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Abstract

In many auction settings, there is favoritism: the seller�s welfare depends positively on the

utility of a subset of potential bidders. However, laws or regulations may not allow the seller

to discriminate among bidders. We �nd the optimal nondiscriminatory auction in a private

value, single-unit model under favoritism. At the optimal auction there is a reserve price, or an

entry fee, which is decreasing in the proportion of preferred bidders and in the intensity of the

preference. Otherwise, the highest-valuation bidder wins. We show that, at least under some

conditions, imposing a no-discrimination constraint raises expected seller revenue.

Keywords: auctions, favoritism, nondiscriminatory mechanisms.

JEL classi�cation: C72, D44.
1We are grateful to Daniel Aromí, Juan Dubra, Peter Klibano¤, and to participants at several seminars,

for their comments on an earlier version of this paper. Arozamena and Weinschelbaum acknowledge �nancial

support from FONCyT, PICT 2255.
2Address: Saenz Valiente 1010, C1428BIJ Buenos Aires, Argentina. E-mail: larozamena@utdt.edu. Phone:

54-11-5169-7300. Fax: 54-11-5169-7348.
3Address: 1200 East Colton Avenue, PO Box 3080, Redlands, CA 92373-0999 United States. E-mail:

nicholas_shunda@redlands.edu. Phone: 909-748-8569. Fax: 909-335-5387.
4Address: Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina. E-mail: fweinsch@udesa.edu.ar.

Phone: 54-11-4725-7041. Fax: 54-11-4725-7010.

1



1 Introduction

It is frequently the case when auctions are used that the seller is not indi¤erent as to which of

the bidders will be the winner. A seller runs an auction to enhance competition among bidders

but, for a given selling price, she would prefer some of the bidders to win rather than others.

This may occur when some of the bidders�welfare positively in�uences the seller�s welfare. For

example, in a government-run auction, domestic �rms may generate more tax revenue than

their foreign rivals. Alternatively, the seller and some of the bidders may be �rms in the same

conglomerate. We say that there is favoritism when the seller has such a preference for some

bidders over others.

Favoritism usually motivates the design of discriminatory auctions.5 Since the bidders�

identities are relevant to the seller, auction rules are speci�ed in such a way that not only bids

matter, but also who makes them. For example, price preferences are frequently introduced:

to win, a non-preferred bidder may have to beat the highest bid made by a preferred bidder by

at least some previously speci�ed margin. Another usual way to discriminate, known as right

of �rst refusal, awards one of the preferred bidders the right to match the highest bid that any

of her rivals may submit.6

However, in many situations discrimination is not possible. This happens quite often in

public procurement, where laws and regulations sometimes forbid favoring some bidders over

others to level the �eld and thus to foster competition. There may be higher-level regulations

that explicitly prevent local authorities from favoring local �rms.7 In general, this constraint

may be interpreted as one imposed by a principal on an agent who is in charge of the auction.8

5The justi�cation for discrimination that we examine, which derives from the fact that the seller values

some of the bidders�utilities, is not the only possible one. With a �xed number of bidders, biasing the auction

against strong bidders raises revenue, as shown by optimal auction theory. With endogenous entry, discrim-

inating against strong bidders may also be optimal for the seller, since it could encourage the entry of weak

bidders. Those arguments require asymmetry among bidders, while our model is (but for the possibly unequal

consideration of bidders�utilities by the seller) symmetric.
6This right has been studied in Walker (1999), Bikhchandani et al. (2005), Arozamena and Weinschelbaum

(2006), Lee (2008), Burguet and Perry (2009), and Choi (2009).
7For example, see Maasland et al. (2004) for a discussion on whether discriminating among bidders may be

viewed as state aid -and thus be prohibited- under European Union rules or not.
8Violating this constraint can result in unwanted scrutiny and other costs for auction designers. See, for

example, Hu (2010) for criticism of the Texas Lottery Commission for perceived con�ict of interest in its

organizing the procurement auction for Texas�state lottery vendors. A more complete analysis would embed

the auction design problem within a principal-agent model, but here we are simply concerned with the e¤ects
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Our aim here is to examine the auction design problem faced by a seller who places positive

weight on some of the bidders�welfare,9 but faces a no-discrimination constraint. We conclude

that the seller will choose an auction where the highest-valuation bidder wins unless her valua-

tion is too low. Thus, there will be a reserve price or an entry fee adequately chosen to exclude

bidders with lower valuations, just as in the standard, revenue-maximizing auction. However,

we �nd that the set of valuations excluded is smaller when there is favoritism: there will be a

lower reserve price or entry fee. Furthermore, the set of excluded valuations becomes smaller

when the weight attached to the utility of any favored bidder grows. Hence, favoritism raises

the probability of selling the object.

