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How do institutions form and how do they change in the presence of random
shocks and uncertainty? We formulate stochastic dynamics with drift and time-
varying mutation to provide a general theory that explains how institutions are
created and how they survive in the medium, long, and ultra-long run.

1. INTRODUCTION

This paper has a two-fold objective. One is to provide a formal model
of institutional change that is rooted in the New Institutional Economics
(NIE) literature. The other is to formulate (evolutionary-game) dynamics
capable of accommodating the effect of stochastic ’drift’ from, and time-
varying ‘mutation’ into and out of, strategies. Such aims actually serve to
motivate each other.

Scholars have proposed a number of game-theoretic formulations to
study institutional change (i.e. Greif, Aoki, Young) without coming to
a clear consensus. We hold the view that institutional change is best mod-
eled in an evolutionary framework for several reasons. One is that we
are able to relax assumptions of altruism and hyperrationality implicit in
other dynamic (i.e. repeated) games by allowing the game to be played by
’shorter-sighted’ individuals who only care about their own expected pay-
offs and who can also make mistakes. Another obvious reason is that we



can analyze strategy selection in the longer run and refine Nash equilibria
(NE) in terms of asymptotic stability (AS), and stochastic stability (SS).
Lastly, because of the infinite-time horizon in which the evolutionary game
is played, we are readily able to capture the idea that institutions keep on
building from previous ones, and avoid the problem of infinite institutional
regress by assuming just one initial (exogenous) starting point of the game.

We first set out by recognizing that there are institutions whose emer-
gence and disappearance are occurrences over which the particular players
of the game have no control. Such exogenous institutions are herein de-
fined as the 'Meta Set’. Faced with an evolving Meta Set, agents then
play an evolutionary game of choosing whether to keep upholding and/or
rejecting it. That is, as new institutions are formed and existing ones
are destroyed or replaced, the players choose whether or not to use such
institutions, thereby strengthening or weakening the ’de facto existence’
of institutions. Note, then, that de facto existence is endogenously deter-
mined, while the evolution of the Meta Set is not. While there may be some
degree of path dependence, we let both types of evolution be influenced by
stochastic processes.

Path dependence in the evolution of the Meta Set is captured by letting
new institutions build up on previous ones. However, the appearance of
new institutions and disappearance of old institutions are random shocks in
that the timing of the creation of new, and destruction of old, institutions
is unpredictable. The timing may be linked to (random) changes in the
environment, thereby allowing changes in the the Meta Set to be interpreted
as a way of adapting to the new environment. Such adaptation, however,
may be ‘correct’ or ‘incorrect’, depending on whether or not agents uphold
the Meta institutions via the game determining their de facto existence.

The evolution of de facto existence is path dependent to the extent
that agents consider the history of play in calculating for expected payoffs
from their strategies, but it is partly stochastic since these agents can also
deviate from expected behavior because of two things. One reason is that
they sometimes ‘experiment’ or switch to a strategy which they have not
been pre-programmed or pre-conditioned to play - this is interpreted as
‘mutation’.  Another is that the evolution of the Meta Set itself makes
them uncertain as to whether it is best to uphold or reject the Meta Set
at all times, or to switch strategies at some point, since the Meta Set can
randomly change at any time. This causes ‘drift’ of players into and out
of strategies, and is a larger source of uncertainty than ‘mutation’ since all
players share the same Meta Set are are thus affected by changes therein.

