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Abstract

In this paper we introduce an innovative method to diagnose electoral fraud using vote
counts. Specifically, we use synthetic data to develop and train a fraud detection prototype.
We employ naive Bayes classifier as our learning algorithm and rely on digital analysis to
identify the features that are most informative about class distinctions. To evaluate the
detection capability of the classifier we use authentic data drawn from a novel dataset of
district-level vote counts in the province of Buenos Aires (Argentina) between 1931 and
1941, a period with a checkered history of fraud. Our results corroborate the validity of our
approach: the elections considered to be irregular (legitimate) by most historical accounts are
unambiguously classified as fraudulent (clean) by the learner. More generally, our findings
demonstrate the feasibility of generating and using synthetic data for training and testing
an electoral fraud detection system.
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Introduction

How can we distinguish an electoral landslide from a stolen election? As the controversy over

the 2009 Iranian presidential contest illustrates, it is often difficult to determine whether an

election is fraudulent. Mr. Ahmadinejad’s wide margin of victory, coupled with the speed

with which the results were certified led many to doubt the authenticity of the outcome.

Indeed, within days of the election, a series of reports analyzed a number of statistical

anomalies and concluded that the election was rigged (Roukema, 2009; Zetter, 2009). Most

experts, however, agreed that while there was little reason to trust the election results, the

evidence furnished by these studies was inconclusive (Mebane, 2009; Zetter, 2009).1

Establishing whether an electoral outcome is the reflection of voters’ preferences or the

result of manipulation is of utmost importance: elections are essential mechanisms for pro-

viding public accountability, transparency, and representation. As Alvarez, Hall and Hyde

(2008) note, fraud and manipulation corrupt this process and prevents voters’ voices from

being heard. But, as they also point out, despite its importance, little is known about

electoral fraud.2

The operational problem in uncovering fraudulent elections is identifying the characteris-

tics that make them distinct from valid ones. Still, it is usually impossible to be absolutely

certain about the legitimacy of an election. A particularly appealing option to overcome this

difficulty is to tease out possible evidences of fraud from the available data using mathemati-

cal algorithms. For example, recent studies examine the distribution of the digits in reported

vote counts to detect fraudulent practices (Pericchi and Torres, 2004; Mebane, 2006, 2008b;

Beber and Scacco, 2008; Roukema, 2009).3

This approach, however, is not without its drawbacks (Brady 2005; Taylor 2005). Digit

tests are essentially based on comparing observed data with expected values; but expected

values can be derived in various ways, depending on the context.4 In addition, electoral
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manipulation can be perpetrated in many different ways. Hence, in order to assess the

benefits of digital analysis as a useful fraud-detection tool, numerous data sets with known

levels of deviation from a given digit distribution would be needed (Busta and Weinberg,

1998). From a practical standpoint, things are further complicated by the fact that it may

be impossible or at least very difficult to acquire the amount or type of data needed for such

tests: authentic data sets of vote counts with fraudulent entries are rarely available; and, we

usually have no control over what type of fraudulent practices the data may contain.5

In this paper, we introduce a novel method to diagnose electoral irregularities using vote

counts. Specifically, we propose the use of machine learning techniques to detect fraud. A

typical supervised learning problem is comprised of two components: (1) an outcome mea-

surement, which can be either quantitative or categorical (such as fraudulent/not fraudulent

elections); and (2) a training set of data, which includes the outcome and feature measure-

ments for a set of objects (such as electoral contests). Given these data, two standard tasks

are to to build a learner that most accurately predicts the class of a new example (classifier

design) and to identify a subset of the features that is most informative about the class

distinction (feature selection) (Hastie, Tibshirani and Friedman, 2009).6

Taking into account the data availability problems mentioned above, our main innovation

is the use of synthetic data to develop and train an electoral fraud detection prototype. First,

we use Monte Carlo methods to generate large amounts of electoral data that preserve the

statistical properties of a selected set of authentic data used as a seed. Next, we employ

naive Bayes classifier as our learning algorithm and rely on digital analysis to identify the

features that are most informative about class distinctions. The specific procedure is the

following: (1) we create a set of simulated elections. This training set is composed of two

disjoint subsets: one containing vote counts that follow a distribution with known proper-

ties, and another where the data are purposively “manipulated”; (2) we rely digital analysis

for feature selection and then calibrate membership values of the simulated elections (i.e.
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clean/manipulated) using logistic regression; (3) we recover class-conditional densities using

the relative frequencies from the training set; (4) we evaluate the detection capability of the

classifier using authentic data drawn from a novel dataset of district-level vote counts in the

province of Buenos Aires (Argentina) between 1931 and 1941, a period with a checkered

history of fraud. Our results corroborate the validity of our approach: the elections consid-

ered to be irregular (legitimate) by most historical accounts are unambiguously classified as

fraudulent (clean) by the learner.

The paper makes two important contributions. One is methodological. Our findings

demonstrate the feasibility of using synthetic data for training and testing an electoral fraud

detection system. Building a learner using simulated rather than real data is quite common

in automated fraud detection research (Phua et al., 2005). For example, Wong et al. (2003)

use bayesian networks to uncover simulated anthrax attacks from real emergency data.7 Syn-

thetic data are less frequently used in financial fraud detection; still, the use of manipulated

data is discussed in some papers (Busta and Weinberg, 1998; Chan et al., 1999). To our

best knowledge, though, this paper represents the first study in political science that uses

synthetic data to develop and train a fraud detection prototype for electoral contests.

Our second contribution is substantive. After training the learner with the synthetic

data, we used it to detect the fraudulent contests employing a novel dataset of district-

level vote counts in the province of Buenos Aires between 1931 and 1941. The conventional

wisdom states that electoral fraud, rather than a change in voter preferences, led to the

dramatic electoral shifts during this period – which is known in Argentine politics as the

“infamous decade” (Alston and Gallo, 2010). Most studies, however, use anecdotal evidence,

journalistic accounts, or fraud complaints. The comparison of the detection results with

authentic data confirms the validity of the conventional wisdom. An important virtue of

our approach, though, is that such validation is based on the distribution of the digits

in reported vote counts rather than on the perceptions of certain actors. As Alston and
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Gallo (2010) note, the infamous decade produced a watershed in Argentine politics leading

to structural political and economic changes in its aftermath. As such, demonstrating by

means of our proposed method, the presence of fraud during this period constitutes another

very important contribution to the literature.

The remainder of this paper is organized as follows. In Section 1, we describe the authentic

and synthetic data. Section 2 introduces the Naive Bayes classifier. In Section 3, we present

our main empirical findings. A final section concludes.

1 Electoral Fraud: Authentic and Synthetic Data

In order to train a learner, a set of input and output objects, known as a training set, should

be gathered. Specifically, for any given problem we need a set of variables, denoted as inputs,

or features (i.e. the independent variables), which are measured or preset. These should have

some influence on one or more outputs (i.e. the responses or the dependent variables).

Given these data requirements, one needs to take into account two major considerations

when building an electoral fraud detection system. The first is the problem of unbalanced

class sizes: data on legitimate elections usually outnumbers information regarding fraudu-

lent ones. The second concerns the uncertainty of class membership (fraudulent elections

may remain unobserved and thus be labeled legitimate). These two problems are obviously

interrelated: the extent of electoral fraud is difficult to quantify, mostly because governments

seldom advertise the fact that they have cheated (Przeworski, 2010).

On alternative in overcoming these problems is to create synthetic data (Clifford and Heath,

1993; Rubin, 1993; Katz and Sala, 1996; Lundin, Kvarnström and Jonsson, 2002; Reiter,

2004; Eno and Thompson, 2008). Using synthetic data for evaluation, training and testing

a supervised learning model offers several advantages over using authentic data. First, we

can generate more data sets than what would be available using only real data. Second,
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properties of synthetic data can be tailored to meet various conditions which may not be

clearly observable in the real data. Third, variations of known frauds (or new frauds) can be

artificially created to study how these changes affect performance parameters, such as the

detection rate (Lundin, Kvarnström and Jonsson, 2002).

Synthetic data, though, should be realistic; that is, they should reflect selected properties

of the real data. Thus, as a first step, one should collect authentic data and identify the key

parameters that must be preserved in the synthetic samples. The next section describes how

the authentic data was collected. We then discuss the synthetic data generation method and

their conformity to the actual data in sections 2.2 and 2.3, respectively.

1.1 Authentic Data: Elections in Buenos Aires (1931-1941)

Mass electoral participation in Argentina began with the passage of the Sáenz Peña Law in

1912, which established the secret ballot and mandatory voting. These reforms ended a long

period of oligarchic republicanism. In the following decades, two main parties alternated

power at the national level. These were the Partido Conservador, or Conservative party, and

the Unión Civica Radical (UCR, or Radical party). Conservatives controlled the government

until the election of Radical Hipólito Yrigoyen in 1916.

