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1. INTRODUCTION

Following Becker’s [1968] seminal paper on the economics of crime and punishment, a

burgeoning literature has developed extending and testing his model in both the street

crime and regulatory context (see Polinsky and Shavell [2000] for a review). Much of the

empirical economics of crime literature has focused on the incentives and behavior of potential

offenders. Examples include the deterrent effect of increasing detection probability, such as

by increasing police on the street [Corman and Mocan, 2000, Di Tella and Schargrodsky,

2004], referees on a court [McCormick and Tollison, 1984] or inspections of polluting plants

[Magat and Viscusi, 1990, Laplante and Rilstone, 1996, Earnhart, 2004]. Other examples

include the deterrent effect of increasing sanctions, such as imprisonment [Drago et al.,

2009, Levitt, 1998] or fines [Shimshack and Ward, 2005]. A smaller, but growing literature

has focused on the incentives and behavior of the enforcement agent. Recent anecdotes of

industry pressure (or even “capture”) of inspectors in the nuclear, coal mining, and oil drilling

industries highlight the importance of understanding the role that inspectors play in ensuring

compliance.

Becker and Stigler [1974] first analyzed the issue of enforcers who might not have social

welfare maximization as their guiding principle. In particular, they noted that both criminal

and regulatory offenders who face punishment for their violations have an incentive to influ-

ence the police officer or regulatory enforcement agency. Corruption among both police and

regulatory enforcement agents is well documented [Rose-Ackerman, 1999]. Formal extensions

to the Becker-Stigler model by Mookherjee and Png [1995] and Bowles and Garoupa [1997]

have further examined trade-offs between detection probability, sanctions and optimal en-

forcer compensation. While these formal models assume monetary payoffs (e.g., bribery and

corruption), influence may take on more subtle forms of persuasion. A few empirical studies

have examined these nonmonetary influences. Makkai and Braithwaite [1992] studied nursing

home inspectors and found that those who self-identified with the industry on an attitudinal
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survey were more likely to issue positive compliance ratings during an inspection. Garicano

et al. [2005] empirically demonstrate bias by soccer referees who are presumably under social

pressure to favor home teams. And Jin and Lee [2011] find evidence of collusive behavior

between inspectors and restaurants.

To our knowledge, all of the previous studies of collusive behavior and social pressure on

enforcers are based on individual behavior—not group behavior. Yet, enforcement agencies

often send teams of enforcers. In fact, teams (instead of individuals) are often sent with the

express goal of minimizing corruption [Klitgaard, 1988].1 Though there are various effects

that might arise by sending a group. For example, teams may be more productive than in-

dividuals [Hamilton et al., 2003], or less productive in the case of free-riding [Alchian and

Demsetz, 1972]. Peer pressure within the group might influence members of the team to

conform to the group norm [Kandel and Lazear, 1992]. The group norm may vary by the

attitude of the inspector towards the regulated party, which then might affect their approach

to enforcement. For example, Bernhard et al. [2006] and Chen and Li [2009] find that in-

dividuals are more likely to punish violators when those violations occur by an “outgroup”

member as opposed to an “ingroup” member. To the extent a group of inspectors identify

with the regulated party, they might be less inclined to punish a violator than a group of

inspectors without such a strong identification.

We provide new insights into the productivity of teams and the inspector-offender rela-

tionship by examining data on inspections of offshore production facilities in the Gulf of

Mexico. In this paper we investigate two related topics. First, what is the effect of an addi-

tional inspector on enforcement and deterrence? And what are the impacts from reducing

1A related literature has examined how varying the size of inspector groups has an impact on detected
violations. For example, McCormick and Tollison [1984] examine the impact of increasing the number of
basketball referees from two to three—and show that the accuracy of officiating improves and deters violators.
Levitt [2002] found no evidence that increasing the number of NHL referees changed the number of observed
infractions leading to a penalty. These studies have focused on whether groups offer more accurate assessments
and their deterrent effects, and are not focused on the behavior of the enforcer and their relationship with
the offender.
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enforcer-offender familiarity?

Important limitations to investigating the effect of an additional inspector are endogene-

ity and selection bias. Platforms that are thought to be poor performers may be sent more

inspectors (in anticipation of more violations) or fewer inspectors (in anticipation that vio-

lations will be easy to detect). We use weather as an instrumental variable for the number

of inspectors to identify a causal effect of group size on the level of enforcement. Inspections

of offshore oil and gas platforms require the use of helicopters to take inspectors to produc-

tion platforms; however, whether a helicopter can fly depends on weather conditions. When

helicopters are restricted to certain areas of the Gulf because of bad weather, inspection

plans must be modified, and more inspectors are sent on fewer inspections.2 We find that

when an inspection on the margin of having an additional inspector is indeed given an ad-

ditional inspector, the inspection is likely to result in a more stringent enforcement action.

Furthermore, increasing the number of inspectors results in an increased number of severe

sanctions, implying that enforcement would be increased by adding manpower to inspec-

tions. That we only find a statistically significant increase in the severe sanctions suggests

that the additional inspector provides more than only an extra pair of eyes.

To further understand why an additional inspector matters, we test for evidence of regula-

tory capture. A key advantage of the dataset is that it provides a record of each inspector’s

inspection history, which allows us to calculate proxies for the familiarity an inspector has

with a facility. We examine whether the enforcement actions are affected by the frequency

with which an inspector has visited the platform before. It is the case that repeat inspections

are driven by factors correlated with the outcome of interest (such as poor performers having

more inspections in the past and therefore also more repeat visits by the same inspector).

Therefore, we exploit the closure of an inspections office that resulted in some platforms be-

ing inspected by less familiar inspectors using a difference-in-difference framework. It could

2We first learned this through a communication with a lead inspector, but it is also borne out in the data.
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be the case that inspectors more familiar with a platform would be better apt at finding

violations, however we find the opposite to be true. Consistent with the hypothesis of regu-

latory capture, we find that decreasing the familiarity between inspectors and the regulated

entity results in more stringent sanctions being imposed.

The variation in wind speed and the closure of an inspections office provide exogenous

variation in inspection intensity that can then be used to examine the effect on deterring

unfavorable outcomes, such as oil spills, explosions, injuries and fatalities. We use data on

company-reported incidents to examine the effect inspector group size has on the frequency of

oil spills and other serious accidents reported by the operator. However, we find no evidence

that using more inspectors has an effect on reducing the occurrence of reported incidents

in the very short term (three to nine months). Weighed down by few observations, we are

unable to disentangle the likelihood that an incident is reported from the likelihood that an

incident occurs, nor the effect of repeat inspections.

2. BACKGROUND ON INSPECTIONS IN THE GULF OF MEXICO

Inspecting offshore oil and gas platforms (facilities) is a costly endeavor. In 2010, the

budget of the United States Bureau of Ocean Energy Management, Regulation and Enforce-

ment (BOEMRE) for inspections was $23 million.3 However, there are over 3,000 offshore

production platforms in the Gulf of Mexico alone, which must be inspected at least once

every year.4 As of 2011, these inspections were carried out by a staff of only approximately

55 inspectors who had other duties including inspecting pipelines, drilling rigs, and meters

recording production for royalty payments.

Moreover, there is anecdotal evidence that this limited enforcement staff was subject to

industry pressure. For example, after the BP Deepwater Horizon oil spill, an internal gov-

3BOEMRE was formerly the Minerals Management Service (MMS), which was renamed on June 21, 2010;
thus most of the data analyzed in this paper was for compliance inspections while the agency was called
MMS. On October 1, 2011, BOEMRE was split into two agencies, with the newly titled Bureau of Safety
and Environmental Enforcement (BSEE) having responsibility for compliance inspections.

4Outer Continental Shelf Lands Act of 1953 (as amended).
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ernment investigation noted that inspectors in the Gulf of Mexico had been offered gifts

and employment opportunities by the regulated industry [Office of Inspector General, De-

partment of the Interior]. We do not have information on an inspector’s employment (before

or after being an inspector) and so are not able to examine whether “career concerns” are

the cause of capture. But capture could be driven by a more subtle form of pressure. For

example, according to a post-BP Deepwater Horizon investigation by the Office of Inspector

General, Department of the Interior [2010]:

One inspector reported arriving at a facility where his brother, who worked for the operator

elsewhere, was flown to the facility to act as the compliance officer. The inspector informed

the company that he could not conduct the inspection with his brother present. Another per-

son worked with the inspector that day. Some inspectors told us that industry often exerts

pressure on inspectors to minimize reporting violations during inspections. For example, fa-

cility personnel may make comments, such as “there goes my bonus” or “my wife is sick,

and I’ll lose my job,” to deter inspectors from issuing violations.

