
Rational parasites
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Abstract

Understanding the impact of legal protection on investment is of major importance.

This paper provides a framework for addressing this issue, and shows that investment

may actually be higher in the absence of legal protection. Focusing on the application

to innovation, in an environment where an innovator (the host) repeatedly faces the

same imitators (parasites), we show that investment can take place even without patent

protection, as parasites limit their imitation to preserve the innovator’s incentives to

invest. We show further that an innovator might be more active without legal protec-

tion: it is forced to increase its investment to keep the parasites satisfied and, thus,

cooperative. We provide experimental evidence consistent with the theoretical results:

in the experiment, investment levels with and without legal protection are comparable,

and sometimes greater without patents. Our framework is general enough to apply

to other situations such as investment in developing countries, commons’ management

and long-distance trade.

1 Introduction

Understanding the way in which a reliance on informal institutions, as opposed to legal

rules, affects investment choices is of major importance. Case studies have shown how the

emergence of social norms substituting for weak legal structures can encourage investment.

For instance, Greif (1993 and 1999) finds that social norms in medieval times were able to

sustain long-distance trade in the absence of contract enforcement by courts. Ostrom (2009)

shows that local arrangements often overcome the commons problem better than central

government enforcement. In this paper, we also argue that vigorous investment can take

place without formal protection. Moreover, the absence of such protection may even foster

greater investment.
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The key idea is that high levels of investments facilitate the emergence of norms substi-

tuting for legal rules. That is, while cooperation enables better outcomes, the converse is also

true: better (anticipated) outcomes enable the cooperation in the first place. In our model,

an investor and parasitical agents, who can potentially expropriate the stochastic outcome

of the investment, interact repeatedly. In the absence of legal protection, the parasites ra-

tionally choose not to be too aggressive, in an effort to preserve the investor’s incentives to

invest – parasites refrain from killing their host. Reciprocally, the innovator may invest more

than it would with legal protections, in order to augment the promise of future earnings and

keep the parasites satisfied and cooperative.1

Although the applications are numerous, we develop our ideas specifically in the context

of innovation.2 Recently, there has been a renewed debate on the use of patents to encourage

investments in innovation (Boldrin and Levine 2008). We show that legal protection is not

necessary for positive levels of investment, and that the absence of patents may even lead to

more innovation. There is some empirical evidence consistent with this idea. In particular,

Boldrin and Levine (2008) and Bessen and Hunt (2007) argue that the software industry

was more innovative before the introduction of patents.3

Staying with software, consider the example of Red Hat, a hugely successful company

created in 1993. At its stock market introduction, Red Hat was one of the biggest IPOs in

the NASDAQ and, since 2009, has been part of the S&P500, with over 3000 employees and

revenues of over 500 million dollars. For many, this success is puzzling, since the company’s

business model is based on open source software. Most of Red Hat’s revenues come from

the sale to companies of subscriptions, including their own pre-compiled version of the open

source operating system Linux, called Red Hat Enterprise Linux, and support services.4 Two

facts are particularly striking. First, as acknowledged in Red Hat’s annual report: “anyone

can copy, modify and redistribute Red Hat Enterprise Linux (...) however they are not

permitted to refer to these products as Red Hat”. Numerous clones do indeed exist, but

they appear to avoid competing aggressively and do not gain much market share. Second, in

spite of a potentially extremely competitive environment, Red Hat invests a lot in research.

According to a report from the Linux Foundation, Red Hat is the biggest single contributor

1Our explanation for the success of local arrangements should be seen as complementary to Ostrom’s
notion that local protocols perform well because they are better adapted to particular conditions and better
accepted by the community.

2The dilemma facing a company opening a factory in a developing country with the risk of expropriation
is another important application.

3In the United States, the patenting of software began with the Supreme Court decision Diamond vs
Diehr in 1981. In previous rulings, the Supreme Court had judged software to be unpatentable.

4According to Red Hat’s annual report, the revenues from subscriptions in 2010 were $541M out of a
total revenue of $652M .
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to the Linux Kernel (excluding unaffiliated contributors), and pays the salaries of many of

the top contributing individuals.

It seems plausible that clones of Red Hat rationally choose not to be too aggressive, in

an effort to preserve Red Hat’s incentives to keep investing in research. Indeed, the manager

of a clone declared in an interview, “We have the utmost respect for Red Hat and everything

they have done for the community over the years. We have absolutely no desire to upset

them” (Kerner 2005). At the same time, Red Hat may, in the absence of patents, innovate

more than it would have in their presence, in order to maintain clones’ incentive not to be

too aggressive.5

While this example and the empirical evidence are suggestive, inferring a causal relation

between the absence of patents and high investment is challenging, given that we cannot

observe the investment levels under the counter-factual scenario. Therefore, after developing

our theory we provide some controlled experimental evidence capable of overcoming the iden-

tification challenge by artificially creating two different institutional environments, one with

patents and one without. Consistent with our theoretical intuition, the average investment

in the treatments reproducing the legal monopoly environment is (slightly) lower than in the

treatments with no legal protection, as shown in figure 1. Furthermore, the pricing behavior

observed in the experiment is coherent with our theory. To the best of our knowledge this is

the first experiment designed to compare the levels of investment with and without protec-

tion, and this can become a promising avenue of research for providing evidence on an issue

extremely difficult to test with field data.6

The basic structure of our theoretical model is as follows. A serial innovator initially

makes a capital investment in innovative capabilities. This initial investment determines the

likelihood that the firm successfully innovates in subsequent periods and the value of the

innovation if it does. There are two regimes, one with patents, where the innovator collects

monopoly profits from successful innovations, and one without patents, where n imitators

can immediately copy any innovation at no cost. In the latter regime, all n+ 1 firms choose

a price and a maximum quantity to supply, allowing for an uneven split of profits, if desired.

We find that any level of investment level that leads to positive profits for the innovator

in the presence of patents remains part of an equilibrium in their absence, if firms are

5A similar example, described in Raustiala and Sprigman (2006), is the case of the fashion industry.
Major designers, such as Prada and Gucci, very regularly produce new innovative collections and take little
protection. These innovations requires initial investment in contracting with well known designers. Retailers,
such as H&M imitate these designs but in an imperfect way so that the imitation can be distinguished from
the original; in other words, they refrain from acting too aggressively.

6A similar argument in favour of experiments in economics is given in Falk and Heckman (2009), where
the authors focus in particular on the application to employment relations. Meloso at al. (2009) also conduct
an experiment capturing innovative behavior where they compare different reward mechanisms.
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patient enough. More generally, for moderately patient firms many investment levels will be

sustainable, but the imitators may be required to take a small share of profits, so that the

innovator finds it worthwhile to invest – a behavior reminiscent of that of clones in the Red

Hat example.

The multiplicity of equilibria, which is common in dynamic games, makes precise predic-

tions difficult. Nonetheless, interesting statements can be made. There are circumstances

under which all non-degenerate equilibria – equilibria where the innovator invests a positive

amount – involve more investment without patents than with them. In particular, this hap-

pens in a simple setting as investment gets riskier in a second order stochastic dominance

sense. The reason is that with risky technologies the temptation of parasites to deviate from

a collusive path following a successful innovation is large, and price wars are hard to avoid.

The only solution may be for the innovator to increase its investment, thereby raising the

benefits to continued collusion: the innovator is forced to work harder to keep the parasites

satisfied. However, increasing investment is beneficial in this way only if it increases the

probability of a successful innovation, not just the value of successful innovations.

We do not seek to make explicit welfare statements in this paper. Such results could

be derived, but this would require making assumptions about the proportion of the social

value of innovations that can be appropriated by innovators. If innovators can fully collect

all the social value of their innovations, any additional investment prompted by the removal

of protection is welfare-reducing. However, recent evidence suggests the opposite: Bloom et

al. (2012) report that the social returns to R&D are at least twice as high as the private

returns.