One possible justi�cation for ruling out discriminatory auctions may be that doing so raises

expected revenue. Indeed, we �nd that, in some cases, the optimal mechanism that the seller

would select under favoritism when she cannot discriminate among bidders generates more

revenue than the mechanism she would use if discrimination were allowed.

Our work contributes to the literature on favoritism in auctions. La¤ont and Tirole (1991)

and Vagstad (1995) study the case of multidimensional auctions, where favoritism may ap-

pear when the auctioneer assesses product quality. McAfee and McMillan (1989), Branco

(1994), and Naegelen and Mougeot (1998) examine single-dimensional auctions, where price-

preferences may be used. The main result of this literature is that the optimal allocation rule

follows from comparing the maximum valuation among preferred bidders with the maximum

�virtual�valuation among non-preferred bidders. In all these papers, the seller is allowed to

use discriminatory mechanisms. Arozamena and Weinschelbaum (2011) extend the analysis

of the single-dimensional case to a situation where the number of bidders is endogenous, and

conclude that the optimal auction in that setting is indeed nondiscriminatory. Thus, not being

allowed to discriminate is irrelevant when entry is endogenous. Here, however, we examine the

case where the number of bidders is �xed.

In the following section we present the model and characterize the optimal mechanism for

a seller that may discriminate among bidders. We derive the optimal mechanism under a no-

discrimination constraint in section 3. In section 4, we examine the e¤ect of that constraint on

expected revenue. We conclude in section 5.

of a no-discrimination constraint on auction design under seller favoritism among bidders.
9In Section 3, we also analyze the case where the seller�s welfare rises by a �xed value if certain bidders win.
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2 The model

The owner of a single, indivisible object is selling it through an auction.10 For simplicity, we

assume the seller attaches no value to the object. There are N � 2 bidders whose valuations
for the object are given by vi, i = 1; :::; N: Each vi is bidder i�s private information. These

valuations are distributed identically and independently according to the c.d.f. F with support

on an interval that is normalized to [v; v] and a density f that is positive and bounded on

the whole support. The context is therefore one of symmetric independent private values. All

parties to the auction are risk-neutral, and we assume that the virtual valuation of any bidder,

J(v) = v � 1�F (v)
f(v)

; is increasing in her actual valuation.11

Our aim is to characterize a selling mechanism that maximizes the utility of a seller who

values positively the welfare of a subset of the set of bidders, in addition to her own expected

revenue. Speci�cally, we assume that the seller�s objective function follows from adding to

the seller�s revenue each bidder�s welfare, where bidder i�s welfare is weighted according to an

exogenous parameter �i, i = 1; :::; N: We assume as well that �i 2 [0; 1] for all i. That is, the
seller attaches a weakly positive weight to each bidder�s welfare, but cannot value the latter

more than her own, �private�utility (i.e., her revenue). Note that if �i = 0 for all i, we have a

standard, revenue-maximizing seller. However, if �i = 1 for all i, the seller will behave as she

would when pursuing e¢ ciency in the absence of favoritism.

In this speci�c context, as we mentioned above, we intend to characterize the optimal

mechanism for a seller that cannot discriminate among bidders. However, the best choice for

a seller who is allowed to treat di¤erent bidders in an asymmetric way will be useful to us as

a reference point later on. Thus, we describe here the optimal mechanism when discrimination

is indeed possible.