Since the BP Deepwater Horizon spill, there have been calls for significant increases in

BOEMRE’s budget and stepped up government enforcement activity. The 2012 fiscal year

budget for BOEMRE doubled to $500 million, with the call to “hire new oil and gas in-

spectors.”5 An increase in the number of inspectors will likely result in an increase in the

frequency of inspections, but it could also allow for an increase in the number of inspectors

that are sent to each platform. In June 2011, BOEMRE announced that it began to routinely

send inspection teams instead of individual inspectors to offshore oil and gas facilities as they

hired more inspectors.6

The primary goal of inspections is to verify that platforms are being operated in a safe

manner according to all laws and regulations listed in the National Possible Incident of Non-

5Budget of the United States Government, Fiscal Year 2012, p. 101.
6“BOEMRE Strengthens Offshore Inspection Program,” Press Release, June 13, 2011, available at:

http://www.boemre.gov/ooc/press/2011/press0613.htm
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Compliance (PINC) list. Production inspections are required for all production platforms

at least once annually for compliance with safety regulations, accurate recordkeeping, and

proper maintenance. In fiscal year 2009, there were 614 drilling inspections, 3,862 production

inspections, 296 workover and completion inspections, 7,201 meter inspections, 63 abandon-

ment inspections, and 4,765 pipeline inspections in the Gulf of Mexico.7 This study analyzes

production inspections.8

An inspection group can range from one to six inspectors. A typical inspection unfolds

in the following way: in approaching the platform with a helicopter, the inspector looks at

the surrounding water for pollution, any drilling, or vent gas [Offshore Energy and Minerals

Management, 2009]. Upon landing, the inspector walks around the platform to check its

general condition, while reviewing the PINC list to determine if violations have occurred.

After the walk-around, the inspector starts the paperwork review, and determines the oper-

ating ranges and safety device set points. If there is more than one inspector in the group,

one inspector reviews paperwork while any other inspectors will begin testing safety devices

with the operator. The operator tests the devices while the inspector verifies that the safety

device is “set” within the allowable range, and “trips” at the set point or within the correct

tolerance of the set point.

General violations and specific safety equipment failures are given “Incidents of Noncom-

pliance” (INCs). There are three different types of INCs: (1) a warning (W), in which the

operator is ordered to address the problem; (2) a component shut-in (C), requiring the op-

erator to suspend the operation of a piece of equipment that is not functioning properly,

which may or may not hinder production; and (3) a facility shut-in (F), which requires ces-

sation of all production on the platform until the problem is mitigated and verified during

a follow-up inspection. In addition, INCs can be referred for a civil penalty review. Any

violations are written on the inspection form, and the INCs are written and given to the

7http://www.gomr.boemre.gov/homepg/regulate/regs/laws/enforc.html
8Although we use data from all inspections in constructing variables on the inspection history of inspectors.
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company representative, who reads the INC and is asked if he or she has any questions. The

company representative signs the INC sheet and is told to return a copy within 14 days.

The inspector then returns to the district office. The lead inspector verifies the data. The

file clerk forwards completed inspections to the supervisory inspector for his or her review.

If a company contests the INC, the supervisory inspector may rescind the INC.

Enforcement actions taken by BOEMRE inspectors may be more than simple slaps on the

wrist. Indeed, BOEMRE estimates that a facility shut-in costs a large production platform

over $900,000 a day.9 While the bulk of enforcement actions result in the less severe INCs,

warnings and component shut-ins, about 2.4% of all production inspections result in a facility

shut-in—amounting to millions of dollars annually in costs to the industry [Muehlenbachs

et al., 2011].

3. WEATHER’S EFFECT ON INSPECTIONS AND GROUP SIZE

Since the inspection of offshore production platforms relies upon the ability of helicopters

to transport inspectors to and from offshore platforms, weather conditions may disrupt

normal inspection schedules. On average, bad weather results in inspectors only being able

to fly 80% of the time [Offshore Energy and Minerals Management, 2009]. However, there

are also occasions where bad weather does not completely ground flights, but instead alters

the number of inspections performed and the number of inspectors sent on an inspection.

Since the platforms to be inspected are determined before weather conditions are known,

if there is bad weather restricting the flights to one area of the district, inspectors will be

“doubled up” [personal communication with a lead inspector]. This occurs because the day’s

inspections are decided at the inspections office, before the inspectors leave for the airport.

We expect that the larger the geographical area, the more likely it is for weather to have an

effect on group size. The larger the area, the more likely it is for there to be enough variation

in wind speed that some of the planned inspections of the day would not be feasible, while

9http://www.noia.org/website/download.asp?id=40069
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some would be. The Lake Jackson district became the district with the most dispersed

platforms in the Gulf of Mexico after the inspections office in Corpus Christi was closed and

subsumed by the Lake Jackson office. After October 1, 2003, all inspections for both Corpus

Christi and Lake Jackson originated from the Lake Jackson airport. And indeed we do see

that when Lake Jackson became the district with platforms dispersed across the largest

geographical area, that variation in wind speed across the district became a determinant of

inspector group size. As can be seen in Figure 1, after the closure of the Corpus Christi office,

the number of inspectors per inspection is more closely correlated with the standard deviation

in wind speed across the district. Figure 1 shows quarterly averages of the standard deviation

in wind speed at 8 a.m. as well as the daily mean number of inspectors per inspection. As the

standard deviation in wind speed across the area increases, so does the number of inspectors

sent on an inspection, and this is particularly pronounced after all inspections originated

from the same airport. Later we discuss in more detail how daily standard deviation in wind

speed can be used as a valid instrument for inspector group size.
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Figure 1.— Instrumenting for the Number of Inspectors with Variation in Wind Speed.

Quarterly data obtained by averaging the 8 a.m. standard deviation of wind speed across

Corpus Christi and Lake Jackson. Vertical line indicates when Corpus Christi was incorpo-

rated into the Lake Jackson district.
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Figure 2.— The Boundaries of Lake Jackson and the Former Corpus Christi Subdistrict.

3.1. Estimation Strategy for Group Size Effect

We are interested in whether increasing the number of inspectors conducting an inspection

changes the likelihood that violations of different severity are detected and cited. Inspectors

not only might change the aggregate number of INCs they write, but they also might change

the distribution of citations given; for example, they may shift from warnings to component

shut-ins or from component to facility shut-ins. Thus, we run multiple regressions with

different outcome variables including the number of warnings, the number of component

shut-ins, and the number of facility shut-ins issued during an inspection. We also examine

a weighted combination of the INCs using a formula that BOEMRE uses to calculate an

Operator Safety Index: one facility shut-in is equivalent to four warnings or two component

shut-ins [Slitor, 2000]. Our variable of interest is the enforcement action (INC) given by

inspector (or inspector group), i, to platform p at time t:

11



(1) INCipt = ϕ+ ϑInspectorsipt + Xipt%1 +mut + υp + εipt

where Inspectorsipt is the number of inspectors that conducted the inspection. We include

controls for the platform, inspector, and operator in X. Platform characteristics include age,

distance to shore, water depth, production (in the month of the inspection), an indicator

for whether the platform is a major complex, whether it is manned 24 hours a day, the

number of wells at the platform, and a weighted average of INCs in the past; inspector

characteristics include the inspector’s propensity to issue INCs, an indicator for whether one

of the inspectors is new, the total number of past inspections conducted, and an indicator for

whether there is a female inspector present; and operator characteristics include the number

of other companies that have a working interest in the lease, the percent working interest

of the operator, and the number of other platforms operated by the operator, all measured

at the time of the inspection. We also include operator fixed effects, υp to account for any

non-time varying unobserved characteristics of the operator. We include an indicator for

whether the inspection was unannounced, and whether the inspection occurred shortly after

a Hurricane. We include a year-month fixed effect, µt to control for district-level trends over

time. The term εipt is a mean-zero error term, clustered at the platform level.