Analyzing the stochastic elements in the dynamics of institutional change
poses some technical difficulties. Essentially, one needs to be able to model
two sources of randomness: large 'macro’ shocks (i.e. changes in the Meta
Set) faced by all players and can thus cause ’drift’; and mutation by indi-
vidual players to capture experimentation or mistakes at the 'micro’ level.
In addition, one needs to allow players’ mutation behavior to be system-



atically related to the source of drift. Intuitively, the evolving pattern of
creation/destruction of institutions may continuously influence the extent
of uncertainty of players and, hence, affect how mutation evolves over time.
While there exist stochastic dynamics that can be used to model drift and
mutation, these models typically employ Wiener processes and/or assume
fixed mutation rates. What we develop is a version that accommodates
more general stochastic processes for drift. More importantly, we let mu-
tation rates be related to the drift and be time-varying. Such a model
then allows us to examine equilibria over three periods:

In the medium run, we assume the Meta Set to be approximately sta-
ble/fixed. That is, there are no macro shocks and, hence, there is no drift
and mutation rates are fixed. The result obtained is consistent with most
evolutionary-game models in that the equilibrium corresponds to the risk-
dominant strategy — agents uphold the Meta Set when it is a risk-dominant
strategy to do so, even when there is constant mutation. This implies that
risk dominance in the payoffs overcomes all other ‘small’ uncertainty from
mutation/experimentation.

Over the long run, we let the Meta Set evolve via random shocks that
create new, or destroy old, institutions. We find that the equilibrium can
still be the risk-dominant strategy even in the presence of both mutation
and drift. However, this result is not generalizable but may only be a
special case obtained when the evolution of the Meta Set happens to follow
a stochastic process with zero mean, which makes the drift equal to zero on
‘average’. To verify the general case, we look at the ultra-long run which
we particularly define as the period during which the Meta Set will have
evolved sufficiently many times so as to reveal the underlying distribution
governing such evolution.

We propose a new technique for analysing the ultra-long run. (It is
new because most evolutionary-game models have heretofore considered
only fixed mutation rates even in the very long run.) In our version of the
ultra-long run, that is, after the Meta Set has undergone many changes,
players are now assumed to be able to form expectations as to the nature
of this evolution and choose their strategy accordingly. It is then as though
the uncertainty from the evolution of the Meta Set disappears and, hence,
the source of the drift is fixed at its expectation. Any remaining mutation
behavior can then follow a fixed rate. We show that our ultra-long run
equilibrium coincides with the risk-dominant strategy only when (a) the
Meta Set is stable on expectation or it eventually becomes less complex; or
(b) the Meta Set becomes more and more complex, but at a slow enough
rate. In both cases (a and b), the uncertainty from the evolution of the
Meta Set, or the drift, is not too large so as to overcome risk-dominance in
payoffs. When the Meta Set becomes more and more complex at a fast rate,
the drift overcomes risk-dominance in payoffs, and the equilibrium becomes
the non-risk dominant strategy. That is, players become too uncertain, they
mistrust the risk-dominance of a strategy, which causes much drift out of it



and into the non-risk dominant strategy. Intuitively, then, assuming that
the risk-dominant strategy is to uphold the Meta Set, de facto existence of
the Meta Set can only be maintained in the ultra-long run when the Meta
set is either stable, eventually becomes less complex, or does not become
too complex too fast.

For ease of exposition, the next sections 2 and 3 first propose new sto-
chastic dynamics with drift and mutation and derive some general results,
which are then applied in section 4 to the particular process of institutional
change. Section 5 concludes.

2. STOCHASTIC DYNAMICS WITH DRIFT AND MUTATION

Let a large population of players be randomly and continuously drawn
to play a symmetric 2x 2 (evolutionary) coordination game Gy = {N, S, A},
where N defines the set of players, S = {1,2} is the strategy set common
to all players, and A = {a;;}, i,j = {1,2} is the corresponding (doubly-
symmetric) payoff matrix where element a;; is the payoff of adopting strat-
egy i against an individual adopting strategy j':

al 0
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and where strategy 1 is risk-dominant if a; > as.

Let the outcome of play at each time ¢ be described by the proportions
of players adopting each strategy. That is, (dropping time subscripts), let
the state of the population at ¢ be described by V' = (v1, v2), where vy = 4L,
and n; is the number of players that have adopted strategy 1 as of t. Let
the payoff be denoted as u(e!, e!) for pure strategy 1 (and analogously for
2), and expected payoff to pure strategy 1 when the population is in state V'
as u (el, V). The population average payoff is u (V, V) = > v;u (ei, V) Ji=
{1,2}.