As described so far, our problem is a slight modi�cation of the standard optimal auction

problem with independent private values.12 Let Hi(v1; :::; vN) (Pi(v1; :::; vN)) be the proba-

bility that bidder i gets the object (respectively, the expected price bidder i has to pay to

the seller) if bidder valuations are given by (v1; :::; vN). Then, the seller has to choose a

mechanism fHi(:); Pi(:)gNi=1 such that, for all (v1; :::vN), 0 � Hi(v1; :::; vN) � 1 for all i andPN
i=1Hi(v1; :::; vN) � 1. In addition, let hi(vi) (pi(vi)) be the expected probability that bidder

i gets the object (respectively, the expected price she pays) when her valuation is vi, and the

10All of our results, however, are applicable as well to the case of procurement auctions.
11This is what the literature calls the �regular case�after Myerson (1981).
12See Myerson (1981) and Riley and Samuelson (1981).
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valuations of all other bidders are unknown.

Bidder i�s expected utility when her valuation is vi and she announces that it is v0i is

eUi(vi; v0i) = hi(v0i)vi � pi(v0i):
Additionally, let

Ui(vi) = eUi(vi; vi) = hi(vi)vi � pi(vi):
Then, the seller�s problem is

max
fHi(:);Pi(:)gNi=1

NX
i=1

�Z v

v

pi(vi)f(vi)dvi + �i

Z v

v

Ui(vi)f(vi)dvi

�
(1)

subject to the standard incentive compatibility and participation constraints

Ui(vi) � eUi(vi; v0i) for all i, for all vi; v0i (2)

Ui(vi) � 0 for all i, for all vi: (3)

A slightly di¤erent version of this problem has been studied before, for instance, in Naegelen

and Mougeot (1998).13 Since we will use it later on as a reference point, let us characterize the

solution. We follow the usual steps in the literature.

Let evi(vi) be the valuation that bidder i announces optimally when her true valuation is vi.
Clearly, by incentive compatibility, it has to be true that evi(vi) = vi and Ui(vi) = eUi(vi; evi(vi)):
The envelope theorem then implies that

U 0i(vi) =
@

@vi
eUi(vi; evi(vi)) = hi(vi):

Therefore, Ui(vi) =
R vi
v
hi(s)ds+Ui(v). Stated in a way that is more convenient for us in what

follows, and noting that, in the solution to our problem, Ui(v) = 0 for all i;14 we have

pi(vi) = hi(vi)vi �
Z vi

v

hi(s)ds

13This problem can be thought of as an extension to the N -bidder context of a particular case of the analysis

in Naegelen and Mougeot (1998), when there is no consumer surplus and the shadow cost of public funds is

zero.
14Ui(v) may be zero or positive for those bidders i with �i = 1: Given that we are adding the expected utilities

of the seller and these bidders, how much they pay (as long as incentive compatibility holds) does not a¤ect the

seller�s objective function. However, by no-discrimination, Ui(vi) = U(vi) for all i, so U(v) > 0 is only possible

if �i = 1 for all i. But even in this case there exists a solution where Ui(v) = 0 for all i.
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for all i. Substituting for pi(vi) and Ui(vi) in the seller�s objective function yields

NX
i=1

�Z v

v

�
hi(vi)vi �

Z vi

v

hi(s)ds

�
f(vi)dvi + �i

Z v

v

Z vi

v

hi(s)ds f(vi)dvi

�
:

Integrating by parts, we have

NX
i=1

Z v

v

h(vi)

�
vi � (1� �i)

1� F (vi)
f(vi)

�
f(vi)dvi:

Then, the seller solves

max
fHi(:)gNi=1

Ev1;:::;vN

"
NX
i=1

Hi(v1; :::; vN)

�
vi � (1� �i)

1� F (vi)
f(vi)

�#
: (4)

In the absence of favoritism, the seller would maximize the expected value of the winner�s

virtual valuation. Here, virtual valuations are adjusted to account for favoritism. Only a

fraction (1 � �i) of bidder i�s rent is substracted from that bidder�s actual valuation in the

seller´s objective function. In an extreme case, if �i = 1 �i.e., when bidder i�s utility is as

important to the seller as her own revenue�it is bidder i�s actual valuation that enters into the

seller�s objective function.

The solution to this problem is straightforward, and is described in the following proposition.