There are a number of papers explaining how innovation may occur in the absence of

any kind of formal protection. Some rely on technological constraints such as imitation lags

(Scherer and Ross 1990), others on strategic effects (Benôıt 1985; Henry and Ponce 2011;

Henry and Ruiz-Aliseda 2012). Boldrin and Levine (2002 and 2005) provide a theory of

competitive innovation.7 These papers show, in different environments, that innovation can

occur in the absence of formal protection. However, in all these contributions, less innovation

is conducted than if the innovator was granted a monopoly.

We suggest an alternative explanation for investments in research in the absence of legal

protection. Moreover, we show that our model can give rise to even more innovation without

patents. Both these theoretical predictions and the experimental evidence we provide fit

with the evidence in Boldrin and Levine (2008).

There are two main reasons suggested in the literature for why environments without

patent protection can be associated with more innovation. The first one is based on the

7See also Anton and Yao (1994 and 2002) on the transfer of ideas in the absence of legal property rights.
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sequential nature of research. Bessen and Maskin (2009) show that if innovation is both

sequential (new discoveries build on old ones) and complementary (different researchers use

different approaches), the absence of patents may lead to more innovation. Innovators benefit

from discoveries by rivals as they can build on them.

The second class of models builds on the ”escape the competition effect”. Aghion et al.

(2001, 2005), examine how product market competition affects innovation and, thus, growth.

They examine a model where imitation is not immediate and an innovator can stay ahead of

its rivals by successfully investing in research. They find that, at least for initially low levels

of competition, increasing product market competition has a positive effect on investments.

Our work also builds on the idea that competition, in our case by imitators, exerts a

pressure that forces the innovator to invest more. However, our mechanism is very different.

In the growth model, there is increased research to escape the intense competition on the

market, as the innovator can stay ahead for some time. Our model does not rely on any type

of first-mover advantage. In fact, more research is performed to keep the imitators satisfied

and cooperative.

Our paper, as it involves pricing in an environment with repeated interaction, is linked

to the vast literature on collusion. It is more particularly related to Rotemberg and Saloner

(1986), who study collusion in a stochastic environment over the business cycle. We add

investments in this framework. We also model the stochastic return differently, which allows

us to characterize the condition on second order stochastic dominance. We discuss this

paper more in depth in section 3. In a similar vein, Dal Bo (2007) studies collusion when

the interest rate fluctuates.

As we previously noted, though we focus on the application to innovation, the model

applies more generally to the comparison of environments with and without legal rules.

Former literature has stressed the importance of private-order or informal institutions relying

mainly on economic and social sanctions imposed to sustain investment (Williamson 1985).

Notably, some historical case have demonstrated the role played by reputation mechanisms

(Greif 1989, 1993) in a repeated interaction setting.

Finally, our study adds to the recent experimental literature on cooperation and collusion

in infinitely repeated games (early examples include: Roth and Murnigham 1978; Palfrey

and Rosenthal 1994; and more recently: Dal Bo 2005; Dreber et al. 2008; Camera and

Casari 2009; Aoyagi and Frechette 2009; Dal Bo and Frechette 2011; Cooper and Kuhn,

2011; Bigoni, Potters and Spagnolo 2012). While this literature has mainly focused on

understanding both the dynamics of cooperation and the conditions favouring collusion or

cooperation in infinitely repeated games, our focus is to compare investment choices under

different institutional regimes.
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The remainder of the paper is organized as follows. In Section 2, we introduce the model.

In Section 3, we characterize the equilibria and derive our main theoretical results. In Section

4, we present the experimental setup and results. All proofs, tables and figures are presented

in the appendix.

2 Model

We frame the model and results in terms of investments in innovation. We consider an

infinite horizon game. In period 0, an innovative firm, denoted Firm 1, makes a capital

stock investment k in research capabilities, such as a research facility.8 This investment

determines the likelihood that the firm successfully innovates in subsequent periods and the

value of any resulting innovation. In any single period, the firm randomly develops at most

one innovation, which can instantly be brought to market at zero marginal cost. The market

value of an innovation degrades over time; for simplicity, we assume that the life span of a

new product is exactly one period.9

The value of an innovation is measured by the one period monopoly profit π the new

product generates, which is randomly drawn from R+, where we let π = 0 represent that no

(market worthy) innovation has taken place. Given the period 0 investment k, let F (π, k) be

the cumulative probability distribution of developing an innovation worth π at the beginning

of period t. We contrast two situations: one of legal monopoly and one where legal protection

is absent.

In the case of legal monopoly, Firm 1 collects monopoly profits on any innovation. If

it initially chooses k, in each period there is a random draw of π according to F (π, k).

The firm thus chooses k to maximize −k +
∑∞

t=1 δ
t
∫∞

0
πdF (π, k) = −k + δE(π|k)

1−δ , where

E (π|k) =
∫∞

0
πdF (π, k) <∞. We suppose the maximization problem has a solution.

In the second situation, with no property rights, Firm 1 remains the only firm with

the ability to innovate, but there are n firms with imitative capabilities.10 These firms

can immediately reproduce any innovation at zero cost. In practice, there are lags before

imitators can copy an innovation, and duplication may be costly and imperfect, but we

abstract away from these possibilities, which benefit the innovator, as we are interested in

8In a more general model, this stock investment would be complemented by on-going research expendi-
tures. We considered such a model in an earlier version, but this complication does not change our main
results.

9Thus, in the period a product is brought to market there is a continuous demand curve for it, which
reaches zero at a high enough price and a finite value at a price of zero, while, in subsequent periods, the
quantity demanded is identically zero.

10This fixed group of imitators may have incurred a sunk cost to developing know-how and establishing
themselves.
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incentives for innovation absent these previously noted factors.11

The n + 1 firms play an infinite horizon game in which they share the same period

discount rate δ. As before, in period 0, Firm 1 chooses an investment k. In each period

t ≥ 1, if an innovation of strictly positive value is realized, firms 2, ..., n + 1 immediately

imitate. Each firm i = 1, ..., n+ 1 then chooses a price pti for the innovation. In a traditional

analysis of homogeneous repeated price competition, when several firms choose the lowest

price, demand is equally split among them. There is, however, no reason why firms could not

choose to split demand unequally by restricting the quantities they supply. This possibility

is usually ignored, both for simplicity and because, in the usual settings, collusion is easiest

when firms split demand equally (if all firms have the same discount rate). In our setting,

however, where only one firm incurs development costs, it is important to allow firms to split

demand unequally, if they so choose.12 Therefore, in addition to choosing a price, in each

period t, each firm i chooses a maximum quantity qti to supply. Demand is rationed among

the firms in the following way. All consumers attempt to buy from the firms with the lowest

price. If demand at this price is less than total supply, each firm sells a quantity proportional

to its supply. If demand exceeds total supply, then each firm charging this price sells up to

its chosen quantity. This yields a residual demand curve, upon which rationing is applied at

the next lowest price, and so forth.13

Formally, let ht denote the history of play up to date t. At each period t, the strategies

are the following:

• In period t = 0, Firm 1 chooses k.

• In periods t ≥ 1

1. The quality of the period t innovation, πt, is drawn from F (π, k).

2. Each firm then chooses a price quantity pair (pti, q
t
i) ∈ R+ × R+ as a function of

(ht, πt).

To simplify the exposition of our results, we restrict our attention to constant-share

equilibria where, along the equilibrium path, the firms all charge the same price and each

11See for instance Scherer and Ross (1980) for non-strategic delays in imitation. There can also be strategic
delay by imitators such as in Benôıt (1985), Henry and Ponce (2011) and Henry and Ruiz-Aliseda (2012).

12Firms picking unequal sharing is coherent with casual evidence, such as the Red Hat case discussed in
the introduction, although other explanations of this evidence are also possible.

