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Abstract

Standard mechanism design theory mostly relies on Nash equilibrium con-

cepts. However studies of experimental games suggest that Nash Equilibria are

rarely played and provide evidence that subjects may be thinking �nite number

of iterations. The purpose is to �nd out whether the standard expected external-

ity mechanism (Arrow, D'Aspermont, Gerard-Varet) retains its properties under

iterational thinking. The optimal strategies of �nitely-rational players generally

deviate from Bayesian Nash Equilibria, though the latter are often good approx-

imation of the outcomes of iterative thinking.

1 Introduction

The idea of relaxing the pervasive common knowledge assumption, often referred to as
the Wilson's doctrine, has motivated some recent research in mechanism design. Signif-
icant progress has been made in studying implementation in frameworks approaching
the universal type space - where higher-order beliefs are virtually unrestricted - as op-
posed to the naive type spaces (common knowledge), in which mechanisms have been
studied previsouly. Bergemann and Morris (2005), to whom much of the progress is
due, call attention to the research gap between the classical naive-type setup and the
universal type space, the most far-reaching generalization. Indeed there is little we
know about functioning of mechanisms in belief frameworks that �realistically� deviate

∗I would like to thank Vincent Crawford, Francoise Forges, Thomas Mariotti, David Martimort,
Benny Moldovanu, Thomas Rieck for their insightful comments.
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from the naive type space. This paper takes advantage of the results of experimen-
tal research to identify the relevant belief structure and studies the classical expected
externality mechanism (Arrow, D'Aspermont, Gerard-Varet) in that framework, thus
�lling part of the gap pointed out by Bergemann and Morris.

The experimental reseach in game theory has identi�ed some of the reasoning patterns
that persist in human subjects and result in the frequent observations of non-equilibrium
outcomes. The iterative thinking environment, also referred to as K-level model, has
proven to be a good �t for the observed behavior. In this model, the agent's type is
augmented, with respect to the naive type space, by a cognitive characteristic which
puts a restriction on the agent's beliefs. Start with a type space that includes the
following elements: payo� type, cognitive ability to carry out a certain number of
sequential operations, belief about other people's cognitive abilities, belief about their
beliefs and so on. For identi�cation, assume the common prior on payo� types. Next,
narrow the above type space by imposing the restriction introduced in Nagel (1995):
Assume that someone whose ability is to make k iterations believes that any other
agent's ability amounts to k−1 with probability 1. The formation of beliefs is common
knowledge, that is, someone who thinks k iterations is known to have a belief that
others think k − 1, who believe, in turn, that everybody else's ability is k − 2 and
so on. Note that we need to treat the agents who make 1 iteration (1-order agents)
separately: their belief is that others play randomly. We assume 1-order agents have a
common prior on random strategies, and their prior itself is common knowledge. The
latter assumption guarantees that all players of the same level of rationality will have
the same mapping from type to strategy. We can therefore merge two elements of the
initial type space - the cognitive ability and the beliefs - into a single element, which
we label the k-order or k-level of rationality. Now each agent will be fully characterized
by his payo� type and level k.

The iterative thinking model may not appeal to an equilibrium-tuned mind, primarily
because of the belief inconsistency: Whatever degrees of rationality a set of agents
have, their beliefs never re�ect the true state. I believe that for real-world one-time
interactions this model is nevertheless much more relevant than equilibrium play. For
example, in an experimental guessing game, described in Nagel (1995), subjects played
strategies quite far from the equilibrium one, and the implied beliefs were inconsistent
with the reality; futher experiments show that Nash equilibria are rarely played (e.g.
Stahl, Wilson (1994), Kubler, Weizsacker (2004)). Besides, even the classics of economic
theory adopts models of behavior with inconsistent beliefs, such as the Stackelberg
model.

Recent research develops the theory by looking at the consequences of relaxing com-
mon knowledge assumptions, in particular, in the mechanism design problem. In the
current paper we also abandon the naive type space and look at individuals' optimal
strategies in two games: the expected externality mechanism and the �rst-price-sealed
bid auction. The optimal strategies and the outcomes of these two games are analyzed
in the iterative-thinking framework, that is in the assumption that agents' belief system
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is the one we described above. The paper proceeds as follows: Section 2 formalizes the
framework and provides two examples of the games we are going to study; Section 3
provides a general treatment of the �rst game, the expected-externality mechanism, and
shows that in general the optimal strategies of �nite-order rational players deter from
truth-telling, but as the order of rationality increases, the optimal strategies converge
to truth-telling under certain conditions; Section 4 concludes. Proofs of all propositions
and solutions to examples can be found in the Appendix.

2 Sequential Thinking Framework andMotivating Ex-

amples

In this section I extend the k-level formalism to games of incomplete information.
Similar extention has been performed in the Crawford, Iberri, who study the implication
of k-level thinking in auctions.

We model sequential thinking deviating from the standard environment in which mech-
anisms have been studied so far: the common knowledge of rationality. We say that
the subject is rational of order k ∈ N (is a level-k player) if given each of his types he
maximizes his expected utility thinking that all his counterparts are rational of order
k−1. Such behavior induces strategy s

(k)
i (θi), s

(k)
i : Θi → Si, where the subscript refers

to player i, member of �nite set I. Rationality of order 0 implies playing a random
strategy. This admits the following representation:

s
(0)
i ∼ Φi : Si → [0; 1]

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
i

[
ui(si, s

(0)
−i (θ−i); θ) | θi

]
= arg max

si∈Si
E
s
(0)
i

[
ui(si, s

(0)
−i ; θ)

]
s

(2)
i (θi) = arg max

si∈Si
Eθ−i

[
ui(si, s

(1)
−i (θ−i); θ) | θi

]
...

s
(k)
i (θi) = arg max

si∈Si
Eθ−i

[
ui(si, s

(k−1)
−i (θ−i); θ) | θi

]
where θi ∼ Fi : Θi → [0; 1], and ∀i ∈ I the functions Fi and Φi are known.