Proposition 1 If discrimination is allowed, the optimal allocation rule for the seller is15

HD
i (v1; :::; vN) =

8>>><>>>:
1 if

i = argmaxj vj � (1� �j)1�F (vj)f(vj)

and vi � (1� �i)1�F (vi)f(vi)
� 0

0 otherwise.

The seller thus de�nes individual minimum acceptable valuations ri that solve

ri � (1� �i)
1� F (ri)
f(ri)

= 0 (5)

i = 1; :::; N: In order to be awarded the object, bidder i�s valuation must be larger than ri, and

her adjusted virtual valuation must be higher than all other bidders�.

15If there is a tie, the object may be allocated randomly among the bidders who have the highest adjusted

virtual valuation.
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3 No discrimination

As mentioned above, we are interested in the case where the seller cannot discriminate among

bidders. Hence, we add a new constraint on the set of mechanisms fHi(:); Pi(:)gNi=1 that the
seller can select.

No-discrimination constraint: The seller has to choose a mechanism fHi(:); Pi(:)gNi=1
that, for any permutation � : f1; :::; Ng �! f1; :::; Ng; satis�es

Hi(v�(1); :::; v�(N)) = H�(i)(v1; :::; vN)

Pi(v�(1); :::; v�(N)) = P�(i)(v1; :::; vN)

for all i.

Remark 1 The no-discrimination constraint may be viewed as one imposed on the speci�c

indirect mechanism that the seller will use. Here, we present it as a constraint on the direct

mechanisms that we are examining under the revelation principle. We may do that given that we

are in a symmetric context, as described above: a nondiscriminatory auction with a symmetric

equilibrium implements a nondiscriminatory direct revelation mechanism. If the distributions

of valuations were not symmetric, though, clearly we would not necessarily be able to associate

a nondiscriminatory auction with a symmetric direct mechanism.

The seller�s problem, then, is to maximize (1) subject to the incentive compatibility and

participation constraints described in (2) and (3), and subject to the no-discrimination con-

straint. Following the steps described in the previous section, we can incorporate the incentive

compatibility and participation constraints into the objective function and describe the seller�s

problem as that of maximizing (4) subject to the no-discrimination constraint.

The fact that the seller cannot discriminate among bidders, however, allows us to restate

this problem in a more convenient way.

Remark 2 Let v(n) be the nth order statistic associated with the vector of valuations (v1; :::; vN).16

For any vector v = (v1; :::; vN), we may de�ne a function v : f1; :::; Ng �! f1; :::; Ng that

assigns to each position 1; :::; N the identity of the bidder whose valuation ranks in that position.

16We follow the convention by which v(1) is the highest value in the vector, v(2) the second-highest, and so

on.
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That is, v(n) = i if v(n) = vi.17 The no-discrimination constraint implies that for any two

vectors v = (v1; :::; vN); v0 = (v01; :::; v
0
N) such that (v(1); :::; v(N)) = (v

0
(1); :::; v

0
(N)) we must have

Hv(n)(v1; :::; vN) = Hv0 (n)(v
0
1; :::; v

0
N), n = 1; :::; N:

To show this, assumeHv(n�)(v1; :::; vN) 6= Hv0 (n�)(v
0
1; :::; v

0
N) for some n

�. Let e� : f1; :::; Ng �!
f1; :::; Ng be such that e�(i) = v(�1v0 (i)): The functions v and v0 are permutations, so e� is a
permutation as well. Note that (v01; :::; v

0
N) = (ve�(1); :::; ve�(N)): Then,

He�(i�)(v1; :::; vN) 6= Hi�(ve�(1); :::; ve�(N))
for i� = v0(n

�), which violates the no-discrimination constraint.

Thus, if for any two vectors of valuations the corresponding vectors of order statistics coin-

cide, then the seller has to allocate the good with the same probability to those bidders that

occupy each ordered position in the vectors of order statistics. In other words, the probabil-

ity that any given bidder wins must depend only on the vector of order statistics and on her

valuation�s position in that vector. This, in turn, implies the following lemma.

Lemma 1 The seller�s problem can be expressed in terms of order statistics: she has to choose

an allocation function

fHn(v(1); :::; v(N))gNn=1:

That is, all valuation vectors that generate the same vector of order statistics have to be

treated equally. Then, we can focus only on which allocations the seller chooses when the

vector of valuations is ordered. Allocations in all other cases follow from the no-discrimination

constraint.