A problem arises in estimating equation (1) because the number of inspectors in a group

might not be randomly assigned. For example, it is possible that more inspectors are sent

to facilities that are prone to violations, and therefore the covariance between the number

of inspectors and εipt would be positive. In this example, the ordinary least squares (OLS)

estimate of the effect of an additional inspector would be biased upward. Therefore, to deal

with the endogeneity of the number of inspectors, we instrument for the number of inspectors

using the standard deviation in wind speed across the district on the day of the inspection

(SDWSPD). That larger inspection groups are sent during bad weather, the difference in the
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resulting INCs can be used to measure the local average treatment effect (LATE) of sending

more inspectors on the basis of bad weather [Imbens and Angrist, 1994]. Our first-stage

equation models the relationship between weather and the number of inspectors:

(2) Inspectorsipt = α + βSDWSPDt + Xiptδ1 + µt + εipt

In order to use the variation in wind speed across the district to measure the LATE,

the wind speed variation must also be independent of the error term in the enforcement

equation. There would be a problem, for example, if variation in wind speed also meant

that there were high winds at the platforms being inspected, which also resulted in a higher

number of violations than otherwise would have occurred under normal wind speeds. It is

therefore worth noting that mean wind speed across the district on the day of the inspection,

the wind speed closest to the platform, and mean wave height across the district, all do not

determine the number of enforcement actions (Table IV). This also follows the reasoning that

if weather were bad enough to cause structural damage, helicopters would be grounded and

we would have no observations of inspections in the first place. Nonetheless, we also include an

indicator for post-hurricane inspections, without changing our results. We find that variables

capturing the direct effect of weather (mean wind speed in the district, closest wind speed

to the platform, etc.) are weak instruments for the number of inspectors, compared to the

standard deviation in wind speed across the district, which we find to be a sufficiently strong

instrument.

Note that a LATE is not necessarily equal to an average treatment effect. LATE represents

a weighted average response to a unit change in treatment, where the weight is proportional

to the number of platforms that get an additional inspector because of weather [Imbens and

Angrist, 1994, Angrist and Imbens, 1995]. Therefore, the stronger the effect of weather on

a particular level of group size increase, the greater the weight placed on the effect of that
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increase. Measuring a LATE also requires a monotonicity assumption that variation in wind

speed would not result in fewer inspectors being sent to a platform. Furthermore, the effect

of the extra inspector is revealed only for the platforms that received an additional inspector

due to weather. It does not tell us about the effect of an extra inspector on those platforms

that would not get an extra inspector even in bad weather. We can only determine the effect

on the subpopulation of platforms that had a change in inspector group size because of the

weather.

4. DATA AND DESCRIPTIVE STATISTICS

We use a dataset of inspections in the Gulf of Mexico obtained from BOEMRE. The dataset

contains information on the enforcement action (INC) taken, as well as whether the INC was

submitted for civil penalty review or finally rescinded for each inspection. The dataset also

contains the names of the inspectors conducting the inspection. With this identifier, we

calculate variables such as the number of times an inspector visited the platform prior to the

inspection or the fraction of an inspector’s past inspections that resulted in an enforcement

action. We also keep track of the number of times each combination of inspectors was grouped

together in the past. We construct these variables using the full dataset dating back to 1986,

and then we examine the effect of these variables on inspections starting in October 2003,

following the merger of the Corpus Christi subdistrict into the Lake Jackson district. Using

the names of the inspectors in the group we determine whether there was a female inspector

present. Table I reports on the summary statistics for the data in our study.

As shown in Table II, there is generally a positive relationship between the number of

inspectors and the severity of enforcement action taken. For example, the probability of a

facility shut-in more than doubles from 0.02 to 0.055 when moving from one to two in-

spectors, and increases further to 0.113 with three inspectors and 0.133 with four or more.

On the other hand, the least stringent enforcement measure, warnings, actually decreases

slightly from 0.459 to 0.407 when a second inspector is added. As a placebo test, we use the
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standard deviation in wind speed exactly one year after the inspection as the instrumental

variable. In this case, the coefficient on the standard deviation is insignificant in the first

stage regression, the F-stat for weak instrument is 1.329, and all coefficients in the second

stage are insignificant. Using the standard deviation in wind speed the day before and the

day after the inspection results in a first stage F-statistic of .1 and all affected coefficients

are insignificant.
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TABLE I

Summary Statistics

Mean Std. Dev. Min. Max.
Weather Variables:
Std. Dev. WSPD (m/s) 1.89 .923 .269 6.29
Mean WSPD (m/s) 7.27 2.44 1.5 18.8
WSPD at Closest Buoy 7.32 3 .488 20.7
Hurricane (2 months post) .0891 .285 0 1
Platform Characteristics:
Platform Age (years) 14.9 10.2 0 53
Distance to Shore (miles) 43.8 35.3 4 156
Water Depth (1,000 feet) .191 .467 .026 4.82
Production (mmBOE in month prior) .0358 .152 0 2.88
Major Complex (Indicator) .669 .471 0 1
Manned 24 hrs (Indicator) .248 .432 0 1
Number of Wells (t) 4.1 5.48 0 31
Corpus Christi (Indicator) .203 .402 0 1
Inactive (Indicator) .321 .467 0 1
Inspection Characteristics:
INC Issued (Indicator) .377 .485 0 1
Most Severe INC=W (Indicator) .15 .357 0 1
Most Severe INC=C (Indicator) .201 .401 0 1
Most Severe INC=F (Indicator) .0264 .16 0 1
No. Warnings .455 1.04 0 10
No. Component Shut-ins .483 1.35 0 16
No. Facility Shut-ins .0339 .242 0 5
No. INCs to Civil Penalty Review .0329 .221 0 3
Rescinded INCs .0169 .166 0 4
Unannounced (Indicator) .00149 .0386 0 1
No. Inspectors 1.36 .608 1 6
Time Since Last Insp. (days) 342 128 2 1139
Inspector Characteristics:
New Inspector (Indicator) .0309 .173 0 1
Past InspectionsI (100s) 8.48 6.22 .06 21.1
Cum. INCsI/Cum. InspectionsI (t-1) 143 50.3 17.4 339
Female (Indicator) .155 .362 0 1
Cum. Inspections of P by I (t-1) 1.12 1.63 0 11
First Time (P,I) .612 .488 0 1
Ownership and Operator:
No. of Lessees (t) 2.58 1.94 1 12
Working Interest of O (%) (t) 57 39.5 0 100
No. of P Operated by O (t) 127 124 1 597
Observations 2008

Notes: Sample includes production inspections on offshore facilities in Lake Jackson October 2003 to August 2010. W=Warning,
C=Component Shut-in, F=Facility Shut-in, P=Platform, O=Operator, I=Inspector, (O,I)=Inspections of Operator O by In-
spector I. For all inspector variables (I), if the inspection was conducted by a group, the variable is the average over all group
members.
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TABLE II

Means (and Standard Deviations) by Number of Inspectors

One Two Three Four+
No. Warnings .459 .407 .635 .667

(1.080) (.984) (1.307) (1.113)
No. Component Shut-ins .404 .499 1.017 1.267

(1.212) (1.345) (2.256) (1.438)
No. Facility Shut-ins .020 .055 .113 .133

(.204) (.301) (.435) (.352)
No. INCs to Civil Penalty Review .050 .053 .096 .067

(.379) (.475) (.458) (.258)
Rescinded INCs .020 .019 .009 .000

(.226) (.175) (.093) (.000)
Observations 1769 675 115 15

Notes: Sample includes production inspections in Lake Jackson October 2003 to August 2010. Means are reported with standard
deviations in parentheses. There is only one observation with six inspectors, and none with five.
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4.1. Platform Characteristics

Two datasets10containing platform characteristics from BOEMRE were used to create a

panel of every platform in the Gulf of Mexico from the year the platform was first installed

through 2010. The dataset contains information on the distance to shore, water depth, lease

number, and whether or not there are personnel on board 24 hours a day. There is also

an indicator of whether the platform is considered to be a “major complex” (defined as

a platform that has at least one structure with at least six completions or two pieces of

production equipment).

Many platforms in the Gulf of Mexico are not producing, and those that are producing

vary widely in the amount of oil and gas produced. Production data for all wells in the

Gulf of Mexico from 1996 to 2010 were also obtained online from BOEMRE.11 This dataset

contains a unique well identifier (the API well number), monthly produced gas volume and

oil volume, and days on production. Using BOEMRE’s dataset on boreholes,12 we assigned

a platform identifier to the API well numbers so that we could aggregate the monthly well

production to monthly platform production. We also created a variable for the number of

wells at each platform.