Thus, for example, a level-2 player assumes that her counterparts behave as if all ev-
eryone else was playing randomly. We could say that a pro�le of strategies {s(∞)(θ)}
constitutes a Bayesian Nash Equilibrium. We impose the following assumptions to
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make our analysis more tractable: Si = Θi, independent types, private values, quasi-

linear utilities. Then in a mechanism implementing social choice rule1 K(θ) : Θ → A
(equivalently K(s) : S → A) individual i who is rational of order k chooses his strategy
as follows:

s
(k)
i (θi) = arg max

si∈Si
Eθ−i

[
vi(K(si, s

(k−1)
−i (θ−i)); θi) + ti(si, s

(k−1)
−i (θ−i))

]
,

for any k > 1 while the rational of order 1 player solves:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
vi(K(si, s

(0)
−i ); θi) + ti(si, s

(0)
−i )
]

We are interested in social choice rules that are e�cient, i.e. such that

∑
i

vi(K(θi, θ−i); θi) ≥
∑
i

vi(κ; θi)

for ∀κ ∈ A
In the Bayesian setting e�cient social choice rules are (weakly) implemented in the
expected externality mechanism (d'Aspremont, Gerard-Varet, 1979, Arrow). In our
framework the mechanism induces the following optimal strategies:

s
(k)
i (θi) = arg max

si∈Si
Eθ−i

[
vi(K(si, s

(k−1)
−i (θ−i)); θi) + E

θ−i

[∑
j 6=i

vj(K(si, θ−i); θj) + c

]]
for any k > 1 and:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
vi(K(si, s

(0)
−i ); θi) + E

θ−i

[∑
j 6=i

vj(K(si, θ−i); θj) + c

]]
where c is constant in reported values and represents part of the tranfer intended to
balance the buget, i.e. make sure that all the transfers add up to zero. As in the
Bayesian setting, we assume that the mechanism designer who tries to implement the
e�cient rule knows the true distribution of types and makes the players internalize their
report's expected e�ect on the others. Note that in the above equations the expected-
externality part of the transfer to agent i, E

θ−i

∑
j 6=i

vj(K(si, θ−i); θj), depends only on his

report; it assumes that everybody else will tell the truth and can be calculated before all
reports have been made, ensuring the ex post budget balance of the AGV transfers. In
the alternative, Clarke-Groves version, would have

∑
j 6=i

vj(K(si, s
(k−1)
−i (θ−i)); s

(k−1)
j (θj))

2

1We assume single-valued social choice rules throughout the paper.
2or

∑
j 6=i

vj(K(si, s
(0)
−i ); s

(0)
j ) for 1-order
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instead. The CG tari� is calculated after all reports have been made and it assumes that
everybody has told the truth. Recall that the CG mechanism implements in dominant
strategy, hence it is optimal to tell the truth at the �rst and all subsequent orders of
rationality. We proceed with the analysis of the standard AGV version.3

If order 1 prevails, the players do not expect others to behave optimally, and in partic-
ular, they do not expect others to play the equilibrium. Instead, 1-order players have
a perception of what reports are likely (or unlikely) to be made - not as functions of
random types, but as self-contained random values. Agents who are rational of order 2
know how 1-order players behave and maximize their payo�s correspondingly. If it is
the case that optimal response to the mechanism of 1-order players is to tell the truth
about their types, then 2-order players would tell the truth too (to maximize the sum
of utilities), and so would 3-order players and so on.4 Thus in a group of any �nite
order of rationality truth-telling would be restored unless there was no distortion at the
very �rst level. To see what happens if there is distortion, consider a simple example.

Example Consider setting with 2 players and vi(κ, θi) = θiκ− κ2

2
(Thus e�cient rule

is linear in the reported types, K(θ1, θ2) = θ1+θ2
2

)

Solution The optimal strategies for this setting are5

s
(1)
i (θi) = θi +

Eθ−i − Es(0)
−i

2
=

= arg max
si∈Si

E
s
(0)
−i

θi si + s
(0)
−i

2
−

(
si+s

(0)
−i

2
)2

2
+ E

θ−i

[
θ−i(

si + θ−i
2

)−
( si+θ−i

2
)2

2
+ c

] ,

s
(2)
i (θi) = θi −

Eθi − Es(0)
i

4
=

3The CG transfers are expectationally equivalent to AGV-like transfers, where the mechanism de-
signer �adopts� each player's beliefs when assigns him the transfer (call it AGV-2). In BNE framework,
provided that the mechanism designer and the players are rational, both AGV and AGV-2 yield the
same outcome - this is why the distinction is not conventional. Note that the K(·) is ex-post im-
plementable in AGV-2 and thus (Bergemann, Morris, 2005) is implementable ex interim in all type
spaces. In particular indeed, AGV-2 implements it in the K-level type space.

4s
(2)
i (θi) = argmax

si∈Si
Eθ−i

[
vi(K(si, s

(1)
−i (θ−i)); θi) + E

θ−i
{
∑
j 6=i

vj(K(si, θ−i); θj) + Const}

]
=

= argmax
si∈Si

Eθ−i

[
vi(K(si, θ−i); θi) + E

θ−i
{
∑
j 6=i

vj(K(si, θ−i); θj) + Const}

]
= θi, and so on:

s
(k)
i (θi) = θi

5Recall that all players have a common prior on the distribution of payo� types and 1-order agents'
prior on random strategies is common knowledge.
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= arg max
si∈Si

Eθ−i

θi si + s
(1)
−i (θ−i)

2
−

(
si+s

(1)
−i (θ−i)

2
)2

2
+ E

θ−i

[
θ−i(

si + θ−i
2

)−
( si+θ−i

2
)2

2
+ c

] ,

s
(3)
i (θi) = θi +

Eθ−i − Es(0)
−i

8
=

= arg max
si∈Si

Eθ−i

θi si + s
(2)
−i (θ−i)

2
−

(
si+s

(2)
−i (θ−i)

2
)2

2
+ E

θ−i
{θ−i(

si + θ−i
2

)−
( si+θ−i

2
)2

2
+ c

 ,
(The general form is s

(k)
i (θi) = θi + (1/2)k∆−i if k odd, s

(k)
i (θi) = θi − (1/2)k∆i if k

even, where ∆i = Eθi − Es(0)
i ).