13The rationing rule is formally described in the appendix, although the precise rule is unimportant. For
instance, rather than a rationed firm selling a quantity proportional to its supply, each firm could, say, sell
the same quantity, subject to capacity constraints.
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firm’s share of total demand is constant. That is, a constant-share equilibrium is a subgame

perfect equilibrium in which, for each period t and each firm i,

i) pti = pt , for some pt ≥ 0, and

ii) for qt (pt) > 0, we have
∑n+1

i=1 q
t
i = qt (pt) and

qti
qt(pt)

= αi, for some αi ≥ 0, where

(abusing notation) qt (pt) is consumer demand at a price pt for the innovation realized in

period t.

Thus, in a constant-share equilibrium firm i gets a fixed share αi of total industry revenue

in each period. (For instance, Firm 1 gets 2
3

of the revenue from any innovation and the

other firms each get 1
3n

of the revenue). Off the equilibrium path, an optimal punishment is

for all firms to charge 0 and pick a capacity large enough to supply the market.

An even-share equilibrium is a special case of a constant-share equilibrium in which

the firms evenly share the revenues from a successful innovation; that is, αi = 1
n+1

for

i = 1, .., n+ 1.

3 Investments with and without protection

3.1 Equilibria

We start by characterizing the constant-share equilibria in the no-patent game. Consider

the realization of an innovation with monopoly profit π in some period. This figure is

the maximum total profit from the innovation that the firms could share in that period.

However, the firms might not actually be able to share these maximal profits in equilibrium.

In particular, if π is unusually high, collusion on the monopoly price may be impossible

since firms would have a large incentive to undercut and grab π immediately, at the cost of

losing out on the collusive profits from future innovations, which would, on average, be much

smaller. Thus, for an innovation with very high monopoly profits, colluding firms may have

to charge a lower price than the monopoly price, and, as we will see, there is some maximal

industry profit that can be obtained in equilibrium in any single period (see Appendix).14

Although firms pick prices and capacities each period, it is more convenient to characterize

the equilibrium conditions in terms of the resultant revenues. Note that, since firms 2, ..., n+1

are identical, if there exists an equilibrium where these firms get different shares of demand,

there also exists one where they each get the same share αi = α
n
, while Firm 1 gets the share

14The equilibria found by Rotemberg and Saloner (1986) have a similar feature, and our framework is
similar to the one they use in their study of collusion in the face of uncertain demand, although we add
an important element of investment. Other important differences include the fact that our firms choose
capacities as well as prices and that we model the problem in terms of a shock on monopoly profits rather
than a shock on demand (see footnote 14).
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(1− α).15 The constant-share equilibria can be characterized in the following way:

Proposition 1 A choice of k by Firm 1 forms part of a constant-share equilibrium if and

only if there exists a profit π̃ and a share α such that for all π ≤ π̃,

π ≤ α

n
π +

δ

1− δ
α

n

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
, (1)

π ≤ (1− α) π +
δ

1− δ
(1− α)

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
, (2)

and

k ≤ δ

1− δ
(1− α)

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
(3)

The first two conditions state that no firm, be it the imitators or the innovator, ever

wants to undercut the other firms in any single period. The third condition guarantees that

Firm 1 wants to undertake its investment. The term π̃ (1− F (π̃)) reflects the fact that, for

profit realizations π greater than some upperbound π̃, the temptation to deviate is too large

if firms attempt to share profits π – instead they split the amount π̃. To see the need for an

upperbound, allow for the moment that π̃ could be equal to infinity. Combining inequalities

(1) and (2), yields the necessary condition that

π̃ ≤ δ

1− δ
1

n

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
(4)

For any k and distribution function F , let π̃Fmax = {sup π̃ s.t. (4) holds}. Since the right

hand side of (4) is bounded, π̃Fmax <∞. The quantity π̃Fmax provides an upper bound on the

single period profit level on which firms can manage to collude when Firm 1 invests k.

3.2 Rational parasites

The environment we consider is one where an innovator cannot stay ahead of its competitors

and, at first sight, appears to have little incentive to invest. Nonetheless, since the firms

interact repeatedly, if they are sufficiently patient they can avoid destructive competition.

Indeed, any investment that would lead to positive profits for an innovator with patents, can

be part of an equilibrium in the absence of patents, as shown in the following result.

15Consider an equilibrium path in which firms 2, ..., n receive differing shares αi. The path in which each

firm receives the same share α′ =
∑n+1

i=2 αi

n is also an equilibrium.
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Proposition 2 For any k̄ such that E
(
π|k̄
)
> 0, there exists a δ̄ > 0 such that, for all

δ̄ ≤ δ < 1, there is a constant-share equilibrium of the no-patent game in which Firm 1

invests k̄.

This proposition follows from familiar dynamic game reasoning with arbitrarily patient

players. With players that are not arbitrarily patient, investment is tricker. The existence

of the upperbound π̃Fmax means that total industry profits may be lower in the no-patent

world than the patent world. This fact, combined with the fact that Firm 1 must share

the returns from innovating, implies that there may be some investment levels that, while

profitable when patents are available, do not form part of an equilibrium without patents.

In the absence of legal protection, there always exists a degenerate equilibrium in which

Firm 1 chooses not to invest at all and all firms plan to charge a price of zero whenever

an innovation is obtained. To sustain a non-degenerate equilibrium, where Firm 1 invests a

positive amount, the firms must manage to collude on a positive price following an innovation.

Colluding on a positive price is easiest if the firms split the revenues from an innovation

equally. That is, the best hope for satisfying both conditions (1) and (2), is to set α
n

= 1
n+1

,

so that αi = 1
n+1

for all i, as in an even-share equilibrium. At the same time, however,

Firm 1 must be given sufficient incentive to invest in the first place. That is, condition (3)

must also be satisfied, and this condition is relaxed by giving Firm 1 a greater share of the

revenues, setting α
n
< 1

n+1
so that α1 >

1
n+1

. When condition (3) bites, rational parasites

need to limit their aggressiveness in order to preserve the innovator’s incentives to invest, as

the story of Red Hat suggests.

To get a feel for how investment possibilities depend on the nature of the innovation

technology, consider two research processes characterized by the profit distribution functions

F and G, where F second order stochastically dominates G. Integrating the right hand sides

of (1), (2) and (3) (4) by parts reveals that all three conditions are harder to satisfy under

G than F , so that investing without patents is harder with riskier innovations (Proposition

3 below).16 By the same token, π̃Gmax ≤ π̃Fmax (see Appendix), so that less industry profit can

be made with riskier innovations.

Proposition 3 Suppose that with an innovation technology characterized by the distribution

G, there is a constant-share equilibrium in which Firm 1 invests k̄. Then with an innovation

characterized by the distribution F , where F second order stochastically dominates G, there

is also a constant-share equilibrium in which Firm 1 invests k̄.

16Similar reasoning shows that mean-preserving spreads makes collusion more difficult in the framework
of Rotemberg and Saloner, although the way they model uncertainty does not allow them to reach this
conclusion.
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Proposition 3 provides is a testable prediction of the model, which we explore in our

experiment. Reading the proposition “in reverse”, if we start from an innovation technology

for which a particular investment is sustainable and take a series of mean-preserving spreads,

we might arrive at a situation where such an investment is no longer possible. As an illustra-

tion, suppose that for the distribution F , an investment of k̄ yields an innovation worth 10

with probability one, while under G, an investment of k̄ yields an innovation worth 0, 10, or

20, with equal probabilities. With patents, these two equal-mean technologies are essentially

equivalent. Without patents, however, they are quite different. Suppose the investment k̄ is

sustainable under F . This implies that under F , the firms can successfully split the amount

10 in each period. However, it might not be possible for the firms to split 20 when it arises

under G, since firms have a larger incentive to undercut when the current innovation is worth

more. If the firms cannot collude on 20, there is a knock-on effect, and they might not be

able to collude on 10 either under G, since the relevant measure for future profits is not the

overall mean of 10, but the average over a truncated interval.17

How will Firm 1 react if the amount it would have invested with a patent is no longer

viable without a patent? The obvious possibility is that Firm 1 invests less, so that it needs

to recoup less money. More interestingly, another possibility is that Firm 1 invests more in

order to increase the continuation value of the game and make collusion easier. We explore

these two possibilities in the next section.

