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Abstract

Committee voting has mostly been investigated from the perspective of the stan-
dard Baron-Ferejohn model of bargaining over the division of a pie, in which bargain-
ing ends as soon as the committee reaches an agreement. In standing committees,
however, existing agreements can be amended. This paper studies an extension of
the Baron-Ferejohn framework to a model with an evolving default that reflects this
important feature of policymaking in standing committees: In each of an infinite num-
ber of periods, the ongoing default can be amended to a new policy (which in turn
determines the default for the next period). The model provides a number of quite
different predictions. In particular: (i) Substantial shares of the pie are wasted each
period and the size principle fails in some pure strategy Markov perfect equilibria of
non-unanimity games with patient enough players; and (ii) All Markov perfect equilib-
ria are Pareto inefficient when discount factors are heterogenous. However, there is a
unique equilibrium outcome in unanimity standing committee games, which coincides
with the unique equilibrium outcome of the corresponding Baron-Ferejohn framework.

JEL classification: C73, C78, D71, D72.

Keywords: Legislative bargaining, endogenous default, efficiency, pork barrel.

1 Introduction

In Baron and Ferejohn’s (1989) closed rule model, equally patient risk neutral players

bargain over division of a pie, earning nothing until agreement is reached. This renowned

game has a unique stationary equilibrium outcome, in which a minimal winning coalition
∗Address: School of Economics, Room B18, The Sir Clive Granger Building, University of Nottingham,

University Park, Nottingham NG7 2RD, United Kingdom. Email: vincent.anesi@nottingham.ac.uk.
†Address: School of Economics, Room B34, The Sir Clive Granger Building, University of Nottingham,

University Park, Nottingham NG7 2RD, United Kingdom. Email: daniel.seidmann@nottingham.ac.uk.
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agree to fully share the pie; and this agreement is reached immediately, so every equilibrium

is efficient. The closed rule game is naturally interpreted as a model of an ad hoc committee:

the game ends as soon as the committee reaches an agreement, which can therefore not

be renegotiated. This property differentiates ad hoc from standing committees, which can

amend existing agreements. In the simplest formulation, agreements reached by standing

committees remain in place until they are amended, yielding a bargaining game with an

endogenous default in which a pie is available for division each period. We study such

models in this paper: Each period begins with a default policy inherited from the previous

period and a player is randomly drawn to make a proposal which is then voted up or down

by the committee; if voted up, the proposal is implemented and becomes the new default;

if voted down, the ongoing default is implemented and remains in place until the next

period. This process continues ad infinitum. Costless renegotiation implicitly restricts

the interpretation of “policy.” This model applies naturally, for example, to Congressional

bargaining over policies like protection or tax exemptions.1

Analysis of standing committees raises various interesting questions, such as: (1) When

do (Markov perfect) equilibrium exist and, when they do, are equilibrium outcomes unique?

(2) Must the pie be divided between a minimal winning majority — as predicted by the

size principle — in every equilibrium? (3) Is the pie fully divided (that is, is the division of

the pie statically efficient) each period in every equilibrium? And (4) Are equilibria Pareto

efficient? Answers to these questions would also allow us to compare play in ad hoc and

in standing committees.

The literature on standing committees has posed the first two questions, but not ques-

tions (3) and (4). Our contribution is to bypass technical issues which have stymied

progress, and thereby to say much more about each of the four issues. Indeed, our model

generalizes Baron and Ferejohn (1989) in various other respects: we allow players to have

different discount factors, and any concave utility functions; and we consider any quota

(including majority and unanimity rules).2 Eraslan (2002) has already extended Baron and

Ferejohn’s (1989) results to closed rule, ad hoc committees with heterogeneous discount

factors and any quota.3

1Nelson (1989) argues that Congress treated protection as a purely distributive issue until the 1934

Reciprocal Trade Agreements Act.
2We also allow players to be selected to propose with different probabilities.
3Efficiency and the size principle hold when players have strictly concave preferences, but uniqueness

might fail.
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We provide the following answers to the four questions above:

(1) Equilibrium existence and multiplicity of equilibrium outcomes. We con-

struct pure strategy Markov perfect equilibria for any game with a non-unanimity quota

and patient enough players, and prove (again using constructive arguments) that una-

nimity games possess pure strategy equilibria, irrespective of patience. By contrast, we

have radically different results on multiplicity for games with and without a unanimity

quota. We start with the latter case. Take any point in the policy space at which at least

a minimal winning majority have a positive share of the pie. If players are sufficiently

patient then we can construct a pure strategy Markov perfect equilibrium in which that

policy is implemented in the first period and never amended: a property which we describe

as no-delay. Now consider games with a unanimity quota: Any such game has a unique

equilibrium outcome, which is no-delay, and in which the first offer is statically efficient.

In addition, the policies proposed by each player also coincide with the unique equilibrium

outcome in the equivalent model of an ad hoc committee.

The previous literature (which we will survey in the next section) has focused on ex-

istence of Markov perfect equilibria in bargaining games with an evolving default. Our

results demonstrate that existence is not a problem when players are patient enough.

(2) The size principle. The size principle has been central to the study of legislatures

since Riker (1962). The class of solutions which we construct for non-unanimity games

contains equilibria in which the pie is shared amongst more than a minimal winning coali-

tion. Our model therefore provides a new explanation for why majorities in legislatures

are typically supraminimal.

(3) Waste. Our results on the division of the pie again differ, depending on the quota.

We show that equilibrium agreements in games without a unanimity quota typically waste

some of the pie when all players are patient enough. Specifically, for every ε > 0, we can

construct an equilibrium in which a policy which wastes proportion 1 − ε of the pie is

agreed to in the first period and never amended. By contrast, none of the pie is wasted in

any equilibrium, irrespective of players’ patience, in games with a unanimity quota.

More strongly, players can waste any proportion of the pie in equilibria which fail the

size principle. Our model can therefore explain some common features of pork barrel

politics (cf. Evans (2004)).
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(4) Pareto inefficiency. If preferences are linear in share of the current pie (as in Baron

and Ferejohn (1989)) then, in the generic case where all players have different discount

factors, every equilibrium of a non-unanimity game is inefficient. On the other hand,

unanimity committees immediately reach an agreement which is never amended in every

equilibrium; and any equilibrium is inefficient if two or more players have different discount

factors. The intuition is that an efficient policy sequence should yield the most patient

[resp. impatient] players an increasing [resp. decreasing] share of the pie.

These results stand in sharp contrast to those obtained in the case of ad hoc committees

(i.e. Baron and Ferejohn (1989) and Eraslan (2002)), where equilibrium payoffs are unique,

only minimal winning coalitions form, none of the pie is wasted, and all equilibria are

efficient.

We relate our model and results to the literature in the next section. We present

our model in Section 3, and provide results on committees with a non-unanimity and a

unanimity quota respectively in Sections 4 and 5. Section 6 concludes. Most of the proofs

appear in the Appendix.

2 Related Literature

Baron and Ferejohn (1989) has spawned an enormous literature; we refer readers to Eraslan

and McLennan (2011) for a recent list of contributions. The literature on bargaining in

simple games with an endogenous default is much smaller, most likely for technical reasons:

in equilibrium, the proposals which would be accepted may vary discontinuously with

the default policy because of expectations about future play. The ensuing discontinuous

transition probabilities preclude the use of conventional fixed point arguments to establish

existence of even mixed strategy equilibria.

Kalandrakis (2004) studies majority rule games with three equally patient, risk neutral

players and a statically efficient initial default; Kalandrakis (2009) extends the model to

games with five or more players with concave preferences. These games have an equilibrium

in which the default immediately reaches an ergodic distribution in which each proposer

takes the entire pie; but players mix over extra-equilibrium proposals. By contrast, we

follow Baron and Ferejohn (1989) by supposing that the initial default is statically ineffi-

cient, and allowing players to propose policies which waste some of the pie. (We show that

this is possible in non-unanimity games.) In the equilibria which we construct, the default
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reaches a single policy (immediately).

Duggan and Kalandrakis (forthcoming) use a fixed point argument to establish exis-

tence of pure strategy equilibria for games in which preferences and the default are subject

to stochastic shocks.4 By contrast, we prove existence in unperturbed games (by and large)

using constructive arguments.

Kalandrakis’ (2004) and (2009) equilibria violate the size principle, in the sense that a

subminimal winning coalition shares the pie. (Some of) our constructed equilibria violate

the size principle, in the more conventional sense that a supraminimal winning coalition

shares the pie, as in the equilibria constructed by Bowen and Zahran (2009) and Richter

(2011):

Bowen and Zahran require preferences to be strictly concave and the initial default to

be statically efficient, and show that the size principle is violated when discount factors take

intermediate values and the initial default is not too inequitable. We also allow for (but do

not require) strictly concave preferences;5 but the size principle fails in our construction

when all players are patient enough.

Richter (2011) constructs an egalitarian equilibrium by allowing offers to waste some

of the pie. These offers are only made in order to deter deviations from equilibrium play,

and are therefore never observed on the path. We also follow Baron and Ferejohn (1989)

by allowing for such statically inefficient offers. However, in contrast to Richter, these

offers are made on the equilibrium path in (some of) our constructions. In other words,

we explain waste.

Baron (1991) argues that Congress often both wastes resources and splits the remain-

der among a supraminimal majority during distributive bargaining. Baron shows that

closed and open rule models based on Baron and Ferejohn (1989) can explain waste (aka

pork), but can only explain these violations of the size principle by appealing to a norm of

universalism. By contrast, equilibria in our model exhibit both features.

The literature on bargaining in games with an evolving default started with Baron

(1996), who provided a dynamic median voter theorem when the policy space is an interval.

