from a certain ball about

the subsequent ball.

However, if agents believe that the certain balls are also drawn from the urn without replacement,

then the coarse thinker is more negatively autocorrelated than when the previous ball is uncertain.

The certain ball now contains more information about the subsequent ball than an uncertain ball.

Proof is available on request. Formally, negative autocorrelation after an uncertain ball is generally

more muted than the negative autocorrelation after a certain ball even for a rational thinker, so the

coarse thinker has less room for bias.

4 Data Description and Institutional Context

4.1 Refugee Courts

We use the universe of administrative data on US refugee asylum cases over 20 years across 50

courthouses. Judges are randomly assigned assigned to cases and decide whether to grant or deny

asylum. This data contains the exact time when a decision was made, the identity of the judge,
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and litigant characteristics. The data includes over 15 million hearing sessions on over 3 million

decisions. We know when the asylum case was assigned, whether the hearing was an individual

hearing or whether multiple individuals were scheduled in the same session, how many cases were

scheduled for sessions during a day for that judge, whether this was an in person hearing or by

audio or video, whether it was a written or oral order, whether there are other related applications

for relief filed by the individual and the judge’s ruling on each, ethnicity of the applicant, the reason

for the case, and the judge.

We merge the decision and hearing datasets to determine whether the decision occurred on the

date of the last hearing session or after it. We keep decisions whose final hearing session occurred

on or before the decision completion date. We excluded non-asylum decisions: that is, we focus

on applications for asylum, asylum-withholding, or withholding-convention against torture. When

an individual had multiple decisions on the same day on these three applications, we focus on

one decision in the order listed above, as asylum decisions would be the most salient. 93% of the

resulting data are represented by asylum decisions and most individuals have all applications on

the same day denied or granted. We merge this data with judicial biographies that we augmented.

We exclude family members except the lead family member because in almost all cases, all family

members are either granted or denied asylum together. Family members are inferred if individuals

in the same city shared national origin, had decisions on the same day, had the same grant outcome,

had the same indicator for having a lawyer represent them and the same indicator for whether the

case was defensive or not (i.e., lodged in defense against a removal proceeding initiated by the

government). All other decisions on these family members were flagged.

We also exclude and flag individuals who see the same judge at the same clock time (called master

sessions) and individuals who see multiple judges at the same clock time. Any decision that comes

after any flagged decision were also excluded because it is not clear what is the lagged decision,

except when the decision comes after family members that were seen consecutively. Finally, we

restrict our sample to decisions whose immediately prior decision by the judge is on the same day or

previous day or over the weekend if it is a Monday decision. The data spans 602,500 decisions from

1971-2013, although coverage is not thick until 1985. Applying all the exclusions except recency

results in 279,145 decisions. Recency restricts to 106,071 decisions. Restricting further to decisions

made by moderate judges (those whose average grant rate excluding the day of the decision is
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between 0.3 and 0.7) results in 48,930 decisions.

In general, judges review cases in a first-in-first out fashion. Cases filed within each city are

randomly assigned to judges within each city, and judges review cases in the order in which they are

assigned. Exceptions to this rule occur when applicants are heard multiple times, file applications

on additional issues, get delays, and have closures made that are other than grant or deny (e.g.

the applicant doesn’t show up, withdraws, and an "other" category that is miscellaneous). We

assume that these violations of first-in-first-out, which are likely driven by applicant behaviors, are

uncorrelated with the judge’s lagged decision.

4.2 Baseball

We use data on umpire calls of pitches from PITCHf/x, a system that tracks the speeds and

trajectories of pitched baseballs. The system was installed in 2006 in every Major League Baseball

stadium. The system records the path and speed of each pitch, as well as the location with respect

to the strike zone as the pitch crossed the front of the home plate. The PITCHf/x data precisely

records whether each pitch was within the strike zone. This data can be used to evaluate whether

umpires made correct calls in terms of calling each pitch a strike or a ball.

To examine cold hand bias, we test whether the umpire is more likely to call the current pitch a

strike if the most recent previous pitch was called a strike, controlling for the actual location of the

pitch relative to the strike zone. We also test whether cold hand decisions are more likely to occur

if there have been a streak in recent previous calls.

4.3 Indian Loan Officers

We use field experiment data collected by Cole et al. (forthcoming). The original intent of the ex-

periment was to explore how various incentive schemes affect the quality of loan officer’s assessment

of loan quality. In the experiment, real loan officers are paid to screen actual loan applications un-

der one of three randomly assigned incentive schemes: flat incentives that reward loan origination,

stronger incentives which reward origination conditional on loan performance, and strongest incen-

tives that reward origination of loans that default and penalize approval of loans that later default.

In each session, each loan officer screens six randomly ordered loan files and decides whether to

approve or reject each loan file.
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The data also contains information on the underlying quality of the loan file (a continuous

measure), loan officer background characteristics, a continuous score assigned by the loan officer

reflecting his judgment of the quality of the file (this score does not affect experiment payout), as

well as the time spent by the loan officer evaluating each loan file.