There are two interesting features of the AGV mechanism in this example. First, as
the order of rationality goes to in�nity the players' strategies converge to truth-telling
whatever the distributions of their types and of the random strategies. Second, if each
player's distribution of type and random strategy are such that their means are equal
then there is truth-telling whatever the order of rationality. In the next section we will
generalize the equivalence result to any preferences and de�ne conditions under which
1-order players over- or underreport their types (and thus truth-telling behavior is killed
in any �nite-order groups).

Now let us see what happens when auction bidders think sequentially, the way de�ned
above. Consider a �rst-price sealed-bid auction with n bidders who maximize their
expected gains from the auction.

s
(k)
i (θi) = arg max

si∈Si
Eθ−i

[
(θi − si)I{s(k−1)

j (θj) < si, ∀j ∈ I}
]

= (θi − si) Pr{s(k−1)
j (θj) < si, ∀j ∈ I} = (θi − si)

∏
j∈I\i

Fj(s
(k−1)−1

j (si))

for any k > 1 and:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
(θi − si)I{s(0)

j < si, ∀j ∈ I}
]

= (θi − si) Pr{s(0)
j < si, ∀j ∈ I} = (θi − si)

∏
j∈I\i

Φj(sj)
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Again, a 1-order bidder does not perceive other bidders as playing strategically; he
neither cares about their valuations nor knows that they are maximizing some expected
utilities. The only thing he knows is that he receives a positive utility from buying the
good if he pays for this a su�ciently low amount (lower than what we call his valuation);
he also has a belief on the distribution of other participants' bids. Consider a simple
particular case of a �rst-price auction setting:

Example Assume n symmetric players ( Fi(·) = F (·),Φi(·) = Φ(·)), and the distribu-
tion of types and of random strategies are both uniform on [0, 1].

Solution

• s(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
(θi − si)I{s(0)

j < si, ∀j ∈ I}
]

= arg max
si∈Si

(θi − si)s
n−1
i =

n−1
n
θi

• s(2)
i (θi) = arg max

si∈Si
Eθ−i

[
(θi − si)I{s(1)

i (θi) < si, ∀j ∈ I}
]

= arg max
si∈Si

(θi−si)[ n
n−1

si]
n−1 =

n−1
n
θi

• ...

• s(k)
i (θi) = n−1

n
θi, ∀k

In this example with uniform distributions, the bidding strategy of any �nite-order
players is exactly the same as in the Bayesian-Nash equilibrium. We will see later that
in general, however, the way we model bidders' behavior is not irrelevant: strategies
iteratively thinking bidders do not necessarily coincide with BNE-strategies - we will
see this in Section 4. Now that we have formalized the framework we proceed from
Example 1 to a general treatment of the expected externality mechanism.

3 Expected Externality Mechanism under Iterative

Thinking

3.1 Equivalence and Distortion at 1-order of Rationality

In this subsection we look at the general case of preferences and study the optimal
behavior of a 1-order rational player in the expected externality mechanism. Recall
that the �rst order of rationality implies maximization of the expected payo� in a game
while treating other players as behaving randomly. In the case of an AGV game the
optimal strategy as a function of type will be de�ned as follows:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
vi(K(si, s

(0)
−i ); θi) + E

θ−i
{
∑
j 6=i

vj(K(si, θ−i); θj) + ξi(s
(0)
−i )}

]
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= arg max
si∈Si

E
s
(0)
−i
vi(K(si, s

(0)
−i ); θi) + E

θ−i

∑
j 6=i

v−i(K(si, θ−i); θj),

where K(si, s−i) is the e�cient social choice rule that depends on agents' preferences
vi(κ; θi).

In example 1 it was shown that in the sequential thinking environment the optimal be-
havior in an AGV game may deviate from truth-telling. Here we generalize this result to
any (quasi-linear) preferences satisfying the Spence-Mirelees condition, however staying
in the 2-player framework. The main contribution of this subsection is the statement of
su�cient conditions for lying (under- or overreporting types) as the optimal behavior
of a degree-1 player. We �nd that if order-1 players expect reports to be lower than
true types, they will overreport their types, and vice versa. If otherwise they do not
have a systematic distinction between types and random strategies, they do not have
an incentive to lie. The latter result is stated in the following simple proposition.

Proposition "Equivalence" If the distribution of random strategies and the distri-
bution of types are the same, truth-telling is optimal.

This equivalence claim is easily derived from the de�nition of 1-order optimal strategy
stated in the beginning of the section. The proposition implies that sequential thinking
in an AGV game produces the same result as suggested by the equilibrium analysis.

In the rest of the section we look at the non-trivial case, when 1-order players anticipate
biased reports from their counterparts. The following proposition gives us the idea
of how exactly 1-order player's report is going to be distorted. Here we require the
preferences be such that the mechanism's sensitivity to one agent's report is independent
of the other agent's report. This sensitivity is formalized in the cross-derivative of
the e�cient social choice rule and we set it to zero at this point. Further we will
abandon this assumption and see how the sensitivity of SCR a�ects our conclusions.
We also assume that the preferences satisfy Spence-Mirelees condition: ∂2vi

∂κ∂θi
(κ, θi) > 0

∀κ ∈ A, forallθi ∈ Θi ("SMC with positive sign") or ∂2vi
∂κ∂θi

(κ, θi) < 0 ∀κ ∈ A, ∀θi ∈ Θi

("SMC with negative sign").

Proposition "Linear SCR" If SMC holds, and ∂2K
∂si∂s−i

(si, s−i) = 0, then for any

(interior) types we observe underreporting, if the distribution of random strategies
1st-order stochastically dominates the distribution of types, - and overreporting,
if the distribution of types 1st-order stochastically dominates the distribution of
random strategies.

The proposition tells us that 1-order rational players misreport their types whenever
the distributions of types and of strategies are di�erent in a certain sense. Namely,
if player A expects player B to report a higher type than B has on average, then
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A will report a lower type than he actually has (and vice versa), even if this will
push the choice further from what A desires according to his preferences. What is
the intuition behind that? In the AGV mechanism agent A gets utility from the social
choice based on his and B's reported preferences plus the expected payo� of agent B
had he told the truth to the principal. Suppose �rst that a high type values the size
of the alternative more than a low type ("positive SMC"). If agent A knows that
agent B would overreport his preferred alternative on average, then - since A bene�ts
from satisfying B's true preferences - he would adjust the social choice downward by
underreporting himself. If higher types prefer lower alternatives, then B's overreporting
makes the chosen alternative lower and A overreports to shift it back up. In either case
1-order rational player compensates the counterpart's "foolishly" biased behavior by
misreporting their types in the opposite direction.