The Radical years ended in 1930 when a Conservative-backed military coup ousted Yrigoyen

from office following his reelection to the presidency in 1928. The coup was followed by an

election in 1931 that restored power to a conservative coalition. During the remainder of the

1930s, the Conservatives continually used electoral fraud to maintain power. As José Luis

Romero (1959) notes, fraud and privilege were the main characteristics of this period, which

became known in Argentine politics as the “infamous decade” (Ciria, 1974).

Radicals and Conservatives also vied for electoral allegiance from 1931 to 1942 in Buenos

Aires. Covering an area of 188,446 square miles, Buenos Aires is Argentina’s largest province.
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A third contender, the Partido Socialista (PS, or Socialist party), was well-organized and

enjoyed some strength in suburban and coastal districts, but never gained a firm foothold in

the countryside (Walter, 1985). In addition, elections during this period were held under the

lista incompleta, or incomplete list electoral system, which discriminated against third-party

representation: ballots included a list of candidates for at least two-thirds of the positions

at stake. Two thirds of the seats were assigned to the winning list, the remaining third went

to the list that followed in number of votes (Abal Medina and Cao, 2003). In consequence,

the Socialists seldom managed to gather more than 10 percent of the vote.8

Electoral contests were held regularly during this period; however, according to most his-

torical accounts some of them were far from regular (Drake, 2009). Accusations of fraud and

corruption were constant characteristics of many elections, and few contests passed without

complaints from one side or the other. Anecdotal evidence suggests that electoral manip-

ulation varied greatly: ballot boxes were stuffed; the dead rose to vote on election day;

police and local officials often intimidated, harassed, and coerced potential opposition vot-

ers; polls were opened late and closed early; and government employees and others traveled

the province to vote numerous times in the same election (Walter, 1985; Bejar, 2005).

While all of these practices can affect election outcomes, an important distinction needs to

be made between fraud and manipulation. For example, the use of repeaters, the election-day

importation of voters from other provinces, “vote buying” (including both paying individuals

for switching their vote choices as well as rewarding opponents for not voting), or more legit-

imate activities, such as providing free transportation to the polls, or organizing a massive

get out the vote campaign can alter vote totals in an election (Cox and Kousser, 1981).

Yet, to be absolutely clear, what characterized electoral fraud in the province of Buenos

Aires during this period were the efforts by the Conservatives to systematically disenfranchise

voters. Its “gangster toughs”, in the words of the Review of the River Plate, would ward off
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the Radical voters from the polling stations by brute force and intimidation. These “missing”

votes were then conveniently replaced by Conservative ballots.9

The opposition’s denunciation of electoral fraud in the province of Buenos Aires at the

outset of the “infamous decade” provides a good summary of these practices:

“ In addition to those citizens who were compelled to vote in a certain way, those who
were stripped of their identification cards, and those who made it to the polls only to
suffer harassment or punishment, those individuals who decided to stay home to avoid
violence also ended up “voting”....”10

The document reproduced in Figure 1 provides a good illustration of what constituted fraud

in this setting. Introduced in the official records of the Argentine Chamber of Deputies as

evidence of electoral tampering, the document shows how written “passes” were used to give

admission to the polls to some voters but not others. The handwritten directions in the

permit say “... Let him vote, as he is one of us ...”, giving the bearer authorization to access

polling station number 24 located in El Pensamiento (Coronel Pringles).

< Figure 1 Here >

The document also exemplifies two additional features of electoral malfeasance in the 1930s.

First, most allegations of fraud and coercion occurred during the periods of Conservative

control of the province, and they usually involved accusations that votes were taken away

from the Radical opposition and given to the Conservatives. Second, irregularities seemed

to occur in almost every polling station throughout the province of Buenos Aires. In other

words, it appears that the falsification of the popular will was not restricted to a few “deci-

sive” wards and/or polling stations, but instead was a widespread phenomenon (Ciria, 1974;

Walter, 1985; Bejar, 2005).

Evidence indicating that other forms of electoral finagling (such as manipulating turnout)

mattered is not persuasive. For example, no significant differences in turnout rates for the
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1936, 1940 and 1941 elections exist (they amounted to 61.0%, 60.4% and 59.2%, respectively).

Yet, these elections had diametrically different outcomes (see section 1.1.1 below). The

analysis of the electoral returns also suggests that violence and intimidation, rather than

strategic voting, characterized Buenos Aires’ elections in this era. As noted above, the

electoral rules strongly encouraged a Duvergerian competition: according to the so-called

“wasted-vote logic,” a voter who would otherwise favor a third-party candidate, can increase

her utility by voting for one of the parties most likely to be tied for first (Cox, 1997). It

seems highly unlikely that Socialists voters would strategically abandon their party in favor

of Conservative candidates. Hence, we should expect fewer votes to be “wasted” when the

Conservative party is the runner-up. The Socialist vote, however, did not exhibit considerable

fluctuations in the electoral contests under consideration.11

In sum, electoral outcomes can be manipulated in a number of ways. The historical ev-

idence, though, suggests that electoral fraud in the province of Buenos Aires during this

period consisted mostly of switching a proportion of votes from one party to another.

1.1.1 Data Description

The conventional wisdom states that electoral fraud led to the notable electoral shifts that

occurred in the province of Buenos Aires during the “infamous decade.” Yet, the scope,

intensity, and efficacy of fraud are not well documented in the literature. As discussed

above, a particular challenge in electoral fraud research is data availability. Indeed, most of

the existing accounts use anecdotal evidence, press reports, or fraud complaints. Nonetheless,

no study thus far has used microlevel electoral data for the period between 1931-1941.12

We collected a complete record of the gubernatorial elections of 1931, 1935, and 1941,

as well as the 1936 and 1940 national congressional elections in the province of Buenos

Aires.13 The data were obtained from two official sources of information, the Memorias of
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the Ministerio del Interior, and the Diario de Sesiones of the Argentine Chamber of Deputies.

The units of our analysis are the electoral returns in each of Buenos Aires’ partidos. The

partido is the basic local administrative unit of the province. As Walter (1985) notes, most

of these partidos bear the same name as the largest municipality within their confines. These

municipalities are somewhat analogous to county seats in the United States.

Between 1931 and 1941 some partidos experienced name changes and shifting boundaries,

but the total number of districts remained at 110. We exclude the following ten partidos

from the analysis: General Alvear, General Conesa, General Lavalle, and Pila, as well as

Avellaneda, Bahia Blanca, La Plata, Lomas de Zamora, Quilmes, and San Martin. The

former group consists of partidos where at least one of the parties received an insignificant

number of votes (for example, the Radicals received only two votes in Pila in the 1935

elections, and the Conservatives only one vote in General Alvear in 1940). In contrast, the

latter group is comprised of densely populated urban centers. For example, in the provincial

capital of La Plata, a bureaucratic-university city, a total of 32,929 votes were cast for the two

main parties in 1931 and 43,426 ten years later. According to Walter (1985), given their large

number of registered voters and their degree of urbanization, electoral fraud was quite rare in

these partidos. We thus observe district-level vote counts for each of the five aforementioned

elections in one hundred partidos. Table 1 provides an overview of the electoral data.

< Table 1 Here >

The entries in Table 1 show the distribution of votes for the Radical (UCR) and Con-

servative parties. These figures underscore the reversal of electoral outcomes. In the 1931

elections, the average vote for the Radicals at the partido level was 1675 versus 1384 for

the Conservatives. In 1935 they lost to the Conservatives by a margin of 2-to-1 (2099 votes

versus 1057). As Walter (1985) notes, some of the numerical reverses at the partido level

were ludicrous. In 1931, for example, the Radicals had won General Sarmiento by a vote
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of 1573 to 1341; in 1935 the Conservatives carried the partido by a count of 3000 to 40. A

comparison between the 1940 and 1941 elections reveal a similar pattern.

It is tempting to conclude that Conservative victories entailed electoral fraud. The data,

however, are insufficient to reach such conclusion. In other words, the uncertainty about the

elections’ class membership remains. Based on historical accounts, we do have a presumption

regarding their values. Specifically, the 1935, 1936, and 1941 elections are often considered to

be fraudulent while the 1931 and 1940 contests are presumed clean. Still, it is impossible to be

absolutely certain about the legitimacy these elections (i.e. we do not have an unambiguously

“real” value – fraud/clean–, for each of these five outcomes). The task is to evaluate the

validity of the conventional wisdom using the vote counts themselves as our main source of

evidence.