5 Baseline Estimation: Single Lag

We begin by focusing on binary decisions (positive = 1, negative = 0) on a sequence of cases. Is

the current decision negatively correlated with the lagged decision?

Yit = β0 + β1Yi,t−1 + Controls+ εit

Cold hand bias predicts that β1 < 0. Specifics pertaining to each of our three experiments are

described below. In general, we include controls because:

1. There is likely to be heterogeneity across decision makers in their probability of making positive

decisions. The tendency of a decision-maker to be positive could be a fixed characteristic or

slowly changing over time. If we don’t control for this, then both Yi,t and Yi,t−1 will be

correlated with this unobserved decision-maker characteristic, leading to an upward bias for

β1.

2. Decisions are also affected by underlying case quality. Ideally, the case quality of the current

case is uncorrelated with Yi,t−1. If there are moving average trends in case quality that we don’t

control for, β1 will be upward biased. If case quality naturally has negative autocorrelation,

β1 will be downward biased.

5.1 Asylum Judges

• Yit is an indicator for whether asylum is granted.

• Observations are at the judge x case order level. Cases are ordered within day and across days.

Our sample includes observations in which the lagged case was viewed in the same day or the

previous workday (e.g. we include the observation if the current case is viewed on Monday
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and the lagged case was viewed on Friday). Observations in which there is a longer time gap

between the current case and the lagged case are excluded from the sample. Multiple decisions

on a single litigant are treated as one decision as they tend to be all "grants" or all "denies".

Multiple family members are also treated as 1 observation for the same reason. We infer

shared family status if cases share date, nationality, city, decision, presence of representation,

and case type.

• Controls include:

– A set of dummies of for the number of yes decisions over the past 6 decisions (excluding

the current decision) of the judge. This controls for recent trends in grants, case quality,

or judge mood.

– A set of dummies of for the number of yes decisions over the past 6 decisions (excluding

the current decision) across all judges in the city. This controls for recent trends in

grants, case quality, or city mood.

– We don’t include judge FE because that automatically induces negative correlation be-

tween Yit and Yi,t−1.

– Characteristics of current case: Presence of lawyer representation dummy, torture dummy,

defensive case dummy, family size, etc.

5.2 Loan Officers

• Yit is an indicator for whether the loan is approved.

• Observations are at the loan officer x loan order level. Loans are ordered within session and

across sessions. Our sample includes observations in which the lagged loan was viewed in the

same session (so we exclude the first loan viewed in each session because we do not expect

cold hand bias across sessions which are often separated by multiple days).

• Controls include:

– 5-part spline in the mean loan officer approval rate within each incentive treatment

(calculated excluding the six observations corresponding to the current session): This
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flexibly controls for loan officer x incentive scheme level approval rate. We don’t include

loan officer FE is because that automatically induces negative correlation between Yit

and Yi,t−1. We don’t use any observations in the current session to calculate the mean

because loan quality within each session is balanced.

– Mean approval rate of the current loan file (calculated excluding the current observation):

This controls for the quality of the current loan and addresses the issue that our sample

size is small and loan quality within each session is balanced.

• We will also split the sample by incentive type

1. flat incentives

2. reward if good loans are approved

3. reward if good loans are approved and sharp punishment if bad loans are approved

5.3 Baseball Umpires

• Yit is an indicator for whether the current pitch is called a strike

• Yi,t−1 is an indicator for whether the previous pitch that was called was called a strike

• The sample includes all called pitches except for the first in each game

• Controls include:

– count

– home team dummy

– pitch location dummies (a dummy for each 3x3 inch square grip inside and outside the

strike zone)

– linear controls for velocity, vertical movement, horizontal movement, and other Pitch

F/X variables

• In this experiment, we are particularly concerned that the “quality” of the pitch will also

display cold hand or react to the umpire’s previous call. We estimate a version of the analysis
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where Y (current and lagged) refers to scaled distance from the center of the strike zone. This

tests for cold hand in pitch quality. We estimate another version of the analysis in which

distance from the center of the strike zone is regressed on whether the lagged pitch was called

a strike.

6 Streaks

How is the current decision related to streaks in past decisions? For now, we restrict our analysis

to the last two decisions.

Yit = β0 + β1I(1, 1) + β2I(1, 0) + β3I(0, 0) + Controls+ εit

Here, I(1, 1) is an indicator for the last two decisions being positive. I(1, 0) is an indicator for

Yi,t−2 = 1 and Yi,t−1 = 0. I(0, 0) is an indicator for the last two decisions being negative. The

omitted group is I(0, 1), an indicator for Yi,t−2 = 0 and Yi,t−1 = 1. If there is cold hand bias,

we expect β1 < 0, β2 > 0, β3 > 0, and β3 > β2. All controls are as described in the baseline

specification. However, we restrict our sample so that the current decisions and as well as the

two most recent decisions are consecutive (e.g. not broken across games, gaps in calendar days, or

sessions).