The seller, though, cares about the identities of the bidders. Given a vector of order sta-

tistics (v(1); :::; v(N)); since valuations are independently drawn from the same distribution, the

probability that bidder i�s valuation ranks in position n is the same for all bidders. Then, for

that vector of order statistics, the seller�s objective function will take the following expected

value
NX
n=1

1

N
Hn(v(1); :::; v(N))

"
NX
i=1

�
v(n) � (1� �i)

1� F (v(n))
f(v(n))

�#
17Since we are using continuous distributions, ties will occur with probability zero. Still, in the event of a tie,

positions have to be allocated with equal probabilities among those bidders whose valuations coincide so that

the no-discrimination constraint is satis�ed.
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or,
NX
n=1

1

N
Hn(v(1); :::; v(N))

"
Nv(n) �

1� F (v(n))
f(v(n))

NX
i=1

(1� �i)
#
:

The seller�s problem is then

max
fHn(v(1);:::;v(N))gNn=1

Ev(1);:::;v(N)

(
NX
n=1

1

N
Hn(v(1); :::; v(N))

"
Nv(n) �

1� F (v(n))
f(v(n))

NX
i=1

(1� �i)
#)

:

The solution to this problem is simple. Since J(v) = v � 1�F (v)
f(v)

is increasing in v, it

is easy to show that Nv � 1�F (v)
f(v)

PN
i=1 (1� �i) is also increasing in v. Thus, the seller should

allocate the object with probability 1 to the bidder with the highest valuation whenever Nv(1)�
1�F (v(1))
f(v(1))

PN
i=1 (1� �i) > 0. Otherwise, she should keep the object. We therefore have the

following result.

Proposition 2 The optimal allocation rule when discrimination is not allowed is18

HND
i (v1; :::; vN) =

8<: 1 if vi > max
j 6=i

vj and Nvi � 1�F (vi)
f(vi)

PN
j=1 (1� �j) > 0

0 otherwise.

This direct mechanism can be implemented by any auction where the highest-valuation

bidder wins, with an adequately chosen reserve price or entry fee. For example, the seller may

choose a �rst-price or a second-price auction with reserve price r such that

Nr � 1� F (r)
f(r)

NX
i=1

(1� �i) = 0:19 (6)

Note that if �i = 0 for all i, the optimal mechanism for the seller described in Proposition 2

coincides with the standard, revenue-maximizing direct mechanism: the object is awarded to

the highest-valuation bidder and all bidders with valuations below r such that r � 1�F (r)
f(r)

= 0

are excluded. At the same time, if �i = 1 for all i, then r = 0, no bidders are excluded and the

seller chooses an auction where the highest-valuation bidder always wins.

Therefore, for any vector of weights (�1; :::; �N) that the seller attaches to the bidders�

utilities, she chooses a mechanism that neither sells the good with probability one nor attains

18In order to satisfy the no-discrimination constraint, as we mentioned above, if there is a tie all bidders with

the highest valuation win with the same probability.
19As the left-hand side of this equation is increasing in r, there is a unique solution.

9



revenue maximization. Furthermore, she selects a mechanism that falls in between these two

extreme cases.20

Example 1 Consider the case of two bidders with valuations drawn from the uniform distribu-

tion on the unit interval with seller favoritism for bidder 1 given by �1 = 1=2 and no favoritism

for bidder 2, so that �2 = 0. It is well-known that the standard, revenue-maximizing reserve

price in this case is r = 1=2. Taking into consideration the seller�s favoritism toward bidder 1

and her inability to discriminate between the bidders, the optimal mechanism�s minimum ac-

ceptable valuation is r = 3=7. Finally, the reserve price that ensures that the good is sold with

probability one is r = 0.

Note as well that, as long as �i > 0 for some i (i.e., there is favoritism), the optimal mecha-

nism�s minimum acceptable valuation may increase when the number of bidders changes. That

valuation depends on (1=N)
NP
i=1

�i: Then, if a new bidder enters the auction with a weight in the

seller�s objective function that is higher (lower) than the average weight that the seller attaches

to the existing bidders�utilities, the optimal mechanism�s minimum acceptable valuation will

fall (respectively, rise). This di¤ers from the standard, revenue-maximizing reserve price, which

is independent of N .