4.2. Lease Owners and Designated Lease Operators

A single lease can have many owners with different percentages of ownership (working

interests). A lease may also be divided into different aliquots, or portions, and each aliquot

may have multiple working interests. Data on the lease ownership and designated operator

of a lease were obtained online from BOEMRE.13 These data contain the working interest of

all owners of offshore Gulf leases, including all ownership changes from the assignment date

10“Platform Masters” and “Platform Structures” found online at
https://www.data.boem.gov/homepg/data center/platform/platform.asp

11Production Data: http://www.data.boem.gov/homepg/pubinfo/freeasci/product/freeprod ogora.asp
12Borehole Data: https://www.data.boem.gov/homepg/data center/well/well.asp
13Lease Data: https://www.data.boem.gov/homepg/data center/leasing/leasing.asp
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of the lease to present. We constructed variables for the number of companies that had an

interest in the lease in that year, and the mean percentage working interest in the lease.

At any one point in time, however, there is only one designated operator of the lease. The

operator, as defined by BOEMRE, is either the leaseholder or the party designated (and ap-

proved) to operate a portion of a given lease.14 A record of platform operators (received from

BOEMRE) was used to determine the operator of a platform at the time of the inspection.

BOEMRE gives each subsidiary of a company a different company identification number.

For example, Shell Offshore Inc. has 10 subsidiaries in the Gulf of Mexico (including, for ex-

ample, Shell Consolidated Energy Resources Inc., Shell Deepwater Development Inc., Shell

Oil Company), each of which has a unique company number. In order to match the sub-

sidiaries to their parent companies, we used an unofficial list of parent-subsidiaries obtained

from BOEMRE. For the remainder of unmatched observations, the parent company found

in BOEMRE’s operator safety summaries was used. If the platform operator was missing

five years before the assignment date, the designated operator at the time of the assignment

was used. With this information we constructed variables for the number of platforms that

the parent company operates, and the working interest of the platform operator.

4.3. Buoy Data

Weather can determine if inspectors will be able to conduct an inspection. Helicopters to

unmanned structures are typically suspended when wind speed is 27–30 m/s (60–67 mph),

and all flights are suspended when wind speed is higher than 30 m/s (67 mph) [International

Association of Oil & Gas Producers, 2005]. This is consistent with what is observed for wind

speed on days of inspections–the maximum wind speed measured at a buoy closest to the

platform is 20.7 m/s. Although visibility, cloud ceiling, and the presence of lightning also

14A platform operator is typically the responsible party in the event of an oil spill. However, in some
instances a platform ties in production from a subsea lease that is miles away and could be leased to a
different operator. Under U.S. government regulations, all three parties (the surface platform operator, the
subsea lessee, and the pipeline right-of-way holder) are required to show oil spill financial responsibility.
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determine whether flying is an option, it is not possible to obtain these data over the Gulf

of Mexico.

Wind speed data over the Gulf were obtained from the National Data Buoy Center (NDBC)

of the National Oceanic and Atmospheric Administration (NOAA). Buoy stations record

hourly standard meteorological and wave data. Wind speed is the most often recorded vari-

able whereas temperature and wave height are often missing. There are eight NDBC deployed

buoys stationed off the coast of Texas. Only five of these buoys have data spanning the dates

studied. We use the wind speed recorded at 8:00 a.m. of the day of the inspection because he-

licopters transporting inspectors attempt to take off earlier than 7:15 a.m. [Offshore Energy

and Minerals Management, 2009].15

4.4. Sample Construction

In using weather as an instrument we restrict the analysis to production inspections of

offshore platforms in Lake Jackson after it subsumed the Corpus Christi subdistrict in 2003.16

We chose Lake Jackson because since 2003, compared to other districts in the Gulf of Mexico,

the platforms in Lake Jackson are spread over the largest area (see Figure 5 in the Appendix

for a map of the Gulf). In the other districts, which have more platforms and cover smaller

areas, bad weather might result in the grounding of all flights, not just the grounding of

flights to a portion of the district. Therefore, in Lake Jackson it is more likely for there to

be variation in weather across the district, and thus more likely for weather to affect the

number of inspectors sent to a platform than in a geographically smaller district.

There were 13 different inspection types; however, 81% were classified as an annual pro-

duction inspection. We restrict the sample to only include these inspections, because they

15We convert wind speeds to 20 meters above the surface using the formula WSPD(20 meters) =
WSPD(z)( 20

z )1/7 where z represents the height above the surface at which observations are collected [U.S.
Army Coastal Engineering Research Center, 1984].

16The number of different platforms that existed in each district (1986–2010): 131, Corpus Christi; 1,397,
Houma; 1,177, Lafayette; 992, Lake Charles; 696, Lake Jackson; 1,182, New Orleans.
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are more uniform in how they are conducted and in the type of INC issued.17 However,

when we construct variables on inspectors, such as the number of inspections an inspector

conducted in the past, we include all inspection types. Also, when the inspection has more

than one inspector, the inspector variables are averaged over all inspectors in the group. For

example, the number of prior inspections (Past InspectionsI) is the number of prior inspec-

tions averaged over all inspectors in the group. These variables are cumulative including all

inspections from 1986 to the current inspection.

4.5. Results Using Weather as an Instrument for Group Size Effects

We consider the outcome of an inspection to be the number and types of INCs issued to

platform p when assigned N number of inspectors. Variation in weather across the district is

used to instrument for the number of inspectors. The outcomes, warnings, component shut-

ins, facility shut-ins, and a weighted combination of these enforcement actions are estimated

separately using OLS and instrumental variables (IV) estimation.

One potential problem with estimating this model is that we are analyzing inspections that

are mandated to occur at least once a year. If inspections occurred exactly every 12 months,

considering that weather is seasonal, we might have a compounded effect from consistently

having fewer (or more) inspectors at a platform. However, as shown in Table I, there is

variation in the time since the last inspection as well as variation in wind speed within each

month. As shown in Table III, baseline characteristics, such as the INCs received in the

inspection prior, do not to vary across platforms inspected on highly variable days.

We show in Table IV that the mean wind speed in the district on the day of the inspection,

the wind speed closest to the platform and the average wave height, does not have an effect

on the enforcement action taken.18 It still could be possible that high variation in wind speed

17When including all inspection types, our instrument becomes too weak (Stock and Staiger [1997] suggest
the first stage F-statistic should be greater than ten).

18In the specification shown in Table IV, all covariates that are included in the main regression (Table VI)
are also included; however, not including these covariates also does not result in statistical significance on
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coincides with incidents of non-compliance issued because of damage from hurricanes. We do

not find that an indicator for inspections that occurred after a hurricane19 are statistically

significant in determining the number of inspectors or the enforcement action taken.

mean wind speed on the day of the inspection, the wind speed measured at the buoy closest to the platform,
nor the average wave height. Due to space constraints the weighted average of the INCs is not included, but
all coefficients are also statistically insignificant in the weighted average INC regression.

19We also tried various intervals ranging from one week to 16 weeks after a hurricane. The coefficients
displayed under “Post Hurricane” in Tables V and VI refer to an indicator for any inspection that occurred
within eight weeks after Hurricanes Ivan, Katrina, Rita, Gustav, and Ike.
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TABLE III

Baseline Characteristics by Standard Deviation in Wind Speed

(1) (2) (3) (4) (5) (6) (7) (8) (9)
C.C. INCs(t-1) Dist. Age Depth Prod. Major Manned Wells

Std. Dev. WSPD .001 .056 .553 -.056 .008 .003 .001 -.019 -.214
(.009) (.072) (.731) (.276) (.015) (.007) (.013) (.014) (.140)

n 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008
R2 .42603 .11290 .38491 .40955 .37693 .29976 .20590 .27287 .34943

Notes: Columns represent OLS coefficients with robust standard errors clustered by operator (for 91 operators). Dependent
variables are platform characteristics: an indicator for whether the platform was in the Corpus Christi sub-district (CC), a
weighted average of the INCs from the most recent prior inspection (INCs=W+2C+4F), distance to shore, age, depth, past
month’s production, whether the complex is a major complex, whether it is manned 24 hours a day, and the number of wells
present. Year-month and operator fixed effects included in all regressions (coefficients not reported). Sample includes production
inspections in Lake Jackson October 2003 to August 2010. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE IV