3.3 Investment in innovation with and without protection

We would like to compare investment in innovation when patents are available to investment

when they are absent. However, this is often an ambiguous comparison, as there are many

equilibria in the no-patent game, some with more innovation, some with less, and we have

no compelling criterion for choosing among equilibria. In this section, we examine a special

case where unambiguous statements can be made: either all non-degenerate equilibria involve

more investment without patents, or all these equilibria involve less investment. In the next

section we report on an experiment that models this special case.

For some research, the nature of a successful innovation is not very variable and the

investment level mainly influences the frequency of innovations.18 In line with this, we

now assume that the value of a successful innovation is some fixed constant, π̄, and that

17Specifically, if firms cannot collude on 20, to examine whether colluding on 10 is possible, the relevant
measure of future profits is not 10 but 1

30 + 2
310 since for an outcome of 20, firms are only able to potentially

share 10.
18Examples include the case of upgrades of software or smartphones, where the issue is mostly one of

frequency rather than quality, and also the case of the fashion industry mentioned in the introduction
(footnote 3), where the important factor is the speed of introduction of new collections.
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investments in research only determine the likelihood p(k) an innovation is developed in any

period. Formally, we have that

F (π, k) =


1 if π ≥ π̄

1− p (k) if 0 ≤ π < π̄

0 if π < 0

Let k∗ be Firm 1’s profit-maximizing investment in the presence of patents. Suppose that

this investment is not sustainable in the no-patent game. Then, subsequent to a choice of

k∗, either (i) in the subgame following a successful innovation, every equilibrium yields zero

profits to all firms (collusion is not possible), or (ii) in the subgame following the realization

of an innovation, there are equilibria with positive profits, but none of these equilibria yield

Firm 1 sufficient expected profits at date zero to warrant the initial investment of k∗.

In the first instance, the problem is that the expected future profits from collusion are

not large enough to deter the firms from trying to grab the entire instantaneous profits

from a successful innovation. The only way to overcome this is for Firm 1 to invest more

than k∗, thus raising the probability of a successful innovation in any period and increasing

the value of collusion in the continuation game; all non-degenerate equilibria (when these

exist) involve more innovation in the absence of patents (see Lemma 1 in the Appendix). In

the second instance, while collusive continuation equilibria exist, none of them give Firm 1

enough revenue to cover an investment of k∗ at date zero. Now, the only possibility for a

non-degenerate equilibrium involves Firm 1 saving money by investing less (see Lemma 2).

We now present situations corresponding to (i) and (ii), in which we perform comparative

statics that keep the optimal investment under patents (essentially) constant. This allows

us to cleanly compare investment levels with and without patents.

An innovation worth π̄ = π0
m

will be developed with probability pm,H(k) = mh (k −H),

where h : R+ → [0, 1), h (x) = 0 for x ≤ 0, and h′ > 0. The parameter H is a minimum re-

quirement on the fixed cost that Firm 1 must pay if it wants to conduct any research. Higher

H’s increase the minimum requirement, but have no effect on the optimal additional invest-

ment above this requirement. That is, in the presence of patents, the optimal incremental

level of investment above H is independent of H, whenever this optimal level is positive. The

parameter m varies between 0 and 1. Decreases in m induce a mean-preserving spread on the

innovation process and have no effect on the optimal investment, or incremental investment,

in the game with patents.

Thus, in the patent game, as m and H vary, the optimal incremental investment, which we

again denote k∗, and optimal expected per period revenue, π0h (k∗), stay constant, whenever

k∗ remains positive. However, in the no-patent game, the investment k∗ gets harder to
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sustain as m falls (Proposition 3) and as H rises (since Firm 1 must recover its fixed cost).

Suppose that for m = 1, H = 0, there is an even-share equilibrium (αi = 1
n+1

for all i) in

which Firm 1 invests k∗.19 For small enough m or large enough H, an investment of k∗ is

no longer part of an equilibrium. Proposition 4 shows that Firm 1 responds to small m by

investing more than k∗ and responds to large H by investing less than k∗.

Proposition 4 Suppose that for m = 1, H = 0 there is an even-share equilibrium in which

Firm 1 invests k∗ > 0 and earns strictly positive profits. Then,

(i) There exists an m̂ such that for all m < m̂, every non-degenerate equilibrium involves

an investment k > k∗ by Firm 1. Moreover there is a non-empty interval (m′, m̂) on which

non-degenerate equilibria exist. For all m̂ ≤ m ≤ 1, an investment of k∗ by Firm 1 remains

part of an equilibrium.

(ii) There exists an Ĥ such that for all H > Ĥ, every non-degenerate equilibrium involves

an investment k < k∗ by Firm 1. Moreover there is a non-empty interval
(
Ĥ,H ′

)
on which

non-degenerate equilibria exist. For all 0 ≤ H ≤ Ĥ, an investment of k∗ remains part of an

equilibrium.

The more interesting part of Proposition 4 is part (i). The result that, as m falls,

there may be more investment without patents relies crucially on the fact that increases

in investment raise the probability of a successful innovation. This increase in probability

raises the expected future returns to collusion without affecting the instantaneous gains from

deviating after a successful innovation, thus making collusion easier. Formally, for H = 0 the

conditions for an investment of k∗ to be part of an even-share equilibrium are the following:

π0

m
≤ 1

n+ 1

π0

m
+

1

n+ 1

δ

1− δ
mh(k∗)

π0

m
(5)

k∗ <
1

n+ 1

δ

1− δ
h(k∗)π0 (6)

When m decreases, the future expected profits on the equilibrium path, 1
n+1

δ
1−δmh(k∗)π0

m
, are

unaffected, but the temptation to deviate, π0
m
− 1
n+1

π0
m

, increases. For m low enough, condition

(5) can no longer be satisfied. The solution is to raise investment, thereby increasing expected

future collusive profits without affecting the temptation to deviate.

Suppose that, on the contrary, investment raised the return to a successful innovation

without affecting its likelihood. That is, suppose we had p = mh, for some h ≤ 1, and

π̄ = π(k)
m

, with π′ (k) > 0. Then, increased investment would raise both the future returns to

19Some sufficient conditions are δ
1−δh

′(0)π0 > 1, n < δ
1−δh (k∗), and k∗ < 1

n+1
δ

1−δf(k∗)π0.
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colluding and the instantaneous gains from deviating in offsetting fashion, so that increases

in investment would not make collusion any easier (or more difficult).

In what follows, we describe an experiment that directly tests Proposition 4 by considering

different treatments which vary the value of m.

4 Experimental Setup and Results

In this section, we present the design and results of a lab experiment tailored to achieve

several goals. First, to test specifically some of the results of the theory, in particular the

effect of increased riskiness described in Proposition 3 and the possibility of higher levels of

investment described in Proposition 4. Second, since a degenerate equilibrium always exists,

the experiment can also shed light on equilibrium selection issues and provide some empirical

evidence on investment levels with and without legal protection.

4.1 Experimental setup

The experimental study is based on four different treatments. Two treatments correspond

to an environment with a legal monopoly on the stochastic outcome of investments (we refer

to those as patent treatments) and two to an environment with no legal protection (we refer

to those as parasite treatments). Within each regime (patents vs parasites), we implement

two different scenarios, corresponding to two different investment options described in Table

1. In one option, there are relatively high probabilities of obtaining a low prize; in the other

option, the prize is doubled and the probabilities are halved. We refer to the four treatments

as patent-low-prize, patent-high-prize, parasite-low-prize and parasite-high prize.