Other examples of bargaining in a simple game include Baron and Herron (2003), Gomes

and Jehiel (2005), Bernheim et al (2006), Battaglini and Coate (2007), Anesi (2010),

Diermeier and Fong (2011, 2012), Zápal (2011a,b), Acemoglu et al (2012), Anesi and
4Their results apply to a larger class of stage games (which includes pie division).
5As Battaglini and Palfrey (forthcoming) note, their experimental evidence on such games suggests that

some subjects have strictly concave preferences.
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Seidmann (2012), Battaglini and Palfrey (2012), Battaglini et al (2012), Nunnari (2012),

and Bowen and Zahran (forthcoming).

Seidmann and Winter (1998) and Okada (2000), inter alia, study bargaining with an

evolving default in superadditive characteristic function games.6 Hyndman and Ray (2007)

prove that all (including history-dependent) equilibria of characteristic function games are

absorbing, and that they are asymptotically statically efficient if there is a finite number

of feasible policies. They also show by example that these results do not carry over to

games in partition function form. Now simple games are in characteristic function form if

and only if the quota is unanimity. We exploit their first result when proving that every

equilibrium of a unanimity game is no-delay; their second result also holds in our model

(without requiring finiteness). Furthermore, statically inefficient equilibria exist both in

our model with a non-unanimity quota and in Hyndman and Ray’s model with a partition

function form because each player’s continuation function fails a monotonicity condition.

However, Hyndman and Ray focus on asymptotic static efficiency, and assume a common

discount factor; we consider Pareto efficiency and, crucially for associated results, allow

discount factors to differ.

Finally, we turn to the no-delay property. Policy outcomes of our no-delay equilibria

can be interpreted as a special case of Acemoglu et al’s (2012) “dynamically stable states,”

which are defined as political states reached in a finite number of periods (and never

changed) in pure strategy Markov perfect equilibria of bargaining games with evolving

defaults and patient players. Hence, our results characterize and prove existence of a class

of dynamically stable states in voting situations where, in contrast to those studied in

Acemoglu et al (2012), the set of policies is infinite and policy preferences are not acyclic.

By definition, the default changes once in a no-delay equilibrium: policy is persistent.

This prediction is consistent with a widespread claim that agencies are never terminated.7

A related literature explains why statically inefficient policies may be persistent (so the

policy sequence is inefficient). However, the mechanisms in this literature rely on privately

incurred adjustment costs (Coate and Morris (1999)), incomplete information (e.g. Mitchell

and Moro (2006)) or the growing power of incumbent factions (Persico et al (2011)). By

contrast, no-delay equilibria are inefficient in our model because impatient players cannot
6Seidmann and Winter focus on equilibria in which the grand coalition forms after a number of steps.

While we cannot exclude delay with a non-unanimity quota, our constructions all involve no-delay equi-

libria.
7See Kaufman (1976) for the conventional claim, and Lewis (2002) for a dissenting view.

6



commit to decreasing shares of the pie.

3 Notation and Definitions

3.1 The Standing Committee Game

In each of an infinite number of discrete periods, indexed t = 1, 2, . . ., one unit of a

divisible resource — the “pie” — has to be allocated among the members of a committee

N ≡ {1, . . . , n}, n ≥ 2. Thus, the set of feasible policies is

X ≡

{
(x1, . . . , xn) ∈ [0, 1]n :

n∑
i=1

xi ≤ 1

}
.

We denote the policy implemented in period t, and therefore the default at the begin-

ning of period t+1, by xt =
(
xt1, . . . , x

t
n

)
. At the start of each period t, player i is selected

with probability pi ∈ (0, 1) to propose a policy in X. We say that a player who proposes

the existing default passes. All players then simultaneously vote to accept or to reject

the chosen proposal. The voting rule used in every period t is a quota q which satisfies

n/2 < q ≤ n. Specifically, if at least q players accept proposal y ∈ X then it is imple-

mented as the committee decision in period t and becomes the default next period (i.e.

xt = y); and if y secures less than q votes then the previous default, xt−1, is implemented

again and becomes the default in period t+ 1 (i.e. xt = xt−1). The default in period 1 is

x0 = (0, . . . , 0).8 We will refer to
(
xt
)∞
t=1

such that every xt is feasible as a policy sequence.

Once policy xt has been implemented, every player i receives an instantaneous payoff

(1− δi)ui
(
xti
)
, where ui is a strictly increasing, continuously differentiable concave util-

ity function, and δi ∈ (0, 1) is i’s discount factor.9 Thus, player i’s payoff from a policy

sequence
(
xt
)∞
t=1

is (1− δi)
∑∞

t=1 δ
t−1
i ui

(
xti
)
. We say that discount factors are heteroge-

neous if δi ̸= δj for some pair of players i and j; and that discount factors are strictly

heterogeneous if δi ̸= δj for every pair of players i and j.

The assumptions above define a dynamic game, which we will refer to as a standing

committee game. Our main purpose is to analyze the equilibria of this game. However,

as noted in the Introduction, we want to assess the implications of an evolving default.

Accordingly, we will refer below to play in a variant of the standing committee game:
8None of our results depend on which policy in X is the (exogenous) initial default.
9If players are myopic then the non-unanimity [resp.unanimity] version of our model has a unique

equilibrium in which each [resp. the first] proposer successfully claims the entire pie.
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the ad hoc committee game, in which the bargaining process stops as soon as a proposal

is accepted and implemented. This game is equivalent to a generalization of Baron and

Ferejohn’s (1989) seminal model, allowing for any quota, heterogeneous discount factors

and recognition probabilities, and concave preferences over the pie.

3.2 Equilibrium and Efficiency

Equilibrium concept. We follow the standard approach of concentrating on stage-

undominated stationary Markov perfect equilibria, i.e., subgame perfect equilibria with

the following two properties: (i) all players use stationary Markov strategies; and (ii) at

any voting stage, no player uses a weakly dominated strategy. The first condition means

that, in proposal stages, players’ choices (of probability distributions over X) only depend

on the ongoing default; in voting stages, players’ choices (of probability distributions over

{accept , reject}) only depend on the current default and the proposal just made. The

second condition excludes strategy combinations in which players all vote one way, and are

indifferent when q < n because they are nonpivotal. Henceforth, we leave it as understood

that any reference to “equilibria” is to stage-undominated stationary Markov perfect equi-

libria. We will be particularly interested in pure strategy equilibria, i.e. those with the

property that every player’s choice is deterministic after every history.

Absorbing points and no-delay strategies. Every stationary Markov strategy σ (in

conjunction with recognition probabilities) generates a stationary transition function P σ,

where P σ(x, Y ) is the probability (given σ) that the committee chooses a policy in Y in

the next period, given that policy x is implemented in the current period. Thus, for all

i ∈ N and all x ∈ X, player i’s continuation value from implementing x in the current

period is given by

V σ
i (x) = (1− δi)ui (xi) + δi

∫
V σ
i (y)P σ(x, dy) .

We say that x ∈ X is an absorbing point of σ if and only if P σ (x, {x}) = 1, and denote by

A(σ) ≡ {x ∈ X : P σ (x, {x}) = 1}

the set of absorbing points of σ. We will say that σ is no-delay if and only if: (i) A(σ) ̸= ∅;
and (ii) P σ (x,A(σ)) = 1 for all x ∈ X. In words, a strategy profile is no-delay if the

committee implements an absorbing point at any default.
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(In)efficiency. It is instructive to distinguish between two notions of inefficiency. First,

policy x ∈ X is statically inefficient if
∑

i∈N xi < 1; we will refer to 1−
∑

i∈N xi as waste.10

Second, σ is Pareto inefficient if the vector
(
V σ
1

(
x0
)
, . . . , V σ

n

(
x0
))

is Pareto dominated

by the infinite-horizon payoff arising from some (possibly stochastic) policy sequence in

X. Evidently, every equilibrium inducing a policy sequence which contains a statically

inefficient policy is Pareto inefficient, but the converse is false.

4 Nonunanimity Committees

Let W be the collection of winning coalitions: W ≡ {C ⊆ N : |S| ≥ q}. Throughout this

section, we assume that q < n: agreement requires less than unanimous consent.

4.1 Simple Solutions

We will construct a class of pure strategy no-delay equilibria, in which each player j ∈ N

can only be offered two different shares of the pie: a “high” offer xj > 0 and a “low” offer

yj < xj . In every period and for any ongoing default, each proposer i (conditional on her

being recognized to make an offer) implicitly selects a winning coalition Ci ∋ i by making

high offers to the members of Ci and low offers to the members of N \ Ci. If each player

receives a low offer from at least one proposer, then we refer to the set of such proposals

(one for each player) as a simple solution. Formally:

Definition 1. Let C ≡ {Ci}i∈N ⊆ W be a class of coalitions such that, for each i ∈ N ,

i ∈ Ci and i /∈ Cj for some j ∈ N \ {i}. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two

vectors in [0, 1]n satisfying xi > yi and∑
j∈Ci

xj +
∑
j /∈Ci

yj ≤ 1 ,

for all i ∈ N . The simple solution induced by (C, x, y) is the set of policies S ≡
{
xCi
}
i∈N ,

where

xCi
j ≡

{
xj if j ∈ Ci ,

yj if j /∈ Ci ,

for all i, j ∈ N .
10Recall that ui(.) is strictly increasing in xi.
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Before we turn our attention to the construction of equilibria themselves, a few remarks

are in order about simple solutions. First, a simple solution exists if and only if q < n:

if q < n then the main simple solution, in which the pie is divided equally among every

minimal winning coalition, is a notable example of a simple solution (cf. Wilson (1971)); if

q = n then each player must be included in the unique winning coalition N and, therefore,

there is no simple solution. If q < n then any policy which assigns a positive share to at

least q players is part of some simple solution. To see this, take an arbitrary policy z ∈ X

such that |{i : zi > 0}| ≥ q. For expositional convenience, we order the players in N in

such a way that zi ≥ zi+1 for each i = 1, . . . , n−1 (thus ensuring that zi > 0 for all i ≤ q).