Our analysis will be based on the distribution of the digits in the vote counts at the

partido level. The appropriateness of using this level of aggregation is highlighted by the

data presented in Table 1. In each of the partidos, voters were served by a number of

mesas (polling stations). These mesas were designed to include roughly the same number

of voters (typically, 122 voters). Yet, the number of voters per polling station varied widely,

including a minimum of 86 (Ayacucho) and a maximum of 172 (Florencio Varela). Moreover,

the number of mesas per partido also varied considerably. On average, each partido had

28.5 polling stations, with a minimum of 7 (General Guido and General Rodriguez), and a

maximum of 78 (Pergamino). The uneven distribution of district sizes gives us confidence

in the usefulness of focusing on the first significant digits of the vote counts: even if a party

has roughly the same level of support in all the partidos, which means the party’s share of

the votes is roughly the same in all of them, then the vote counts will not necessarily have

the same first digit in all the districts (Mebane, 2008b).
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1.2 Synthetic Data

As mentioned above, synthetic data can be designed to demonstrate certain key properties

which may not be apparent in the authentic data. In order to assess the benefits of digital

analysis as a useful fraud-detection tool, we generated a large amount of synthetic data

with known levels of “contamination”. The main advantage of this methodology is that,

because we can specify the degree of manipulation in a controlled environment, it allows

us to verify the sensitivity (i.e., detecting electoral manipulation cases when indeed they

were manipulated) and specificity (i.e., classifying clean elections when no manipulation was

made) of our supervised learning model.

1.2.1 Data generation methodology

Synthetic data can be defined as data that are generated by simulated agents in a simulated

system, performing simulated actions (Lundin, Kvarnström and Jonsson, 2002). We simulate

a large number of electoral contests using Monte Carlo methods. A Monte Carlo experiment

is analogous to a lab situation, where a real world scenario is replicated numerous times,

and every time a different sample is drawn. These samples are then used to identify how

electoral manipulation can lead to vote counts that do not satisfy Benford’s law. This law

specifies that in a collection of numbers, the probability of the first or leading digit being d

should be

P (leading digit = d) = log10

(d+ 1

d

)
, d ∈ {1, 2, ...9} (1)

Traditional analysis of Benford’s law considered its applicability to data sets (Varian, 1972).

In more recent scholarship, though, the focus has shifted to the study of probability distri-

butions that obey Benford’s law. These studies demonstrate that, if applicable, Benford’s
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law is invariant under (1) an arbitrary change of scale; (2) an arbitrary raising to a power;

and (3) an arbitrary change of the numerical basis (Hill, 1995a,b; Leemis, Schmeiser and

Evans, 2000; Grendar, Judge and Schechter, 2007; Fewster, 2009; Ciofalo, 2009).14 From a

practical standpoint, Bendford’s law is known to work better when the data in the sample

cover several orders of magnitude and are not “artificially” biased in favor of any particu-

lar value. Thus, we typically expect Benford adherence in the case of large datasets whose

numbers are the result of a mathematical combination of distributions, and where the mean

is greater than the median with a positive skew (Cho and Gaines, 2007; Janvresse and de la

Rue, 2004).15

We wrote an R function to implement our simulations (see Appendix 1). The function

generates vote counts for 100 simulated districts, each containing two competing parties,

i ∈ {A,B}. The total number of votes for party i in district j = {1, ..., 100} is determined

by:

Vij = αiXi, (2)

where αi is a constant, and Xi denotes a random variable with Benford’s distribution.

Following Leemis, Schmeiser and Evans (2000), we generate the Benford variate X by

X ← b10Uc, (3)

where U ∼ U(0, 1).

Notice that Vij is composed by both deterministic and stochastic elements. The first one,

αi, can be interpreted as the baseline electoral support for party i across all districts. Hence,

this parameter captures the idea that “a rising tide lifts all boats” (i.e. an electoral landslide).

Namely, if say party A becomes more popular that party B in a particular election (because

it files more attractive candidates, or any other reason), then αA > αB. The second element,
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the random variable Xi, does not depend on the baseline popularity of the parties. It can thus

be interpreted as idiosyncratic variance in the electoral support for party i.16 In addition,

estimating Vij in the proposed way allows for the possibility that the party with the lower α

may still be the winner in some of the districts (i.e., if αA > αB, party B would win in those

districts j where XBj >
XAjαA

αB
).

The historical evidence suggests that acts of fraud were often committed in almost every

polling station throughout Buenos Aires; and they usually consisted of taking votes away

from the Radical opposition and giving them to the Conservatives. To capture these specific

characteristics of electoral fraud, we simulate electoral tampering in the following way: in

every district j = {1, ..., 100}, we take away a fixed proportion γ > 0 of party A’s votes and

give δ(γVAj) votes to party B (with δ > 0). Therefore, whenever fraud is committed, the total

number of votes for each of the parties in every district j becomes VA,j = (1 − γ)(αAXA,j),

and VB,j = (αBXB,j) + δ[γ(αAXA,j)], respectively.

So, for example, consider αA = 400 and αB = 320, and suppose that in district j = 1,

XA,1 = XB,1 = 2. The total number of votes for parties A and B in district 1 would be given

by VA1 = (400 ∗ 2) = 800 and VB1 = (320 ∗ 2) = 640, respectively. Without fraud, party A

would carry the district. However, if γ = .3 and δ = 1.2, party A’s vote count would be given

by VA1 = (.7)∗ (800) = 560, while party B would obtain VB1 = (640)+(1.2)[(.3)∗800] = 928

votes, reversing the outcome.

Using our R function, we generated 10,000 electoral contests. To create different types

of elections we treated each contest as a Bernoulli trial with two possible outcomes. We

set p = .5 as the probability of success/failure to obtain balanced class sizes. Fraudulent

elections were deliberately manipulated by taking votes away from party A and giving them

to party B using values of δ > 0 and γ > 0. In the case of clean elections, the parameters δ

and γ were set to zero.
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1.2.2 Data Description

The uneven distribution of district sizes in Buenos Aires exhibits the kind of complexity that

can produce counts with first digits that follow Benford’s Law. As such, following Busta and

Weinberg (1998) and Grendar, Judge and Schechter (2007), we focus on two variables based

on the first significant digits (FSD) of the simulated vote counts: the first moment of the

FSD distribution, and the frequency of the number one as the FSD. Specifically, in each of

our simulated elections we consider: (1) the mean of the first digit of party i’s votes in every

district, d̄i =
∑9

k=1 dk

P100
j=1 dj=k

100
and; (2) the frequency of the number 1 as the first significant

digit of party i’s votes in every district, p(di = 1) =
P100

j=1 dk=1

100
.

So, for instance, consider an election with j = 100 districts where the number 1 appears

as the first digit for party A’s votes in 12 districts, and the other 8 digits appear as the first

digit for party A’s votes in exactly 11 districts each. The mean of the first significant digit

can be calculated as: d̄ = (1 ∗ 12
100

) + (2 ∗ 11
100

) + (3 ∗ 11
100

) + ... + (9 ∗ 11
100

) = 4.96, while the

frequency of the first digit is p(d = 1) = 12
100

= .12.

For each of the 10,000 simulated electoral contests, we recorded the values of our variables

of interest, d̄i and p(di = 1). To distinguish between legitimate and fraudulent elections,

we also recorded the outcome of each Bernoulli trial. Therefore, our training set includes

the following pieces of information for each simulated election: a set of input objects (the

variables d̄1 and p(di = 1)), and an output object (a dummy variable indicating whether the

vote counts were manipulated or not).

1.3 Calibration

The process of applying supervised machine learning to an actual problem requires that the

training set possesses characteristics of the real-world relationship between our input and

output variables. To ensure that the synthetic data are representative of the authentic data,
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we calibrate our simulations using the first two elections in our data set (1931 and 1935).

The main goal is to find values of αA and αB, and the fraud parameters, γ and δ, that will

provide the best fit between the simulated and the real data. We proceed in the following

way: first, we generate a simulated electoral contest using the methodology laid out in the

previous section. Next, we record the vote count for our two parties in each of the 100

electoral districts, with and without fraud. So, for example, in the simulation, party A may

win district number 36 by a vote of 1884 to 748 in a clean contest; but under fraud, party B

(the beneficiary of electoral manipulation) may carry the same partido by a count of 1426

to 1319. More generally, our simulation yields four vote distributions: a non-fraudulent vote

count for party A, a fraudulent vote count for party A, a non-fraudulent vote count for party

B, a fraudulent vote count for party B. Per the characterization of the fraudulent practices

during the “infamous decade” discussed above, we compare the electoral returns of party

A to those of the Radicals (the victims of fraud), and party B’s vote count to that of the

Conservatives (the main beneficiaries of electoral tampering).

To carry out our comparisons we use a two-sample Kolmogorov-Smirnov (K-S) test. This

test is one of the most useful and general nonparametric methods for comparing two samples.

Table 2 reports the D statistic and associated p-values of the K-S tests for each of our pair

of distributions under different parameter values.17 Entries where a statistically significant

difference (at the 99% confidence level) between the groups exist are indicated in bold.

< Table 2 Here >

The results presented in Table 2 suggest that αA = 400, αB = 320, γ = .3, and δ = 1.2

provide the best fit between the simulated and the real data. In addition, the second panel of

Table 2 shows that while the vote distributions for party B seem to match the Conservative’s

vote counts, a statistically significant difference between the vote distributions for party A

and the Radical’s vote counts does exist. This finding indicates that manipulation of the
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electoral process, rather than a shift in voters’ preferences account for the electoral outcomes

(i.e the Conservatives’ gains do not match the Radicals’ losses).