We reproduce infinitely repeated games in the lab using a standard procedure involving

a random continuation rule (see Dal Bo and Frechette 2011, Dal Bo 2005 and Casari and

Camera 2009 for recent examples). At the end of each round, the computer randomly

determines whether or not another round will be played in the game. The probability of

continuation is fixed at 0.85 for all treatments and is independent of any choices players

make during the game. The players thus play a series of games of random length.

In the two patent treatments, all games are single-player games (there is no interaction

with other players). In the first round of each game, the player first obtains an initial

endowment of 11 tokens and makes an investment decision, choosing to invest 0, 1, 6 or 11

tokens. This initial investment determines the probability of obtaining a prize in each round

of the game but has no influence on the other games. The exact probabilities and the level

of the prize depend on the treatment as described in Table 1.
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In the parasite treatments, each game involves two players. At the beginning of the game,

each player receives 11 tokens and one of them is randomly selected to be the innovator (to

avoid framing issues, in the instructions we call the innovator Role A and the imitator Role

B.) In the first round, the innovator makes an investment decision with the same options as

in the patent treatments (the parasite, takes no action in the first round). In the subsequent

rounds, whenever the investment is successful (the probability of success is determined by the

decision of the innovator in the first round), the two players play a prisoner’s dilemma/pricing

game represented in Table 2.20 Each player chooses between H and L. If they make the same

choice, they split either high or low profits. If they make different choices, the player that

chooses L gets all the low profits, while the other player gets nothing. This is meant to

represent product market competition between the innovator and the imitator, and is a

special case of our theoretical model in which the collusive share of profits is restricted to

α = 1
2
. At the end of each round where an innovation was obtained, each player observes

the other player’s choice (H or L).

When a game (randomly) ends, a new one starts and is played in the same way. In the

parasite treatments, players are randomly re-matched with a different player. This procedure

makes it unlikely that the same pair will play together more than once. In any case, the

game is played anonymously and players cannot identify their partner. For the parasite

treatments (resp. patent), fifteen minutes (resp. ten minutes) after the start of the session,

no new game starts but players finish the games they started.21

4.2 Theoretical predictions

Our model allows us to make clear theoretical predictions. First, in both patent treatments,

the optimal choice of a risk-neutral player is an investment level of 1, although the level

of expected profits does not vary vastly across the different positive choices (12.6 for an

investment of 1, 12.1 for 6 and 11.6 for 11).22

In the case of the parasite-low-prize treatment, an investment of 1 in the first round

remains part of an equilibrium whereas in the parasite-high-prize treatment it does not.

20In the patent treatments, whenever the investment is successful, the prize is obtained entirely by the
single player. Nevertheless, to keep the two set of treatments symmetric, players in the patent treatment
also have to choose whether they want to price high or low as in the parasites treatment. The choice low
gives them a profit of zero, and the choice they have to make is thus obvious, but it preserves symmetry
with the parasite treatments.

21We did not put a time constraint on the games already started but they never lasted more than a few
minutes.

22While an investment of 1 is optimal for a risk-neutral money maximizer, subjects may have other
motivations as well. For instance, they might get benefits from switching choice to break the tediousness
of the task. In addition, there was some possible benefit to playing 0 in order to end the game sooner and
proceed to the next game, as each game had a small fixed payment associated with it.
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Examining the incentives of the players, brings out clearly the mechanism developed in the

theory. In both parasite treatments, for an investment of 1, in the subgame following a

successful innovation each player’s continuation payoff is 6.8 if both of them play H for the

rest of the game. However, in the low-prize treatment a player’s instantaneous gain from

deviating to L is only 4, while in the high-prize treatment it is 8, so that cooperation is

possible only with a low prize.

Overall, in the low-prize game, all investment levels form part of an equilibrium; in the

high-prize game, all investment levels other than 1 form part of an equilibrium. From the

discussion above we have one clear prediction that can be tested :

• An investment of 1 is less likely in the parasite-high-prize treatment than in the

parasite-low-prize treatment (special case of Proposition 4)

We can also test the consistency of the pricing behavior with the mechanism we propose:23

• Following an investment of 1 by the innovator, the parasite playing L is more likely

in the parasite-high-prize treatment than in the parasite-low-prize treatment (special

case of Proposition 3)

• The probability of observing H,H increases with the initial investment of the innovator

Finally, we can shed light on equilibrium selection issues and show evidence on the

following questions:

• Is the zero investment degenerate equilibrium more common in the parasite treatments?

• Is there on average more or less investment with or without patents and within parasites

with high or low prize?

4.3 Experimental results

The 10 experimental sessions (3 of each parasite treatments and 2 of each patent treatment)

were run between March and May 2012 at Ecole Polytechnique in a dedicated experimental

lab. A specific software was designed to run the experiment to be able to rematch players

23These are not strictly speaking predictions, but are natural consequences of the model. For instance,
in the parasite-high-prize treatment, playing 1 is not an equilibrium, so interpreting what happens off the
equilibrium path is not unambiguous. However, we know that in the subgame following an innovation, the
parasite should play L
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while others were finishing their game.24 The participants were a mix of students and staff

at the university. A total of 132 people participated in the experiment playing a total of

1756 games. The average earnings of players was 17.8 euros. At the end of the game,

the participants were asked to fill in a survey that allowed us to control for gender and

whether the participants were students. In the survey, we also introduced questions about

individuals’ risk attitudes (Dohmen et al 2005). Thus, in some specifications we can also

control for subjects self-reported risk attitudes.25 In all the regression analysis that follow,

the standard errors are clustered at the session level (as in Dal Bo and Frechette 2011 for

instance), to control for possible session effects that would introduce correlation in errors.26

4.3.1 Patents vs parasites

As we previously discussed, comparing the level of investment in innovation with and without

legal protection based on real world data is hard for the simple reason that, since protection

regimes uniformly apply to all those in the same industries, counter-factuals do not typically

exist. Experiments creating artificial counter-factuals, are thus a valuable source of evidence

to shed light on this comparison. As we can see in Figure 1, innovators invest on average

very similar amounts in the patent and in the parasite treatments. The average investment is

in fact slightly higher in the absence of patents, but this difference is not significant (p-value

of 0.149 in a t-test and non significant coefficient in a regression controlling for individual

characteristics).

These results thus undermine the idea that patent protection is unavoidable to encourage

investments in innovation. This idea is often based on the presumption that, in the absence

of legal protection, players would revert to the degenerate equilibrium where parasites act

aggressively and the innovator thus refrains from investing. Table 4 reports the results of a

regression where we test the effect of being in a patent treatment on the probability that the

innovator invests zero. These results indicate that, contrary to the common wisdom, there

is no significant difference in the frequency of zero investment between patents and parasite

treatments. This evidence is in line with the motivation behind our theoretical model of

24The software was designed under a standard server/client architecture, the server uses’ socket protocol
to communicate with the clients. The server was implemented using the Adobe Flex technology and the
clients deployed under Adobe Air. The backend of the server rely on relational database server (MySQL)
for storing. Each “game” was considered as a thread, this method allowed us to resolve the main issue for
rematching clients dynamically and keeping alive simultaneously other instances in progress.

25Some participants did not fill in the survey which explains that regressions controlling for individual
characteristics will be run on fewer observations.

26We do not cluster at the individual level since the assumption in these type of environments is that
each game can be considered as an individual observation. Note, however, that the significance of the main
results is maintained if we do cluster at the individual level.
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investment in the presence of rational parasites. The next step of our analysis is to test the

main prediction of our theory.

4.3.2 Testing the central theoretical prediction

The main theoretical prediction is that we should observe innovators choosing a level of

investment equal to 1 less often in the high-prize parasite treatments than in the low-prize

parasite treatments. The theory does not, however, predict whether we should observe a

reversal to the degenerate equilibrium or to a higher level of investment. The experimental

evidence is then useful both to test the theoretical prediction and to shed light on equilibrium

selection.