It is also interesting to examine, given N , the e¤ect of a change in the vector of weights

(�1; :::; �N) on the mechanism selected by the seller and on the welfare of each of the parties

involved in the auction. First, notice that r, the minimum valuation that is not excluded from

the mechanism, is decreasing in �i for any i. If the seller places a larger weight on a given

bidder�s welfare, the only instrument she has to enhance that bidder�s welfare is to reduce

the reserve price or entry fee that she employs in any auction that implements the optimal

mechanism. Doing so bene�ts not only the bidder whose corresponding weight has risen, but

all other bidders as well. Therefore, all bidders�expected utilities are increasing in any �i.

It is not the case, though, that the seller is �sharing�her gains from having a higher �i.

There are actually two e¤ects. First, for any given value of r, the seller�s utility straightforwardly

grows with �i. Second, the seller increases her utility by reducing r. This second e¤ect raises

the utilities of all bidders, too.

20When the number of bidders is endogenous, as Arozamena and Weinschelbaum (2011) show, even with

favoritism it is optimal for the seller to use a nondiscriminatory mechanism which maximizes revenue and at

the same time sells the good with probability one.

10



Remark 3 Our results also hold if we model favoritism in a di¤erent way. Assume, for ex-

ample, that the seller attaches a �xed value wi to bidder i winning the auction (i = 1; :::; N).

Then, the seller�s objective function is given by

NX
i=1

�Z v

v

pi(vi)f(vi)dvi + wi

Z v

v

hi(vi)f(vi)dvi

�
:

In this case, it can be shown that, under a no-discrimination constraint, the bidder with the

highest valuation wins and the optimal minimum acceptable valuation solves

N

�
r � 1� F (r)

f(r)

�
+

NX
i=1

wi = 0:

We could then �nd how that valuation changes with N and with each wi. Our results would be

analogous to the ones that follow when the seller cares about bidders�pro�ts.

4 Revenue

In our setup, one justi�cation for imposing the use of nondiscriminatory mechanisms may

be that allowing preferential treatment to some bidders could reduce revenue. In the two

previous sections, we have characterized the optimal mechanisms for the seller both with and

without discrimination. We examine in what follows how those mechanisms compare in terms

of expected revenue. As is well known, expected revenue is given by

Ev1;:::;vN

"
NX
i=1

Hi(v1; :::; vN)J(vi)

#
:

For any given weights (�1; :::; �N), let RD(�1; :::; �N) (RND(�1; :::; �N)) be the expected revenue

generated by mechanism (HD
1 (:); :::; H

D
N (:)) (respectively, (H

ND
1 (:); :::; HND

N (:))).

Figure 1 below helps visualize how discrimination in�uences revenue for the case where

N = 2. Assume �1 > �2:
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Figure 1

With discrimination, the seller sets individual minimum valuations r1, r2 as de�ned in (5). In

the �gure, s(v1) is the value of v2 such that the adjusted virtual valuations of both bidders

coincide, i.e.,

s(v1)� (1� �2)
1� F (s(v1))
f(s(v1))

= v1 � (1� �1)
1� F (v1)
f(v1)

;

as long as v1 > r1. If v1 > r1 and v2 > r2; then she awards the object to bidder 1 if v2 < s(v1),

and to bidder 2 otherwise �clearly, if only one bidder�s valuation is above her own minimum

acceptable level, that bidder is the winner. When discrimination is forbidden, the seller sets

a uniform minimum valuation r de�ned in (6), and awards the object to the bidder with the

highest valuation as long as it is larger than r. Finally, r� is the minimum valuation that would

be optimally selected in the absence of favoritism, de�ned in the usual way: J(r�) = 0.