Direct Effect of Weather on Outcome of Inspection

Warnings Component Facility

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mean WSPD .004 .011 -.001
(.013) (.013) (.003)

WSPD at Closest Buoy -.002 .006 .000
(.009) (.012) (.003)

Mean Wave Height -.047 -.005 -.006
(.063) (.066) (.018)

Other Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,000 1,787 2,008 2,000 1,787 2,008 2,000 1,787
Mean of Dep. Var. .45518 .45600 .46391 .48257 .48450 .48461 .03386 .03400 .03525

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Dependent variables
are the number of warnings (W), component shut-ins (C), and facility shut-ins (F). Controls also include all covariates from the
baseline regression (Table VI). Robust standard errors are clustered by operator (for 91 operators). *** Statistically significant
at the 1% level; ** 5% level; * 10% level.
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Table V reports the first stage relationship between inspectors and the standard deviation

in wind speed in the instrumental variables estimation. For our purposes, the important

finding is that the number of inspectors is positively related to wind speed variability, con-

sistent with Figure 1. We find a strong first stage relationship; the first stage F-statistic

ranges from 8.9 to 18.3, depending on the specification. The first stage contains the included

exogenous variables of the second stage. Interestingly, the number of inspectors is unrelated

to the production level, complexity, or prior compliance history of the production platform.

There does not appear to be evidence of targeting more inspectors to the worst platforms.

We find that including an indicator for whether one of the inspectors has conducted fewer

than 25 inspections prior to the inspection is positive and significant. These inspectors could

be considered trainees, and we find they are statistically significantly more likely to go in an

inspection group than on their own. We also note that the past enforcement tendencies of

the inspectors is not statistically significant in determining the inspection group size (that is,

the cumulative INCs issued divided by the number of inspections conducted). It is possible

that some targeting of inspectors is taking place in determining the number of inspectors

to send, with the most stringent inspectors sent alone or in relatively smaller groups. This

targeting would bias our estimate of the effect of an additional inspector downward.

Table VI reports on our main regression results relating the number of inspectors to the

resulting enforcement actions. This table shows both OLS and IV results. We see that the

most stringent enforcement action, facility shut-ins, are statistically significantly more likely

to occur with more inspectors. Focusing on the last two columns, where enforcement actions

are weighted, we see that adding an inspector has a positive impact on the likelihood that

an enforcement action will be taken at the 10% level. Also included as a control variable

is the weighted average INC at the platform in the prior period. This variable is positive

and significant at the 10% level, suggesting that noncompliance is persistent. Of course, it

is possible that in the absence of any prior period INCs, platforms would have been even

24



TABLE V

First Stage: Number of Inspectors

(1)

Std. Dev. WSPD .061***
(.022)

Included Exogenous Variables:
Platform Age (years) .001

(.002)
Distance to Shore (miles) -.002***

(.001)
Water Depth (1,000 feet) .117**

(.049)
Inactive (Indicator) -.032

(.027)
Production (mmBOE in month prior) .291**

(.119)
Major Complex (Indicator) .038

(.030)
Manned 24 hrs (Indicator) .057

(.039)
Number of Wells (t) .005

(.004)
Corpus Christi (Indicator) -.085**

(.039)
Weighted INCs (t-1) -.002

(.006)
Cum. INCsI/Cum. InspectionsI (t-1) .000

(.000)
New Inspector (Indicator) .755***

(.157)
Cum. Inspections by I (t-1) -.015***

(.003)
Female (Indicator) .155**

(.062)
Unannounced (Indicator) .262

(.211)
No. of Lessees (t) .003

(.010)
Working Interest of O (%) (t) .000

(.000)
No. of P Operated by O (t) -.000

(.001)
Post Hurricane (Indicator) -.012

(.204)
Year-Month Effects Yes
Operator Effects Yes
n 2,008
Mean of Dep. Var. 1.36404
R2 .27260

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Columns represent
OLS coefficients. Dependent variable is the number of inspectors. Robust standard errors are clustered by operator (for 91
operators). *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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worse, so we are not making any claims about the deterrent effect of INCs.

We also control for production levels, platform complexity, and other factors. Note that we

also include a control variable indicating when one of the inspection team is a new inspector

(i.e., he or she has conducted fewer than 25 inspections); since new inspectors might be

more in a training/shadowing mode, adding a “first time” inspector might have different

implications than adding a random inspector-these inspections are not statistically different

other than being less likely to issue a facility shut-in. Thus, even after any targeting, we find

that increasing the number of inspectors yields an increase in stringent enforcement actions.

The coefficient on the number of inspectors is always larger when using the IV specification

compared to OLS. Besides endogeneity, there could be two other reasons driving this result–

measurement error in group size and non-linearity in the effect of group size. For this paper,

the data contain detailed records of the number of inspectors on the platform; it could be

the case that some inspectors were only present during part of the inspection, however,

measurement error in the number of inspectors is not as likely as non-linearity in the effects.

The IV estimates use variation in the inspection group size induced by wind speed, whereas

OLS estimates use all the variation. If weather affects a particular level shift in the group

size and this level shift has a larger effect on enforcement, then the IV and the OLS estimates

will differ. We find that the instrument has the largest effect in increasing the number of

inspectors from one to two (Table VII, column 1), less of an effect in moving the number

of inspectors from two to three (column 2), and no statistically significant effect in moving

from three to four or more (column 3). To examine whether there are non-linearities in the

enforcement actions by inspection group size, we estimate the OLS specifications in Table

VI using dummies for each level of group size instead of the count of inspectors. This gives

us a separate coefficient on each group size level: moving from one to two or more, three

or more, and four or more inspectors (Table IX). In most cases, F tests reject the null
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TABLE VI

Impact of the Number of Inspectors on Enforcement Actions

Warnings Component Facility Weighted

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

No. Inspectors .089 .417 .254*** .570 .035** .238** .735*** 2.508
(.054) (.689) (.049) (.625) (.015) (.112) (.142) (1.688)

Platform Age (years) .011** .011* .007 .007 .000 -.000 .025 .023
(.005) (.005) (.006) (.005) (.001) (.001) (.018) (.018)

Distance to Shore (miles) .002** .003* .002* .003 .000 .001** .007** .010**
(.001) (.001) (.001) (.002) (.000) (.000) (.003) (.004)

Water Depth (1,000 feet) .145* .106 -.032 -.070 -.020 -.044** -.001 -.210
(.080) (.087) (.268) (.274) (.012) (.019) (.605) (.639)

Inactive (Indicator) -.169*** -.159*** -.267*** -.258*** -.008 -.002 -.736*** -.684***
(.058) (.059) (.059) (.056) (.014) (.015) (.191) (.187)

Production (mmBOE in month prior) -.564*** -.662* -.379 -.473 -.011 -.071 -1.365 -1.891
(.195) (.340) (.505) (.530) (.039) (.058) (1.137) (1.334)

Major Complex (Indicator) .100* .087* .151** .139** .019 .011 .480*** .410**
(.060) (.050) (.061) (.065) (.012) (.012) (.170) (.171)

Manned 24 hrs (Indicator) .054 .037 .242 .226 -.014 -.024 .483 .392
(.085) (.084) (.181) (.178) (.017) (.018) (.466) (.439)

Number of Wells (t) -.013** -.015*** .009 .007 .004*** .003** .019 .011
(.005) (.006) (.008) (.009) (.001) (.001) (.018) (.019)

Corpus Christi (Indicator) .033 .062 .052 .079 .025 .042 .235 .388
(.086) (.115) (.136) (.152) (.023) (.027) (.321) (.361)

Weighted INCs (t-1) -.007 -.007 .010 .011 .001 .002 .019 .021
(.005) (.004) (.009) (.009) (.001) (.001) (.024) (.022)

Cum. INCsI/Cum. InspectionsI (t-1) .005*** .005*** .003** .002** .000 .000 .011*** .011***
(.001) (.001) (.001) (.001) (.000) (.000) (.003) (.002)

New Inspector (Indicator) .053 -.194 -.128 -.366 -.024 -.176** -.300 -1.632
(.143) (.558) (.209) (.527) (.021) (.086) (.460) (1.500)

Cum. Inspections by I (t-1) .007 .012 .004 .008 -.003** .000 .003 .030
(.005) (.013) (.008) (.012) (.001) (.002) (.021) (.032)