Figure 2 clearly shows that the difference between the low-prize and high-prize treatments

is striking and goes in the direction suggested by the theory. Furthermore, Figure 3 suggests

that learning strengthens this result. In the left panel we report the proportion of ones in

the first game the players played and in the right the proportion in the later games. The

proportion goes up for the low-prize treatments, while it slightly decreases in the high prize

treatments. With learning players move closer to equilibrium behavior, although there is

always a non-negligible fraction that play non-equilibrium strategies.

We test the central prediction controlling for different factors. Table 5 reports the results

of a probit regression of the probability of an investment of one by the innovator. The prob-

ability of observing an investment of one in the low-prize-parasite treatment is significantly

higher than in the high prize treatments. This result holds even when we control for individ-

ual characteristics and risk attitudes. A potential worry is that this result is not driven by

our mechanism but by differences in the innovator’s perceptions of the two gambles. How-

ever, when the same comparison is run between the two patent treatments, the effect tends

to go in the other direction: Figure 4 shows that in the case of patents, an investment of

one is more likely in the high-prize treatments.27 Thus, if any behavioral mechanism not

considered by our theoretical framework was playing a role this would tend to go in the

opposite direction with respect to our findings.

It is clear that in the high prize treatment participants play 1 less often, but do they revert

to not investing (the degenerate equilibrium)? In Figure 5, we present the full distribution

of investment choices in the two parasite treatments. We see that there is both an increase

in the frequency of zero investment and in the frequency of the maximum investment level.

Importantly, average investment is 13% higher in the high-prize parasite treatment and this

difference is significant (p-value of 0.03 in a t-test). Taking a mean-preserving spread of the

distribution leads on average to more investment.

27A regression analysis confirms that the effect is significant.
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4.3.3 Pricing behavior

The results of the previous section provide strong support for the central prediction of the

theory. However to test further the coherence of our explanation, we examine in the current

section the pricing behavior of the innovator and the parasite whenever a prize is obtained.

We first focus on the pricing behavior in games where the innovator invested 1 token.

Figure 6 represents the distribution of outcomes in the prisoner’s dilemma keeping in each

game only the first round where a prize is obtained provided it exists (the plot averaging over

all rounds looks very similar). We clearly see that the outcome LL where both players price

low is much more likely in the high-prize treatment compared to the low-prize treatment as

the theory suggested: the temptation to deviate is much larger.

It is, of course, not easy to interpret pricing behavior following an investment that should

not occur in equilibrium. In particular, why would the innovator invest if he then expects

LL to be the most probable outcome? It therefore seems more natural to focus exclusively

on the behavior of the parasite following an investment of 1 by the innovator. The results

presented in Figure 7 are even more striking: the parasite is much more likely to choose L

in the high-prize treatment rather than the low prize treatments.28

The results presented in table 6 confirm the pattern observed in Figure 7. Even when

controlling for individual characteristics, there is a significantly lower chance that the parasite

plays L following an investment of 1 in the low-prize treatment.

A final test of coherence with the theory is to examine the pricing behavior by level

of investment of the innovator. The more the innovator invests, the higher the expected

continuation value in equilibrium if HH is played whenever a prize is obtained and thus the

higher the incentives to keep cooperating (Table 3 shows how much the incentives to deviate

decrease as the investment of the innovator increases). We thus plot in Figure 8 the pricing

behavior of the parasite in the high-prize parasite treatments, separately for investments of

1, 6 and 11. There is a clear rise in the proportions of H’s as the investment moves from 1

to 6, although no significant change as the investment goes from 6 to 11.

4.3.4 Discussion

Taken together, the results of the experiment provide evidence broadly coherent with our

theoretical model. We show that the innovators are indeed less likely to choose the investment

level of 1 in the high-prize parasite treatments and that if they do, parasites are more likely

to price low (that is choose the action L in the prisoner dilemma game). Furthermore, the

28For Figure 6 and 7 and table 6, we keep in each game only the first round where a prize is obtained
provided it exists.
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overall results provide evidence that investment does not necessarily fall in the absence of

a legal monopoly on the outcome of the investment. Indeed, on average investment in the

parasite and patent treatments are quite similar. Thus, the experiment provides evidence

that, at least in a controlled environment, a legal monopoly is not a necessary condition for

investment and helps to shed some light on the basic intuitions underlying our theoretical

model.

There are of course other theories that can explain why there might be similar levels

of investment with and without patents. The most obvious would appear to be a story of

reciprocity (e.g. Berg et al. 1995 and Fehr et al. 1997): If the innovator invests a lot, the

parasite returns the favor by pricing high. It is then rational for the innovator to invest in the

first place. However it is hard to see how such a theory would lead to a higher investment

level under parasites29 but more importantly it does not seem capable of explaining the

different investment choices between the low-prize and high-prize parasite treatments, which

are central to our argument. Finally the significantly lower probability that parasites choose

not to cooperate (play L) following an investment of 1 in the low-prize treatment with respect

to the high-prize treatment while consistent with our theoretical framework seems hard to

reconcile with a reciprocity explanation. Indeed, since both the motivation and the overall

expected stakes are comparable in the two treatments, we would not expect any difference

in the behavior of reciprocal players in this case.

5 Conclusion

We have shown that when interactions between investors and parasites are repeated over

time, positive investments can occur even in the absence of legal protection and, possibly

even at a faster rate. Our model dispenses with first-mover advantages, lags, product differ-

entiation, and other factors that may benefit the innovator or limit the scope for imitation.

These elements could be incorporated and would tend to reinforce our conclusions. We have

taken a three-pronged approach: i) empirical evidence (supplied by others), ii) a theoretical

framework and iii) experimental evidence.

We started the paper with the evidence provided by Greif (1993) that trade between

merchants and intermediaries located on the other side of the Mediterranean was rendered

possible by informal institutions. Our model suggests an informal arrangement complemen-

tary to the one developed by Greif, and suggests, moreover, that trade might have been even

more intense because of the absence of legal rules. Merchants needed to keep the promise

29One could always think of a story where the reciprocity occurs only for sufficiently high level of invest-
ments (strictly above 1) and could thus encourage higher investments by the innovator
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of the future high to keep intermediaries cooperative. Interestingly, the model suggests that

the merchants would not send bigger ships (which would leave the incentives to deviate

unchanged) but more robust ones having higher chances of reaching their final destination.
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6 Appendix

The rationing rule: In some period, let p1 be the lowest price charged by any firm and

M1 be the set of firms charging this price, p2 be the second lowest price charged by any firm

and M2 be the set of firms charging this price, etc...

If D (p1) ≤
∑

i∈M1
qit then each firm j ∈ M1 sells

qjt∑n+1
i=1 q

i
t

D (p1) and all other firms sell

nothing.

If D (p1) >
∑

i∈M1
qit, then firm j sells qjt . Define D2 (p2) = D (p2) −

∑
i∈M1

qit. If

D2 (p2) ≤
∑

i∈M2
qit then each firm j ∈ M2 sells

qjt∑n+1
i=1 q

i
t

D2 (pt). If D (p2) >
∑

i∈M1
qit, then

firm j sells qjt . Proceed inductively, first defining D3 (p3) and so forth...

Proof of Proposition 1. Without loss of generality, we can restrict our attention to

equilibria in which, along the equilibrium path, firms 2, ..., n+ 1 are treated identically (see

footnote ) and deviations are punished by a path where all firms get zero profits. A choice

of k by Firm 1 forms part of a constant-share equilibrium if and only if there exists an α

and function f : R→ [0, 1], such that for every π ∈ R+,

πf (π) ≤ α

n
f (π) π +

∞∑
t=1

δt
∫ ∞

0

α

n
f (π) πdF (π, k) , (7)

πf (π) ≤ (1− α) f (π) π +
∞∑
t=1

δt
∫ ∞

0

((1− α) f (π) πdF (π, k)) (8)

and

−k +
∞∑
t=1

δt
∫ ∞

0

αf (π) πdF (π, k) ≥ 0. (9)

Combining (7) and (8), we have that along an equilibrium path, for all π

πf (π) ≤ 1

n

∞∑
t=1

δt
(∫ ∞

0

f (π) πdF (π, k)

)
(10)

Since the right hand side of the above inequality is bounded by assumption, there is a

maximum single period amount that the firms will be able to split along any equilibrium

path. Denote this amount by π̃ (thus, π̃ = maxπf (π) such that (10) holds).