Consider the simple solution induced by (C, x, y), where

xi =

{
zi if i ≤ q

zi +
ε

n−q if i > q
, yi =

{
zi − ε if i ≤ q

zi if i > q
, ε > 0 arbitrarily small,

and Ci is the coalition that includes i and the next q − 1 players following the order

1, 2, . . . , n−1, n, 1, 2, . . . , q−1. It is readily checked that (C, x, y) satisfies all the conditions

of Definition 1 (in particular yi ≥ 0 for all i ∈ N), and that xC1 = z.

Second, the definition of the class C of coalitions does not require all of them to be

distinct; but it is easy to confirm that C must contain at least n/(n− q) distinct coalitions.

Third, the policies in a simple solution may all assign a positive share to a supraminimal

coalition, and might all involve waste. Fourth, policies which assign a positive share to

fewer than a minimal winning coalition cannot be included in a simple solution. Such

policies include the initial default and the vertices of the simplex.

4.2 Preliminary Intuitions

The following example illustrates Definition 1, and provides an intuitive presentation of

some key mechanisms behind our equilibrium construction.

Example 1. Let n = 3, q = 2, pi = 1/3, δi = δ and ui(x) = xi for all i ∈ N .11 Take, for

example, the simple solution S = {(1/3, 1/3, 1/6), (1/6, 1/3, 1/3), (1/3, 1/6, 1/3)} — that

is, C1 = {1, 2}, C2 = {2, 3}, C3 = {1, 3} and xj = 1/3, yj = 1/6 for every player j = 1, 2, 3.

If δ ≥ 12/13 then the following strategy profile forms a pure strategy, no-delay equilibrium

whose set of absorbing points is S:
11These are precisely the assumptions made by Kalandrakis (2004). In contrast to that paper, however,

we require the initial default to be (0, . . . , 0), and allow for policies which do not exhaust the pie.
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• Player i always offers 1/3 to the players in Ci and 1/6 to the player outside Ci if the

ongoing default does not belong to S, and passes otherwise;

• Player i accepts proposal z when the ongoing default is w if and only if one of

the following conditions holds: (i) w ∈ S and wi = 1/6; (ii) w /∈ S, z ∈ S, and

zi ≥ (1− δ)wi + (5δ/18); or (iii) w, z /∈ S and zi ≥ wi.

A formal proof of this statement is obtained as a special case of Theorem 1. The intuition

is as follows. It is readily checked that this (pure) strategy profile is no-delay and that S is

the set of absorbing points: each policy xCi in S is proposed by player i with probability

1/3, accepted by the two members of majority coalition Ci, and never amended.

To see why this is an equilibrium, observe first that each (patient) player i = 1, 2, 3

can only end up in two possible states in the long-run: a “good state” in which she receives

1/3 in all periods, and a “bad state” in which she receives 1/6 in all periods. Indeed,

any ongoing default w is either an absorbing point itself or will lead immediately to some

absorbing point xCj ∈ S, with x
Cj

i ∈ {1/6, 1/3}. In the former case, player i’s expected

payoff is wi = 1/3 if i ∈ Cj , and wi = 1/6 otherwise. In the latter case, i receives wi

in the current period and 2/3 × 1/3 + 1/3 × 1/6 = 5/18 in the next period (i ∈ Cj with

probability 2/3). Her expected payoff is therefore (1 − δ)wi + (5δ/18), which is less than

1/3 for all wi ∈ (0, 1) (recall that δ ≥ 12/13).

Thus, every player i seeks to maximize (resp. minimize) the probability of ending up in

a good (resp. bad) state. In voting stages, this includes rejecting any proposal to change

a default policy xCj with Cj ∋ i to another policy y (even if y Pareto dominates xCi):

being in a good state, i would not run the risk of ending up in a bad state. It also includes

accepting any proposal xCj with Cj ∋ i when the ongoing default is not already a good

state for i. As the Cj ’s are winning coalitions, these observations imply that any attempt

to change a default in S would be unsuccessful, and that any proposal to change a default

outside S to a policy in S would be successful. In proposal stages, it is therefore optimal

for player i to propose xCi if the ongoing default is not an absorbing point, and to pass

otherwise.

�

This example illustrates why our results are radically different from those obtained

in the standard ad hoc committee game (Baron and Ferejohn (1989)). In particular, it

explains why shares of the pie can be perpetually wasted in equilibrium: any deviation to
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proposing a Pareto-superior policy would be rejected, as policy would revert to one of the

statically inefficient absorbing points. It also shows that the pie can be shared amongst

more than a minimal winning coalition in equilibrium.

4.3 Results

Our first result generalizes the argument above to any quota, any concave utility functions,

and any simple solution. We describe a pure strategy no-delay equilibrium in which each

policy in a simple solution is proposed by some player, and no other policy is proposed as

a simple equilibrium.

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists δ̄ ∈ (0, 1)

such that the following is true whenever mini∈N δi ≥ δ̄: There exists a pure-strategy no-

delay equilibrium whose set of absorbing points is S.

Theorem 1 has several interesting implications:

Multiplicity of equilibrium outcomes. We noted above that any policy (say, z) which

assigns a positive share to q or more players is part of a simple solution. Theorem 1 therefore

implies that z is an absorbing point of an equilibrium of any game with q < n and patient

enough players. In that equilibrium, player 1 proposes z which is accepted by all members

of coalition C1 = {1, . . . , q} ∈ W, and never amended.

This argument does not apply to policies which assign a positive share to fewer than q

players (including the initial default), and can therefore not be part of a simple solution.

Policies which assign a zero share to some winning coalition cannot be absorbing points

because every member of such a coalition could profitably deviate as a proposer.12

Minimal winning coalitions. The Baron-Ferejohn model predicts that only minimal

winning coalitions share the dollar in equilibrium. Theorem 1 immediately implies that

this property, often referred to as the size principle, may fail in our model with an evolving

default: As mentioned earlier, policies in a simple solution may all assign a positive share

to a supraminimal coalition.

Waste. Another important implication of Theorem 1 is that endogeneity of the de-

fault may create substantial (static) inefficiencies in equilibrium. For any ε ∈ (0, 1),
12As Kalandrakis (2004, 2010) demonstrates, such policies could nevertheless be part of an ergodic set.
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let Xε be the set of policies such that the committee “wastes” more than 1 − ε: Xε ≡{
x ∈ X :

∑
i∈N xi < ε

}
. It is easy to find simple solutions that are subsets of Xε. For

instance, take the simple solution induced by (C, x, y) where, for each i ∈ N , xi = ε/2q,

yi = 0, and Ci is the coalition that includes i and the next q−1 players following the order

1, 2, . . . , n − 1, n, 1, 2, . . . , q − 1. Theorem 1 implies that any non-unanimity game with

patient enough players has a pure-strategy no-delay equilibrium whose absorbing points

all belong to Xε: the committee wastes at least 1− ε in every period along the equilibrium

path. This again stands in sharp contrast to the stationary equilibria of the Baron-Ferejohn

model, in which waste never occurs.

Agreements may in fact be even worse relative to the initial default than our presen-

tation has hitherto suggested. Specifically, the proof of Theorem 1 does not rely on our

supposition that x0 = (0, . . . , 0); so we can construct simple equilibria in which every

absorbing policy strictly Pareto-dominates the initial default (by appropriately selecting

x0).13

Pork barrel politics. We have noted that equilibrium agreements may waste some of the

pie and that the size principle may fail. Theorem 1 says something stronger: that patient

players may waste some of the pie (pork, in Baron’s terms) and distribute the remainder

among a supra-majority of players. According to Schattschneider (1935), this combination

of properties characterized US trade policy before 1934. Indeed, Baron (1991) claims that

legislation on distributive issues often exhibits this combination.14 He also argues that

models of ad hoc committees can explain pork, but not violations of the size principle.

By contrast, Theorem 1 implies that equilibrium agreements in a standing committee may

satisfy both properties without appealing to a norm of universalism.

We record the observations above as

Corollary 1. Suppose that q < n. For each of the following statements, there exists

δ̄ ∈ (0, 1) such that this statement is true whenever mini∈N δi ≥ δ̄:

(i) There exist multiple pure-strategy no-delay equilibria;
13This property is stronger than a related result in Bernheim et al’s (2006) and Anesi and Seidmann’s

(2012) models of bargaining with an evolving default: that the equilibrium agreement is worse than x0 for

some winning coalition.
14Evans (2004) documents the failure of the size principle, and argues that Congress may often pass

inefficient public good projects.
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(ii) Any policy which assigns a positive share to q or more players is an absorbing point

in some pure-strategy no-delay equilibrium;

(iii) There are equilibria which fail the size principle;

(iv) For every ε ∈ (0, 1), there is a pure-strategy equilibrium σ such that P σ (x,Xε) = 1

for all x ∈ X;

(v) There are no-delay equilibria in which the agreement wastes some of the pie and

fails the size principle.

Corollary 1(ii) implies that some simple equilibria are statically efficient. However,

wasting some of the pie is not the only possible kind of inefficiency in dynamic models.

Our next result asserts that, if all players have linear preferences (ui (xi) = xi) and dis-

count factors are strictly heterogeneous then all equilibria of a game with a non-unanimity

quota (including those which are not simple) are Pareto inefficient. (Players have linear

preferences in Baron and Ferejohn (1989), and much of the ensuing literature.)