7 Magnitudes

We estimate the fraction of decisions that would have been reversed if the decision maker had not

suffered from cold hand bias. 1.5% of refugee decisions would have been decided the other way. By

way of comparison, the average grant rate is 39% and the standard deviation of judges’ mean grant

rate is 19 percentage points. In other preliminary analysis of baseball umpires and loan officers, we

find that up to 5% of decisions would have been reversed.

8 Heterogeneity and Interpretation Issues

We’re interested in what types of decision makers or situations correspond to stronger cold hand

bias. We would also like to distinguish between whether cold hand bias is caused by the internal
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desire to be fair or by the desire to appear fair to others. Within each experiment, we explore

heterogeneity by:

1. Asylum judges: experience, higher caseload

2. Loan officers: incentive treatment, age, education, experience, time spent reviewing case

3. Baseball umpires: whether the game is important, umpire experience, home vs. away game,

whether the inning is important in terms of determining the game outcome

9 Measurement Issues

9.1 Distinguishing cold hand bias from sequential contrast effects

Sequential contrast effects describes situations in which the decision maker’s criteria for quality

while judging the current case is higher if the previous case was particularly high quality. For

example, consider a decision maker who judges physical beauty with a binary “hot” or “not” rating.

After seeing a particularly attractive person (and deciding “hot”), the decision maker may be more

likely to judge the next case “not” because her standard for beauty has been raised. Like cold hand

bias, sequential contrast effects can lead to negative autocorrelation in decisions.

We distinguish cold hand bias from sequential contrast effects. First, sequential contrast effects

are unlikely to occur in the context of baseball umpires.

Second, we can estimate:

Yit = β0 + β1Yi,t−1 + β2Qualityi,t−1 + Controls+ εit

If sequential contrast drives the cold hand bias, then we expect to find that β2 < 0. Controlling for

the discrete decision Yi,t−1, judges should be more likely to reject the current case if the previous

case was of high quality, as measured continuously using Qualityi,t−1. This test assumes that our

measure of lagged quality is a comprehensive measure of true quality.
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10 Results

10.1 Asylum Judges

In Table 1, column 1, we show that an asylum denial is 1.5% more likely if the previous grant was

an approve rather than deny. We control for applicant characteristics and a measure of a judge’s

time-varying approval rate, a set of dummies for the number of grants out of the previous 5 decisions

(not including the current decision), and a measure of a city’s time-varying approval rate, a set of

dummies for the number of grants out of the previous 5 decisions across all judges in the city. In

column 2, we also control for judge-specific time trends. Column 3 controls for time-of-day fixed

effects.

Table 1
Baseline

Dependent Variable
(1) (2) (3)

Lagged Grant -0.0159*** -0.0116*** -0.0156***
(0.00422) (0.00401) (0.00422)

Applicant Controls Yes Yes Yes
Num prev asylums granted by judge Yes Yes Yes
Num prev asylums granted in city Yes Yes Yes
Judge-specific time trends No Yes No
Time of day No No Yes
N 106071 106071 106071
R2 0.125 0.167 0.126

Table 1: Baseline

Notes: Standard errors in parentheses (* p < 0.10; ** p < 0.05; *** p < 0.01). This table tests whether the
decision to grant asylum for the current applicant is related to the decision to grant asylum to the previous
applicant. Observations are at the judge x applicant level. Observations are restricted to decisions that
occurred within one day or weekend after the previous decision. Number of previous asylums granted is the
full set of fixed effects for number of grants out of the previous 5 decisions to control for a time-varying
grant tendency of a judge in the recent time period. Number of previous asylums granted in the city is the
same at the city level. Judge-specific time trends are a linear time trend specific to a judge. Time of day
are fixed effects for the start time of the hearing.  Standard errors are clustered by judge. 

Grant

Table 2, column 1, shows that caseload exacerbates cold hand bias. If there is only 1 case per

day, there is no cold hand bias with respect to the previous decision. However, each additional case

per day corresponds to an additional 2.6% in cold hand bias. The average number of asylum cases

that a judge handles per day is 1.2. The next two columns address the concern that we do not have

measures of applicant quality, which may be negatively serially correlated at the city level. We have

cases where the judge tele- or video-conferences, where the hearing is in a different location from
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the courthouse (for example, the hearing may be in Anchorage when the judge is in Portland or

Seattle). We find that cold hand bias is 4.9% greater for these decisions (column 2). This suggests

that any correlation in consecutive case quality within the same city is actually likely to be positive,

and therefore a bias against our findings. Column 3 shows that cold hand bias is also greater,

though not significantly so, when the judge’s previous decision is in a different city. Next we show

that moderate judges (those who make 30-70% decisions as grants on other days) display more cold

hand bias (column 4). Finally, we show that the cold hand bias is 4% greater when the previous

decision is on the same day.