Female (Indicator) .158** .110 -.194*** -.240* -.029 -.058* -.345* -.604**
(.068) (.098) (.072) (.126) (.019) (.030) (.206) (.306)

Unannounced (Indicator) .662 .576 -.349* -.432 -.000 -.053 -.037 -.498
(.575) (.565) (.205) (.276) (.029) (.075) (.907) (1.185)

No. of Lessees (t) -.011 -.012 .012 .011 -.001 -.002 .008 .003
(.020) (.018) (.023) (.021) (.003) (.003) (.065) (.054)

Working Interest of O (%) (t) .001 .001 .001 .001 .000 .000 .004 .004
(.001) (.001) (.001) (.001) (.000) (.000) (.003) (.003)

No. of P Operated by O (t) .001 .002 -.002 -.002 -.000 -.000 -.004 -.003
(.001) (.001) (.002) (.002) (.000) (.000) (.004) (.004)

Post Hurricane (Indicator) -.313 -.315 -.070 -.072 .010 .009 -.412 -.422
(.234) (.248) (.325) (.336) (.026) (.051) (.802) (.956)

Year-Month Effects Yes Yes Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008
Mean of Dep. Var. .45518 .45518 .48257 .48257 .03386 .03386 1.55578 1.55578
First Stage F-stat. 14.38692 14.38692 14.38692 14.38692

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Dependent variables
are the number of warnings (W), component shut-ins (C), facility shut-ins (F), or Weighted, a weighted combination of all INCs
(Weighted=W+2C+4F). In the case of the IV estimates, No. Inspectors is instrumented for using weather. Robust standard
errors are clustered by operator (for 91 operators). *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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that the coefficients are equal.20 Therefore, it appears that the true relationship between

the enforcement actions and the number of inspectors is non-linear, but because we do not

have enough instruments, we have estimated a linear model and restricted the effect to be

constant. Weights for IV estimators in the presence of non-linearity have been derived by

Angrist and Imbens [1995], Heckman et al. [2006] and Lochner and Moretti [2011]. Following

Lochner and Moretti [2011] we re-weight the OLS estimates of in Table IX using estimated

IV weights, and use a general Wald test, robust to a non-linear relationship between the

endogenous regressors and the dependent variable, to test for exogeneity.21 The re-weighted

OLS coefficients are larger than the OLS estimates (Table IX), however the re-weighted OLS

coefficients are still smaller than the IV estimates. Using the general Wald test, we cannot

reject the null hypothesis of exogeniety. Therefore, we have some confidence in the OLS

estimates, however, the IV estimate, which is the weighted average of the marginal effects is

still useful for guiding inspection policy.

Theoretically we might also expect that moving from one to two inspectors would be

different from moving from two to three, because there are multiple orders of free-riding

[Yamagishi, 1986, Heckathorn, 1989, Ostrom, 1990, Henrich and Boyd, 2001, Boyd et al.,

2003]. Inspectors can contribute a “first-order” public good, which in the case of this paper

would refer to inspectors performing their duty to detect and issue INCs; not performing

their duty would be termed first-order free-riding. Since punishing any first-order free-riding

would take effort, then by enforcing first-order participation, inspectors can contribute a

“second-order” public good, which in this case would refer to enforcing fellow inspectors to

detect and issue INCs. Not punishing the first-order free-riding is termed second-order free-

riding. In the case of second-order free-riding, moving from a group of two to three inspectors

would likely have a different effect than moving from one to two.

20The p-values that the first two coefficients are equal, for the four specifications are 0.0619, 0.0162, 0.0668,
and 0.0024; the p-values that the three are equal are 0.1745, 0.0432, 0.1654, and 0.0095.

21If the true relationship between the number of inspectors and enforcement is non-linear, then the tradi-
tional Hausman test is uninformative.
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TABLE VII

Instrument’s Effect on Level Shifts in Group Size

(1) (2) (3)
More than 1 More than 2 More than 3

Std. Dev. WSPD .040** .020** .001
(.018) (.008) (.001)

Controls Yes Yes Yes
n 2,008 2,008 2,008
Mean of Dep. Var. .30478 .05129 .00697

Notes: Each column represents a separate OLS regression of variation in wind speed on indicators for whether there were more
than 1, 2, or 3 inpectors in the group. All regressions include the same controls as in previous regressions. Sample includes
production inspections in Lake Jackson between October 2003 and September 2010. Robust standard errors are clustered by
platform (for 562 platforms). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE VIII

Estimates at Each Level Increase in Group Size

(1) (2) (3) (4)
Warnings Component Facility Weighted

Two Inspectors .045 .158** .020 .440**
(.060) (.071) (.016) (.199)

Three Inspectors .350** .717*** .112** 2.231***
(.168) (.218) (.050) (.562)

Four or More Inspectors .078 .569 .036 1.360
(.317) (.383) (.081) (1.220)

Controls Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008
Mean of Dep. Var. .45518 .48257 .03386 1.55578

Notes: Each column represents a separate OLS regression of indicators for the size of the group on the enforcement actions
(W, C, F, and W+2C+4F). All regressions include the same controls as in previous regressions. Sample includes production
inspections in Lake Jackson between October 2003 and September 2010. Robust standard errors are clustered by platform (for
562 platforms). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE IX

Re-weighted OLS Coefficients

Warnings Component Facility Weighted
(1) (2) (3) (4) (5) (6) (7) (8)
OLS ROLS OLS ROLS OLS ROLS OLS ROLS

Inspectors .101* .234*** .257*** .250*** .036** .041** .758*** .767***
(.054) (.052) (.060) (.072) (.016) (.017) (.177) (.208)

General Wald (p-value) .312 .388 .151 .215
Notes: OLS estimates are the same as found in Table VI. Re-weighted OLS estimates from derived by using IV weights to
calculate an average of the coefficients in Table . The General Wald test [Lochner and Moretti, 2011] compares the re-weighted
OLS in this table to the linear IV estimator (found Table VI).
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5. TESTING FOR REGULATORY CAPTURE USING THE CLOSURE OF AN INSPECTIONS
OFFICE

If the goal of the enforcer is to detect and sanction all violations, then we show that

this goal is not being met—more violations can be found and cited if more inspectors are

available to inspect. Our finding could be driven by the current inspection system being

under staffed and inspections not being fully effective. If the marginal cost of finding and

citing violations is increasing, then we would expect that the first inspector would find the

most, and the easiest, while the additional inspectors would find marginally less, or harder

to find violations. If an operator protests the issuance of an INC, an inspector would have

to exert more effort to issue the INC. It is the duty of the inspector not to be swayed by any

protestations, so it is possible that when there are other members of an inspection group

present, they might be more or less likely (depending on the norm of the group) to write

up the INC. It is possible that if the group members might act as a united front against

any protests by the operator. On the other hand, if the inspectors are inclined to side with

the operator, the more lenient they may be. For example, Chen and Li [2009] find that in

a laboratory experiment, ingroup members (i.e., members of a group that have identified

with one another, as opposed to outgroup members who have not) are less likely to punish

an ingroup match for misbehavior. The more familiar an inspector is with the operator, the

more likely an inspector is to identify with the operator, and the more likely it is that the

regulator is captured. In response to allegations about such potential conflicts of interest,

BOEMRE issued a new ethics policy in 2011 requiring individuals in the Gulf district offices

to recuse themselves in dealings with companies with a personal family or past employment

relationship. According to a news report, approximately 30% of district employees recused

themselves from one or more companies operating in the Gulf region in 2011.22 Therefore,

by adding an additional inspector, INC severity increases because not all inspectors are

captured, and it is harder for the operator to capture the inspectors because there are more

22“Ethics Policy Quantifies Oil Industry–Gov’t Ties,” Associated Press, July 26, 2011.
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to capture. Our instrument is not able to find a statistically significant increase in warnings,

but only on the more stringent violations, which suggests that regulatory capture or group

norms might have an impact on inspector behavior.