Theorem 2. Let q < n. If ui (xi) = xi for all i ∈ N and δi ̸= δj for all i, j ∈ N then all

equilibria are Pareto inefficient.

The argument for Theorem 2 is easiest to see when the equilibria are no-delay (like

simple equilibria). As discount factors are strictly heterogeneous, efficiency requires front

loading the shares of less patient players, and eventually assigns the entire pie to the most

patient player. This is impossible in equilibrium. We conjecture that Proposition 1 holds

whenever preferences are concave. However, to the best of our knowledge, characterization

of the set of efficient policy sequences in such cases remains an open question.

In contrast to Theorem 1, the premise of Theorem 2 does not require that players

be patient enough. It only requires strict heterogeneity. It is easy to confirm that the

argument works as long as enough players have different discount factors.

The no-delay property of simple equilibria provides a possible explanation for why poli-

cies, such as protection, are persistent (cf. Ray and Marvel (1984) and Baldwin (1985)).15

Theorem 2 implies that a persistent policy is inefficient when discount factors are strictly

heterogeneous, even if the policy is statically efficient.
15Indeed, Brainard and Verdier (1997) describe persistent protection as “one of the central stylized facts

in trade” (p222).
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5 Unanimity Committees

This section examines equilibria of standing committee games in which agreement requires

unanimous consent: that is, q = n.

5.1 Preliminary Example

As in the previous section, we begin with a simple example that will provide some intuition

for the general results that follow.

Example 1 Continued. Consider a variant on Example 1 (of Section 4.2) in which the

default can only be changed if all three players accept a proposal: that is, q = n = 3.

The other primitives of the example remain the same: pi = 1/3, δi = δ and ui(x) = xi

for all i ∈ N . We will construct a no-delay equilibrium σ in which, at any default x ∈ X,

the selected proposer (say i) successfully offers the committee a policy x + si(x) ∈ ∆n−1.

We can think of proposer i offering to share the amount of pie not distributed yet — i.e.

1− (x1 + x2 + x3) — with the other players, with sij(x) being the (extra) share offered by

proposer i to player j.16 In such a situation, proposer i’s optimal offer to player j, xj+sij(x),

must leave the latter indifferent between accepting and rejecting. If j rejected i’s offer,

she would receive her payoff from the ongoing default in the current period, (1− δ)xj , and

would then receive offer xj + skj (x) from each proposer k = 1, 2, 3 with probability 1/3 in

the next period. The following condition must therefore hold:

xj + sij(x) = (1− δ)xj + δ

[
xj +

s1j (x) + s2j (x) + s3j (x)

3

]

or, equivalently

sij(x) =
δ

3

[
s1j (x) + s2j (x) + s3j (x)

]
(1)

for each i and j ̸= i. Given the shares of the pie offered to the other committee members,

proposer i receives the residual:

xi + sii(x) = 1−
3∑

j=1

[
xj + sij(x)

]
. (2)

16Hence, all proposers pass when the ongoing default is already in the unit simplex: si(x) = (0, 0, 0) for

all i = 1, 2, 3 whenever x ∈ ∆2.
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Combining (1) and (2), we obtain the policy x+si(x) (absorbing point) successfully offered

by each player i at any default x ∈ X:

xi + sii(x) = xi +
3− 2δ

3

1−
3∑

j=1

xj

 ,

xj + sij(x) = xj +
δ

3

1−
3∑

j=1

xj

 , ∀j ̸= i .

In particular, each player expects to earn 1/3 in the game itself: V σ
i

(
x0
)
= 1/3.

�

Its simplicity notwithstanding, there are two noteworthy features of this example. First,

the set of absorbing points of the no-delay equilibrium σ coincides with the unit simplex:

xj + sij(x) ∈ ∆2 for all x ∈ X and all i, j ∈ N . Second, the unique equilibrium payoff

coincides with that of the analogous ad hoc committee game with a unanimity quota. As

the rest of this section will demonstrate, these properties are not coincidental.

5.2 Positive Results

Our first result asserts existence of a pure strategy no-delay equilibrium in which resources

are never wasted. Theorem 3 differs from Theorem 1 (our analogous result for q < n) in

two main respects. First, we no longer require that players be patient enough. Second,

Theorem 3 asserts that the policies reached from any default (including the initial default)

are statically efficient.

Theorem 3. If q = n then: (i) every equilibrium σ is a pure strategy no-delay equilibrium

with A(σ) = ∆n−1; and (ii) such an equilibrium exists.

Thus, under unanimity rule, a standing committee selects an absorbing point in the

simplex immediately at any ongoing default. In contrast to non-unanimity committees,

therefore, waste never occurs in an equilibrium of unanimity committee games.

Our construction (using simple solutions) in the proof of Theorem 1 relied on the possi-

bility that deviation could be punished by changing the default (with positive probability)

without the deviator’s assent. By contrast, such punishments could only be implemented

with the deviator’s assent in unanimity games. Indeed, stage payoffs must satisfy a mono-

tonicity condition in such games: in any equilibrium σ, any player i’s continuation value
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V σ
i (x) from a given default x must be at least the net present value ui(x) of always imple-

menting her stage payoff at that default. This monotonicity condition allows us to exploit

Hyndman and Ray (2007) Proposition 1, which implies (in our model) that the equilibrium

default converges almost surely.

We prove Theorem 3(ii) using a construction which generalizes that employed in Ex-

ample 1 above: A fixed point point argument is used to show that there are proposals for

each player which move the default into the simplex and make every respondent indifferent

between accepting and rejecting, given that defaults in the simplex would not be amended;

and that no player can profitably deviate from proposing such policies or accepting such

an offer.

Theorem 3 establishes that the unanimity game has and only has no-delay, statically

efficient pure strategy equilibria. These properties also hold for an ad hoc, unanimity

game (Banks and Duggan (2000, 2006)). Our next result strengthens the analog between

equilibrium play in ad hoc and standing committees with a unanimity quota.

Theorem 4. If q = n then there is a unique equilibrium payoff, which coincides with the

(stationary subgame perfect) equilibrium payoff of the ad hoc committee game.

The proof of this theorem establishes that pure-strategy equilibrium outcomes in the

two games coincide. The result then follows from Merlo and Wilson (1995) Theorem 2,

which shows that the ad hoc committee game has a unique equilibrium payoff when q = n.

In the Introduction, we asked how play in ad hoc and standing committees differs. Our

results in the last section entail a significant contrast across equilibrium outcomes in the

two games when q < n. Theorem 4 implies that this contrast does not carry over to games

with a unanimity quota.

5.3 Pareto efficiency

Theorem 2 states that every equilibrium of a non-unanimity game with linear preferences is

inefficient if discount factors are strictly heterogeneous. Pareto efficiency then requires that

the most patient player eventually gets the entire pie: which is impossible in equilibrium.

In addition, Corollary 1(ii) states that there are no-delay, statically inefficient equilibria.

If q = n then waste is impossible in equilibrium (by Theorem 3). However, the inefficiency

result carries over:

Theorem 5. If q = n and δi ̸= δj, for some i, j ∈ N , then any equilibrium is Pareto

inefficient.
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In contrast to Theorem 2, the premise of Theorem 5 does not require linear preferences,

and weakens strict heterogeneity to heterogeneity. We obtain this stronger result because

the equilibrium of a unanimity game is no-delay (Theorem 3). This extra structure allows

us to prove inefficiency by constructing a Pareto-improving policy sequence.

6 Concluding Remarks

This paper has identified a class of pure strategy (stationary Markov perfect) equilibria

for pie-division bargaining games with an evolving default, which supplements existing

constructions. This has allowed us to provide a number of predictions about decision

making in standing committees, which differ from those of ad hoc committee games (in

the tradition of Baron and Ferejohn (1989)) exactly when the quota is less than unanimity.

Some notable differences are:

(i) Substantial shares of the pie can be indefinitely wasted and the size principle may

fail in non-unanimity standing committees, whereas waste never occurs and only minimal

winning coalitions form in ad hoc committees. Thus, while models of ad hoc committees can

explain pork but not violations of the size principle, agreements in a standing committee

may possess both properties.

(ii) Equilibrium play in the standing committee game is Pareto inefficient when discount

factors are heterogeneous; whereas it is well known that equilibrium play is efficient in the

Baron-Ferejohn (1989) model, where play ends as soon as the committee agrees. So far, we

have interpreted the latter framework as a model of an ad hoc committee, in which the pie is

divided once. In light of the efficiency results, it is instructive to reinterpret it as a model

in which a proposal represents a policy sequence: that is, how the pie is to be divided

thereafter. On this interpretation, the key difference from our model is that a Baron-

Ferejohn committee cannot renegotiate an agreement. Given this commitment capacity,

we would expect players to propose Pareto efficient policy sequences in any equilibrium.

Viewed in this light, our model demonstrates that equilibrium play in a standing committee

is generically inefficient because players cannot commit not to renegotiate the existing

agreement.

In addition, the identified equilibria to the standing committee game have a no-delay

property: the first policy proposal is accepted and remains in place in all future peri-

ods. Our results thus contribute to the political-economy literature on the persistence of

inefficient policies.
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Banks and Duggan (2000, 2006) have generalized the standard model of bargaining in ad

hoc committees to include any convex set of policies as well as purely distributional policies,

and established existence of a (mixed-strategy) stationary subgame perfect equilibrium.

Before concluding, a similar extension of our model of bargaining in standing committees

to more general policy spaces is worth discussing.

Our positive results for non-unanimity games relied on the existence of simple solutions.

Though the definition of a simple solution needs to be extended to this more general setting,

the logic behind this extension remains the same as for Definition 1. Each player i can be

in two possible states: a “good state,” in which she has a high utility ui, or a “bad state,” in

which she has a low utility vi. Each proposer i selects a policy xCi which gives all members

of winning coalition Ci their high utility, and gives the other players their low utility. Put

differently, each proposer i selects the coalition Ci of players who will be in a good state.