The growth of proportions can be captured by the canonical Replicator
Dynamic (RD):?

v = [u (ei,V) —u(V, V)} Vi,

by which a strategy grows when it does better than the population
average. Such a dynamic approximates 'deterministic’ behavior, i.e. as if
players choose strategies only according to expected payoffs.> A stochastic
version of this, however, is easily obtained by explicitly adding a 'mutation’
term. That is, denoting A;; as the probability of switching from strategy
j to i, the net flow to v; is captured by v; = [u (ei,V) —u(V, V)] v; +

L A is constructed from subtracting a1 from column 1 and a12 from column 2. Note
that (a11 — agl)(azg — a12) > 0.

2See, for instance, Taylor and Jonker (1978), Weibull (1995), Vega-Redondo (1996)
Sandholm (2007) on how the RD is explicitly derived.

3By the law of large numbers, players behave as expected. See Boylan (1992, 1995)
for an analysis.



E?zl[)\ijvj — \jiv;] as in Cabrales (2000). Letting A;; = Aj; = A, and using
the fact that vo = (1 — v1), we obtain:

rl.}l = [U (el,V) *U(V,V)] V21 +A(1 72’01) (1)

Alternatively, we can add stochastic noise in the growth of strategies by
introducing a ’drift’ term as in Foster and Young (1990), Fudenberg and
Harris (1992) and Cabrales:

o1 = [u(e", V) —u(V,V)]v1 +op (2)

where o is a positive constant. The last term (u weighted by o) de-
scribes the random flow into v; caused by an underlying Weiner process

W, which is distributed as normal (0,¢). Thus g = W captures Brownian
motion.? Allowing for both drift and mutation, the total flow into v; is’:

b1 = [u (e, V) —u(V,V)]vr +op+ A1 —2vy) (3)

Equation (3) then describes the growth of vy in terms of three things.
The first term captures the deterministic flow, while the second and third
are the noise components in the form of drift and mutation, respectively.

Our model modifies the Foster and Young - Cabrales dynamic in several
ways. First, we eschew the use of Brownian motion and instead allow
for any stochastic process to capture the drift term. Second, instead of
treating the two sources of randomness as independent of each other, we let
mutation and drift be defined by some variable ¢ and its time derivative ¢,
respectively, thereby positing, as it were, a common source of 'uncertainty’
that affects the dynamic. The material implication is that the probability
of mutation is not time constant, and nor can we let it arbitrarily vanish
to obtain a stationary limiting distribution and readily analyze stability in
terms of stochastically stable (SS) strategies. Lastly, while we treat the
third term as a net mutation flow into strategy 1, we assume the drift to
be a random flow out of it. The idea is that while the current state of ¢
positively affects players’ propensity to ’experiment’ regardless of player-
type - g increases first-order uncertainty, greater second-order uncertainty
in the form of ¢ induces flow out of one strategy (strategy 1 in this case) and
into the other (strategy 2). That is, increasing complexity of ¢, captured
by positive ¢, tends to select one strategy over the other (regardless of
strategies’ expected payofls).

Consider then the following specifications.

4Generally, for strategy i, v; = v;{[u (e}, V) —u (V, V)] + oI'(V)u}, where I'(V) is
continuous in V and VTT(V) = [0,0,..017. The particular 2 x 2 case is analyzed in
Foster and Young, while Cabrales generalizes.

5We focus on the RD for strategy 1 since the RD for 2 is easily obtained from the
fact that growth rates sum to zero.