Table 2
Heterogeneity

Dependent Variable
(1) (2) (3) (4) (5)

Lagged Grant 0.0239*** -0.0137*** -0.0152*** 0.0109 -0.00184
(0.00825) (0.00428) (0.00435) (0.0112) (0.00440)

Caseload 0.0179***
(0.00361)

Lagged Grant * Caseload -0.0259***
(0.00499)

Hearing not at base city 0.00447
(0.0179)

Lagged Grant * Hearing not at base city -0.0491***
(0.0126)

Previous decision in different city -0.00720
(0.00930)

Lagged Grant * Previous decision in different -0.0221
  city (0.0235)
Moderate Judge 0.129***

(0.00923)
Lagged Grant * Moderate Judge -0.0428**

(0.0193)
Previous decision on same day 0.0340***

(0.00433)
Lagged Grant * Previous decision on same day -0.0403***

(0.00721)
Applicant controls Yes Yes Yes Yes Yes
Num prev asylums granted by judge Yes Yes Yes Yes Yes
Num prev asylums granted in city Yes Yes Yes Yes Yes
N 106071 106071 106071 106071 106071
R2 0.125 0.125 0.125 0.138 0.126

Table 2: Heterogeneity

Notes: Standard errors in parentheses (* p < 0.10; ** p < 0.05; *** p < 0.01). Column 1 tests whether cold hand bias is weaker when judges have a
lower case load. "Caseload" is the number of cases on asylum, asylum-witholding, or withholding-convention against torture on a day that a judge
makes a decision on. Column 2 tests whether cold hand bias is stronger when possible omitted serial correlation in applicant quality within a city is
absent, i.e. when a judge hears a case in a different city (by teleconference or videoconference). Column 3 does the same for the previous decision
being in a different city. Column 4 tests whether cold hand bias is larger for moderate judges (those whose average grant rate outside today is
between 30% and 70%). Column 5 tests whether cold hand bias is worse when the previous decision is on the same day. All other variables and
restrictions are as described in Table 1.   Standard errors are clustered by judge. 

Grant

Next, we show that after a streak of two denials, judges are 1.8% more likely to grant. Following

a grant then deny decision, the judge is also 1.7% more likely to grant relative to a judge who denied

and then granted (Table 3). The sample is smaller because both of the previous two decisions by the
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judge has to satisfy the condition that the prior decision is within one day of the current decision,

or within one weekend if the current decision is a Monday decision.

Table 3
Reaction to Streaks by Asylum Judges

Dependant Variable Grant
(1)

Grant-Grant -0.00770
(0.00946)

Deny-Grant 0.0174***
(0.00605)

Deny-Deny 0.0176***
(0.00663)

Applicant controls Yes
Num prev asylums granted by judge Yes
Num prev asylums granted in city Yes
N 46497
R2 0.121

Table 3: Reaction to Streaks

Notes: Standard errors in parentheses (* p < 0.10; ** p < 0.05; *** p < 0.01). This table tests how judges
react to streaks in past decisions. Grant-Grant is a dummy equal to 1 if the judge approved the two most
recent asylum applicants. Deny-Grant is a dummy equal to 1 if the judge denied the most recent applicant
and granted the applicant before that. Deny-Deny is a dummy equal to 1 if the judge denied the last two
applications. The sample restricts to decisions where the current and previous decision both satisfy the
requirement of occurring within one day or weekend after its previous decision. All other variables and
restrictions are as described in Table 1.   Standard errors are clustered by judge. 

Finally, Table 4 shows that judges who are inexperienced (less than the median experience of

8 years) are particularly likely to display cold hand bias. Cold hand bias of experienced judges is

statistically indistinguishable from 0. The sample is slightly smaller because we do not have the

entire set of biographies.

10.2 Loan Officers

Table 5 shows that for the entire sample, if the previous decision was an approve, then the next

decision is 6% points more likely to be deny. This effect is strongest among loan officers with flat

incentives (14% points) and weaker with incentives.
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Table 4
Asylum Judge Experience

Dependant Variable Grant
(1)

Lagged Grant -0.0246***
(0.00806)

Experienced 0.00250
(0.00827)

Lagged Grant * Experienced 0.0291**
(0.0127)

Applicant controls Yes
Number of previous asylums granted judge Yes
Number of previous asylums granted city Yes
N 80336
R2 0.087

Table 4: Judge Experience

Notes: Standard errors in parentheses (* p < 0.10; ** p < 0.05; *** p < 0.01). This
table tests how cold hand bias differs by judge experience. Experience is defined as
above median experience of 8 years. All other variables and restrictions are as
described in Table 1.   Standard errors are clustered by judge. 

Table 5Table 1
Baseline

This table tests whether the decision to approve the current loan file is related to the decision to approve
the previous loan file. Observations are at the loan officer x loan file level and exclude (as a dependent
variable) the first loan file evaluated within each experimental session. Column 1 includes the full sample
while Columns 2-4 are restricted to sessions in which loan officers faced flat (20 Rs for each approved
loan), stronger (20 Rs for each approved loan that does not default and 10 Rs for each declined loan), and
strongest incentives (20 Rs for each approved loan that does not default and -100 Rs for each approved
loan that does default), respectively. Other control variables include “Loan Officer Trend,” the loan officer’s
average approval rate for loans in other sessions within the same incentive treatment, excluding the current
session ( introduced as a 5-part spline) and “Loan Quality,” two dummy variables for whether, in a real world
setting, the loan file was rejected or approved but defaulted. Standard errors are clustered by loan officer.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0612⇤⇤⇤ -0.146⇤⇤⇤ -0.0599⇤⇤⇤ -0.0266
(0.0130) (0.0343) (0.0145) (0.0326)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0650 0.0768 0.0684 0.0612