To further demonstrate the validity of our calibration parameters, Figure 2 presents a

graphical comparison between pairs of distributions. Consider the non-fraudulent vote count

for party A and the Radical party’s electoral returns in the 1931 elections. As the graph

for this election demonstrates, the two distributions are strikingly similar. Likewise, the

fraudulent vote count for party B and the Conservative’s electoral returns in the 1935 election

are also almost identical.

< Figure 2 Here >

The analysis of the vote counts presented in this section illustrates how traditional statisti-

cal tests can be used to assess the validity of a Monte Carlo-generated training set. Beyond

this practical demonstration, the results provide an important validation for this approach,

as the simulated vote distributions under the two different scenarios of interest (fraud/not

fraud) bear a close resemblance to the actual data. They also reflect the conventional wis-

dom regarding these electoral contests. We now turn our attention to algorithm selection,

the next step in the application of supervised machine learning to our particular problem.

2 Learning Algorithm

As stated above, the goal of a learning algorithm is to construct a classifier given a set of

training examples with class labels. Assuming that only two classes exist, then the problem

can be stated as follows: produce a classifier that distinguishes between examples from two

classes (labeled as y = 0 and y = 1) on the basis of m observed predictor variables (also

known as features) x = [x1, x2, ..., xm]T ∈ Rm.

Specifically, given a training set D = {(x(i), y(i) : x(i) ∈ Rm, y(i) ∈ {0, 1}}ni=1 with n labeled
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examples (where y(i) is the label associated with example x(i)), the two principal tasks are

to: (1) identify a subset of the features that is most informative about the class distinction

(feature selection); and (2) learn a function that most accurately predicts the class of a

new example (classifier design). So, for example, if the problem is identifying fraudulent

elections, then x(i) is some representation of a given electoral contest, and y(i) ∈ {“Clean”,

“Fraudulent”}. We start first with task number two, and we address the former (feature

selection) in section 3.1.

2.1 Classification using Naive Bayes

The classification problem can be written as the problem of finding the class with maximum

probability given a set of observed attribute values. Such probability is seen as the posterior

probability of the class given the data, and is usually computed using Bayes’ theorem.

Therefore, the probability of an example x being class y ∈ {0, 1} is

p(y|x) =
p(x|y)p(y)

p(x)
. (4)

Example x is classified as the class y = 1 if and only if

log
p(y = 1|x)

p(y = 0|x)
≥ 1. (5)

Assume that all attributes are independent from each other given the class; namely,

p(x|y) = p(x1, x2, ..., xm|y) =
m∏
i=1

p(xi|y). (6)

This allows us to write, following Bayes’ theorem, the posterior probability of the class y
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as:

p(y|x) =
p(y)

p(x)

m∏
i=1

p(xi|y), (7)

As shown above, a probability ratio g(x) = p(y=1|x)
p(y=0|x)

can be expressed in terms of a series of

likelihood ratios; such that example x is classified as the class y = 1 if and only if g(x) ≥ 1.

The function g(x) is usually called a Naive Bayes classifier (NB), or “idiot’s Bayes”, and is

one of the simplest classification algorithms. Its main source of simplicity is the independence

assumption. As made clear in equation (6), Naive Bayes assumes that the features in the

problem are independent. This assumption largely simplifies the learning process, as the

classifier is fully defined simply by the conditional probabilities of each attribute given the

class (Zhang, 2004). Hence, Bayes methods train very quickly since they require only a single

pass on the data either to count frequencies (for discrete variables) or to compute the normal

probability density function (for continuous variables under normality assumptions).

When the strong independence assumption is satisfied, NB is optimal, i.e., guarantees

minimum classification error (Zhang, 2004; Kuncheva, 2006). This assumption is rarely

true in most real-world applications. Numerous experimental studies, however, demonstrate

that NB is accurate and efficient even if the independence assumption is violated. Zhang

(2004) shows that regardless of how strong the dependences among attributes are, NB can

still be optimal if the dependences distribute evenly in classes, or if the dependences cancel

each other out. Kuncheva (2006) demonstrates that, given two binary features and two

equiprobable classes, NB is optimal for dependent features as long as the covariances for

the two classes are equal. Moreover, Rish (2001); Demirekler and Altinçay (2002); Altinçay

(2005) show that dependencies may be good for improving the accuracies provided by the

NB classifier.

The robust performance of NB, has been attributed to various estimation properties (Domin-

gos and Pazzani, 1997; Hand and Yu, 2001). For example, Domingos and Pazzani (1997)
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perform a large-scale comparison of NB with algorithms for decision tree induction, instance-

based learning, and rule induction on a series of datasets. They find NB to be often superior

to the other learning schemes, even on datasets with substantial feature dependencies. The

most important explanation for NB’s success, however, lies in the fact that conditional in-

dependence is only a sufficient but not a necessary condition for optimality (Domingos and

Pazzani, 1997; Hand and Yu, 2001; Rish, 2001; Zhang, 2004; Zhang and Su, 2004). From

a classification point of view, the relative values of a posteriori probabilities assigned to

different hypotheses are more important than the accuracy of their estimates. Indeed, the

accuracy of approximation of the likelihoods of joint observations, p(x1, x2, ..., xm|y), is ir-

relevant as long as for any example x, the largest posterior probability corresponds to the

same class as with the true posterior probabilities (Hastie, Tibshirani and Friedman, 2009).

Therefore, despite its naive design and apparently over-simplified assumptions, naive Bayes

classifiers often outperform far more sophisticated alternatives, even if the independence

assumption does not hold.

2.2 Estimation

From an estimation viewpoint, the classification problem can be considered as one in which

the goal is to estimate a function of the form P (class|x) = f(x). All model parameters

(i.e. class priors and feature probability distributions) can be approximated with relative

frequencies from the training set. In presence of discrete and Gaussian data this process

turns out to be straightforward.

For our two-class problem, we can fit density estimates f̂y(x), y ∈ {0, 1} separately in each

of the classes, and we also have estimates of the class priors π̂y (the sample proportions).

Then

p(y = 1|x) =
π̂1f̂1(x)

π̂1f̂1(x) + π̂0f̂0(x)
(8)
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As noted above, naive Bayes assumes that given a class y, the features xi are independent:

fy(x) =
m∏
i=1

fyi(xi). (9)

Hence, when the components xi of x are discrete, an appropriate histogram estimate can

be used. This provides a very simple way of mixing variable types in a feature vector (Hastie,

Tibshirani and Friedman, 2009, p. 211). But, if we are dealing with continuous variables,

then the domain of attributes needs to be partitioned. A common way to handle continuous

attributes in NB classification is to use Gaussian distributions to represent the likelihoods of

the features conditioned on the classes (Mitchell, 1997; Bustamante, Garrido and Soto, 2006;

Hastie, Tibshirani and Friedman, 2009). Namely, the individual class-conditional marginal

densities fyi can each be estimated separately using one-dimensional kernel density estimates.

Starting from equation (8), the logit-transform can be derived as:

log
p(y = 1|x)

p(y = 0|x)
= log

π1f1(x)

π0f0(x)

= log
π1

∏m
i=1 f1i(xi)

π0

∏m
i=1 f0i(xi)

= log
π1

π0

+
m∑
i=1

log
f1i(xi)

f0i(xi)

= α1 +
m∑
i=1

g1i(xi).

(10)

This has the form of a generalized additive model (Hastie, Tibshirani and Friedman, 2009, p.

211). The model can be fitted in different ways; however, in the case of two mutually exclusive

classes, as it is the case here, the conversion of the log-likelihood ratio to a probability takes

the form of a sigmoid curve.
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3 Empirical Analysis

3.1 Feature Selection

As discussed above, an important factor that must be taken into account when choosing

a learning algorithm is the nature of the the data to be classified. Generally, statistical

learning systems tend to perform better when a few meaningful features are used. By

reducing the dimensionality of the data (i.e avoiding the “curse of dimensionality”), data

mining algorithms tend to operate faster and more effectively. Feature subset selection is

thus an important step in the evaluation of a learning algorithm. This process consists of

identifying and removing as many irrelevant and redundant features as possible (Yu and Liu,

2004; Kotsiantis, 2007).

A classifier’s evaluation is often based on its prediction accuracy. Four measures are usually

used to assess a classifier’s performance. The most popular of these indicators, prediction

accuracy, measures the proportion of correctly classified instances. The other three mea-

sures are: positive predictive accuracy (the reliability of positive predictions on the induced

classifier); sensitivity (the fraction of actual positive examples that are correctly classified);

and specificity (the fraction of actual negative examples that are correctly classified) (Tan

and Gilbert, 2003; Hastie, Tibshirani and Friedman, 2009).