Figure 1: Simple Solution in the Spatial Model

Figure 1 provides an example of a simple solution in the standard spatial model: n = 3;

q = 2; X is a nonempty, compact and convex subset of R2; and ui(x) = −∥x− x̂i∥ for all

x ∈ X and all i ∈ N , where x̂i ∈ X stands for the ideal policy of player i. The set of policies

S =
{
xC1 , xC2 , xC3

}
constitutes a simple solution and, therefore, the set of absorbing
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points of some pure-strategy no-delay equilibrium whenever players are sufficiently patient.

(The arguments used to prove Theorem 1 still apply.) This equilibrium is both statically

and Pareto inefficient: all the policies in S lie outside the static Pareto set (the grey

triangle in Figure 1) and all players would be strictly better off if the expected policy∑
i pix

Ci were agreed immediately and never amended. This is in accord with our findings

for the distributive setting: The non-unanimity standing committee game (extended to

a nonempty, compact policy set in Rk) possesses a pure-strategy no-delay equilibrium

whenever a simple solution exists and players are patient enough. This equilibrium may

be statically and/or Pareto inefficient.

Simple solutions can again only exist if q < n. Pie-splitting problems possess a main

simple solution; but this is only known to exist for strong simple symmetric games in

characteristic function form with transferable utility, and remains an open question for

more general simple games.17 Indeed, no simple solution can exist when X is a compact

interval on the real line, as the median voter cannot be excluded from any winning coalition.

If players are patient enough then both ad hoc and standing committees reach policies close

to the median voter’s ideal policy in no-delay equilibria (cf. Baron (1996) and Banks and

Duggan (2006))).

We now turn to unanimity games. We showed in the last section that, in distributive

settings, the sets of policies which can be implemented in ad hoc and standing committees

coincide. Indeed, a brief inspection of the proof of Theorem 4 reveals that it does not

rely on the restriction to pie-division problems. Hence, when q = n, the equilibrium

outcomes of the extended standing committee game are also (stationary subgame perfect)

equilibrium outcomes of the related ad hoc committee game. Whether the converse is

also true, however, remains an open question. Indeed, the monotonicity condition used

to establish Theorem 4 (cf. Lemma 1(i) in the Appendix) still holds but is insufficient to

prove that optimal proposals in the standing committee game are also optimal in the ad

hoc committee game (given the same voting behavior).

Appendix

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists δ̄ ∈ (0, 1)

such that the following is true whenever mini∈N δi ≥ δ̄: There exists a pure-strategy no-

delay equilibrium whose set of absorbing points is S.
17We refer the reader to Ordeshook (1986, Chapter 9) for an in-depth discussion.
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Proof: Let {C1, . . . , Cn} ⊆ W and (x1, . . . , xn) , (y1, . . . , yn) ∈ [0, 1]n satisfy the condi-

tions in Definition 1, and let S ≡
{
xCi
}

be the simple solution induced by
(
{Ci}i∈N , x, y

)
.

Our goal is to construct a pure-strategy stationary Markov strategy σ such that A(σ) = S,

and then to show that σ is a no-delay subgame perfect equilibrium when mini∈N δi exceeds

some threshold δ̄ ∈ (0, 1).

We begin by defining δ̄. Let pmin be the minimal probability of recognition among the

members of the committee: pmin ≡ mini∈N pi. For each player i ∈ N , define the threshold

δ̄i as

δ̄i ≡ max

{
ui(1)− ui (xi)

ui(1)− pminui (yi)− (1− pmin)ui (xi)
,

ui (yi)− ui(0)

pminui (xi) + (1− pmin)ui (yi)− ui(0)

}
∈ (0, 1) .

The threshold δ̄ is defined as δ̄ ≡ maxi∈N δ̄i.

We henceforth assume that mini inN δi ≥ δ̄.

We now turn to the construction of strategy profile σ = (σ1, . . . , σn). For each i ∈ N ,

define the function ϕi : X → S as follows: (1) if w ∈ S then ϕi(w) = w; (2) if x /∈ S then

ϕi(w) ≡
(
ϕi
1(w), . . . , ϕ

i
n(w)

)
where ϕi

j(w) = xCi
j for all j ∈ N .

Equipped with functions
(
ϕi
)
i∈N , we are now in a position to define σ. For each i ∈ N ,

σi prescribes the following behavior to player i:

(a) In the proposal stage of any period t with ongoing default xt−1 = w, i’s proposal

(conditional on i being selected to make a proposal) is ϕi(w);18

(b) In the voting stage of any period t with ongoing default xt−1 = w, player i accepts

proposal z ∈ X \ {w} if and only if: either (a) w ∈ S and wi = yi; or (b) w /∈ S and

(1− δi)ui (zi) + δi
∑
j∈N

pjui

(
ϕj
i (z)

)
≥ (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
.

Observe that σ is a pure strategy stationary Markov strategy profile. We will now

prove that σ is a no-delay, stage-undominated subgame perfect equilibrium in a number of

easy-to-prove steps.

Claim 1: The collection of functions
(
ϕi
)
i∈N satisfies the following inequality for all

i ∈ N and w /∈ S:

(1− δi)ui (wi) + δi
∑
j∈N

pjui

(
ϕj
i (w)

)
≤ ui (xi) .

18Recall that proposing the default w is interpreted as passing.
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Proof: Consider any player i ∈ N and any policy x /∈ S. By definition of the ϕj ’s, we

have

(1− δi)ui (wi) + δi
∑
j∈N

pjui

(
ϕj
i (w)

)
= (1− δi)ui (wi) + δi

ui (xi) ∑
j:i∈Cj

pj + ui (yi)
∑

j:i/∈Cj

pj


≤ (1− δi)ui(1) + δi

[(
1− pmin

)
ui (xi) + pminui (yi)

]
≤ ui (xi)

where the last inequality follows from δi ≥ δ̄ ≥ δ̄i.

Claim 2: σ is no-delay with A(σ) = S; and, for all w ∈ X and i ∈ N ,

V σ
i (w) = (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
, (3)

where V σ
i (w) is i’s continuation value, which is implicitly defined in Section 3.2.

Proof: When w /∈ S is implemented, each player i ∈ N receives (1− δi)ui (wi). Then,

in the next period, player j is selected to make a proposal with probability pj . From the

definition of proposal strategies, she proposes z = ϕj(w). As z ∈ S, proposal strategies

prescribe all proposers to pass when the default is z: ϕj(z) = z for all j ∈ N . This implies

that z would be implemented in all future periods if it were voted up in the next period.

From part (b) in the definition of voting strategies, this implies that j’s proposal is voted

up (and never amended): each member i of Cj ∈ W is offered zi = xi and

(1− δi)ui (xi) + δi
∑
j∈N

pjui

(
ϕj
i (z)

)
= ui (xi) ≥ (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
(where the inequality is obtained from Claim 1). Hence, player i’s expected continuation

value from the next period on is
∑

j∈N pjui

(
ϕj
i (w)

)
. This proves that (3) holds and

P σ(w, S) = 1 for all w /∈ S.

Now suppose that w ∈ S is implemented. From the definition of proposal strategies,

all proposers pass in future periods — i.e. wi = ϕj
i (w) for all i, j ∈ N — so that i’s

continuation value is ui (wi). This implies that

V σ
i (w) = ui (wi) = (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
and P σ(w, S) = 1 for all w ∈ S. A(σ) = S then follows from P σ(w, S) = 1 for all w ∈ X.

22



Claim 3: Given default w and proposal z, each voter i ∈ N accepts only if V σ
i (z) ≥

V σ
i (w), and rejects only if V σ

i (w) ≥ V σ
i (z).

Proof: If w /∈ S then this claim is an immediate consequence of Claim 2 and the

definition of voting strategies (part (b)).

Suppose that w ∈ S — so V σ
i (w) = ui (wi). We must prove that part (a) in the

definition of voting strategies prescribes i to accept only if V σ
i (z) ≥ V σ

i (w), and to reject

only if V σ
i (w) ≥ V σ

i (z). To do so, we distinguish between two different cases:

• Case 1: z ∈ S — so V σ
i (z) = ui (zi) ∈ {ui (xi) , ui (yi)}. In this case, if i accepts then

wi = yi. Hence, V σ
i (w) = ui (yi) = min {ui (xi) , ui (yi)} ≤ V σ

i (z). If i rejects then wi = xi

and V σ
i (w) = ui (xi) = max {ui (xi) , ui (yi)} ≥ V σ

i (z).

• Case 2: z /∈ S. In this case, if i accepts then wi = yi. As δi ≥ δ̄ ≥ δ̄i,

V σ
i (w) = ui (yi) ≤ (1− δi)ui(0) + δi

[
pminui (xi) +

(
1− pmin

)
ui (yi)

]
≤ (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
= V σ

i (z) .

If i votes rejects then wi = xi. Claim 1 then implies that

V σ
i (w) = ui (xi) ≥ (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (z)

)
= V σ

i (z) .

Claim 4: There is no profitable one-shot deviation from σ in the proposal stage of any

period.

Proof: Suppose, first, that the current default w is an element of S. Passing is evidently

an optimal action for the selected proposer, for part (a) in the definition of voting strategies

implies that members of some winning coalition — i.e. those voters j who receive wj = xj

— would reject any proposal in X.