1

Table 6 shows that moderate loan officers have roughly twice the level of cold hand bias. The

less time spent viewing the loan file, the more cold hand bias (Panel B).
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Table 6Table 2
Heterogeneity

Panel A tests whether cold hand bias is stronger when the loan officer has a moderate rather than extreme
overall loan approval rate. “Moderate” in a dummy equal to 1 if the loan officer’s average approval rate for
loans, excluding the current session, is between 0.30 and 0.70 inclusive. Panel B tests whether cold hand
bias is weaker when loan officers spend more time reviewing the current loan file. “Time Viewed” is the
number of minutes spent reviewing the current loan file. All other variables are as described in Table 1.
Standard errors are clustered by loan officer. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

Panel A: Moderate vs. Extreme Loan Officers

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0426⇤⇤⇤ -0.0967⇤⇤⇤ -0.0486⇤⇤⇤ -0.00383
(0.0154) (0.0349) (0.0177) (0.0419)

Moderate -0.00845 0.0232 -0.0108 -0.0106
(0.0248) (0.0542) (0.0284) (0.0507)

Lagged Approve x Moderate -0.0505⇤ -0.175⇤⇤ -0.0300 -0.0615
(0.0265) (0.0665) (0.0297) (0.0616)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0669 0.0922 0.0693 0.0639

Panel B: Time Spent Reviewing Loan File

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.115⇤⇤⇤ -0.166⇤⇤⇤ -0.107⇤⇤⇤ -0.154⇤⇤⇤
(0.0204) (0.0425) (0.0233) (0.0542)

Time Viewed -0.0166⇤⇤⇤ -0.0182 -0.0152⇤⇤⇤ -0.0290⇤⇤
(0.00389) (0.0125) (0.00453) (0.0126)

Lagged Approve x Time Viewed 0.0161⇤⇤⇤ 0.00673 0.0135⇤⇤ 0.0441⇤⇤⇤
(0.00439) (0.0124) (0.00524) (0.0138)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0673 0.0808 0.0707 0.0690

2

When loan officers approve two applications in a row, the next decision is 14% more likely to

be a deny, relative to when the loan officer denied two applications in a row (Table 7). After an

approval, then rejection, the next decision is 5% more likely to be a rejection relative to when the

officer made two rejections in a row.
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Table 7Table 3
Reaction to Streaks

This table tests how loan officers react to streaks in past decisions. Approve-Approve is a dummy equal to
1 if the loan officer approved the two most recent previous loans. Approve-Reject is a dummy equal to 1 if
the loan officer approved the most recent pervious loan and rejected the loan before that. Reject-Approve is
a dummy equal to 1 if the loan officer rejected the most recent previous loan and approved the loan before
that. The omitted category is Reject-Reject, which is a dummy equal to 1 if the loan officer rejected the two
most recent previous loans. The sample excludes observations corresponding to the first two loans reviewed
within each session. All other variables are as described in Table 1. Standard errors are clustered by loan
officer. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Approve-Approve -0.143⇤⇤⇤ -0.126 -0.181⇤⇤⇤ -0.0527
(0.0247) (0.0871) (0.0283) (0.0497)

Approve-Reject -0.0139 -0.0194 -0.0374 0.0384
(0.0246) (0.0961) (0.0265) (0.0515)

Reject-Approve -0.0504⇤⇤ 0.0390 -0.0900⇤⇤⇤ 0.00119
(0.0253) (0.0917) (0.0274) (0.0591)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 5320 680 3740 900
R2 0.0760 0.0848 0.0867 0.0607

Table 4
Recency Effect

This table tests whether loan officers react to the most recent decision after controlling for the total number
of previously approved loans within the same session. “Num Previous Loans Approved” represents a set
of dummy variables for the number of previously approved loans. For example, suppose the loan officer is
currently reviewing loan file number 4 and has previously approved one loan of the three reviewed so far
within the session. We test whether the loan officer is less likely to approve the current loan if she approved
the most recent loan file rather than if she had approved an earlier loan among the three loans reviewed so
far. The sample excludes observations corresponding to the first two loans reviewed within each session as
the dependent variable. All other variables are as described in Table 1. Standard errors are clustered by
loan officer. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0248 -0.0862⇤⇤ -0.0249 -0.00120
(0.0151) (0.0358) (0.0166) (0.0424)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
Num previous loans approved Yes Yes Yes
N 5320 680 3740 900
R2 0.0911 0.148 0.0989 0.0724

3

Table 8 shows the effect is robust to controlling for the number of previous loans approved.