For our two-class classification rule, recall the logit-transform discussed in the previous

section. We relate the mean of the binary response µ(x) = p(y = 1|x) to the predictors via

a linear regression model and the logit link function:

log
( µ(x)

1− µ(x)

)
= α + β1x1 + · · ·+ βmxm. (11)

We evaluate the classification rule using all the data in our training set (10,000 observa-

tions). Per the calibration results presented above, we use αA = 400 and αB = 320, and we
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set γ = δ = 0 when we simulate a clean election and γ = .3, δ = 1.2 otherwise. As expected,

these parameter values minimize our classification errors (see Appendix 2).18

The dependent variable, Fraud, takes the value of 1 if an observation corresponds to a

simulated electoral contest in which the data were purposively “contaminated” by electoral

tampering; and zero otherwise. Recall that we simulated these different types of elections

by treating each contest as a Bernoulli trial with two possible outcomes, and set probability

of success/failure as p = .5. Therefore, by design, in roughly half of our observations the

variable Fraud takes the value of 1, and in the other half a value of zero.

To avoid overfitting, we only use the first moment of the FSD distribution, and the fre-

quency of the number one as the FSD corresponding to the simulated vote counts of the

party benefitting from fraud (i.e. d̄B and p(dB = 1)) as our predictor variables. Another

reason why we exclude the other party’s vote count from the analysis is the following: recall

that whenever fraud is committed, the total number of votes for the party affected by fraud

in each district is VA,j = (1− γ)(αAXA,j). That is, the post-manipulation vote count for the

party affected by fraud is some fraction of its original vote. As discussed above, Benford’s

law is scale-invariant. Hence, this additional information would be of little help to ascertain

whether electoral manipulation leads to vote counts that do not satisfy Benford’s law.

Given that both features are based on the FSD distribution of party B’s votes, the inde-

pendence assumption is clearly violated. Nonetheless, the dependency of the feature does

not vary across our two categories (the correlation coefficients between the two variables

under each class label are ρ = −0.63 and ρ = −0.64 in the clean and manipulated elections,

respectively). As discussed above, naive Bayes is an effective classification tool when the de-

pendencies among the features are independent of the class labels (Zhang, 2004). Therefore,

despite the strength of dependence between our two features, we can still take advantage of

the naive Bayes classifier as a learning scheme.
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Table 3 shows the test error rates. Using this contingency table, we can evaluate the classi-

fier’s performance. The overall correct classification rate is 94.28%. The positive predictive

accuracy is 94.28%, the sensitivity is 94.13%, and the specificity is 94.43%. In the case

of electoral fraud, the usual concern is to avoid false negatives; that is, we want to avoid

classifying a fraudulent election as a clean one. As Table 3 indicates, the probability that

the classifier would produce a false negative is very low (5.87%).

< Table 3 Here >

A receiver operating characteristic (ROC) curve is a two-dimensional visualization of the

tradeoff between true- and false-positive rates of a classification algorithm. The best possible

prediction method would yield a point in the upper left corner or coordinate (0,1) of the

ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no false

positives). The ROC plot is given in Figure 3.

< Figure 3 Here >

The area under the ROC (AUROC) is a single-figure summary measure associated with

ROC performance assessment (range [0, 1];1 being optimal). This measure can be interpreted

as the probability that when one positive and one negative examples are randomly selected,

the classifier will assign a higher score to the positive example than to the negative. As Figure

3 demonstrates, the proposed model (i.e. input representation) provides an outstanding

classification rule, with an AUROC of 0.98.

3.2 Classification of Buenos Aires’ Elections

Having demonstrated the accuracy of our classification rule, we now turn to the evaluation

of the classifier’s performance on the authentic data. Since we have very few authentic
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fraudulent elections, we use here some of the same information employed as seed data for

the synthetic data generation process. Namely, we rely on the 1931 and 1935 elections. In

the next section we use the other three electoral contests in our data set to further validate

our classification results.19

Figure 4 presents class-conditional density estimates obtained from our training data. Each

of the two panels on the left show two separate density estimates for our two predictor

variables in the fraudulent versus non-fraudulent groups, using a Gaussian kernel density

estimate in each. And each of the two panels on the right show the normal cumulative

density function for the two predictor variables, once again, in the fraudulent versus non-

fraudulent groups.

< Figure 4 Here >

The evidence in Figure 4 suggests that we can effectively use the class-conditional marginal

densities for classification purposes. More specifically, we can use the distribution function

of our two predictor variables and combine them with probabilities of the naive bayes model

in a straightforward manner. The procedure is the following: we are interested not in the

probability that the value of our feature variable xi is a particular number, but rather in the

probability that xi has a value less than or equal to some critical number. So, suppose that

the random variable xi is the mean of the FSD and that we are interested in the event that

xi is less than or equal to 3. Given the class-conditional distributions presented in Figure 4,

we can calculate F (3) = p(xi ≤ 3) for both the fraudulent and non-fraudulent groups. These

are F1(3) = p(xi ≤ 3|y = 1) = 0.82, and F0(3) = p(xi ≤ 3|y = 0) = 0.0162, respectively.

We introduce now our validation set, composed by electoral data from the province of

Buenos Aires. As discussed above, the historical evidence suggests that the Conservative

party was the beneficiary of fraudulent practices throughout this period. Hence, for each

election, we can calculate our two feature variables based on the first significant digits (FSD)
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distribution of the votes of the Conservative party. For instance, in the 1931 elections, the

frequency of the number 1 is 0.4, and the mean of the FSD is 3.77.

Recall from equation (7) that, following Bayes’ theorem, we can calculate the posterior

probability of class y as p(y|x) = p(y)
p(x)

∏m
i=1 p(xi|y). Therefore, we can use the FSD informa-

tion to classify each electoral contest. To illustrate how the classifier works, let us focus on

the 1931 elections. The probability that the election was clean can be written as:

p(c|x) =
p(c)p(x1 ≤ 0.4|c)p(x2 ≤ 3.77|c)

p(c)p(x1 ≤ 0.4|c)p(x2 ≤ 3.77|c) + p(c′)p(x1 ≤ 0.4|c′)p(x2 ≤ 3.77|c′)
,

where p(c) = p(clean), p(c′) = p(fraud), x1 denotes the frequency of the number 1, and x2

denotes the mean of the FSD. Given a prior assignment of probabilities p(c) = p(c′) = 1
2
,

the updated probability that the 1931 election was clean is equal to:

p(c|x) =
(.5)(1)(.9108)

(.5)(1)(.9108) + (.5)(.1954)(1)
≈ 0.823

The top panel of Table 4 presents the classification of the 1931 and 1935 elections obtained

using the NB learning algorithm. Our results corroborate the validity of our approach. The

labels assigned by the Bayes classifier, despite using uninformative priors (i.e. p(clean) =

p(fraud) = 1
2
) and a minimal amount of information, allow us to discriminate between the

two types of electoral contests.20

< Table 4 Here >

For instance, take the April 5, 1931 provincial election. This was the first electoral contest

that took place after the 1930 military coup. When all the votes were counted, the Radicals

had 218,283 tallies to 187,734 for the Conservatives. The results shook the provisional

military government to its foundation (Potash, 1969). Citing irregularities in the voter

registries, president Uriburu annulled the elections a few months later. Yet, the government’s
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decision to annul the elections seemed to be completely unfounded. As Walter (1985) notes,

the election was held in good order, with a few minor incidents. In fact, competing parties

agreed that it was a free, open, and honest contest. In line with these historical accounts,

the data presented in Table 4 indicate that the 1931 elections were unlikely to be fraudulent.

In contrast with the 1931 election, the November 3, 1935 gubernatorial election was imme-

diately and universally condemned as one of the most fraudulent and irregular in Argentine

history (Bejar, 2005). The results underscored the extent of the irregularities. The Conser-

vative slate defeated the Radical candidates by more than 100,000 votes, 278,533 to 171,081.

As Table 4 shows, our learner unambiguously classified this election as fraudulent.

3.2.1 Evaluation of the Classifier’s Performance

From a classification point of view, the results presented in the top panel of Table 4 demon-

strate that our learner can be effectively used as a tool for identifying fraud. The last step

is to evaluate the performance of the classifier vis-a-vis the conventional wisdom. For this

purpose, we turn now our attention to the 1940 and 1941 electoral contests.

The March 3, 1940 legislative elections took place under a peculiar political climate. In-

cumbent president Roberto Ortiz had pledged, in his opening address to the the National

Congress in 1938, to end fraudulent political practices and to restore democracy. Under the

threat of a federal intervention, local authorities refrained from engaging in electoral fraud.

On April 19, 1940, the Review of the River Plate praised “... the correctitude with which

the voting was conducted ...”. Indeed, the elections were the “... freest and most democratic

since April 1931 ...” according to Walter (1985, p. 178). These accounts, once again, cor-

roborate the validity of our approach: the findings presented in the bottom panel of Table 4

clearly suggest that this election was legitimate.