Now suppose that w /∈ S. If proposer i followed the prescription of σi then her proposal

would be accepted (Claim 2) and her payoff would be ui (xi) (which is the highest payoff

she can obtain by making a proposal in S). She must therefore propose a policy z /∈ S if

she is to profitably deviate from σi. By Claim 1, however, we have

V σ
i (z) = (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (z)

)
≤ ui (xi) ,

for all z /∈ S. This proves that no proposer has a profitable one-shot deviation from σ.

Combining Claims 1-4, we obtain Theorem 1.

�
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Theorem 2. Let q < n. If ui (xi) = xi for all i ∈ N and δi ̸= δj for all i, j ∈ N then all

equilibria are Pareto inefficient.

Proof: We assume without loss of generality that δi < δi+1 for each i = 1, . . . , n − 1.

Now suppose, contrary to the statement of Theorem 2, that an efficient equilibrium σ

exists.

Let ut
i denote player i’s expected period-t payoff in this equilibrium. To obtain the

desired contradiction, we first need to establish the following result for every i ∈ N : If

ut
i > 0 for some t ∈ N then uτ

j = 0 for all j < i and all τ > t. To see this, suppose instead

that ut
i > 0 and that uτ

j > 0 for some j < i and some τ > t. This implies that there is a

feasible marginal utility transfer dut
j from player i to player j in period t, and a feasible

marginal utility transfer duτ
j from player j to player i in period τ . In particular, consider

transfers that would leave player j indifferent; that is: dut
j − δτ−t

j duτ
j = 0. As σ cannot

be Pareto improved, this implies that δτ−t
i duτ

i ≤ dut
i = δτ−t

j duτ
j , which is impossible since

δj < δi.

The result above implies that, in equilibrium σ, if ut
n > 0 in some period t then uτ

j = 0

for all j ̸= n and all τ > t. This in turn implies that, in equilibrium, ut
n = 0 in all periods

t ∈ N. However, this is impossible because player n proposes with positive probability;

and maxi∈N δi < 1 implies that a winning coalition would accept an offer which yields n a

positive share.

�

Theorem 3. If q = n then: (i) every equilibrium σ is a pure strategy no-delay equilibrium

with A(σ) = ∆n−1; and (ii) such an equilibrium exists.

Proof: Part (i)

The proof of Theorem 3(i) hinges on the following lemmata.

Lemma 1. Suppose that q = n, and let σ be an equilibrium. For all i ∈ N and all x ∈ X:

(i) V σ
i (x) ≥ ui (xi); and

(ii) V σ
i (y) ≥ ui (xi) for all policies y that are accepted with positive probability when

the default is x.

Proof: (i) Let x ∈ X. By definition,

V σ
i (x) = (1− δi)ui (xi) + δi

∫
V σ
i (y)P σ(x, dy) .
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When offered policy y at default x, player i accepts only if V σ
i (y) ≥ V σ

i (x). Hence,

V σ
i (x) ≥ (1− δi)ui (xi) + δiV

σ
i (x)

or, equivalently, V σ
i (x) ≥ ui (xi).

(ii) As q = n, sequential rationality implies that player i only accepts policy y with

positive probability when the default is x if V σ
i (y) ≥ V σ

i (x) for all i ∈ N . By (i), this

implies that V σ
i (y) ≥ ui (xi) for all i ∈ N .

♢

Lemma 2. Suppose that q = n. If σ is an equilibrium then ∅ ̸= A(σ) ⊆ ∆n−1.

Proof: It is easy to see that A(σ) ̸= ∅ (for instance, take policy (1, 0, . . . , 0) ∈ ∆n−1).

Let σ be an equilibrium and suppose, contrary to the statement of the result, that

there exists x ∈ A(σ) \∆n−1. As x /∈ ∆n−1, there is y ∈ ∆n−1 such that ui (yi) > ui (xi)

for each i ∈ N . By definition of A(σ), the following must be true for each i ∈ N :

V σ
i (x) = ui (xi) < ui (yi) ≤ V σ

i (y) ,

where the last inequality follows from Lemma 1(i). This implies that, at default x, any

proposer could profitably deviate by (successfully) proposing to amend x to y.

♢

At this point, we need some notation. Any stationary Markov strategy profile σ =

(σi)i∈N induces a stochastic process
(
x̃t
)

on the policy space, where the random variable x̃t

stands for the policy implemented in period t.19 Let x ∈ X and m ∈ N. As σ is stationary

Markov, we can define a random variable x̃m(x), which describes the policy implemented

in period t+m given that x is the policy implemented in period t. Put differently, x̃m(x)

is the random variable obtained from the distribution of x̃t+m conditional on the event

“x̃t = x.” Thus, for every m ∈ N, x̃m
(
x0
)
= x̃m and E [x̃m(x)] = E

[
x̃t+m|x̃t = x

]
, where

E [·] is the expectation operator with respect to the stochastic process engendered by σ.

Part (i) of Theorem 3 is obtained from the following lemmata: Lemmata 3 and 4 show

that P σ (x,∆n−1) = 1 for all x ∈ X; Lemma 5 shows that A(σ) = ∆n−1.
19In what follows, we use “ ˜” to indicate random variables.
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Lemma 3. If σ is an equilibrium then the following statements are true for all x ∈ X:

(i) (x̃m(x)) converges almost surely to a limit x̃(x);

(ii) For every i ∈ N ,

ui (xi) ≤ E
[
V σ
i

(
x̃1(x)

)]
≤ E

[
V σ
i

(
x̃2(x)

)]
≤ . . . ≤ E [ui (x̃i(x))] . (4)

Proof: Take an arbitrary x ∈ X.

(i) By Proposition 1 in Hyndman and Ray (2007), the stochastic sequence (ui (x̃mi (x)))i∈N

converges almost surely to a limit.20 As the ui’s are strictly increasing functions, the

stochastic sequence of policies (x̃m(x)) converges along any sample path for which (ui (x̃
m
i (x)))i∈N

converges. Hence, (x̃m(x)) converges almost surely to a limit x̃(x).

(ii) Lemma 1 implies that any realization of the random variable x̃1(x), say x1, must

satisfy ui (xi) ≤ V σ
i

(
x1
)

for every i ∈ N . Hence, ui (xi) ≤ E
[
V σ
i

(
x̃1(x)

)]
for each i ∈ N .

Take an arbitrary m ∈ N, and let xm be some realization of x̃m(x). As q = n, sequential

rationality implies that a proposal xm+1 ∈ X is only voted up if V σ
i (xm) ≤ V σ

i

(
xm+1

)
for every i ∈ N . Consequently, V σ

i (xm) ≤ E
[
V σ
i

(
x̃m+1(x)

)
|x̃m(x) = xm

]
. This in turn

implies that

E [V σ
i (x̃m(x))] ≤ E

[
E
[
V σ
i

(
x̃m+1(x)

)
|x̃m(x) = xm

]]
= E

[
V σ
i

(
x̃m+1(x)

)]
. (5)

To complete the proof of the lemma, therefore, it remains to establish that

E [V σ
i (x̃m(x))] ≤ E [ui (x̃i(x))]

for all m ∈ N and all i ∈ N . To do so, observe first that for any ε > 0, there exists Mε > 0

such that E [V σ
i (x̃m(x))] ≤ E [ui (x̃i(x))] + ε for all m > Mε. Indeed,

E [V σ
i (x̃m(x))] = (1− δi)E

[ ∞∑
τ=0

δτi ui
(
x̃m+τ (x)

)]
= (1− δi)

∞∑
τ=0

δτi E
[
ui
(
x̃m+τ (x)

)]
.

As (x̃m(x)) converges almost surely to a limit x̃(x), Lebesgue’s Dominated Convergence

Theorem implies that E [ui (x̃
m(x))] → E [ui (x̃(x))]. This in turn implies that, for any

ε > 0, there exists Mε > 0 such that E [ui (x̃
m(x))] ≤ E [ui (x̃i(x))] + ε and, consequently,

E [V σ
i (x̃m(x))] ≤ E [ui (x̃i(x))] + ε (6)

for all m > Mε.
20Note that Hyndman and Ray’s result applies to a more general class of coalitional games — in which

unanimous voting is only a special case — and does not require Markov stationarity.
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Now, for each m ∈ N and ε > 0, define M(m, ε) ≡ max {Mε,m+ 1}. Combining (5)

and (6), we obtain that

E [V σ
i (x̃m(x))] ≤ E

[
V σ
i

(
x̃M(m,ε)(x)

)]
≤ E [ui (x̃i(x))] + ε

for any ε > 0. This proves that E [V σ
i (x̃m(x))] ≤ E [ui (x̃i(x))] for all m ∈ N and all i ∈ N ;

completing the proof of Lemma 3.

♢

Lemma 4. If σ is an equilibrium then P σ (x,∆n−1) = 1 for all x ∈ X.

Proof: For any w ∈ X, define policy y(w) as y(w) ≡ E [x̃(w)]. As the ui’s are concave,

Jensen’s inequality implies that

E [ui (x̃i(w))] ≤ ui (yi(w)) (7)

for all i ∈ N .

Now suppose that, contrary to the statement of the lemma, there is some x ∈ X such

that P σ (x,∆n−1) < 1. This implies that some policy x′ /∈ ∆n−1 is successfully proposed

when the default is x. Using (7) and Lemma 3(ii), we obtain

ui
(
x′i
)
≤ E

[
V σ
i

(
x̃1
(
x′
))]

≤ E
[
ui
(
x̃i(x

′)
)]

≤ ui
(
yi(x

′)
)

, (8)

which implies that yi(x
′) ≥ x′i for all i ∈ N . Consequently, there must be some y ∈ ∆n−1

such that yi ≥ x′i for all i ∈ N . Moreover, as x′ /∈ ∆n−1 and y ∈ ∆n−1, there must be a

nonempty subset of players, say W , such that yi > x′i for all i ∈ W .