We can restrict ourselves to functions f with f (π) = π̃
π

for π > π̃, and f (π) = 1

for π ≤ π̃. To see this, suppose that we have an equilibrium where for some π > π̃,

f (π) < π̃
π

and/or for some π ≤ π̃, f (π) < 1. Define f ′ to be equal to f , except that

f ′ (π) = π̃
π

for all π > π̃ and f ′ = 1 for all π ≤ π̃,. Then πf ′ (π)
(
1− α

n

)
≤ π̃

(
1− α

n

)
≤∑∞

t=1 δ
t
∫∞

0
α
n
f (π) πdF (π, k) ≤

∑∞
t=1 δ

t
∫∞

0
α
n
f ′ (π) πdF (π, k), and similarly. πf ′ (π) (α) ≤
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∑∞
t=1 δ

t
∫∞

0
(1− α) f ′ (π) πdF (π, k). Also, −k +

∑∞
t=1 δ

t
∫∞

0
(1− α) f ′ (π)πdF (π, k) ≥ 0 −

k −
∑∞

t=0 δ
tc +

∑∞
t=1 δ

t
∫∞

0
(1− α) f (π) πdF (π, k) ≥ 0. Thus, f ′ (π) also yields an equilib-

rium.

Thus, a choice of k, forms part of an equilibrium if and only if there exists a π̃ and α.

Proof of Proposition 2. Since E (π|k) > 0, there is a π̄ such that
∫ π̄

0
πdF (π, k) > 0.

For an innovation worth π ≤ π̄, let p(π) be the monopoly price; for an innovation worth

π > π̄ let pπ̄ (π) < p(π) be a price that yields a total revenue of π̄.

We find a δ̄ > 0 such that the following strategies form a subgame perfect equilibrium

whenever δ ≥ δ̄.

• On the equilibrium path:

– Firm 1 chooses k̄ in period 0.

– In period t = 1, ..., if an innovation with monopoly profits π ≤ π̄ is obtained, each

firm chooses
(
p(π), 1

n+1
q(p (π))

)
. If an innovation with monopoly profits π > π̄ is

obtained, each firm chooses
(
pπ̄(π), 1

n+1
q(pπ̄ (π))

)
.

• If any firm has deviated from the above in some period s < t, then in period t all firms

choose (0, q (0)).

We now establish that the above strategies form a subgame perfect equilibrium. If any

firm has deviated in the past, the firms play a single-shot equilibrium thereafter, so we

restrict our attention to subgames in which no firm has previously deviated.

Following a successful innovation, a firm’s best deviation is to just undercut the other

firms and choose a quantity at least as large as demand. For the strategies to form an

equilibrium, the following must hold for all π ≤ π̄:

π ≤ 1

n+ 1
π +

δ

1− δ
1

n+ 1

(∫ π̄

0

πdF (π, k) + π̃ (1− F (π̃))

)
(11)

There is a δ1 < 1 such that (11) holds for all π ≤ π̄ and δ ≥ δ1.

Now consider Firm 1’s incentives to invest k in period 0. It’s best deviation in period

zero is not to invest. Thus for the strategies to form an equilibrium, firm 1’s expected date

zero profits must be positive:

−k +
δ

1− δ
1

n+ 1

(∫ π̄

0

πdF (π, k) + π̃ (1− F (π̃))

)
≥ 0 (12)

There is a δ2 such that (12) holds for all δ ≥ δ2.
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Choosing δ̄ = max (δ1, δ2) establishes the proposition.

Proof of Proposition 3. Conditions (1) and (2) can be rewritten as

π ≤ δ

1− δ
α

n− α

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
(13)

π ≤ δ

1− δ
1− α
α

(∫ π̃

0

πdF (π, k) + π̃ (1− F (π̃))

)
(14)

Integrating by parts, we can express these conditions as:

π ≤ δ

1− δ
α

n− α

[
π̃ −

∫ π̃

0

F (π, k)dπ

]
π ≤ δ

1− δ
1− α
α

[
π̃ −

∫ π̃

0

F (π, k)dπ

]
From the definition of second order stochastic dominance, if F second order stochastically

dominates G, then [
π̃ −

∫ π̃

0

G(π, k)dπ

]
≤
[
π̃ −

∫ π̃

0

F (π, k)dπ

]
so that the constraints (13) and (14) are harder to satisfy under G than under F . Similarly,

constraint (3) also becomes harder to satisfy.

Lemma 1 Suppose that when Firm 1 invests k∗, in a subgame following the realization of

an innovation, every equilibrium yields zero profits for all firms. Then the only possibility

for a non-degenerate equilibrium involves Firm 1 investing more than k∗.

Proof of Lemma 1. If every firm earns zero profits in any subgame following the

realization of an innovation, it must be that even if all firms equally share profits (α =

n/(n+ 1)), splitting positive profits is not viable. That is,

π >
1

n+ 1
π +

1

n+ 1

δ

1− δ
p (k∗) π

Only a choice of k > k∗ will increase the right hand side of the above inequality.

Lemma 2 Suppose that when Firm 1 invests k∗, in a subgame following the realization of

an innovation, there are equilibria in which firms earn positive profits, but none of these yield

Firm 1 sufficient expected profits at date zero to warrant the initial investment of k∗. Then

the only possibility for a non-degenerate equilibrium involves Firm 1 investing less than k∗.
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Proof of Lemma 2. Since there are continuation equilibria with positive profits, it

must be that an even split of the innovation is a continuation equilibrium, since that is the

easiest equilibrium to sustain in the subgame. Since Firm 1 does not invest k∗ for any of

these continuation equilibria, we have,

−k∗ +
1

n+ 1

δ

1− δ
p (k∗) π < 0. (15)

For any k, let (1− α (k)) be the smallest share for Firm 1 (if it exists) for which Firm 1

would be willing to invest k. That is,

k = (1− α (k))
δ

1− δ
p(k)π and

α (k) = 1− k
δ

1−δp(k)π

From (15), α (k∗) < n
n+1

. Note that for k > k∗, α (k) < α (k∗), since α (k) δ
1−δp (k) π =

δ
1−δp (k) π − k ≤ δ

1−δp (k∗) π − k∗ = α (k∗) δ
1−δp (k∗) π, where the inequality follows from the

fact that k∗ maximizes −k + δ
1−δp (k)π, and since p is increasing in k.

Since an investment of k∗ by Firm 1 does not form part of an equilibrium, it must be that

if Firms 2,...,n obtain a share α(k∗)
n

of an innovation they will have an incentive to deviate.

That is,

π >
α (k∗)

n
π +

α (k∗)

n

δ

1− δ
p (k∗) π

=
α (k∗)

n
π +

1

n

(
δ

1− δ
p (k∗) π − k∗

)
(16)

If a choice of k > k∗ by Firm 1 forms part of an equilibrium, then

π ≤ α (k)

n
π +

α (k)

n

δ

1− δ
p (k) π

=
α (k)

n
π +

1

n

(
δ

1− δ
p (k)π − k

)
≤ α (k)

n
π +

1

n

(
δ

1− δ
p (k∗) π − k∗

)
From (16) we have

α (k∗)

n
π +

1

n

(
δ

1− δ
p (k∗) π − k∗

)
< π ≤ α (k)

n
π +

1

n

(
δ

1− δ
p (k∗)π − k∗

)
⇒ α (k∗) < α (k) ,
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a contradiction. Thus, all non-degenerate equilibria (if they exist), involve a choice of k < k∗

by Firm 1.