The assumption of zero-sensitivity we make in Proposition "Linear SCR" corresponds
to the cases when the social choice function is linear in the reported types - for example,
the chosen alternative equal to the arithmetic mean of preferred alternatives (types),
as we had in Example 1. In such cases agent A may not bother about second-order
e�ects when he tries to adjust the mechanism's choice with his report. However under
more general conditions second-order e�ects may come into play. Namely, if agent A
(of a very high or a very low type) knows that his misreporting a�ects the mechanism's
reaction to B's report in such a way that the total distortion becomes even stronger,
he may prefer not to misreport in the direction Proposition "Linear SCR" states. Thus
we have to exclude certain type ranges when asserting that there are incentives to
lie. The following four propositions state similar results to Proposition "Linear SCR",
but only for agents having su�ciently low or su�ciently high types. The cases are
broken down into four groups according to two criteria: whether higher types prefer
higher or lower alternatives (respectively, SMC with positive or with negative sign),
and whether the chosen alternative's increment due to an increase in one agent's report
increases or decreases with the other agent's report (respectively, positive or negative
cross-derivative). In the four following propositions we impose an additional technical
assumption, the monotone likelihood ratio property (MLRP) that we did not require in
Proposition "Linear SCR". MLRP should be understood as corresponding to whether
the distribution of types dominates or the distribution of random strategies dominates.

Proposition "+ +" If SMC holds with positive sign, ∂2K
∂si∂s−i

(si, s−i) ≥ 0, and MLRP
holds, then for su�ciently low types we observe underreporting, if the distri-
bution of random strategies 1st-order stochastically dominates the distribution of
types overreporting, if the distribution of types 1st-order stochastically dominates
the distribution of random strategies.

Proposition "+ -" If SMC holds with positive sign, ∂2K
∂si∂s−i

(si, s−i) ≤ 0, and MLRP
holds, then for su�ciently high types we observe underreporting, if the distri-
bution of random strategies 1st-order stochastically dominates the distribution of
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types overreporting, if the distribution of types 1st-order stochastically dominates
the distribution of random strategies.

Proposition "- +" If SMC holds with negative sign, ∂2K
∂si∂s−i

(si, s−i) ≥ 0, and MLRP
holds, then for su�ciently high types we observe underreporting, if the distri-
bution of random strategies 1st-order stochastically dominates the distribution of
types overreporting, if the distribution of types 1st-order stochastically dominates
the distribution of random strategies.

Proposition "- -" If SMC holds with negative sign, ∂2K
∂si∂s−i

(si, s−i) ≤ 0, and MLRP
holds, then for su�ciently low types we observe underreporting, if the distri-
bution of random strategies 1st-order stochastically dominates the distribution of
types overreporting, if the distribution of types 1st-order stochastically dominates
the distribution of random strategies.

Proposition "++" tells us that if higher types have higher valuation and the e�cient
social choice rule is more sensitive to agent 1's reported type if agent 2's report is high,
then low-valuation players will tend to lie on their type - so as to adjust the biased
reports of their co-players. The result is the same as in Proposition "Linear SCR",
except that we no longer assert that high types will necessarily do so. Consider for
example agent A whose type is higher than the expected agent B's true or reported
type. According to our previous reasoning, agent A would like to overreport if B under-
reports6; but if he does so under the conditions of Proposition "++", the mechanism
may become more sensitive to B's underreporting and A's e�orts will be in vain (ac-
tually the reasoning would be more complicated than that). In all four propositions,
we include in the su�cient condition the type ranges that correspond to a su�ciently
(for given distributions) weak sensitivity of the social choice rule to the other agent's
report. We claim that such types will underreport if F (t) > Φ(t) ∀t and overreport if
Φ(t) > F (t) ∀t.

We can sum up this subsection by the following. First, if the random strategies are,
in the minds of 1-order players, distributed equivalently to how types are distributed,
then in the expected externality mechanism 1-order players report their true types.
This implies that 2-order players will tell the truth, too, and so will 3-order players etc.
Thus sequential thinking yields the same outcome as if agents were playing Bayesian
Nash equilibrium, independently of what order of rationality the players as a group
have. Second, if distributions are not the same, then 1-order players usually misreport
their types so as to compensate the biased reports of their co-players. There may be
exceptions from this rule if the agent has an extreme type and his "compensating"
behavior may a�ect the social choice in an undesirable way, but such situations ought
to be perceived as rare. Looking at the proof of the propositions we conjecture that
the results extend to the n-player symmetric framework.

6By underreporting we mean here that B's type distribution 1st-order stochastically dominates B's
random report distribution.
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3.2 Distortion at Higher Orders of Rationality and Convergence

In motivating example 1 we saw that the distortion of reports by 1-order players trans-
lates into the optimal strategies of 2-order rational players, 3-order and so on, with
the size of the distortion decreasing. The limiting optimal strategy in the example is
truth-telling; in this subsection we state a similar result for a somewhat more general
setting, by looking at the case of an arbitrary linear social choice rule. Recall that in
the discussion of 1-order optimality (the previous subsection) linear SCR case yielded
the same behavior as a most general SCR case, but for all possible types. Here we do
not go beyond the linear case, leaving it as an approximation for the general case of
SCR. We remain in 2-player setting, as before.

Proposition "Convergence" If the social choice rule is linear in reported types, then in
the AGV mechanism the expected absolute deviation of reported types from true
ones decreases with the order of rationality. The sign of the expected deviation
changes each time the order of rationality grows by one.

The �rst part of the proposition states average convergence to truth-telling in the
expected externality mechanism with sequentially thinking players. The second part
states that the strategies in any linear-SCR case display the same pattern that we
observed in example 1. If 2-order players overstate their type in the game, then 3-order
players will understate them. In fact, this is good news for the AGV mechanism: if
the group of agents is a mix of, say, 2- and 3-order rational players, then the expected
chosen alternative will be closer to the one maximizing the true welfare.