If W = N then every player who proposes x′ could profitably deviate by proposing y

instead, as (8) implies that

V σ
i

(
x′i
)
= (1− δi)ui

(
x′i
)
+ δiE

[
V σ
i

(
x̃1
(
x′
))]

< ui (yi) ≤ V σ
i (yi)

for all i ∈ N (where the last inequality follows from Lemma 1(i)).

If W ⊂ N then the (strict) inequality above still holds for the members of W : V σ
i (x′i) <

ui (yi) for every i ∈ W . Let z(ε) ∈ X be the policy defined as

zi(ε) ≡ yi −
n− |W |
|W |

ε , ∀i ∈ W ,

zi(ε) ≡ yi + ε , ∀i ∈ N \W .

As the ui’s are continuous and strictly increasing, there exists a sufficiently small ε > 0

such that V σ
i (x′i) < ui (zi(ε)) ≤ V σ

i (zi(ε)). By the same argument as above, every player

who proposes x′ could profitably deviate by proposing z(ε) instead.
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♢

We already know from Lemma 2 that A(σ) ⊆ ∆n−1. To complete the proof of the

Theorem, we must show that every point in the unit simplex is absorbing.

Lemma 5. If σ is an equilibrium then A(σ) = ∆n−1.

Proof: Let x ∈ ∆n−1 and suppose, contrary to the Lemma, that there is some Y ⊆
X \ {x} such that P σ(x, Y ) > 0. Take an arbitrary policy x′ in Y ∩ ∆n−1 (which from

the previous lemma is nonempty). By (8), we have ui (x
′
i) ≤ ui (yi(x

′)) for all i ∈ N . But,

as x′ ∈ ∆n−1, this implies that x′ = y (x′), and therefore, that ui (x
′
i) = ui (yi(x

′)) for all

i ∈ N . Using (8) again, this in turn implies that ui (x′i) = E
[
V σ
i

(
x̃1 (x′)

)]
for every i ∈ N .

Hence,

ui
(
x′i
)
= (1− δi)ui

(
x′i
)
+ δiE

[
V σ
i

(
x̃1
(
x′
))]

= V σ
i

(
x′
)
≥ ui (xi)

for all i ∈ N (where the inequality follows from Lemma 1(ii)). As x is by assumption

an element of the simplex, the inequality above implies that x′ = x (which contradicts

x′ ∈ Y ⊆ X \ {x}).

♢

Finally, σ must be a pure strategy profile. Indeed, the no-delay property implies that, at

any default, each proposer makes a proposal that is accepted by all players. By sequential

rationality, the proposer must give the other players the minimum shares that they are

willing to accept.

Part (ii)

To prove Theorem 3(ii), we will construct an equilibrium σ in which, at any default x ∈ X,

the selected proposer — say i — offers the committee a policy x+ si(x) ∈ ∆n−1, which is

accepted by all players and then never amended. We can think of proposer i offering to

share the amount of money not distributed yet — i.e. 1−
∑

j∈N xj — with the the other

players, with sij(x) being the share offered by proposer i to player j.

Our first step is to define these transfers. For each x ∈ X, let

Tx ≡

s ∈ [0, 1]n :
∑
j∈N

xj + sj = 1

 .

Thus, any element of the n-fold product of Tx, Tn
x , can be thought of as a vector of shares of

the budgetary surplus s =
(
si
)
i∈N , where si ∈ Tx stands for the shares offered by proposer
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i. Next, let ϕ(x)(·) =
(
ϕ1(x)(·), . . . , ϕn(x)(·)

)
be a self-map on Tn

x defined as follows: for

all i ∈ N and all s =
(
sk
)
k∈N ∈ Tn

x ,

uj
(
xj + ϕi

j(x)(s)
)
≡ (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj

)
, ∀j ̸= i ,

ϕi
i(x)(s) ≡ 1− xi −

∑
j ̸=i

[
xj + ϕi

j(x)(s)
]

.

As all the ui’s are by assumption continuous, ϕ(x)(·) is a continuous function from Tn
x

(which is convex and compact in Rn2) into itself. Brouwer’s Fixed Point Theorem then

implies that there is s(x) =
(
sij(x)

)
i,j∈N

∈ Tn
x such that ϕ(x)(s(x)) = s(x); that is

uj
(
xj + sij(x)

)
= (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
, ∀j ̸= i , (9)

xi + sii(x) = 1−
∑
j ̸=i

[
xj + sij(x)

]
, (10)

for all i ∈ N . Observe that, by construction, x+ si(x) ∈ ∆n−1 for all i ∈ N and all x ∈ X.

Moreover, if x ∈ ∆n−1 then Tx = {(0, . . . , 0)} and, therefore, si(x) = (0, . . . , 0) for every

i ∈ N .

We are now in a position to define the strategy profile σ = (σ1, . . . , σn):

• In the proposal stage of any period t with ongoing default xt−1 = x, i’s proposal

(conditional on i being chosen to make a proposal) is x+ si(x);

• In the voting stage of any period t with ongoing default xt−1 = x, following any

proposal y ∈ X \ {x}, player i accepts if and only if

(1− δi)ui (yi) + δi
∑
j∈N

pjui

(
yi + sji (y)

)
≥ (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
.

Observe that σ is a pure strategy stationary Markov strategy profile. To complete the

proof of Theorem 3, therefore, it remains to show that σ is a no-delay, stage-undominated

subgame perfect equilibrium. As in the proof of the previous theorem, we proceed in

several steps.

Claim 1: σ is no delay with A(σ) = ∆n−1 and, for all i ∈ N and all x ∈ X:

V σ
i (x) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
.
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Proof: If x ∈ ∆n−1 then σ prescribes all proposers to pass in all periods. This implies

that x ∈ A(σ) — thus establishing that ∆n−1 ⊆ A(σ) — and, for each i ∈ N ,

V σ
i (x) = ui (xi) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
(since x ∈ ∆n−1 implies that sji (x) = 0 for all i, j ∈ N).

If x /∈ ∆n−1 then, in the next period, σ prescribes each proposer j to propose policy

x+ sj(x). As x+ sj(x) ∈ ∆n−1, we have ski
(
x+ sj(x)

)
= 0 for all i, k ∈ N , so that

(1− δi)ui

(
xi + sji (x)

)
+ δi

∑
k∈N

pkui

(
xi + sji (x) + ski

(
x+ sj(x)

))
= ui

(
xi + sji (x)

)
,

(11)

for all i ∈ N . From the definition of voting strategies, therefore, player i accepts if and

only if

ui

(
xi + sji (x)

)
≥ (1− δi)ui (xi) + δi

∑
k∈N

pkui
(
xi + sik(x)

)
,

which by equation (9) holds for all i ̸= j. To prove that j’s proposal is voted up, therefore,

it remains to check that she accepts her own proposal. By concavity of the ui’s, equation

(9) implies that

ui

(
xi + sji (x)

)
= (1− δi)ui (xi) + δi

∑
k∈N

pkui

(
xi + ski (x)

)
≤ ui

(
(1− δi)xi + δi

∑
k∈N

pk

(
xi + ski (x)

))
= ui

(
xi + δi

∑
k∈N

pks
k
i (x)

)
,

for all i ̸= j, which in turn implies that sji (x) ≤
∑

k∈N pks
k
i (x) for all i ̸= j (recall that

δi ∈ (0, 1)). Using this inequality and the concavity of uj , we obtain

(1− δj)uj (xj) + δj
∑
k∈N

pkuj

(
xj + skj (x)

)
≤ uj

(
xj + δj

∑
k∈N

pks
k
j (x)

)

=uj

xj + δj
∑
k∈N

pk

1−∑
l∈N

xl −
∑
l ̸=j

skl (x)

 = uj

xj + δj

∑
i∈N

sji (x)−
∑
i̸=j

∑
k∈N

pks
k
i (x)


≤uj

xj + δj

∑
i∈N

sji (x)−
∑
i̸=j

sji (x)

 = uj

(
xj + δjs

j
j(x)

)
≤ uj

(
xj + sjj(x)

)
=(1− δj)uj

(
xj + sjj(x)

)
+ δj

∑
k∈N

pkuj

(
xj + sjj(x) + skj

(
x+ sj(x)

))
, (12)
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where the last equality comes from (11). Thus, σj prescribes player j to accept as well, and

xj + sj(x) is therefore voted up. This proves that policies outside the simplex cannot be

absorbing points of σ — i.e. (X \∆n−1)∩A(σ) = ∅ — and, therefore, that A(σ) = ∆n−1.

This also proves that P σ (x,A(σ)) = P σ (x,∆n−1) = 1 for all x ∈ X; that is, σ is no-delay.

Moreover, as xj+sj(x) ∈ ∆n−1, σ prescribes all proposers to pass in all future periods.

This implies that, for all i ∈ N and x /∈ X,

V σ
i (x) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
,

thus completing the proof of the claim.

For future reference (see Claim 3 below), observe that (12) implies that V σ
i

(
xi + sii(x)

)
≥

V σ
i (xi) for any player i ∈ N .

Claim 2: Given default x and proposal y, each voter i ∈ N accepts if and only if

V σ
i (y) ≥ V σ

i (x), and rejects only if V σ
i (x) ≥ V σ

i (y).

Proof: This is an immediate consequence of Claim 1 and the definition of voting strate-

gies.

Claim 3: There is no profitable one-shot deviation from σ in the proposal stage of any

period.

Proof: Let xt−1 = x, and suppose that player i is recognized to make a proposal in

period t. If she plays according to σi then she proposes x+ si(x) (or, equivalently, passes

when x ∈ ∆n−1). As σ is no-delay (Claim 1), this offer is accepted and player i’s payoff is

ui
(
xi + sii(x)

)
.