We do not know the background or employment history of the inspectors, and thus can-

not directly test for industry identification or an inspector’s prospect for future industry

employment. However, we do have data on the prior inspections each inspector completed

from 1986 to the date of the inspection. The more times that an inspector has visited the

same platform, the more familiar they might be with the platform’s flaws, and prior violation

history, that detecting violations might be easier. On the other hand, the more times that

the inspector has visited the same platform, the more they might identify with the operator,

and the more pressure they might have to endure to overlook a violation. Measuring the

effect of repeated visits is also difficult considering two forms of endogeniety. First, poor

performers or older platforms would have had more inspections in the past and might also

have had more enforcement actions. This bias runs in the opposite direction from, and would

not be the cause of, a finding that more inspections by the same inspector result in fewer

enforcement actions. Second, if inspectors have any leeway in choosing where to inspect,

the repeat assignment of inspectors to the same platform may be driven by unosbservables

correlated with the outcome we are interested in.

Therefore, we also exploit exogenous variation in the number of times an inspector has

visited the same platform by examining the closure of the Corpus Christi sub-district in

more detail. With the closure of the airport, the average number of times that an inspector

had inspected a platform in the past decreased (Figure 4(a)). We estimate a difference-

in-difference model, where platforms in Lake Jackson (which includes the Corpus Christi

sub-district) are our treatment group, and platforms in all other regions are our control

group. The treatment is the decreased number of prior visits, and this treatment occurs in

the period that is post-closure of the Corpus Christi sub-district, Postt, and only on the
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Figure 3.— The Corpus Christi inspections office was closed in 2003, after which the
number of repeat inspections significantly decreased.

platforms in Lake Jackson (or the Corpus Christi sub-district), LJCCp. In a regression of

number of times inspector, i, has visited platform, p, the coefficient on the interaction of an

indicator for Lake Jackson and the post-period, will give us an estimate of the effect of the

closure of one of Lake Jackson’s airports on repeat visits:

(3) yipt = δ0 + δ1LJCCp × Post t + δ2 LJCCp + Xiptδ4 + µt + εipt

With year-month fixed effects, µt, we do not include the Post indicator by itself. Table X

shows statistically significant reduction in the number of repeat visits in Lake Jackson-Corpus

Christi in the post-closure period. To test whether the trends in the pre-period are similar

we replace the indicator for the post period in equation 3 with year indicators, and plot the

interaction with Lake Jackson-Corpus Christi in Figure 4(b). The coefficients in the pre-

period are not significantly different from zero. In columns (2)-(5) of Table X, examine the

effect of the closure on enforcement actions, by substituting yipt in equation 3. We find that

component shut-ins are more likely, coinciding with the reduction in repeat visits. Figure 4

graphically displays the interaction with LJCC and year dummies.
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(b) Component Shut-Ins
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(c) Facility Shut-Ins
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(d) Weighted INCs

Figure 4.— Difference-in-Difference Coefficients for (Treatment * Year Indicators)

TABLE X

Impact of Repeat Visits

(1) (2) (3) (4) (5)
Repeat Warnings Component Facility Weighted

LJCC × Post Closure -1.058*** -.050 .198*** .015 .404**
(.248) (.059) (.053) (.012) (.176)

LJCC 1.507*** .086 -.123*** -.005 -.182
(.215) (.057) (.038) (.008) (.137)

Controls Yes Yes Yes Yes Yes
n 32,442 32,442 32,442 32,442 32,442
Mean of Dep. Var. 1.256 .359 .334 .023 1.118

Notes: Sample includes all platforms in the Gulf of Mexico. The indicator for Lake Jackson district includes platforms that were
in the Corpus Christi sub-district. The dependent variables are Repeat=the number of prior visits the inspector made to the
same platform; the number of Warnings (W) issued; Component shut-ins (C); Facility shut-ins (F); or Weighted, a weighted
combination of all INCs (Weighted=W+2C+4F); /*Inspectors=the number of inspectors.*/ Post-Closure= 1 if the inspection
occurred after October 2003. Controls include all control variables, with the exception of the number of inspectors. Robust
standard errors are clustered by operators (for 304 operators). *** Statistically significant at the 1% level; ** 5% level; * 10%
level.
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6. EVIDENCE OF INCREASED INSPECTION INTENSITY ON DETERRENCE

Most of the environmental economics literature on inspections and enforcement has gen-

erally focused on deterrence, i.e., whether increased enforcement activity is correlated with

higher compliance and/or improved environmental performance, see Gray and Shimshack

[2011] for a thorough review. This stream of literature also only examines deterrence at the

extensive margin by measuring the effect of the frequency of inspections; however, little has

been said on the effect of increasing inspection intensity.23 Here we focus on the intensive

margin and estimate the effect of increasing the inspection group size on the subsequent

number of reported incidents, using incident data obtained from BOERME.

All serious accidents, fatalities, injuries, explosions, and fires are required to be reported

to BOEMRE.24We regress the number of incidents reported to have occurred on a platform

on the number of inspectors who conducted the most recent inspection. Specifically, the

outcome variable is the count of the number of incidents that were reported on platform p

within a set time period after the inspection (t+m where m is three, six, or nine months).

(4) Incidentip(t+m) = ϕ0 + ϕ1Inspectorsipt + Xiptϕ2 + µt + εipt

(5) Incidentip(t+m) = ϑ0 + ϑ1LJCCp × Post t + ϑ2LJCCp + Xiptϑ4 + µt + εipt

The framework is the same as that in the previous estimations: the unit of observation

is the inspection, and we instrument for the number of inspectors in the inspection group,

because the number of inspectors sent in an inspection group could be correlated with the

number of incidents reported. We use the standard deviation in wind speed as an instrument

for the number of inspectors (equation 2).

23The exception is the analysis of Coast Guard enforcement activities to prevent oil spills from tankers,
e.g., Epple and Visscher [1984], Cohen [1987], Grau and Groves [1997], and Gawande and Wheeler [1999].
However, these studies do not examine individual inspections and instead look at aggregate measures such
as the number of hours devoted to inspection resources in a district in a quarter.

24However, if an inspector discovers that an accident occurred and was not filed within 15 days, the INC
they are required to issue is a warning (W). There are potentially severe under reporting of incidents.
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TABLE XI

Impact of the Number of Inspectors on Incidents Reported in Time Period After
Inspection

Incident 3 Mo. After Incident 6 Mo. After Incident 9 Mo. After

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

No. Inspectors -.005 .008 .003 -.071 .008 -.039
(.006) (.059) (.009) (.079) (.012) (.100)

Other Controls Yes Yes Yes Yes Yes Yes
Year-Quarter Effects Yes Yes Yes Yes Yes Yes
n 1,886 1,886 1,713 1,713 1,509 1,509
Mean of Dep. Var. .020 .020 .036 .036 .048 .048
First Stage F-stat. 15.517 18.262 12.980

Notes: Dependent variables are an indicator for whether one or more incidents were reported, 3 months, 6 months, and 9 months
after the inspection. Only inspections without another inspection occurring in these time periods are included. Sample includes
production inspections in Lake Jackson from October 2003 to 3 months, 6 months, or 9 months before September 2010. Controls
also include all covariates from the baseline regression (Table VI). Robust standard errors are clustered by platform (for 562
platforms). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

The regulations for incident reporting were made more stringent on July 17, 2006 , when it

became required to report not only serious incidents, but also incidents that had the potential

to be serious (e.g., any incident involving structural damage to a platform, injury that led to

an evacuation or days away from work, or property damage exceeding $25,000).25 Therefore,

the regressions for the number of reported incidents include an indicator for periods after

this new reporting requirement.

The specification is the same as the baseline specification, except for the inclusion of a new

reporting indicator (a post 2006 indicator). We do not find an effect of the inspector group

size on the probability of a reported incident occurring (Table XI). Table XII summarizes

the variables describing the incidents that occurred within nine months of any inspection.

Examining the probability of different incident types being reported also does not show

statistical significance in the effect of inspector group size. This could be driven by very

few observations, which also does not let us use a detection control mechanism [Feinstein,

1989], to disentangle detection and occurrence. A future draft of this paper will examine the

incidents before and after the airport closure.

2530 CFR Part 250, Final Rule (FR 19640), Minerals Management Service, U.S. Department of the Interior.
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TABLE XII

Summary Statistics for Incidents Reported

Mean Std. Dev. Min. Max.
Accident .974 .161 0 1
Human Error .118 .325 0 1
Equipment Fail .105 .309 0 1
Explosion .0132 .115 0 1
Fire .316 .468 0 1
Spill .0132 .115 0 1
Crane .118 .325 0 1
Structural Damage .0263 .161 0 1
Slip/Trip/Fall .0395 .196 0 1
No. Injuries .0658 .377 0 3
No. Fatalities .0132 .115 0 1
Post-2006 .789 .41 0 1
Observations 76

Notes: Summary statistics for incidents reported to have occurred within 270 days of a production inspection in Lake Jackson
from October 2003 to March 2010.