DEFINITION 1. Drift. Define the flow of ’drifting’ players out of strat-
egy 1 to be i = g(q), where ¢ is a realization at ¢ of a random variable

following some exogenous stochastic process.® Denoting @ C R as the set

of all values for ¢, let function g : @ — R_ be a (linear) mapping into the
set of non-positive real numbers, with g(0) = 0, ¢’ < 0, ¢ = 0. Denoting

3 C R4 as the set of all values for o, we can then define the set X C ¥ x Q

of all values of z = — ‘Ug((j) = (op) as the set of non-positive values

14 u(el,V)—u(V,V)
X={zeh_ :0< —u(el,V)l—i-JFQ)\i)?\A(V,V) < 1}, for X # w

This condition guarantees that outward and inward drifts are small enough
to keep v1 between 0 and 1 at all times.”

DEFINITION 2. Mutation. Let the rate of mutation for both player-
types be defined by A = e(q) and, denoting @ C R as the set of all values
for g, let e : @ — [0,1], e(0) = 0, ¢’ > 0 and €” = 0.® The mutation flow, in
terms of the proportion of players into strategy 1, is given by A(1 — 2v1),
but the mutation/switching rate is given by A = e(g).’

Note that the drift represents a larger outflow than (net) mutation:

LEMMA 1. The absolute value| og(q) |> A(1 — 2v,).

Proof. Re-writing the condition 0 < —u(el_vi))l-yi\iz Wy < 1 from the

Jg(c'])’7 we have: (07 — ) < — ‘ag(d)‘ <
[—u(e!, V) + A+ u(V,V) +91]. From the first inequality, we deduce that
A > 01 (since 07 can be positive and (97 — A) has to be negative). Thus,
since A cannot be negative, we know that in the second inequality (A+91) >
0. Note that [—u(e!, V) + A+ u(V,V) +91] > 0 if (A +v1) > [u(e!, V) —
uw(V,V)]. If this is indeed the case, the second inequality is non-binding

definition of X, where x = —

since — |0g(q)| < 0, and the absolute value | 0g(q) | can take on any real
value greater than (01 — A). On the other hand, if the second inequality is
binding, i.e. (A + 1) < [u(e', V) —u(V, V)], the magnitude of | og(q) | is
bounded from above by the absolute value | [—u(e!, V) +A+u(V,V)+1] |

6While ¢ need not be an underlying Wiener/Brownian motion, we assume that ¢ can
be approximated as a continuous (random) flow.

TThat is, expressing ¢1 = [u (e}, V) —u (V, V)] v1 — ‘o‘g(i])‘ + A(1 —2v1) in terms of
—i1—|og(@)]+A
—u(el,V)+2x+u(V,V)’
8While we do not explicitly define the functional relationship between ¢ and g, it is

which we contain between 0 and 1.

v1 yields

enough to specify that while the change ¢ can be any real number, g itself is always
contained within Ry .

9Such may be called 'state-independent’ mutation in the sense of Bergin and Lipman
(1993).



(and from below by | (01 — A) |). Note, however, that in either case,
| 0g(q) |> A, which is greater than A(1 — 2v;) for any value v; € (0,1).

Using game G, and plugging in our particular definitions for (o) and
A, we obtain the following stochastic dynamic for strategy 1:

v = [alvl —a1v} —ay(1 — v1)2] vy —og(q) + e(q)(1 — 2vy) (4)

3. MAIN RESULTS

To analyze equilibrium properties of equation (4), we look at three
specific cases:

3.1. Zero Drift and Time-Constant Mutation Rates

Here we approximate the dynamic when mutation rates are constant.
Setting ¢ = 0 fixes ¢, which reduces equation (4) to equation (1). Assuming
that strategy 1 is risk-dominant, the dynamic will select 1 as the equilibrium
strategy in the following sense:

PROPOSITION 1. An ergodic distribution exists, whose mass is concen-
trated over the risk-dominant strategy.