Table 8

Table 3
Reaction to Streaks

This table tests how loan officers react to streaks in past decisions. Approve-Approve is a dummy equal to
1 if the loan officer approved the two most recent previous loans. Approve-Reject is a dummy equal to 1 if
the loan officer approved the most recent pervious loan and rejected the loan before that. Reject-Approve is
a dummy equal to 1 if the loan officer rejected the most recent previous loan and approved the loan before
that. The omitted category is Reject-Reject, which is a dummy equal to 1 if the loan officer rejected the two
most recent previous loans. The sample excludes observations corresponding to the first two loans reviewed
within each session. All other variables are as described in Table 1. Standard errors are clustered by loan
officer. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Approve-Approve -0.143⇤⇤⇤ -0.126 -0.181⇤⇤⇤ -0.0527
(0.0247) (0.0871) (0.0283) (0.0497)

Approve-Reject -0.0139 -0.0194 -0.0374 0.0384
(0.0246) (0.0961) (0.0265) (0.0515)

Reject-Approve -0.0504⇤⇤ 0.0390 -0.0900⇤⇤⇤ 0.00119
(0.0253) (0.0917) (0.0274) (0.0591)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 5320 680 3740 900
R2 0.0760 0.0848 0.0867 0.0607

Table 4
Recency Effect

This table tests whether loan officers react to the most recent decision after controlling for the total number
of previously approved loans within the same session. “Num Previous Loans Approved” represents a set
of dummy variables for the number of previously approved loans. For example, suppose the loan officer is
currently reviewing loan file number 4 and has previously approved one loan of the three reviewed so far
within the session. We test whether the loan officer is less likely to approve the current loan if she approved
the most recent loan file rather than if she had approved an earlier loan among the three loans reviewed so
far. The sample excludes observations corresponding to the first two loans reviewed within each session as
the dependent variable. All other variables are as described in Table 1. Standard errors are clustered by
loan officer. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0248 -0.0862⇤⇤ -0.0249 -0.00120
(0.0151) (0.0358) (0.0166) (0.0424)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
Num previous loans approved Yes Yes Yes
N 5320 680 3740 900
R2 0.0911 0.148 0.0989 0.0724

3

Table 9 shows that lagged approval still predicts a 5.5% increase in rejection even after controlling

for lagged loan quality. This suggests that sequential contrast effect is not driving the result, as

the lagged loan quality should have a strong negative effect on the next decision. In fact, when

self-reported scores are used, the cold hand bias coefficient becomes even larger than when lagged

loan quality is not included.
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Table 9Table 5
Cold Hand vs. Sequential Contrast Effects

This table tests whether the negative correlation between current loan approval and lagged loan approval
could be caused by sequential contrast effects. “Lagged Loan Quality” is a continuous measure of the quality
of the most recently reviewed loan file while Lagged Approve is a binary measure of whether the previous
loan was approved. Conditional on the binary measure of whether the previous loan was approved, sequential
contrast effects predict that the loan officer should be less likely to approve the current loan if the previous
loan was of higher quality, measured continuously. In other words, sequential contrast effects predicts
that the coefficient on “Lagged Loan Quality” should be negative. In Panel A, loan quality is measured
as the standardized average approval rate of the loan file by other loan officers, excluding the loan officer
corresponding to the current observation. In Panel B, loan quality is measured as the loan officer’s own
self reported loan rating (on a scale from 20-100). Both measures of loan quality are standardized to have
a mean of 0 and a standard deviation of 1. Standard errors are clustered by loan officer. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Loan Quality = Loan File Approval Rate (Leave-Out-Mean)

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0546⇤⇤⇤ -0.143⇤⇤⇤ -0.0533⇤⇤⇤ -0.0183
(0.0139) (0.0369) (0.0157) (0.0335)

Lagged Loan Quality -0.00906 -0.000540 -0.00932 -0.0141
(0.00580) (0.0163) (0.00720) (0.0144)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6634 847 4665 1122
R2 0.0655 0.0753 0.0691 0.0616

Panel B: Loan Quality = Self Reported Score

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0704⇤⇤⇤ -0.152⇤⇤⇤ -0.0684⇤⇤⇤ -0.0506
(0.0138) (0.0359) (0.0152) (0.0353)

Lagged Loan Quality 0.00913 0.00616 0.00824 0.0244
(0.00584) (0.0203) (0.00666) (0.0188)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0653 0.0769 0.0687 0.0627

4

Table 10 shows that cold hand bias is strongest in the flat incentive treatment.

Table 10Table 6
Detailed Incentive Breakdown

This table tests how cold hand bias differs across six incentive treatments. Each of the three incentive
treatments in Table 1 is divided into a standard and optional information treatment. In the optional
information treatment, loan officers receive an initial information endowment of Rs 108 (US$ 2.25) which
they may spend to view additional sections of the loan file. All other variables are as described in Table 1.
Standard errors are clustered by loan officer. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

Flat Stronger Strongest Flat + Info Stronger + Info Strongest + Info

(1) (2) (3) (4) (5) (6)

Lagged Approve -0.196⇤⇤⇤ -0.0509⇤⇤⇤ -0.0588 -0.114⇤⇤⇤ -0.0747⇤⇤⇤ -0.00638
(0.0463) (0.0169) (0.0476) (0.0415) (0.0205) (0.0407)