��������

In this section we have shown that agents' expectations of other people's behavior a�ects
the optimal strategies in the d'Aspremont-Gerard-Varet mechanism. Thus if we wish
to implement an e�cient social choice function we need to use all available information
about agents' anticipation of the play of others and adjust the mechanism in such a
way that it would account for biases and recover truth-telling behavior. Consider the
following illustration. A group of agents is eligible to vote for a transition from status-
quo alternative A to alternative B. It is common knowledge that each agent has a
preferred alternative and gets a utility of 1 from it. If some voter has not submitted
his vote by the deadline, he is considered to prefer the status quo. AGV mechanism is
applied, so each voter gets the expected externality of his vote on the others. Suppose
every voter of the group puts a 50/50 prior ("has no idea") on both the true preferences
and the random votes (he considers the votes random, if, for instance, he does not
expect the others to understand the expected externality procedure). Further, everyone
supposes that around 20 % of the votes will not be submitted by the deadline due to
voters' absence, post delay or other reasons, independently of the choices (potentially)
made - thus the ultimate perceived distribution of registered reports (recall, default is
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A) will be 60/40. Then the someone who is of order 1 and actually prefers A might
submit a vote for B, because the submitted votes, in his eyes, will be biased towards
A which will not re�ect the group's true preferences, from satisfying which this agent
bene�ts (expected externality mechanism). If the group thinks this way we may end up
choosing B, even if it is not actually preferred by the majority. Now if an agent assumes
that all others put 50/50 on preferences and random strategies, and expect 20% of the
votes to be lost, he might �nd it pro�table to vote for A even if his preferred alternative
is B (we require that he himself puts a 50/50 prior on types and expects all votes to be
submitted in time). If there is a su�cient number of such agents we can choose A even
if B is preferred by the majority, and so on. Let us move to the continuous case to apply
our result. Suppose that agents are insensitive to small di�erences in outcomes from
strategies A and B and play a mixed strategy when the di�erence is small. The larger
the di�erence, the more likely they are to play the strategy that yield higher payo�.
Then our propositions imply for the voting example that the probability of choosing a
wrong alternative decreases as the order of rationality in a group goes up - since each
agent reports the truth with higher probability.

4 Conclusion

This paper looks at the functioning of mechanisms, which have been either designed
or previously studied under the assumption of common knowledge of rationality, - in a
framework that deters from it. Our motivation to apply the new framework to these
mechanisms stems in the apparent frailness of the Bayesian -Nash equilibrium in the
case of simultaneous-move one-time interactions. In reality, players in a non-repeated
game might have no idea that they are "supposed to play" equilibrium strategies, and
experiments �nd su�cient evidence for that. What we propose here as a way the
players form their strategies is iterative thinking, in which we follow Nagel (1995). An
iteratively thinking player optimizes the game's outcome with respect to his strategy,
accounting for other players' behavior, who account for all other players' behavior etc.,
assuming that he can always make 1 iteration more than the others. He treats all other
players as having the same capacity in terms of the number of iterations they can make
and the ability to optimize; in the simplest case he thinks they do not optimize at all
and play randomly. Experiments show that the number of iterations people make in
their minds while playing simple simultaneous-move games is between 1 and 2, which
prompts us to focus on these levels when we study the mechanisms. We �nd that
in general people's behavior will deviate from the equilibrium prediction, however the
conditions under which there is equivalence do not seem to be too demanding.

In the �rst part of the analysis we looked at how the expected externality mecha-
nism (D'Aspremont, Gerard-Varet) works in the sequential thinking environment. This
mechanism was designed so as to induce truthful revelation of types in a particular
setting: Bayesian-Nash equilibrium. As BNE relies on the common knowledge of ratio-

12



nality, it was intriguing to �nd out under which conditions the mechanism still yields
truth-telling behavior as we proceed to an alternative framework. It appears, that if the
perceived distribution of random strategies coincides with the perceived distribution of
types, then at any number of consecutive iterations we get truth-telling. If the play-
ers expect that for some reason their opponents' reports will �rst-order stochastically
dominate the type distribution, they will tend to (certain type ranges necessarily will)
underreport their types. We get the symmetric result, too. Further, each subsequent
order of rationality yields a smaller absolute value of deviation from truth-telling, and
the direction of the deviation switches each time. Thus we observe "compensating"
behavior of �nite-order players in an AGV game, which implies lying in the opposite
direction to the anticipated bias in other agents' report. In the limit, their strategies
converge to the equilibrium one, that is, to truth-telling. This convergence result is
similar to what is observed in experimental guessing games (e.g. Nagel, 1995): with
each repetition of the game players choose strategies closer and closer to equilibrium.
Our results were stated for a 2-player framework (conjecturally, they can be extended
to n players) and the mechanism that assigns expected-externality transfers basing on
each agent's report and the distribution of types of the other players. An alternative
version of the mechanism would assign transfers basing on actual reports made. This
set-up was found to induce truth-telling for any players who maximize their expected
payo�.

What our analysis implies for the use of the expected externality mechanism, is that the
way of thinking of subjects has to be taken into account whenever possible. The voting
example we looked at in the end of the AGV section prompts that the mechanism may
lead to di�erent outcomes in more and less sophisticated groups. Besides, the practical
organization of the mechanism would also a�ect the strategies and outcomes through
the agents' beliefs about the registered reports. Hence the rules of the game should be
stated so clearly and the organizers should show so much commitment to them, that all
players would not only understand the rules and know their reports would be counted,
but also be sure that all other players understand the rules and know their reports
will be counted. Futhermore, whenever possible, the transfers ought to be computed
basing on all agents' reports under the assumption they have told the truth. If the
way of computing is made common knowledge, then all optimizing agents will report
truthfully.