Proof. Suppose strategy 1 is risk-dominant. We give a rough proof for
the above proposition by showing that, regardless of initial values, v always
stays in the basin of attraction (;-%2-,1), than in the basin (0, ;-2-) of

. . 1 a2 K . . a1+a2 .
vy = 0, where al‘f@ is the mixed Nash equilibrium. (The mixed NE is
less than 1/2 since a1 > ag, that is, the basin for 1 is larger than for
2.) 1If this is the case, then the dynamic is always pulling towards v; = 1

and spends most of its time near it than away from it. Note, then, from

equation (1) that for any value A € [0,1] v; grows, i.e. v; > 0, as long as
7[u(el,V)7u(V,V)]v1
A> =201

, decreases when the inequality is reversed, and is

—lu €1 —Uu v
stationary at the exact equality defined by & = [ (‘1/) QUI()V’V)] L. Sincel

is risk-dominant, the numerator of ¢ is always negative when o +a2 <wv; <
1. The denominator is positive when v; < 1/2 and, hence, £ < 0, and v;
keeps increasing since any value of A will always be greater than £&. When

—|u 61 —Uu v
vy > 1/2, £ > 0, making the inequality A > [ ’(‘22,”1()‘/"/)] L binding, but

the point at which vy can start decreasing is always above 1/2 and, hence,
above aﬂfa . (At vy =1, A <0, so that vy starts decreasing at v; = 1. )
Thus, the stable point is always in (1/2, 1], which is in the basin (-%-,1).
When 29 < o + , the numerator of ¢ is positive while the denominator is

positive, so the mequahty is binding and v; keeps increasing. (At v; =0,




A > 0, preventing v; to decrease).!” Thus, in all cases, i.e. regardless of

initial values, v; is always within the basin (al‘jfaz S0

(Insert figure 1 here.)

A similar result is derived in most evolutionary-game models, e.g. Foster
and Young, Fudenberg and Harris, Cabrales, Kandori, Mailath and Robb
(1993) (hereafter KMR) and Young (1993, 1998). There, however, the
stationary distribution is clearly obtained by letting mutation rates vanish
to A — 0, and the distribution collapses to a point mass over the risk-
dominant strategy.!! In contrast, our mutation rate is fixed all throughout,

since ¢ = 0.

3.2. Drift and Time-Varying Mutation Rates

Suppose ¢ # 0 and that the relationship between ¢ and ¢ is given by

¢ = qi—1 + q,. Let ¢;be a particular realization at ¢ of a random variable
that is assumed to follow a uniform distribution over some interval. Thus,

the (time-varying) mutation rate is \; = e(q;) = e(g;—1 + ¢¢). To simplify,
let g(q;) = ¢;. Then equation (4) takes the particular form:

b1 = [ayvy — ayvg, — ao(l —v1e)?] v — oq + e(gi—1 + ¢,)(1 — 2v1,) (5)

PROPOSITION 2. An ergodic distribution does not exist.

Proof. We prove by providing the following example in which either
strategy 1 or 2 is selected depending on the initial value v. 1

ExAMPLE 1. We simulate the path of proportion vy = vi;_1 + U14—1
when strategy 1 is assumed to be risk-dominant, function e takes the simple
form \; = eq = e(q—1 + q,), and ¢ is drawn at each t from a uniform
distribution over interval [—1,1].'? Figure 2 simulates the evolution of v,
assuming different initial values, and it is seen that only for large enough
initial values does the dynamic approach v; = 1.

(Insert figure 2 here.)
The above proposition is inconsistent with KMR, etc. in which the risk-
dominant strategy is always deemed to be stochastically stable. Of course,

10Tn this sense, v; = 1 is ’absorbing’ in that no escape is possible.

1 Bergin and Lipman show that this result is generated because mutation rates are
the same. When mutation is state-independent, the stationary distribution (obtained
by taking the limit A — 0) puts probability 1 on the state in which everyone adopts
the risk-dominant equilibrium since this has the larger basin of attraction. In contrast,
state-dependent mutation can always obtain either strategy as the long-run equilibrium
depending on how the relative mutation rates are modeled.