To examine the e¤ect of the no-discrimination constraint on revenue, we focus on the pairs

(v1; v2) where the allocation rule di¤ers in the optimal discriminatory and nondiscriminatory

mechanisms under favoritism. Those pairs are depicted in the �gure in regions A, B and C. For

(v1; v2) in region A, the object is awarded to a bidder under both mechanisms. With discrim-

ination, bidder 1 wins, since her adjusted virtual valuation is higher. Without discrimination,

bidder 2 wins, since her actual valuation is higher. Since J(v) grows with v, in region A revenue

is larger when discrimination is not allowed. In region B, the seller awards the object to bidder

1 when she can discriminate. Once she cannot discriminate the seller keeps the object, since

v1; v2 < r. Given that J(v1) < 0 in region B (as v1 < r�), forbidding discrimination raises

revenue. Finally, in region C the object remains unsold with discrimination, but is awarded to

12



bidder 2 when the no-discrimination constraint applies. Since J(v2) < 0 in region C, revenue

is larger with discrimination.

These opposing e¤ects apply as well when N > 2: When the object is sold in both mecha-

nisms, under (HND
1 (:); :::; HND

N (:)) the object is allocated to the bidder with the highest actual

and virtual valuation: revenue can only improve when discrimination is forbidden. Since under

favoritism the object is awarded in cases where the winner has a negative virtual valuation,

whenever the no-discrimination constraint causes the object to remain unsold it generates a

positive e¤ect on revenue. However, the new constraint also makes the seller allocate the object

to a bidder in cases where she would not if she were allowed to treat bidders di¤erently.

Can we ascertain whether there is a positive or negative net e¤ect on revenue? In some cases

we can.21 If �i = 1 for some i; then ri = v: the seller never keeps the object when discrimination

is allowed. In Figure 1, this means that region C vanishes, and so do the cases where the no-

discrimination constraint could reduce revenue. We then have the following proposition, that

applies for any number of bidders and any distribution of valuations.

Proposition 3 If �i = 1 for some i, then RND(�1; :::; �N) � RD(�1; :::; �N), and the inequality
is strict unless �1 = �2 = ::: = �N .

When �i < 1 for all i, we can provide a result along the same lines for the two-bidder case

and under some conditions on the distribution of valuations. These conditions are satis�ed, for

example, by power-function distributions, F (v) = vk, with k � 1:

Proposition 4 Assume N = 2 and the density f(:) is di¤erentiable. Then, if F (:) has a

monotone increasing hazard rate and J(:) is convex, then RND(�1; �2) � RD(�1; �2), and the
inequality is strict if �1 6= �2.

Proof. Let � = �1 + �2, and assume without loss of generality that �1 � �2 �if �1 = �2 we
know that forbidding discrimination has no e¤ect on the allocation rule. Recall that, while the

optimal mechanism with discrimination depends on individual weights, the optimal mechanism

without discrimination only depends on �, and both mechanisms coincide only when �1 = �2.

We will then show that if we could choose �1 and �2 so as to maximize expected revenue

keeping � constant, we would select �1 = �2 = �=2. This means that expected revenue

without discrimination is larger for any possible values of �1, �2, and for any �.

21We have not been able to �nd an example where the no-discrimination constraint reduces expected revenue.
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For a given pair (�1; �2); we de�ne an allocation rule that will be useful as a reference point.

Let bH1(v1; v2) = ( 1 if v1 > v2 and v1 � r1
0 otherwise

bH2(v1; v2) =
8>><>>:
1 if

v2 > v1 and v2 � r2
or r2 > v2 > v1 � r1

0 otherwise

where ri is de�ned as in (5); i = 1; 2. This allocation rule combines the optimal mechanisms

with and without discrimination, as shown in Figure 2, where �1 > �2.

r2

r1

2 wins

1 wins

2v

1v
vv

v

Figure 2

The seller keeps the object in the same cases as in the optimal discriminatory mechanism

(namely, when v1 < r1 and v2 < r2). However, when the object is allocated to a bidder, the

bidder with the highest valuation wins. Let

bR(�1; �2) = Ev1;v2
"

2X
i=1

bHi(v1; v2)J(vi)# :
Clearly, we have RD(�1; �2) � bR(�1; �2), and the inequality is strict if �1 > �2 �recall that

( bH1(:); bH2(:)) allocates the object to a bidder in the exact same cases as (HD
1 (:); H