Loan Officer Tred Yes Yes Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes Yes Yes
N 445 2770 505 405 1905 620
R2 0.0843 0.0663 0.0590 0.106 0.0731 0.0717

Table 7
Loan Officer Experience

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0714⇤⇤⇤ -0.100⇤⇤ -0.0798⇤⇤⇤ -0.0370
(0.0187) (0.0452) (0.0186) (0.0474)

Experienced -0.0249 0.0681 -0.0333 -0.0456
(0.0201) (0.0487) (0.0210) (0.0582)

Lagged Approve x Experienced 0.0154 -0.0831 0.0285 0.0163
(0.0249) (0.0645) (0.0261) (0.0618)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0653 0.0785 0.0688 0.0624

5

Table 11 and 12 show that judges with experience and graduate school education are less likely to

have cold hand bias. The quantity reduction in cold hand bias is economically large but statistically
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insignificant given the small sample size.

Table 11

Table 6
Detailed Incentive Breakdown

This table tests how cold hand bias differs across six incentive treatments. Each of the three incentive
treatments in Table 1 is divided into a standard and optional information treatment. In the optional
information treatment, loan officers receive an initial information endowment of Rs 108 (US$ 2.25) which
they may spend to view additional sections of the loan file. All other variables are as described in Table 1.
Standard errors are clustered by loan officer. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

Flat Stronger Strongest Flat + Info Stronger + Info Strongest + Info

(1) (2) (3) (4) (5) (6)

Lagged Approve -0.196⇤⇤⇤ -0.0509⇤⇤⇤ -0.0588 -0.114⇤⇤⇤ -0.0747⇤⇤⇤ -0.00638
(0.0463) (0.0169) (0.0476) (0.0415) (0.0205) (0.0407)

Loan Officer Tred Yes Yes Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes Yes Yes
N 445 2770 505 405 1905 620
R2 0.0843 0.0663 0.0590 0.106 0.0731 0.0717

Table 7
Loan Officer Experience

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0714⇤⇤⇤ -0.100⇤⇤ -0.0798⇤⇤⇤ -0.0370
(0.0187) (0.0452) (0.0186) (0.0474)

Experienced -0.0249 0.0681 -0.0333 -0.0456
(0.0201) (0.0487) (0.0210) (0.0582)

Lagged Approve x Experienced 0.0154 -0.0831 0.0285 0.0163
(0.0249) (0.0645) (0.0261) (0.0618)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0653 0.0785 0.0688 0.0624

5

Table 12Table 8
Loan Officer Education

All Flat Incentives Stronger Incentives Strongest Incentives

(1) (2) (3) (4)

Lagged Approve -0.0747⇤⇤⇤ -0.158⇤⇤⇤ -0.0711⇤⇤⇤ -0.0571
(0.0155) (0.0370) (0.0170) (0.0360)

Grad School -0.0143 0.00890 -0.0163 -0.0244
(0.0204) (0.0620) (0.0250) (0.0529)

Lagged Approve x Grad School 0.0474⇤ 0.0380 0.0394 0.112
(0.0253) (0.0795) (0.0297) (0.0680)

Loan Officer Trend Yes Yes Yes Yes
Loan Quality Yes Yes Yes Yes
N 6650 850 4675 1125
R2 0.0657 0.0784 0.0688 0.0652

6

10.3 Baseball Umpires

Table 13 Column 1 shows that umpires are 1 percentage point less likely to call a pitch a strike if

the most recent previously called pitch was also called a strike. Column 2 shows that cold hand bias

is stronger following streaks. Umpires are 1.3 percentage points more likely to call a pitch a strike

if the two most recent called pitches were also called strikes. Further, umpires are more likely to

call the current pitch a strike if the most recent pitch was called a strike and the pitch before that

was called a ball than if the ordering of the last two calls were reversed. In other words, recency

matters. All analysis in this and subsequent tables include detailed controls for the actual location,

speed, and curvature of the pitch.
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Table 13
Called Pitches – Baseball Umpires

Umpire Analysis

1 Y=Prob.(strike) on X with location controls

1.1 Called Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.00913∗∗∗

( 0.000598 )
−0.0131∗∗∗

( 0.00107 )

Ball-Strike —–
−0.00272∗∗∗

( 0.000652 )

Strike-Ball —–
−0.00989∗∗∗

( 0.00072 )

N 1522465 1319542

R2 0.661 0.66

Adj R2 0.661 0.659

Table 1: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of prob.(strike)

1.2 Consecutive Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.0142∗∗∗

( 0.001 )
−0.021∗∗∗

( 0.00288 )

Ball-Strike —–
−0.00707∗∗∗

( 0.00155 )

Strike-Ball —–
−0.0187∗∗∗

( 0.00156 )

N 891251 424706

R2 0.657 0.661

Adj R2 0.656 0.66

Table 2: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of prob.(strike)

1

Table 14 repeats the above analysis but restricts the sample to pitches that were called consec-

utively (so both the current and most recent pitch received umpire calls). In this restricted sample,

the umpire’s recent previous calls may be more salient because they are not separated by uncalled

pitches. We find that the magnitude of the cold hand bias increases significantly in this sample.