In the proof of Claim 1, we showed that V σ
i (x) ≤ V σ

i

(
xi + sii(x)

)
. Hence, player i

cannot profitably deviate by passing or by making a proposal that is voted down.

Now consider a deviation to a proposal y ̸= x+ si, which is accepted. According to the

definition of voting strategies, y must satisfy

(1− δj)uj (yj) + δj
∑
k∈N

pkuj

(
yj + skj (y)

)
≥ (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
(13)

for all j ∈ N . We distinguish between two different cases:

• Case 1: y ∈ ∆n−1. In this case, inequality (13) becomes

uj (yj) ≥ (1− δj)uj (xj) + δj
∑
k∈N

pkuj

(
xj + skj (x)

)
= uj

(
xj + sij(x)

)
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for all j ̸= i (the equality is obtained from (9)). As uj is increasing, this implies that

yj ≥ xj + sij(x) for all j ̸= i and, consequently,

xi + sii(x) = 1−
∑
j ̸=i

(
xj + sij(x)

)
≥ 1−

∑
j ̸=i

yj = yi .

This in turn implies that V σ
i

(
xi + sii(x)

)
= ui

(
xi + sii(x)

)
≥ ui (yi) = V σ

i (y). Hence,

proposing y ∈ ∆n−1 is not a profitable (one-shot) deviation for player i.

• Case 2: y /∈ ∆n−1. In this case, equations (9) and (13) imply that

uj

(
yj + δj

∑
k∈N

pks
k
j (y)

)
≥ (1− δj)uj (yj) + δj

∑
k∈N

pkuj

(
yj + skj (y)

)
≥ (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
= uj

(
xj + sij(x)

)
,

so that yj +
∑

k∈N pks
k
j (y) ≥ xj + sij(x) for all j ̸= i (recall that δj ∈ (0, 1) and skj (y) ≥ 0

for all j, k ∈ N). Consequently,

xi + sii(x) = 1−
∑
j ̸=i

[
xj + sij(x)

]

≥ 1−
∑
j ̸=i

[
yj +

∑
k∈N

pks
k
j (y)

]
= 1−

∑
j ̸=i

yj −
∑
k∈N

pk∑
j ̸=i

skj (y)

 . (14)

Moreover, by equation (10), ∑
j ̸=i

skj (y) = 1−
∑
l∈N

yl − ski (y) . (15)

Combining (14) and (15), we obtain

xi + sii(x) ≥ 1−
∑
j ̸=i

yj −
∑
k∈N

[
pk

(
1−

∑
l∈N

yl − ski (y)

)]
= yi +

∑
k∈N

pks
k
i (y) .

Hence:

V σ
i

(
xi + sii(x)

)
= ui

(
xi + sii(x)

)
≥ ui

(
yi +

∑
k∈N

pks
k
i (y)

)
≥ ui

(
(1− δi) yi + δi

∑
k∈N

pk

[
yi + ski (x)

])
≥ (1− δi)ui (yi) + δi

∑
k∈N

pkui

(
yi + ski (x)

)
= V σ

i (y) .
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This shows that proposing y /∈ ∆n−1 is not a profitable deviation for player i, and completes

the proof of Claim 3.

Combining Claims 1-3, we obtain Theorem 3.

�

Theorem 4. If q = n then there is a unique equilibrium payoff, which coincides with the

(stationary subgame perfect) equilibrium payoff of the ad hoc committee game.

Proof: Denote our game with an evolving default by Γe, and the game with a constant

default by Γc.

Let σ = (σi)i∈N be an equilibrium of Γe, and let πi(x) ∈ X be the proposal made by

player i when the ongoing default is x in this equilibrium (recall that, by Theorem 3, σ is

a pure strategy profile). Hence, player i’s expected payoff as evaluated after rejection of a

proposal in the first period is given by:

V σ
i

(
x0
)
= (1− δi)ui

(
x0
)
+ δi

∑
j∈N

pjui

(
πj
i

(
x0
))

(recall that, by Theorem 3, σ must be no-delay).

Now define the stationary strategy profile σc = (σc
i )i∈N in game Γc as follows. At

the proposal stage of every period t, each player i ∈ N makes proposal πi
(
x0
)
. At the

voting stage of each period, player i accepts the proposal just made, say y, if and only if

ui(y) ≥ V σ
i

(
x0
)
.

As σ is no delay, proposal πi
(
x0
)
, i ∈ N , must be accepted with probability 1 in Γe. By

sequential rationality and unanimity rule, this implies that V σ
j

(
πi
(
x0
))

= uj

(
πi
j

(
x0
))

≥
V σ
j

(
x0
)

for all j ∈ N , which in turn implies that proposal πi
(
x0
)

is also accepted with

probability 1 in any period of Γc. Two immediate consequences of this observation are

that: (i) player i’s expected payoff as evaluated after rejection of a proposal in the first

period of Γc is V σ
i

(
x0
)
; and (ii) player i ∈ N has no profitable deviation from the voting

behavior prescribed by σc
i .

To complete the proof of the result, therefore, it remains to show that no player i ∈ N

can profitably deviate from σc in a proposal stage of Γc. Take an arbitrary player i. As

σ is an equilibrium of Γe, player i cannot profitably deviate by proposing another policy
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y ∈ X \
{
πi
(
x0
)}

instead of x or by making an unsuccessful proposal. Hence,

V σ
i

(
πi
(
x0
))

= ui
(
π0
i

)
≥ max

V σ
i

(
x0
)
, (1− δi)ui(y) + δi

∑
j∈N

pjui

(
πj
i (y)

) ≥ ui(y)

where the second inequality follows from Lemma 1(ii). Now consider a deviation from

πi
(
x0
)

in Γc. If i proposed some policy y then her expected payoff would be ui(y) if her

proposal were successful, and V σ
i

(
x0
)

otherwise. Hence, the inequality above implies that

i cannot improve upon proposing πi
(
x0
)

and, therefore, cannot profitably deviate from σc
i

in proposal stages.

�

Theorem 5. If q = n and δi ̸= δj, for some i, j ∈ N , then any equilibrium is Pareto

inefficient.

Proof: We start the proof of Theorem 5 with the following lemma:

Lemma 6. Let q = n. If
(
x̃t
)

is the stochastic sequence of policies on some equilibrium

path then, for any realization
(
xt
)

of
(
x̃t
)
, xti ∈ (0, 1) for all i ∈ N and all t ∈ N.

Proof: Let
(
xt
)

be an arbitrary realization of the sequence
(
x̃t
)

engendered by some

equilibrium σ. Suppose that, contrary to the statement above, xτj = 0 for some j ∈ N and

some τ ∈ N. Theorem 3 then implies that in period 1 (with default x0) player j accepted a

proposal x such that xj = xtj = 0 for all t ∈ N. By sequential rationality, this implies that

V σ
j

(
x0
)
= uj(0); otherwise she would be strictly better off rejecting any such proposal.

By Theorem 3, W ≡
{
i ∈ N : V σ

i

(
x0
)
> ui(0)

}
is nonempty and, for each i ∈ W ,

Vi

(
x0
)
= (1− δi)ui(0) + δi

∑
l∈N

plui

(
xli

)
<
∑
l∈N

plui

(
xli

)
≤ ui

(∑
l∈N

plx
l
i

)
,

where xl denotes player l’s successful proposal when the default is x0 (and the second

inequality follows from Jensen’s inequality). By continuity of the ui’s, therefore, there

exists a sufficiently small ε > 0 such that

Vi

(
x0
)
< ui

(∑
l∈N

plx
l
i − ε

)
, ∀i ∈ W .
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Let y = (yi)i∈N ∈ X be defined as follows:

yi ≡
∑
l∈N

plx
l
i − ε , for all i ∈ W , and yi ≡

|W |
n− |W |

ε for all i ∈ N \W .

It is readily checked that ui (yi) > V σ
i

(
x0
)

and then, by Lemma 1(i), V σ
i (y) > V σ

i

(
x0
)

for all i ∈ N .

Consider player i’s proposal when she is recognized to make a proposal in period 1.

As V σ
i (y) > V σ

i

(
x0
)

for all i ∈ N , she could successfully propose y and thus get a

payoff of V σ
j (y) > V σ

j

(
x0
)
= uj(0). As pj > 0 and q = n (and uj(0) is obviously the

minimum payoff she can get), she must therefore reject any proposal x such that xj = 0

in equilibrium.

♢

Suppose that there are i, j ∈ N such that δi > δj . Now suppose that, contrary to

the Theorem, there exists a Pareto efficient equilibrium σ. Theorem 3 implies that this

equilibrium can be described by a policy vector
(
x1, . . . , xn

)
∈ ∆n

n−1, such that xt = xk

for all t ∈ N with probability pk. By concavity of the uk’s, the policy x̄ ≡
∑

k∈N pkx
k

is weakly preferred by all players to the lottery engendered by σ. To obtain the desired

contradiction, therefore, it suffices to show that the indefinite implementation of x̄ can be

Pareto improved.

From Lemma 6, x̄i, x̄j ∈ (0, 1). Consequently, there is a feasible marginal transfer dx1j

from player i to player j in period 1, and a marginal transfer dx2j from j to i in period 2,

such that player 1’s discounted payoff remains unchanged. If we assume by contradiction

that the repeated implementation of policy x̄ is Pareto efficient then the changes in players

i and j’s payoffs must satisfy:

−u′i (x̄i) dx
1
j + δiu

′
i (x̄i) dx

2
j = 0 , and u′j (x̄j) dx

1
j − δju

′
j (x̄j) dx

2
j ≤ 0 .

Combining these two conditions, we obtain δi = dx1j/dx
2
j ≤ δj , which contradicts our initial

assumption that δi > δj .

�
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