7. CONCLUDING REMARKS

We find that more inspectors are likely to find more violations; however, due to endogene-

ity, it is possible that this is the effect of targeting. To test this, we construct an instrumental

variable based on exogenous weather-related changes in the number of inspectors sent to in-

spect a platform. Using this instrument results in a similar finding—more inspectors result

in more regulatory violations. While we do not have data on the costs and benefits of inspec-

tors and compliance, our results suggest that at the very least, the current level of staffing

at BOEMRE is inadequate to detect all violations. They also suggest that even without an

increased enforcement budget, some reallocation of inspector resources might yield increased

detection and punishment of violations. The increase in inspectors does not, however, reduce

the frequency of oil spills and other incidents reported by companies.

To explain our finding that increased inspectors lead to more stringent enforcement actions,

we test for evidence of regulatory capture. We use the count of repeat inspections of the same

platform as a measure of familiarity. The more familiarity there is between the inspector and

the regulated entity, the more likely it is for regulatory capture. We examine the decrease

in repeat inspections on some platforms, due to a closure of an inspections office, and find

that repeat visits result in fewer enforcement actions. Future research that identifies the
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characteristics of individual inspectors might shed further light on this question.

Our study highlights the importance of rigorous empirical analysis of inspections and

inspectors as a tool in regulatory compliance. While we focus on offshore oil platforms, the

concern that inspectors are not being optimally employed is ubiquitous across regulatory

agencies. For example, a recent internal audit of the Mine Safety and Health Administration

(MSHA) concluded that “mine inspectors were sometimes lax and inconsistent with their

reviews, and some mine inspections weren’t conducted according to agency standards and

legal requirements.”26 Similarly, a former investigator for the Inspector General’s Office of

the Nuclear Regulatory Commission recently criticized agency officials: “The N.R.C. is like

a prep school for many of these guys, because they know they’ve got a good shot at landing

much higher-paying work with the people they’re supposed to be keeping in line. They’re

not going to do anything to jeopardize that.”27

While we find more violations would be detected if more inspectors were sent on an in-

spection, this does not necessarily mean that serious incidents (such as oil spills or injuries)

would decrease. And indeed, we do not find evidence that increasing the inspection group

size results in fewer serious incidents being reported. Because we find that larger inspector

groups issue more severe violations and that these do not translate into fewer incidents being

reported, this suggests that the sanctions issued to oil and gas platforms are not stringent

enough to reduce the risk of more accidents.

26“Internal Audits Reveal Federal Enforcement Lapses,” Energy and Environment Daily, April 18, 2011.
27Tom Zeller, Jr., “Nuclear Agency Is Criticized as Too Close to Its Industry,” New York Times, Energy

and Environment, May 7, 2011.
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APPENDIX A

Figure 5.— Districts, Platforms, and District Airports in the Gulf of Mexico.

The inspection program is directed by the New Orleans regional office, with inspection offices located in

five different districts of the Gulf: Houma, Lafayette, Lake Charles, Lake Jackson, and New Orleans. The

New Orleans district covers the largest area in the Gulf of Mexico; however, drilling restrictions off of the

coast of Florida have resulted in the Lake Jackson district (including Corpus Christi) to have platforms

spread across the largest geographical area.

A.1. Outcome of the INCs

Once an INC is issued by an inspector, the operator of the platform can petition to the BOEMRE district

manager to rescind the INC. According to a report by the Office of the Inspector General of the Department

of the Interior, “a number of inspectors felt they received insufficient support from management and that, in

some cases, management sided with industry when INCs were questioned” and that “INCs are unnecessarily

rescinded due to favoritism to some operators” [Office of Inspector General, Department of the Interior,

2010]. The operators have 60 days to appeal an INC, and so and expect that an INC is less likely to be

rescinded when there are more inspectors conducting the inspection. Using the sample of inspections that
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TABLE XIII

Number of Inspectors on Outcome of INC

Rescinded Civil Penalty

(1) (2) (3) (4)
OLS IV OLS IV

No. Inspectors -.0020 .0283 .0037 .3214*
(.0120) (.0997) (.0242) (.1915)

Full Controls Yes Yes Yes Yes
n 758 758 758 758
Mean of Dep. Var. .03034 .03034 .06860 .06860
First Stage F-stat. 6.57147 6.57147

Notes: Sample includes inspections that resulted in an INC. Dependent variable is whether one or more INCs were rescinded
or sent for civil penalty review. Controls also include all covariates found in Table VI. *** Statistically significant at the 1%
level; ** 5% level; * 10% level. Robust standard errors shown in parentheses clustered by operator (91 operators).

resulted in INCs, we examine whether they are less likely to be rescinded with more inspectors conducting

the inspection. The first two columns of Table XIII report the OLS and IV coefficients in a regression of

the number of INCs that were rescinded on the number of inspectors. The sample only includes inspections

that received INCs, and therefore the instrument is not as strong as before. In both cases, we do not find an

effect with more inspectors.

INCs can also be submitted for civil penalty review.28 The paid civil penalties have ranged from 800to810,000.

29 Following our finding that more inspectors result in more stringent INCs, we also would expect that more

INCs would also be submitted for civil penalty review; we find that the inspections that have more inspectors

due to weather weakly significantly more likely to have the INCs sent for civil penalty review (fourth column

of Table XIII).

We do not see that repeat visits result in more, or less, INCs that are rescinded or sent to civil penalty

review (Table XIV).

A.2. Example from the Possible Incident of Non-Compliance (PINC) list

In the PINC list, there are guidelines governing many aspects of oil and gas operations including testing

and checking specific components’ functionality, personnel training, record-keeping, drilling operations, and

oil spill response plans. Below is an example of a general environmental protection guideline listed in the

PINC list.30

28INCs must be submitted for civil penalty review if the violations are not corrected within a designated
period of time or if the violations cause or could cause a threat of serious, irreparable, or immediate harm or
damage to life, property, or the environment. See http://www.bsee.gov/Inspection-and-Enforcement/Civil-
Penalties-and-Appeals/Civil-Penalties-Assessments-and-Appeals.aspx.

29A list of the civil penalties paid can be found at: http://www.bsee.gov/Inspection-and-
Enforcement/Civil-Penalties-and-Appeals/Civil-Penalties-and-Appeals.aspx

30For the full list of PINCs, see:
http://bsee.gov/uploadedFiles/BSEE/Enforcement/Inspection Programs/OFFICEPINCLIST JBA
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Does the operator ensure activities authorized in this part are carried out in a manner that provides for

protection of the environment?

Inspection procedure:

Visually check the waters surrounding the facility when en route to, approaching, departing, or passing a

facility by boat, helicopter, or fixed wing aircraft. Look for sheens, slicks, wastes, and other pollutants origi-

nating from the facility, risers, or pipelines. During the facility inspection, check the water for signs of any

pollutants.

If noncompliance exisits

• Issue a warning (W) INC if:

The cause of the discharge has been identified and corrected prior to the inspection or observation,

and no further pollution is occurring.

• Issue a component shut-in (C) INC if:

A specific component has been determined to be the cause of pollution and the pollution is ongoing at

the time of the inspection or observation.

• Issue a facility shut-in (S) INC if:

More than one specific component has been determined to be the cause of the pollution and the pollution

is ongoing at the time of the inspection or observation.

The PINCs outline the enforcement actions to be taken upon different degrees of non-compliance. The

inspector must take these actions, however one might imagine that there could be circumstances where

the interpretation of the definition of a specific component or the timing of the incident, might vary the

enforcement action taken.

%20Changes%20Included.pdf
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TABLE XIV

Impact of Repeat Visits on Recinding and Civil Penalty Review

(1) (2)
Recinded Civil Penalty

Lake Jackson × Post Closure .008*** .002
(.003) (.006)

Lake Jackson -.005** .005
(.002) (.005)

Post Airport Closure

Controls Yes Yes
n 32,442 32,442
Mean of Dep. Var. .007 .012

Notes: Sample includes inspections that resulted in an INC. Dependent variable is whether one or more INCs were rescinded
or sent for civil penalty review. Controls also include all covariates found in Table VI. *** Statistically significant at the 1%
level; ** 5% level; * 10% level.
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