12We also assume initial go = 3, a1 = 2, a2 = 1, 0 = 0.03 and e = 0.0001.



while KMR, etc. establish stochastic stability by using constant mutation
rates and obtaining the stationary distribution as A — 0, equation (5)
features time-varying mutation rates. However, even with time-varying
mutation, Robles (1998) shows that if Ay — A > 0 (where A is some fixed
rate to which time-varying rate will converge), and a stationary distribution
exists for the process defined by A, then a (modified) long-run equilibrium
(MLRE) exists. This MLRE just coincides with the equilibrium of the
process defined by fixed h) (and can thus be made consistent with KMR,
etc.). By a different method, i.e. computing for compound probability
distribution, Houba and Tieman (2001) also show that the equilibrium
obtained by KMR coincide with the equilibrium obtained from re-casting
KMR using time-varying mutation rates. Neither Robles nor Houba and
Tieman, however, consider drift as an additional source of noise and nor
do they relate mutation to drift.

3.3. Expected Drift and Mutation

Consider some ’average’ dynamic in which, with very many draws for
¢ and corresponding values for ¢, drift and mutation rates behave as ex-
pected.!> That is, the pattern of drift and the probability of mutation
center around their expected value.  Growth ©1; (conditional on cur-
rent state vy;) then follows as expected, where the expectation is taken
over the distribution of ¢ and ¢q. Making the simplifying assumption
e = eqr = €(qr—1 + q;), we let 01y = E(v14 | v1e) :

o1 = E{[arv1; — a0}, — az(1 — v10)?] viy | v, }=El(0q0) | v +E{[e(q-1+4,) (1-201,)] | v1}.
(6a)
That is, ¥1; behaves as expected - not only in terms of expected payoffs,
but also of expected drift and mutation. Assuming independence of ¢ (and

4

hence, ¢) from past and current v;'*, equation (6a) reduces to:

b1 = [aqvy — a1vi, —as(1 — Ult)z] v — 0B (q) + Ele(q—1+q,) (1 —2v1¢)].
(6b)

Now, using our assumption of a uniform distribution for ¢ , we know
that E(q) = %, for any interval [a,b]. If we assume that ¢ takes on
values from [—1,1] (as in Example 1), then E(g) = 0. Generally, the
range can be larger, but as long as a = —b, then E(g;) = 0. Of course,

q can follow other distributions with mean zero and/or non-zero. How-
ever, when the drift has mean zero, equation (6b) simplifies to 01y =

13 The idea is perhaps similar to Houba and Tieman, although the latter do not consider
drift and use the KMR model instead of the Replicator Dynamic.

14 That is, changes in q affect the next/future values of v1 through drift and mutation,
but not its current nor past values.



[alvlt —av?, —as(1 — v1t)2] v1e + Ele(qi—1 + q,)(1 — 2v14), which we can
keep iterating until we get:

b1 = [arvr — a1vg;, — ao(1 — v1g)*] vie + €(go) (1 — 201,)],  (6¢)

which is just equation (4) evaluated at initial measure qo. Thus, by
Proposition 1,

PROPOSITION 3. If E(q;) = 0, an ergodic distribution exists, whose
mass is concentrated over the risk-dominant strategy.

Proof. See proof of Proposition 1.

If the drift has non-zero mean, two cases are possible: E(g;) < 0 or
E(g) > 0:

PROPOSITION 4. If E(q;) < 0, an ergodic distribution exists, whose
mass 1s concentrated over the risk-dominant strategy.

Proof. We prove roughly as in Proposition 1 by showing that v; always

evolves towards v; = 1 regardless of initial state v9. The dynamic when

E(Qt) <0is vy = [al’Ult - alv%t —as(1— U1t)2] V1t + UE((jt) + [e(qo)(1 —
2v14)] which will always be positive as long as [alfult —av?, —as(1 — vlt)2] Vit
2 2 N
oE(G) + [elao)(1 — 201)] > 0, or memtrhialome o 0Bl
Note that the inequality is non-binding when initial %25 < o} < 1/2,
since for all ¢ the denominator is positive while the numerator is negative,
and we know that e cannot be negative. (The first term in the numer-
ator is negative for vy greater than the mixed Nash Equilibrium al‘faz.)