The last provincial election of the “infamous decade” took place on December 7, 1941. The
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Conservative gubernatorial candidate won by almost 100,000 votes. Unlike the elections from

the previous year, Ortiz was no longer in charge. Due to medical problems, he had to give

up his powers to vice-president Castillo in July of 1940. As Alston and Gallo (2010) note,

the election was full of irregularities (public voting, police harassment, ballot-box stuffing).

Indeed, this election is identified as fraudulent by our detection tool.

To further validate our results we focus now on the national congressional elections held on

March 1, 1936. This is a particularly valuable set because: (1) we did not use these elections

as seed data for the synthetic data generation process; and (2) official records documenting

electoral irregularities do exist (and, therefore, we have a real value of fraud/clean for our

output variables).

Originally scheduled for late 1935, these elections were as fraudulent as the gubernatorial

election held in that year. In fact as Walter points out, on March 8 the national election

board “... annulled the results of 259 polling stations in 72 districts involving 63,000 voters

and convoked complementary elections for March 15 ...” (Walter, 1985, p. 156). Using the

official records of the Argentine Chamber of Deputies (cf. Cámara de Diputados. Diario

de Sesiones, June 17, 1936, pp. 942-943), we identified those districts where irregularities

acknowledged by the election board took place. After removing the ten partidos that were

excluded from our previous analysis, our sample for the 1936 elections includes 66 districts

with faulty polling stations and 34 where no irregularities were uncovered. Any district in

which the results of at least one single polling station was annulled is thus considered a

fraudulent district. If anything, using this criterion plausibly leads us to underestimate the

detection capabilities of our classification tool.21

As before, we use our two feature variables based on the first significant digits (FSD)

distribution of the votes of the Conservative party for classification purposes. For the

fraudulent districts, the frequency of the number 1 is 0.39, and the mean of the FSD is
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3.12. In those districts where no irregularities were uncovered, the frequency of the num-

ber 1 is 0.44, and the mean of the FSD is 3.61. Given a prior assignment of probabilities

p(clean) = p(fraud) = 0.5, the updated probability that the elections in those districts

where irregularities were acknowledged by the election board were fraudulent is equal to

p(fraud|x) ≈ 0.613. And, the updated probability that the elections in those districts

where no irregularities were uncovered were clean is equal to p(clean|x) ≈ 0.596.

3.3 Standard Fraud Detection Algorithms

Our findings clearly indicate that the method proposed in this paper can be effectively

used to assess the fraudulent/non-fraudulent status of elections. To further demonstrate

the advantages of our approach, it seems appropriate to explicitly show how standard vote

fraud detection algorithms yield different and inferior results. In this section we discuss some

commonly used election forensics tools, and apply them to the four elections in the province

of Buenos Aires analyzed above.

Statistical analyses of electoral irregularities fall into two categories. The first looks for

anomalies in the patterns of the numbers – the digits – employed in official protocols. The

second examines anomalies in the distribution of turnout (Levin et al., 2009). With respect to

the first category, the first-digit Benford’s Law test (1BL) is often used as a fraud detection

technique. This method employs a chi-square goodness-of-fit test to establish conformity

with Benford’s Law. More specifically, let χ2 =
k∑
i=1

(Oi−Ei)
2

Ei
, where Oi and Ei are the observed

and expected frequencies for digit i as the first significant digit, respectively. The null

hypothesis is that the data follow the Benford distribution. The test statistic follows a χ2

distribution, so the null hypothesis is rejected if χ2 > χ2
α,8, where α is the level of significance

(Cho and Gaines, 2007).

In a similar vein, Mebane (2006, 2008b, 2009) looks for deviations from the “second-digit
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Benford’s law.” These tests come in two forms. The first one, the second-digit Benford’s Law

test (2BL) is analogous to the 1BL test. The only difference is that it focuses on the relative

frequency of the second significant digit.22 The second test examines the first moment of the

second significant digit (SSD) distribution. If the vote counts’ second-digits follow Benford’s

Law, then the expected value for the second-digit mean is 4.187. Statistically significant

deviations from this value are considered as evidence of electoral irregularities (Mebane,

2006, 2008b, 2009).

An additional digit-based test focuses on the distribution of last digits. According to Beber

and Scacco (2008), fair election procedures should produce returns where last digits occur

with equal frequency. Hence, they propose a test based on the distribution of last digits.

Specifically, their test focuses on the relative frequency of the last significant digit: an election

is considered to be suspicious if the distribution of last digits departs significantly from what

we would expect from a purely random process.

Turning to the second category of forensic indicators, Mebane (2008b) proposes a simple

test to check if unusual turnout is associated with unusual vote totals. Specifically, for vote

counts yi observed for districts indexed by i, he regresses (by ordinary least squares) the

second significant digit on turnout. The estimated coefficient for the turnout indicator when

elections are non-fraudulent should be statistically undistinguishable from zero (Mebane,

2008b).23

Finally, Levin et al. (2009) discuss a second indicator based on turnout rates. If artificially

inflated turnout is absent, then the relationship between turnout (T ) and a party’s share

of the eligible electorate (V/E) should approximately match the party’s overall share of the

vote. Therefore, regression estimates of the relationship between V/E and T in otherwise

homogeneous data should fail in the interval [0, 1]. Estimates outside of this interval serve

as an indicator of potentially fraudulently reported votes (Levin et al., 2009).
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To carry out the comparison between our learner and the six fraud detection algorithms

discussed in this section, we used each one of them to examine the electoral contests in

our validation/test sets.24 Recall that because Benford’s law is scale-invariant, the Radical

party’s vote counts would be of little help to establish whether electoral manipulation leads to

vote counts that do not satisfy the law. We thus focused on the post-manipulation vote count

for the Conservative party. To establish each procedure’s classification accuracy, we relied

once again on the historical evidence. So, for example, we consider an irregular (legitimate)

election to be correctly classified if its deemed fraudulent (clean) by most historical accounts.

Table 5 reports the error rates associated with each of the procedures. In terms of its

classification accuracy, the SSD mean test seems to be the weakest. The only election that

can be correctly classified using this test is the 1931 provincial contest (as clean). The

procedure also produces one false positive (it classifies the 1940 election as fraudulent rather

than clean), and two false negatives (the 1935 and 1941 elections, which are classified as clean

instead of fraudulent). The remaining tests do not fare much better: they either classify all

of the analyzed elections as clean (2BL test, Last Digit Test, Turnout and SSD, and Turnout

Anomalies) yielding 50% of false negatives; or produce at least one false positive (the 1BL

Test, which classifies the 1931 election as fraudulent).

< Table 5 Here >

In contrast to these fraud detection procedures, our learner correctly classifies 100% of

the cases, with no false positives and no false negatives. As such, the evidence presented in

Table 5 suggests that the approach proposed in this paper is a more powerful classification

algorithm than the election forensics tools previously used in the literature.
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Conclusions

Despite the centrality of elections as mechanisms for providing public accountability, fraud

and electoral manipulation remain understudied. Two major limitations have affected the

study of electoral fraud. First, there is a dearth in the amount of data that is publicly

available to researchers. It is often impossible or at least very difficult to acquire the amount

or type of data needed for tests because governments who cheat seldom release fraud figures.

The second limitation has been the lack a widely accepted method to detect electoral fraud

when little information is available.

This paper introduces an innovative method to diagnose electoral fraud using recorded vote

counts. Building on recent work by Mebane (2006, 2008b) and Beber and Scacco (2008),

we rely on digital analysis to identify electoral tampering. We depart from their analyses,

however, in a several ways. By doing so, we provide a novel approach for dealing with

uncertain data in classification with applications to electoral fraud. First, we develop a

method for generating large amounts of synthetic data that preserve statistical properties of

a selected set of authentic data used as a seed. Second, we demonstrate that the synthetic

data can be used to train an electoral fraud detection system. We believe that future studies

should consider these methodological innovations when analyzing electoral irregularities.

Substantively, this study provides indisputable evidence of the scope and intensity of elec-

toral fraud during Argentina’s “infamous decade.” Our findings confirm that electoral fraud,

rather than a shift in voters’ preferences, led to the dramatic electoral changes during this

period. Indeed, our goal was to demonstrate that our approach can be used to distinguish

stolen elections from electoral landslides. This concern guided the choices that we made in

modeling electoral fraud (the assumption that acts of fraud are committed in every polling

station and that they consist of taking votes away from one party to give to the other).

Our findings indicate that this assumption accurately depicted the manner in which fraud
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was committed in Buenos Aires between 1931 and 1941. The appropriate choice, however,

ultimately depends on the type of fraud under consideration. Future experiments should

verify whether our results also hold for more general classes of seed data and for other types

of electoral fraud detection systems.
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Notes

1For example, Nate Silver wrote in his FiveThirty Eight blog, “... I have no particular

reason to believe the results reported by the Interior Ministry. But I also don’t have any

particular reason to disbelieve them, at least based on the statistical evidence...” (posted on

6/13/2009). See also Andrew Gelman’s post of 6/17/2009 in the same blog.