D
2 (:)),

but the former does so e¢ ciently while the latter does not. Furthermore, (HD
1 (:); H

D
2 (:)) =

( bH1(:); bH2(:)) = (HND
1 (:); HND

2 (:)) if �1 = �2 = �=2, so RD(�=2; �=2) = bR(�=2; �=2) =
RND(�=2; �=2). We will now prove that, if �1 � �2, bR(�1; �2) falls weakly if �1 grows
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while keeping � constant, and it does so strictly if �1 > �2. This means that RD(�1; �2) <bR(�1; �2) < bR(�=2; �=2) = RND(�=2; �=2) = RND(�1; �2) if �1 > �2.
We can write

bR(�1; �2) =

Z r1

v

Z v

r2

J(v2)f(v2)f(v1)dv2dv1 +Z v

r1

�Z v1

v

J(v1)f(v2)dv2 +

Z v

v1

J(v2)f(v2)dv2

�
f(v1)dv1

Then, we di¤erentiate this expression with respect to �1 keeping �1+�2 constant, and after

a few steps of algebra we get

d bR(�1; �2)
d�1

�����
�1+�2=�

= �f(r1)
dr1
d�1

Z r2

r1

J(v2)f(v2)dv2 (7)

�F (r1)
"
J(r2)f(r2)

dr2
d�2

d�2
d�1

����
�1+�2=�

+ J(r1)f(r1)
dr1
d�1

#
From (5), we have

dri
d�i

= �
1�F (ri)
f(ri)

1� (1� �i)(1�F (ri)f(ri)
)0
< 0

Since J(v) < 0 for v 2 (r1; r2), the �rst term on the right-hand side of (7) is strictly negative if

�1 > �2, and zero if �1 = �2 (since r1 = r2 in that case). Then, a su¢ cient condition for the

derivative to be nonpositive is

J(r2)f(r2)
dr2
d�2

d�2
d�1

����
�1+�2=�

+ J(r1)f(r1)
dr1
d�1

� 0 (8)

The second term on the left-hand side of (8) is strictly positive. If �1 > �2 = 0; J(r2) = 0, the

�rst term vanishes and the su¢ cient condition is automatically satis�ed. Note that

dr2
d�2

d�2
d�1

����
�1+�2=�

= � dr2
d�2

> 0

This implies that, if �2 > 0, the �rst term on the left-hand side of (8) is negative. However,

since r� > r2 > (=)r1 and J(:) is increasing, jJ(r1)j > (=) jJ(r2)j if �1 > (=)�2. Furthermore,
the monotone-hazard-rate condition (by which (1�F (ri)

f(ri)
)0 < 0, i = 1; 2) and the fact that J(:)

is convex (in other words, that (1�F (ri)
f(ri)

)0 is decreasing), yield 0 > (1�F (r1)
f(r1)

)0 > (=)(1�F (r2)
f(r2)

)0 if

�1 > (=)�2. Therefore,����f(r2) dr2d�2
���� =

����� 1� F (r2)
1� (1� �2)(1�F (r2)f(r2)

)0

����� < (=)
����� 1� F (r1)
1� (1� �1)(1�F (r1)f(r1)

)0

����� =
����f(r1) dr1d�1

����
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if �1 > (=)�2. We conclude then that (8) is satis�ed, and that
d bR(�1;�2)

d�1

���
�1+�2=�

< (=)0 if

�1 > (=)�2. Thus, RD(�1; �2) < RND(�1; �2) whenever �1 > �2:

In our setting, at least in the cases described in Propositions 2 and 3, there is a revenue-

based justi�cation for a principal to prevent an agent in charge of running an auction from

discriminating among bidders when that agent�s preferences exhibit favoritism.

5 Conclusion

We have examined the problem faced by a seller that cannot discriminate among bidders de-

spite her preferences exhibiting favoritism among bidders. We have characterized the optimal

mechanism, and concluded that, at least in some cases, it yields higher expected revenue than

the optimal mechanism when discrimination is allowed.

We have carried out our examination of this issue in a symmetric context. It would be

interesting to analyze the e¤ect of a no-discrimination constraint with bidder asymmetries,

both with and without favoritism. That problem, though, is technically harder and we leave it

for future research.
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