Thus, when %25 < v <1/2, v; increases. When v; > 1/2, the denom-

inator becomes negative and the inequality becomes binding. We know,
however, from Lemma 1 that [~0F(q;)] < [ —€(qo)(1 — 2vy;)]. Thus, (re-
arranging the inequality){ — [alvlt —avd, —az(1 — vlt)Q] v —oB(q)} <
[ —e(q0)(1 — 2v14)], and vy still increases beyond 1/2. (At v; = 1, we still
have 0 — 0 F(q;)] < —e(qo), which prevents v; from decreasing.)!> When
) < al(faZ’ {- [alv? — (a1v9)? — as(1 — v?)Q] v} < 0, while (go)(1 —
2v1¢) > 0. Thus, the inequality is non-binding, and v; always increases.
Thus, whatever the value of v, v always grows towards vy = 1.

(Insert Figure 3 here.)

PROPOSITION 5. If E(q;) > 0, an ergodic distribution exists. However,
its mass concentrates over the risk-dominant strategy only for small enough

oE(qy), otherwise, it concentrates over the other strategy.

151 this sense, v1 = 1 is ’absorbing’ when v? > 1/2 in that no escape is possible.

10



—[a1vit—a1vf, —as(1—v1¢)?|ors+0 E(q:)
(q0)(1—2v14)
We know from Lemma 1 that 0 E(g;) > €(qo)(1—2vy;) for all v;. Now there
exists a set €y of some small values of 0 F(g;) such that at initial ¢+ = 0,
[0E(q) — e(qo)(1 — 209)] < [a10) — a1 (v])? — az(1 — v9)?] v?, and even
when v; > 1/2, we still have [0 E(q;)+e(qo)(1—2v1,)] < [alvlt —ajv1¢? — as(1 — vlt)Q] V1t
at all £. For this set €y, v, always increases, regardless of its initial value.
(When vy = 1, 0E(q;) — €(qo) > 0 since by Proposition 1, 0 E(q;) > €(qo)-
Thus, v; decreases at v; = 1, making v; = 1 stable.) On the other hand,

Proof. Note that v; grows when <€

there exists a set (g of large values of 0 E(q;) such that [0 E(q;) — €(q0)(1 —
2u1¢)] > [alvlt —av?, —as(1 — vlt)Q] vy at all £ and vy always decreases,
regardless of initial values. (At v; =0, 0E(q;) — €(qo) > 0. Thus v; keeps

decreasing.)'6

(Insert Figure 4 here.)

Note that Propositions 3 and 4 are consistent with KMR, etc. only
because the drift eventually disappears or is expected to disappear - either
the underlying distribution is centered around zero!”, or E(g;) < 0. In this
case, any remaining noise captured by mutation need not overcome the risk-
dominance of a strategy.!'® (Of course, the stationary distribution cannot
put probability 1 on the risk-dominant strategy as there will always be some
(fixed) mutation rate.) Proposition 5 further highlights the importance of
drift - too much of it overrides the risk-dominance of a strategy.

4. APPLICATION TO NIE

To apply the dynamics in section 2, and the results in section 3, to the
process of institutional change, we first offer formal definitions as to what
institutions generally are. In 4.1, we make a broad distinction between
the "Meta Set’ of institutions that are available for use/adoption by a given
population of agents, and the ’de facto institutions’ that such agents ac-
tually adopt. The former type might then be thought of as formal rules
while the latter might correspond to informal norms. These two types
might converge or diverge, depending on the outcome of an evolutionary
game which we pattern to the model of sections 2 and 3. That is, in 4.2
we analyze the extent of de facto survival/existence of the (evolving) Meta
Set through the medium, long, and ’ultra-long’, run, using the dynamic of
3.1, 3.2 and 3.3, respectively. Subsection 4.3 then relates our approach to

161n this sense, v1 = 0 is absorbing. In contrast, the system is deflected from v = 1.

1TRecall that Example 1 uses a uniform distribution over [—1,1].