This paper has shown that if real-world people think �nite number of iterations instead
of always playing Bayesian-Nash equilibrium, our perceptions of standard mechanisms
should change: a �rst-price auction may no longer be e�cient and the expected ex-
ternality mechanism may yield the choice of "wrong" alternatives. However, in many
natural cases BNE still gives correct predictions or, at least, good approximations of
what happens in iterative thinking reality. Besides, our convergence results suggest
that in repeated interactions, when the agents can partially observe the strategies of
others, equilibrium will become an even better approximation.
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A Appendix

Proof of Propositions 5 to 10 The �rst-order conditions of a rational of order 1
player:

E
s
(0)
−i

[∂vi
∂κ

(K(si, s
(0)
−i ); θi)

∂K
∂si

(si, s
(0)
−i )] + E

θ−i
[∂v−i
∂κ

(K(si, θ−i); θ−i)
∂K
∂si

(si, θ−i)] = 0

Note that ∂v−i
∂κ

(K(si, θ−i); θ−i) + ∂vi
∂κ

(K(si, θ−i); si) = 0 (since K(si, s−i) is e�cient)

Thus we can rewrite the second term in the f.o.c.7:

0 = E
s
(0)
−i

[∂vi
∂κ

(K(si, s
(0)
−i ); θi)

∂K
∂si

(si, s
(0)
−i )]− Eθ−i

[∂vi
∂κ

(K(si, θ−i); si)
∂K
∂si

(si, θ−i)]

=
´

∂vi
∂κ

(K(si, s
(0)
−i ); θi)

∂K
∂si

(si, s
(0)
−i )dΦ(s

(0)
−i )−

´
∂vi
∂κ

(K(si, θ−i); si)
∂K
∂si

(si, θ−i)dF (θ−i)

Take the second term and integrate by part:´
∂vi
∂κ

(K(si, θ−i); si)
∂K
∂si

(si, θ−i)d{F (θ−i)− 1} =

where θ−i is the lower bound of the support of F (·). We changed the name of the
integration variable to

Modify the �rst term by taking Taylor expansion (Peano form) under the integral:´
∂vi
∂κ

(K(si, s
(0)
−i ); θi)

∂K
∂si

(si, s
(0)
−i )dΦ(s

(0)
−i ) =

=
´

[∂vi
∂κ

(K(si, s
(0)
−i ); si) + ∂2vi

∂κ∂θi
(K(si, s

(0)
−i ); θ̂i)(θi − si)]∂K∂si (si, s

(0)
−i )dΦ(s

(0)
−i )

where θ̂i is between si and θi.

=
´

∂vi
∂κ

(K(si, s
(0)
−i ); si)

∂K
∂si

(si, s
(0)
−i )d{Φ(s

(0)
−i )−1}+

´
∂2vi
∂κ∂θi

(K(si, s
(0)
−i ); θ̂i)(θi−si)∂K∂si (si, s

(0)
−i )dΦ(s

(0)
−i ) =

= −∂vi
∂κ

(K(si, s
(0)
−i ); θi)

∂K
∂si

(si, s
(0)
−i )−

´
{Φ(t)− 1}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t)+

+
´

∂2vi
∂κ∂θi

(K(si, s
(0)
−i ); θ̂i)(θi − si)∂K∂si (si, s

(0)
−i )dΦ(s

(0)
−i )

where s
(0)
−i is the lower bound of the support of Φ(·). Assuming that s

(0)
−i = θ−i( we

further denote it t) the f.o.c. becomes:´
{F (t)− Φ(t)}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t)+

+(θi − si)
´

∂2vi
∂κ∂θi

(K(si, s
(0)
−i ); θ̂i)

∂K
∂si

(si, s
(0)
−i )dΦ(s

(0)
−i ) = 0

s
(1)
i (θi)− θi ≡

´
{F (t)−Φ(t)}d ∂vi

∂κ
(K(s

(1)
i (θi),t);s

(1)
i (θi))

∂K
∂si

(s
(1)
i (θi),t)´ ∂2vi

∂κ∂θi
(K(s

(1)
i (θi),s

(0)
−i );θ̂i)

∂K
∂si

(s
(1)
i (θi),s

(0)
−i )dΦ(s

(0)
−i )

7s.o.c. E
s
(0)
−i
[∂

2vi
∂κ2 (K(si, s

(0)
−i ); θi)[

∂K
∂si

(si, s
(0)
−i )]

2 + ∂vi
∂κ (K(si, s

(0)
−i ); θi)

∂2K
∂s2i

(si, s
(0)
−i )]−

−E
θ−i

[∂
2vi
∂κ2 (K(si, θ−i); si)[

∂K
∂si

(si, θ−i)]
2 + ∂vi

∂κ (K(si, θ−i); si)
∂2K
∂s2i

(si, θ−i) +

∂2vi
∂κ∂θi

(K(si, θ−i); si)
∂K
∂si

(si, θ−i)] | si=θi
F (·)=Φ(·)

=

= −E
θ−i

[ ∂
2vi

∂κ∂θi
(K(si, θ−i); si)

∂K
∂si

(si, θ−i)] < 0 (see Lemma)
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(Note that if F (t)−Φ(t) ≡ 0, there is no distortion, thus Proposition EQUIVALENCE
is proven)

Let's look at the signs of expressions. The proof that the denominator is positive is in
Lemma 12 (see below). The nominator :´ +∞
t
{F (t)− Φ(t)}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t) =

=
´ +∞
t
{F (t)− Φ(t)}[∂2vi

∂κ2
(K(si, t); si)

∂K
∂s−i

(si, t)
∂K
∂si

(si, t)+

+∂vi
∂κ

(K(si, t); si)
∂2K

∂si∂s−i
(si, t)]dt

If ∂2K
∂si∂s−i

(si, t) = 0 then the term in brackets is negative:

∂2vi
∂κ2

(K(si, t); si) < 0 we assume concavity of preferences in κ (thus s.o.c. of the SCR
problem is satis�ed)

∂K
∂s−i

(si, t)
∂K
∂si

(si, t) > 0 from SMC and Lemma 12

Thus Proposition "Linear SCR" is proven.