Proof of Proposition 4. (i) Under the conditions of the proposition, we have,

π0

m
≤ 1

n+ 1

π0

m
+

1

n+ 1

δ

1− δ
mh(k∗)

π0

m
(17)

k∗ <
1

n+ 1

δ

1− δ
h(k∗)π0 (18)

when m = 1. Define m̂ as the value of m such that following an innovation, all players are

indifferent between colluding and deviating:

π0

m̂
=

1

n+ 1

π0

m̂
+

1

n+ 1

δ

1− δ
m̂h(k∗)

π0

m̂

⇔ n =
δ

1− δ
m̂h(k∗)

For m ≥ m̂, (17) holds so that Firm 1investing k∗ still forms part of an equilibrium.

If m < m̂, collusion is no longer possible, even in the most favorable situation of an

equal split of profits. From Lemma 1, the only possibility for a non-degenerate equilibrium

involves an investment greater than k∗. We now show that there are such equilibria.

Define k′ > k∗ by

k′ =
1

n+ 1

δ

1− δ
h(k′)π0

We have n = δ
1−δm̂h (k∗) < δ

1−δm̂h (k′) . Define m′ < m̂ by

n =
δ

1− δ
m′h (k′)

For all m′ ≤ m ≤ m∗ it is an equilibrium for Firm 1 to invest k and the firms to evenly split

the profits from any innovation for some k > k∗ (in particular for k = k′).

(ii) First note that k∗ maximizes −k + δ
1−δπ0h(k) and thus satisfies

h′ (k∗) =
1
δ

1−δπ0

(19)

By assumption, k∗ < 1
n+1

δ
1−δh(k∗)π0. Define H1 by H1+ k∗ = 1

n+1
δ

1−δh(k∗)π0. For H > H1,

an investment of k∗ is sustainable only if Firm 1 obtains a share greater than 1
n+1

of the

profits from an innovation.

For any (H, k), let (1− α (H, k)) be the smallest share for which Firm 1 is willing to
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invest k. That is,

H + k = (1− α (H, k))
δ

1− δ
h(k)π0

α (H, k) = 1− H + k
δ

1−δh(k)π0

(20)

Note that α is decreasing in H. We have α (H1, k
∗) = n

n+1
and α (H, k∗) < n

n+1
for H > H1.

For H > H1, an investment of k∗ by Firm 1 is sustainable if and only if, following an

innovation, Firms 2,...,n will accept a share α(H,k∗)
n

. That is, if and only if

π

m
≤ α (H, k∗)

n

π

m
+

δ

1− δ
α (H, k∗)

n
mh (k∗)

π

m

n ≤ α (H, k∗) +
δ

1− δ
α (H, k∗)mh (k∗) (21)

Given H and K, let

d (H, k) = α (H, k) +
δ

1− δ
α (H, k)mh (k) ,

so that (21) can be written as n ≤ d (H, k∗). By assumption, n < d (H1, k
∗).

Note that d is decreasing in H. Define H2 > H1 by n = d (H2, k
∗). For H ≤ H2 an

investment of k∗ by Firm 1 forms part of an equilibrium since n ≤ d (H, k∗). For H > H2,

an investment of k∗ by Firm 1 is not sustainable. By Lemma 2, the only possibility for a

non-degenerate equilibrium involves a smaller choice of k by Firm 1. We now show that a

choice of k < k∗ will be sustainable over some range.

We have

∂d (H2, k
∗)

∂k
=

∂α (H2, k
∗)

∂k
+

δ

1− δ
m

(
∂α (H2, k

∗)

∂k
h (k∗) + α (H2, k

∗)h′ (k∗)

)
=

∂α (H2, k
∗)

∂k
+

δ

1− δ
m

(
∂α (H2, k

∗)

∂k
h (k∗) + α (H2, k

∗)
1
δ

1−δπ0

)

Differentiating (20) yields

∂α

∂k
= − 1

δ
1−δπ0

(h (k)− h′ (k) (H + k))

h (k)2
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Thus,

∂d (H2, k
∗)

∂k
=

∂α (H2, k
∗)

∂k
− 1

π0

m
(h (k∗)− h′ (k∗) (H2 + k))

h (k∗)
+

1

π0

mα (H2, k
∗)

=
∂α (H2, k

∗)

∂k
< 0,

where the inequality follows from the fact that ∂α(H2,k∗)
∂k

has the same sign as−
(

δ
1−δπ0h (k∗)− (H2 − k∗)

)
,

and δ
1−δπ0h (k∗)− (H2 − k∗) > 0 as Firm 1 is willing to invest k∗ when H = H2.

Since ∂d(H2,k∗)
∂k

< 0, and all our functions are continuous, a choice of k below k∗ is

sustainable for some H > H2.
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Table 1: Investment options in high vs low prize treatments

Low-prize treatments High-prize treatments

Investment Prize Probability Prize Probability

0 8 0 16 0

1 8 0.3 16 0.15

6 8 0.4 16 0.2

11 8 0.5 16 0.25

Table 2: Prisoner’s dilemma between innovator and parasite

H L

H Π/2,Π/2 0,Π

L Π, 0 0, 0

Note: Π = 8 for the low-prize treatments and Π = 16 for the high-prize treatments

Table 3: Profits and deviation incentives in parasite treatments

Low-prize treatments High-prize treatments

Investment Expected Deviation Expected Deviation

profits of incentive profits of incentives

the innovator the innovator

1 10.8 -2.8 14.8 1.2

6 13.1 -5.1 17.1 -1.1

11 15.3 -7.3 19.3 -3.3

NOTE: Expected profits of innovator calculated under the assumption that (H,H) is played whenever

a prize is obtained. Deviation incentives is the difference between the prize (i.e deviation profits) and the

expected profits if (H,H) is played whenever a prize is obtained (i.e expected profits on equilibrium path). A

positive value for the deviation incentives means that level of investment cannot be part of an equilibrium.

29



Table 4: Probability of observing no investment by the innovator

(1) (2) (3)

Patent treatment .57 .52 .16

(.50) (.40) (.60)

Individual controls (except risk) no yes yes

All controls no no yes

Number of observations 1756 1702 1692

NOTE: Standard errors clustered at the session level in parentheses. ***Significant at the 1 percent

level, **Significant at the 5 percent level , *Significant at the 10 percent level

Table 5: Probability of observing investment of 1 by the innovator

(1) (2) (3)

Low prize treatment .37∗∗ .29∗∗ .37∗

(.15) (.13) (.21)

Individual controls (except risk) no yes yes

All controls no no yes

Number of observations 947 893 893

NOTE: Standard errors clustered at the session level in parentheses . ***Significant at the 1 percent

level, **Significant at the 5 percent level , *Significant at the 10 percent level
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Table 6: Probability of parasite playing L in games where innovator invested 1

(1) (2) (3)

Low prize treatment -.44 -.36 -.71∗∗

(.38) (.31) (.36)

Individual controls (except risk) no yes yes

All controls no no yes

Clustered standard errors no no no

Number of observations 183 171 167

NOTE: We keep only observations corresponding to the first time a prize is obtained in the game

(provided it exists). Standard errors clustered at the session level in parentheses. ***Significant at the 1

percent level, **Significant at the 5 percent level , *Significant at the 10 percent level
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Figure 1: Comparing investment levels
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Figure 2: Investment of one by treatment
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Figure 3: Investment of one: early vs later rounds
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Figure 4: Investment of one: patents vs parasites
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Figure 5: Investment choices by parasite treatment
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Figure 6: Pricing behavior following investment of 1
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Figure 7: Pricing behavior of parasite following investment of 1
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Figure 8: Pricing behavior by level of investment
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