2See Lehoucq (2003) for an extensive review of the literature on electoral fraud.

3Digit analysis using Benford’s law is an example of such a method. Benford’s law

specifies that in a collection of numbers, the first possible digits should not occur with equal

frequency. Widely applied to financial auditing (Drake and Nigrini, 2000), conformity with

Benford’s law has also been used to detect manipulation of economic indicators (Nye and

Moul, 2007), campaign finances (Cho and Gaines, 2007), and survey data (Schäfer et al.,

2004). Studies using Benford’s law to analyze voting counts include the analysis of elections

in Venezuela (Pericchi and Torres, 2004), Russia (Mebane, 2008a), Iran (Mebane, 2009;

Roukema, 2009), Mexico (Mebane, 2006), and the United States in both contemporary and

Gilded Age elections (Mebane, 2006, 2008b; Buttorf, 2008).

4For example, election returns are unlikely to follow Benford’s law where districts are of

nearly equal size and the level of competition fixes most vote totals in a limited range (Cho

and Gaines, 2007).

5For a comprehensive discussion of the drawbacks associated with the study of electoral

fraud using observational rather experimental data see (Hyde, 2007).

6Learning is called supervised, in contrast to unsupervised, because the learning process

is guided by an outcome variable. In the unsupervised learning problem, only features are

observed, and no outcome measurements exist (Hastie, Tibshirani and Friedman, 2009).

7Within computer science, significant work has been done using synthetic test data in
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network intrusion detection research (Puketza et al., 1996; Debar et al., 1998; Kvarnstrom,

Lundin and Jonsson, 2000; Haines et al., 2001). Likewise, the use of simulated data to train

a learner is also standard practice in bioinformatics and molecular biology (Demichelis et al.,

2006), as well as in anti-terrrorism, law enforcement and other security areas

8The Socialists obtained 9.0% of the vote in the April 5, 1931 election; 3.6% in the

November 3, 1935 election; 5.7% in the election held on March 1, 1936; 3.3% in the March 3,

1940 election; and 2.7% in the election held on on December 7, 1941. The only two contests

in which the Socialists obtained more than 10 percent of the vote were the ones in which the

Radical party did not participate (the November 8, 1931 and the March 4, 1934 elections).

9“Awaiting the Verdict,” in The Review of the River Plate, March 20, 1936, pages 6-7.

10Cámara de Diputados. Diario de Sesiones, July 20-21, 1932, III: 232.

11See footnote 8 above.

12Lupu and Stokes (2009) assembled an impressive database of Argentine elections between

1912 and 2003. Their sample, however, does not include most of the elections that took place

during the 1931-1941 period; and the geographical coverage of the ones that are included

in their sample (the elections of 1937 and 1940) is quite small and excludes the province of

Buenos Aires.

13We decided to exclude from the analysis the national elections that took place on Novem-

ber 8, 1931 and on March 4, 1934. Following a strategy of electoral abstention, the Radical

party a did not participate in these electoral contests. As such, these elections are not suited

for the examination proposed in this paper. We also excluded from the analysis the the 1938

legislative elections because we were unable to obtain disaggregated data.

14Analyses of distributions satisfying Benford’s law have also revealed that Benford com-

pliance should not be expected in every random distribution (Leemis, Schmeiser and Evans,

2000). Yet, as Ciofalo (2009) points out, a sufficient condition for Benford’s law to hold is
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that the data in a given sample follow one of the following distributions: (1) a hyperbolic

probability density function p(d) ∼ 1/d; (2) a geometric progression (i.e., a sequence of

numbers where each term after the first if found by multiplying the previous one by a fixed

non-zero number); and (3) an exponential rank-size distribution f(k) ∼ exp(−k/kn).

15Several recent studies use Benford’s law to to identify electoral tampering (Mebane,

2006, 2008b; Beber and Scacco, 2008). In this respect, our approach is most similar to recent

work by Mebane (2007). But, in contrast to Mebane, who calibrates his diagnostic device

using the very same data he seeks to diagnose, we employ the synthetic data as our training

set and use authentic data as our test set.

16In expectation, the value of X should be 3.162 (the square root of 10), for both parties.

17The D statistic quantifies a distance between the empirical distribution functions of two

samples, and its distribution is calculated under the null hypothesis that the samples are

drawn from the same distribution.

18As Figure 5 (Appendix 2) demonstrates, the classifier’s performance regarding the train-

ing data does not depend on these choices: even parameter values reflecting different levels

of fraud would yield very similar results. The optimal parameter values, however, ensure

that we obtain appropriate class-conditional marginal densities. The results presented in

Table 6 (Appendix 2) show what happens when incorrect parameter values are employed.

When the simulated amount of fraud is scant (γ = .1, δ = .6), the classifier’s performance

regarding the Buenos Aires elections suffers significantly: all elections are considered clean

(with a correct classification rate of 50%). Likewise, if we simulate too much fraud (γ = .5,

δ = 1.8), the classifier also performs quite badly, but in the opposite direction: all elections

are considered fraudulent (with a correct classification rate of 50%).

19For a similar approach see (Lundin, Kvarnström and Jonsson, 2002).

20We evaluate the sensitivity of these results to different assumptions regarding the prior
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probabilities of observing a fraudulent/clean election in Appendix 3. The analysis indicates

that our results are robust to different expectations. In the case of fraudulent elections,

correctly classified outcomes entail posterior probabilities higher than .5, for the whole range

of priors; and for clean elections for prior probabilities, p(clean) > .25.

21The fraction of polling stations with irregularities in each of these fraudulent districts

ranges from 1 out of 48 (2.08%) in Lincoln, to 7 out of 21(33.33%) in Puan.

22The focus on the second significant digit implies that the expected frequencies for digit

i are given by Ei = {.120, .114, .109, .104, .100, .097, .090, .088, .085} and that the chi-square

statistic should be compared to the chi-square distribution with nine degrees of freedom.

23As Mebane (2008b) notes, it should also be the case that under normal circumstances,

the second-digit mean (captured by the intercept) should conform to its Benford expected

value (4.187).

24Unfortunately, due to data availability constraints, we could only perform the analyses

that examine anomalies in the distribution of turnout for the 1940 and 1941 elections.
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Data Sources

República Argentina. Congreso Nacional. Cámara de Diputados. Diario de Sesiones.
Buenos Aires, 1932.

Congreso Nacional. Cámara de Diputados. Diario de Sesiones. Buenos Aires, 1936.

Ministerio del Interior. Memoria del ministerio del interior presentada al honorable con-
greso de la nación. Buenos Aires, 1935.

Ministerio del Interior. Memoria del ministerio del interior presentada al honorable con-
greso de la nación. Buenos Aires, 1941.

Review of the River Plate. Buenos Aires, 1931-1942.
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Abal Medina, Juan Manuel and Julieta Suárez Cao. 2003. “Partisan Competition in Ar-
gentina. From Closed and Predictable to Open and Unpredictable.” Meeting of the Latin
American Studies Association.

Alston, Lee J. and Andres A. Gallo. 2010. “Electoral fraud, the rise of Peron and demise of
checks and balances in Argentina.” Explorations in Economic History 47:179–197.
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Table 1
Elections in the Province of Buenos Aires (1931-1941)

Obs. Mean Std. Dev. Min Max
1931
UCR 100 1672.81 1007.76 262 4636
Conservatives 100 1384.30 778.01 339 4081
1935
UCR 100 1057.08 957.458 40 4641
Conservatives 100 2099.71 1332.41 554 6772
1936
UCR 100 1212.42 965.89 81 5060
Conservatives 100 1689.55 1094.59 395 5576
1940
UCR 100 1874.02 1246.69 264 6103
Conservatives 100 1470.81 896.30 411 3998
1941
UCR 100 1292.91 911.17 224 4979
Conservatives 100 2079.20 1372.76 450 6393

Notes: This table reports the distribution of votes for the Radical
(UCR) and Conservative parties in the province of Buenos Aires in
the elections of 1931, 1935, 1936, 1940, and 1941. The units of anal-
ysis are the electoral returns a the partido level. The partidos were
the province’s basic local administrative units. Sources: Memorias of
the Ministerio del Interior, and Diario de Sesiones of the Argentine
Chamber of Deputies.
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Table 2
Comparison of Authentic and Synthetic Data

Kolmogorov-Smirnov Test: D statistic (p-values)

Radical Party Conservative Party
Election Clean Fraud Clean Fraud

αA = 400, αB = 320, δ = 0, γ = 0
1931 0.23 0.24

(0.008) (0.005)
1935 0.23 0.32

(0.008) (0.000)
αA = 320, αB = 520, δ = 0, γ = 0

1931 0.28 0.18
(0.001) (0.069)