Table 14
Consecutive Pitches – Baseball Umpires

Umpire Analysis

1 Y=Prob.(strike) on X with location controls

1.1 Called Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.00913∗∗∗

( 0.000598 )
−0.0131∗∗∗

( 0.00107 )

Ball-Strike —–
−0.00272∗∗∗

( 0.000652 )

Strike-Ball —–
−0.00989∗∗∗

( 0.00072 )

N 1522465 1319542

R2 0.661 0.66

Adj R2 0.661 0.659

Table 1: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of prob.(strike)

1.2 Consecutive Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.0142∗∗∗

( 0.001 )
−0.021∗∗∗

( 0.00288 )

Ball-Strike —–
−0.00707∗∗∗

( 0.00155 )

Strike-Ball —–
−0.0187∗∗∗

( 0.00156 )

N 891251 424706

R2 0.657 0.661

Adj R2 0.656 0.66

Table 2: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of prob.(strike)

1

Tables 15 and 16 test that the negative autocorrelation in umpire calls is not due to bias caused

by changes in the actual location of the pitch. We repeat the previous analysis but use distance

from the center of the strike zone as our dependent variable. If pitchers are more likely to throw

true balls after the previous pitch was called a strike, we should find significant negative coefficients.
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Instead we find small coefficients that are insignificantly different from zero.

Table 15
Called Pitches - Strikes – Baseball Umpires

3 Y=distance on X with location controls

3.1 Called Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.000466
( 0.000818 )

−0.00109
( 0.00132 )

Ball-Strike —–
−0.00138

( 0.000805 )

Strike-Ball —–
−0.000742
( 0.000888 )

N 1522465 1319542

R2 0.724 0.762

Adj R2 0.724 0.761

Table 5: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of the scaled score for the distance from the
center of the strike zone

3.2 Consecutive Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
0.0000607
( 0.00149 )

−0.00436
( 0.00388 )

Ball-Strike —–
0.00141

( 0.00208 )

Strike-Ball —–
0.00137

( 0.00209 )

N 891251 424706

R2 0.667 0.705

Adj R2 0.666 0.704

Table 6: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of the scaled score for the distance from the
center of the strike zone

3

Table 16
Consecutive Pitches - Strikes – Baseball Umpires

3 Y=distance on X with location controls

3.1 Called Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
−0.000466
( 0.000818 )

−0.00109
( 0.00132 )

Ball-Strike —–
−0.00138

( 0.000805 )

Strike-Ball —–
−0.000742
( 0.000888 )

N 1522465 1319542

R2 0.724 0.762

Adj R2 0.724 0.761

Table 5: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of the scaled score for the distance from the
center of the strike zone

3.2 Consecutive Pitches - Strike - All Controls

Number of previous pitches 1 2

All Strikes
0.0000607
( 0.00149 )

−0.00436
( 0.00388 )

Ball-Strike —–
0.00141

( 0.00208 )

Strike-Ball —–
0.00137

( 0.00209 )

N 891251 424706

R2 0.667 0.705

Adj R2 0.666 0.704

Table 6: Regression controlling for count, home team, 3 inch square grids inside and outside the strike zone,
movement, other Pitch F/X variables, and the proportion of previous pitches faced by a batter in a given game

that fall into one of seven categories with a left hand variable of the scaled score for the distance from the
center of the strike zone

3

In preliminary tests (unreported) we also test whether our results could be driven by sequential

contrast effects (SCE). SCE would predict that the current pitch would be more likely to be called a

strike if the previous pitch was very “high quality,” i.e. obviously not a strike. We find the opposite.

Negative autocorrelation is stronger when the previous called pitch was near the edge of the strike

zone. In other words, negative autocorrelation is stronger when the previous case was of ambiguous

quality.
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11 Conclusion

Decision-makers operating under uncertainty about what is fair and just may worry that she is

becoming or appearing too lenient or tough if she issues a streak of yes or no decisions. Previous

research on the hot hand fallacy suggests that agents often think of sequential streaks of 0’s or

1’s as evidence of bias even though such streaks are likely to occur through flips of a fair coin.

We hypothesize that the hot hand fallacy leads agents to engage in cold hand, i.e. negatively

autocorrelated, decision-making. If cases are ordered randomly, a judge’s decision on the previous

case should not predict her decision on the next case if decisions are made based upon case merits.

However, a judge may be worried that she is becoming or appearing too lenient or tough if she issues

a streak of affirmative or negative decisions, and may therefore actively adjust her decisions in the

opposite direction. We test the cold-hand hypothesis in three contexts: judicial decisions in U.S.

refugee asylum cases, umpire calls on baseball pitches, and loan officer loan approval decisions. We

find evidence of negative autocorrelation, particularly among moderate decision-makers who may

be ambiguity averse, and stronger effects after recent streaks of decisions and in situations when

agents face weak incentives for accuracy. We also show that our findings are unlikely to be driven by

sequential contrast effects. In ongoing work, we explore the welfare consequences of these judicial

biases by linking the refugee court decisions to their possible appeals.
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