Otherwise - any ∂2K
∂si∂s−i

(si, t) - we need to decompose the denominator. Start with the
case of Proposition "++":
∂2vi
∂κ∂θi

(κ, θi) > 0, ∂2K
∂si∂s−i

(si, t) ≥ 0. The denominator:´ +∞
t
{F (t)− Φ(t)}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t) =

=

ˆ +∞

si

{F (t)− Φ(t)}

∂2vi
∂κ2

(K(si, t); si)︸ ︷︷ ︸
−

∂K

∂s−i
(si, t)︸ ︷︷ ︸
+

∂K

∂si
(si, t)︸ ︷︷ ︸
+

+
∂vi
∂κ

(K(si, t); si)︸ ︷︷ ︸
−

∂2K

∂si∂s−i
(si, t)︸ ︷︷ ︸

+

 dt
︸ ︷︷ ︸

"�rst term"

+

+

ˆ si

t

{F (t)− Φ(t)}d∂vi
∂κ

(K(si, t); si)
∂K

∂si
(si, t)︸ ︷︷ ︸

"second term"

It was convenient to break down the integral into 2 parts since ∂vi
∂κ

(K(si, t); si) decreases

in t.8 and ∂vi
∂κ

(K(si, si); si) = 0. First term, in brackets:

∂2vi
∂κ2

(K(si, t); si) < 0, concavity of preferences in κ

∂K
∂s−i

(si, t) > 0, ∂K
∂si

(si, t) > 0 from positive SMC and Lemma 12

∂vi
∂κ

(K(si, t); si) for t ≤ si
∂2K

∂si∂s−i
(si, t) by the assumption. Thus∂2vi

∂κ2
(K(si, t); si)︸ ︷︷ ︸
−

∂K

∂s−i
(si, t)︸ ︷︷ ︸
+

∂K

∂si
(si, t)︸ ︷︷ ︸
+

+
∂vi
∂κ

(K(si, t); si)︸ ︷︷ ︸
−

∂2K

∂si∂s−i
(si, t)︸ ︷︷ ︸

+

 is negative. The

8 ∂2vi
∂κ2 (K(si, t); si)

∂K
∂t (si, t) < 0
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second term: ˆ si

t

{F (t)− Φ(t)}d∂vi
∂κ

(K(si, t); si)
∂K

∂si
(si, t) =

∂vi
∂κ

(K(si, t); si)︸ ︷︷ ︸
=0

∂K
∂si

(si, si){F (si)− Φ(si)}+ ∂vi
∂κ

(K(si, t); si)
∂K
∂si

(si, t){F (t)− Φ(t)}︸ ︷︷ ︸
=0

−

−
´ si
t
{F (t)− Φ(t)}∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t)d{F (t)− Φ(t)}
= −
´ si
t
{F (t)− Φ(t)}∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t){f(t)− ϕ(t)}dt

∂vi
∂κ

(K(si, t); si) ≥ 0

for t ≤ si
∂K

∂si
(si, t) > 0

First look at the case Φ(·) s.d. F (·): F (t) − Φ(t) > 0 ∀t ⇒ the �rst term is negative.
If f(si) − ϕ(si) > 0, then the second term is negative, too: The MLRP assumption

implies that f(t)
ϕ(t)

decreases in t; thus under the integral f(t)− ϕ(t) > 0 and there exists

a (unique) t∗such that f(t∗)−ϕ(t∗) = 0 (see graph). So for θi such that s
(1)
i (θi) ≤ t∗the

result is established: we have a su�cient (but not necessary9) condition for underre-
porting types in the case Φ(·) s.d. F (·).

Now suppose that F (·) s.d. Φ(·)=⇒ the �rst term is positive. MLRP then implies ϕ(t)
f(t)

decreases in t and by the same reasoning for θi low enough the second term is positive,
too, and we get overreporting of types.

Proposition "++" is now proven.

To prove Proposition "+ -" ( ∂2K
∂si∂s−i

(si, t) ≤ 0), change the decomposition of the nomi-
nator:´ +∞
t
{F (t)− Φ(t)}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t) =

=
´ si
t
{F (t)− Φ(t)}[∂

2vi
∂κ2

(K(si, t); si)︸ ︷︷ ︸
−

∂K

∂s−i
(si, t)︸ ︷︷ ︸
+

∂K

∂si
(si, t)︸ ︷︷ ︸
+

+

+
∂vi
∂κ

(K(si, t); si)︸ ︷︷ ︸
+

∂2K

∂si∂s−i
(si, t)︸ ︷︷ ︸

−

]dt+

+
´ +∞
si
{F (t)− Φ(t)}d∂vi

∂κ
(K(si, t); si)

∂K
∂si

(si, t)

Given that ∂vi
∂κ

(K(si, t); si) decreases in t, we have that for t ≤ si
∂vi
∂κ

(K(si, t); si) ≥ 0
and thus the term in brackets is again negative. Integrating the second term by part

9The integral may remain negative for some time as si goes beyond t
∗.
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we obtain −
´ +∞
si

∂vi
∂κ

(K(si, t); si)︸ ︷︷ ︸
−

∂K

∂si
(si, t)︸ ︷︷ ︸
+

{f(t)−ϕ(t)}dt. Since we want both parts of

the nominator to have the same sign and MLRP applies, we need to have si su�ciently
high now (or θi such that s

(1)
i (θi) ≥ t∗). Proposition "+-" proven.

The proofs of Propositions "- +" and "- -" that assume SMC with negative sign are
similar to the presented above. With negative SMC ∂K

∂si
(si, s−i)̇ becomes negative and

∂vi
∂κ

(K(si, t); si) increases in t.

Lemma Under SMC ∂2vi
∂κ∂θi

(K(s
(1)
i (θi), s

(0)
−i ); θ̂i)

∂K
∂si

(s
(1)
i (θi), s

(0)
−i ) > 0 for any θi, θ̂i, s

(0)
−i .