1935 0.24 0.21
(0.005) (0.020)
αA = 400, αB = 320, δ = .1, γ = .6

1931 0.15 0.21 0.29 0.23
(0.193) (0.020) (0.000) (0.008)

1935 0.30 0.27 0.37 0.33
(0.000) (0.001) (0.000) (0.000)
αA = 400, αB = 320,δ = .3, γ = 1.2

1931 0.14 0.32 0.21 0.27
(0.281) (0.000) (0.024) (0.001)

1935 0.39 0.24 0.34 0.1
(0.000) (0.006) (0.000) (0.699)
αA = 400, αB = 320, δ = .5, γ = 1.8

1931 0.19 0.49 0.23 0.50
(0.047) (0.000) (0.008) (0.000)

1935 0.28 0.16 0.38 0.23
(0.001) (0.140) (0.000) (0.008)

Notes: This table reports the comparison between the
authentic and synthetic data. To carry out our com-
parisons we use a two-sample Kolmogorov-Smirnov
(K-S) test. Entries in bold indicate statistical sig-
nificance at a 99% level. The results suggest that
αA = 400, αB = 320, γ = .3, and δ = 1.2 provide the
best fit between the simulated and the real data.
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Table 3
Contingency Table: Logit model fit to the Training Data

Predicted Class
True Class Clean (0) Fraud (1)
Clean (0) 4777 282
Fraud (1) 290 4651

Notes: This table reports the classifier’s performance regard-
ing the training data. The overall correct classification rate
is 94.28%. The positive predictive accuracy is 94.28%, the
sensitivity is 94.13%, and the specificity is 94.43%.

Table 4
Classification of Buenos Aires’ Elections (1931-1941)

Election p(clean) = p(fraud) p(clean|x) p(fraud|x) log p(y=1|x)
p(y=0|x)

Classification

Validation Set (Seed Data)
1931 0.5 0.823 0.176 -1.539 Clean
1935 0.5 0.054 0.945 2.845 Fraudulent

Test Set
1940 0.5 0.756 0.243 -1.135 Clean
1941 0.5 0.080 0.919 2.441 Fraudulent

Notes: This table reports the classification of the elections in our validation set (top panel) and in
our test set (bottom panel) obtained using the NB learning algorithm.

Table 5
Error Rates of Fraud Detection Algorithms in Previous Research

Procedure Correctly Classified False Positives False Negatives
1BL Test 66.6 % 25.0 % 0.0 %
2BL Test (Mebane 2008b) 50.0 % 0.0 % 50.0 %
Last Digit Test (Beber & Scacco 2008) 50.0 % 0.0 % 50.0 %
Mean of SSD (Mebane 2008b) 25.0 % 25.0 % 50.0 %
Turnout and SSD (Mebane 2008a) 50.0 % 0.0 % 50.0 %
Turnout Anomalies (Levin et. al. 2009) 50.0 % 0.0 % 50.0 %

Notes: This table reports the error rates associated with different fraud detection algorithms used in
the literature: the first-digit Benford’s Law test (1BL); the second-digit Benford’s Law test (2BL);
the last digit test, the second significant digit (SSD)’s mean test; the second-digit mean/turnout
test; and the anomalies in turnout test. An election is considered to be correctly classified if it
matches the historical evidence. A false positive (negative) is an election classified as fraudulent
(clean), but considered legitimate (irregular) by most historical accounts. Due to data availability
constraints, we could only perform the analyses that examine anomalies in the distribution of
turnout for the 1940 and 1941 elections.
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Figure 1: Written Authorization to Access a Polling Station

Notes: This document provides a good illustration the fraudulent practices that
took place in the province of Buenos Aires during the “infamous decade”: written
“passes” were often used to give admission to the polls to some voters but not others.
The handwritten directions in the permit say “... Let him vote, as he is one of us
...”, giving the bearer authorization to access polling station number 24 located in
El Pensamiento (Coronel Pringles). Source: Argentine Chamber of Deputies, Diario
de Sesiones, June 17, 1936: 968.
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Figure 2: Comparison of Authentic and Synthetic Data
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Notes: This figure presents a graphical comparison between pairs of distributions:
the fraudulent/non-fraudulent vote count for parties A and B in our simulations and
the actual electoral returns for the Radicals and the Conservatives in the 1931 and
1935 elections. As the graph for the 1931 election demonstrates, the non-fraudukent
distribution of the vote counts for party A and the electoral returns for the Radical
party are strikingly similar. Likewise, the fraudulent vote count for party B and the
Conservative’s electoral returns in the 1935 election are also almost identical.
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Figure 3: ROC Curve for Classification Rules Fit to Training Set
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Notes: This figure presents the receiver operating characteristic (ROC) plot of
our classifier’s performance. It is s a two-dimensional visualization of the trade-
off between true- and false-positive rates of a classification algorithm. As the figure
demonstrates, our proposed model provides an outstanding classification rule, with
an AUROC of 0.98.
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Figure 4: Class-Conditional Density Estimates
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Notes: This figure presents class-conditional density estimates obtained from our
training data. Each of the two panels on the left show two separate density estimates
for our two predictor variables in the fraudulent versus non-fraudulent groups, using
a Gaussian kernel density estimate in each. And each of the two panels on the
right show the normal cumulative density function for the two predictor variables,
once again, in the fraudulent versus non-fraudulent groups. The evidence suggests
that we can effectively use the class-conditional marginal densities for classification
purposes.
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Appendix 1

rm(list=ls(all=TRUE))
library(stats)
# Settings: n=10,000, fraud=.5, districts(j)=100 
# Calibration: alphaA=400, alphaB=320, stolen(gamma)=.3, used(delta)=1.2
simulations=function(n,fraud,districts,alphaA,alphaB,stolen,used){

data=matrix(NA,n, 9,dimnames=list(seq(1,n), c("fraud","votesA","votesB", "newA", 
"newB","meanAf","meanBf","Af1","Bf1")))

#Proportion of "fraudulent" simulations
dummie=rbinom(n,1,fraud)
data[,1]=dummie

for (j in 1:n)
{
#Generating simulated vote countes (taking out negative values)
# Benford Variate
XA=10^runif(districts,0,1)
XB=10^runif(districts,0,1)
# Votes for party i (equation 2)
votesA=as.integer(alphaA*XA)
votesB=as.integer(alphaB*XB)

#stolen votes
lostvotesA=as.integer(stolen*votesA)
#filter
lostAfilter=lostvotesA*dummie[j]

#New votes for A
newvotesA=votesA-lostAfilter

#New counts after the "fraud"
##1. All the votes lost by party A go to party B
newvotesB=as.integer(votesB+(used*lostAfilter))

# Generate first digits of data
firstA=as.numeric(substring(newvotesA,1,1))
firstB=as.numeric(substring(newvotesB,1,1))

data[j,2]=(sum(votesA))/districts
data[j,3]=(sum(votesB))/districts
data[j,4]=(sum(newvotesA))/districts
data[j,5]=(sum(newvotesB))/districts
data[j,6]=mean(firstA,na.rm=TRUE)
data[j,7]=mean(firstB,na.rm=TRUE)
data[j,8]=(sum(firstA==1,na.rm=TRUE))/districts
data[j,9]=(sum(firstB==1 ,na.rm=TRUE))/districts
}

print(data)
write.csv(data,file="/Users/Mac/Fraud/vote_simulation",col.names=TRUE)
}
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Appendix 2

Figure 5: Sensitivity of Classification to Simulation Assumptions
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Notes: This figure shows the sensitivity of our lerner ’s classification accuracy to the
simulation assumptions. The evidence suggest that even parameter values reflecting
different levels of fraud would yield very similar results.
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Table 6
Classification of Buenos Aires’ Elections

Election p(clean|x) p(fraud|x)
γ = .1, δ = .6

1931 0.533 0.467
1935 0.658 0.342
1940 0.601 0.399
1941 0.640 0.360

Correctly Classified: 50%

γ = .5, δ = 1.8
1931 0.475 0.525
1935 0.045 0.955
1940 0.300 0.700
1941 0.066 0.934

Correctly Classified: 50%

Notes: This table confirms that appropriateness of our simu-
lation parameters (γ = .3, and δ = 1.2). When the simulated
amount of fraud is scant (γ = .1, δ = .6), the classifier’s
performance regarding the Buenos Aires elections suffers sig-
nificantly: all elections are considered clean. Likewise, if we
simulate too much fraud (γ = .5, δ = 1.8), the classifier also
performs quite badly, but in the opposite direction: all elec-
tions are considered fraudulent.
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Appendix 3

Figure 6: Sensitivity of Classification Accuracy to Priors
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Notes: This figure shows the sensitivity of our lerner ’s classification accuracy to dif-
ferent assumptions regarding the prior probabilities of observing a fraudulent/clean
election. The findings indicate that our result are robust to different expectations.
In the case of fraudulent elections, correctly classified outcomes entail posterior
probabilities higher than .5, for the whole range of priors; and for clean elections for
prior probabilities, p(clean) > .25.
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