Proof ∂vi
∂κ

(K(θ̃i, θ̃−i), θ̃i) + ∂v−i
∂κ

(K(θ̃i, θ̃−i), θ̃−i) ≡ 0 (f.o.c. for �nding the e�cient rule)

Di�erentiate w.r.t. θ̃i :
∂K
∂si

(θ̃i, θ̃−i)[
∂2vi
∂κ2

(K(θ̃i, θ̃−i), θ̃i) + ∂2v−i
∂κ2

(K(θ̃i, θ̃−i), θ̃−i)] + ∂2vi
∂κ∂θi

(K(θ̃i, θ̃−i), θ̃i) = 0

From s.o.c. of the same problem, ∂
2vi
∂κ2

(K(θ̃i, θ̃−i), θ̃i) + ∂2v−i
∂κ2

(K(θ̃i, θ̃−i), θ̃−i) < 0

Thus, sgn(∂K
∂si

(θ̃i, θ̃−i)) = sgn( ∂2vi
∂κ∂θi

(K(θ̃i, θ̃−i), θ̃i)). Substitute θ̃i by s
(1)
i (θi), θ̃−i by s

(0)
−i

and get sgn(∂K
∂si

(s
(1)
i (θi), s

(0)
−i )) = sgn( ∂2vi

∂κ∂θi
(K(s

(1)
i (θi), s

(0)
−i ), s

(1)
i (θi))). With SMC (sign

of ∂2vi
∂κ∂θi

(κ, θi) is the same for all (κ, θi)) the result is proven.

Proof of Proposition 11 f.o.c. for �nding s
(k)
i (θi),

s
(k)
i (θi) = arg max

si∈Si
Eθ−i [vi(K(si, s

(k−1)
−i (θ−i)); θi) + v−i(K(si, θ−i); θ−i)] :

0 = Eθ−i [
∂vi
∂κ

(K(si, s
(k−1)
−i (θ−i)); θi)

∂K
∂si

(si, s
(k−1)
−i (θ−i))+

+∂v−i
∂κ

(K(si, θ−i); θ−i)
∂K
∂si

(si, θ−i)]

= Eθ−i [
∂vi
∂κ

(K(si, s
(k−1)
−i (θ−i)); θi)

∂K
∂si

(si, s
(k−1)
−i (θ−i))− ∂vi

∂κ
(K(si, θ−i); si)

∂K
∂si

(si, θ−i)]

(∗)
= Eθ−i [(

∂vi
∂κ

(K(si, s
(k−1)
−i (θ−i)); θi)− ∂vi

∂κ
(K(si, θ−i); si))

∂K
∂si

(si, s
(k−1)
−i (θ−i))+

+∂vi
∂κ

(K(si, θ−i); si)(
∂K

∂si
(si, s

(k−1)
−i (θ−i))−

∂K

∂si
(si, θ−i))︸ ︷︷ ︸

=0

].

(∗) : we added and substracted ∂vi
∂κ

(K(si, θ−i); si)
∂K
∂si

(si, s
(k−1)
−i (θ−i))

(∂K
∂si

(si, s
(k−1)
−i (θ−i))− ∂K

∂si
(si, θ−i)) = 0 since by assumption ∂2K

∂si∂s−i
(si, t) = 0 (linearity of

SCR) and K(·, ·) is a smooth function.

Apply Taylor expansion to the �rst term:

0 = Eθ−i [(
∂vi
∂κ

(K(si, s
(k−1)
−i (θ−i)); θi)− ∂vi

∂κ
(K(si, θ−i); si))

∂K
∂si

(si, s
(k−1)
−i (θ−i)) =
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= Eθ−i [
∂2vi
∂κ2

(K(si, ŝ−i); θ̂i)
∂K
∂si

(si, ŝ−i)(s
(k−1)
−i (θ−i)−θ−i)+ ∂2vi

∂κ∂θi
(K(si, ŝ−i); θ̂i)(θi−si)]∂K∂si (si, s

(k−1)
−i (θ−i))

where θ̂i ∈ [min(θi, si); max(θi, si)], and ŝ−i ∈ [min(s
(k−1)
−i (θ−i), θ−i); max(s

(k−1)
−i (θ−i), θ−i)]

Since ∂K
∂si

(si, s
(k−1)
−i (θ−i)) 6= 0 we get:

si − θi = Eθ−i


∂2vi
∂κ2

(K(si, ŝ−i); θ̂i)
∂K
∂si

(si, ŝ−i)

∂2vi
∂κ∂θi

(K(si, ŝ−i); θ̂i)︸ ︷︷ ︸
<0

(s
(k−1)
−i (θ−i)− θ−i)

 ,
si =: s

(k)
i (θi)

We see that the distortion of type changes direction as k, the order of rationality,
increases.

Moreover, from the proof of Lemma 12 we can see that
− ∂

2vi
∂κ2

(K(si,ŝ−i);si)
∂K
∂si

(si,ŝ−i)−
∂2v−i
∂κ2

(K(si,ŝ−i);s−i)
∂K
∂si

(si,ŝ−i)

∂2vi
∂κ∂θi

(K(si,ŝ−i);si)
= 1,

thus
− ∂

2vi
∂κ2

(K(si,ŝ−i);si)
∂K
∂si

(si,ŝ−i)

∂2vi
∂κ∂θi

(K(si,ŝ−i);si)
< 110

We assume that θ̂i is close enough to si so that by continuity

−∂2vi
∂κ2

(K(si, ŝ−i); θ̂i)
∂K
∂si

(si, ŝ−i)

∂2vi
∂κ∂θi

(K(si, ŝ−i); θ̂i)
< 1

as well. Take expectation of both sides:

Eθi

[
s

(k)
i (θi)− θi

]
= EθiEθ−i

[
∂2vi
∂κ2

(K(si, ŝ−i); θ̂i)
∂K
∂si

(si, ŝ−i)

∂2vi
∂κ∂θi

(K(si, ŝ−i); θ̂i)
(s

(k−1)
−i (θ−i)− θ−i)

]

as types are independent and the distributions of types coinside,

Eθi

[
s

(k)
i (θi)− θi

]
= Eθ−i

[
(s

(k−1)
−i (θ−i)− θ−i)Eθi

∂2vi
∂κ2

(K(si, ŝ−i); θ̂i)
∂K
∂si

(si, ŝ−i)

∂2vi
∂κ∂θi

(K(si, ŝ−i); θ̂i)

]

Eθi

[∣∣∣s(k)
i (θi)− θi

∣∣∣] < Eθ−i

[∣∣∣s(k−1)
i (θi)− θi

∣∣∣]
This concludes the proof of Proposition 11 �Convergence�.

10
− ∂

2v−i
∂κ2

(K(si,ŝ−i);s−i)
∂K
∂si

(si,ŝ−i)

∂2vi
∂κ∂θi

(K(si,ŝ−i);si)
∈]0, 1[
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