181t still remains to formally establish the extent to which our result might be the
same as the MLRE in Robles and/or the notion of stochastic stability as defined in
the evolutionary game literature. To do this, one might need to explicitly propose an
underlying Markov process that could give rise to the (continuous) dynamics proposed
herein.
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some leading theories of institutional change.

4.1. Institutions

Recall that in our model of stochastic drift and mutation, the crucial
elements that drive the uncertainty are the variable q and its time derivative
q. In the following exposition, we propose how ¢ and ¢ might be interpreted
in the context of institutional change.

Over time, let new institutions be formed and existing ones destroyed
(or replaced), but at the same time, people choose whether or not to use
such institutions, thereby strengthening or weakening the latter’s ’de facto’
existence. Consider the set of all institutions available to a given population
of agents at some point in time:

DEFINITION 3. Let vector Iy = (I, I;—1,1;3,...Iy) be called the Meta
Set of institutions as of time ¢, whose elements may be vectors themselves
with elements corresponding to single institutions. Thus, at time ¢, what is
available is not only the current set, but all past sets of institutions still in
existence. Vectors I;,I; 1,I; o,...Ip thus have common elements. There
are also new ones that can appear (and/or old ones that are replaced)
at any time. Suppose that the appearance is approximately continuous.
This is possible if we count as a new institution any existing one that has
undergone the slightest modification.!” Counting only the non-redundant
elements in I;, let this measure of 'net additions’ as of ¢ to the existing
Meta Set be denoted by ¢, and its time derivative ¢. Let the evolution of
the Meta Set then be captured by ¢, and let the latter be governed by a
stochastic process. That is, we are concerned with the rate at which new
institutions appear (and/or old ones replaced), and where the timing of
appearance is unpredictable.

Given the Meta Set, each agent chooses to either uphold them or not.
As more (less) people uphold it, the Meta Set becomes stronger (weaker).
That is, institutions are also defined in terms of its ’de facto’ existence.

DEFINITION 4. Let de facto existence/survival of the Meta Set be de-
scribed by the outcome of game G (see section 2), where strategy 1 corre-
sponds to the strategy of upholding/using the Meta Set, while strategy 2
is rejecting the Meta Set.?? Furthermore, let the evolution of de facto sur-
vival be captured by equation (4). The Meta Set and de facto institutions
converge as proportion v; — 1, and diverge as v; — 0.

Remark 1. On the universal applicability of game Gj;. The payoffs of
the game G can then capture the extent of 'fitness’ of players, but not

19Thus, we capture the notion that new institutions build up on previous ones.

20For an agent that adopts strategy 1, the Meta Set is also the de facto set of institu-
tions. If an agent adopts strategy 2, s/he in effect establishes de facto institutions that
are different from the Meta Set.
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solely in the biological sense. Ome can think of them as utilities derived
from the use of, or having access to, existing institutions that affect such
utility. Such definition is general enough to accommodate pure biological
survival, social and/or economic 'fitness’, or any combination thereof, by
choosing the appropriate combination of institutions. For instance, we
can consider a subset IV C I; as the particular Meta Set that generates
the utilities described by payoff matrix A. This also defines membership
of the particular population in question, i.e. I}V is the set of institutions
that the N players initially face and are choosing to uphold when choosing
strategy C' and to reject when choosing A. Of course, we can also study
the entire set I;, thereby combining all populations of agents that play the
‘institution game’ into a single population. The point is that for any set of
institutions IV C I, the latter’s de-facto existence can be determined from
the outcome of the game generally described by G;. Recall from definition
3, however, that we also allow such initial set to evolve. The measure of
the set whose members are the non-redundant elements of IV € I, can

then still be denoted by ¢;2!, and the change in this measure as g,.

Assume that for the N players, the strategy to uphold the Meta Set is
risk-dominant. That is, a; > a2.2? This risk-dominance is preserved even
while IV evolves, since A does not change throughout the (evolutionary)
game. If/when the measure ¢ is/becomes fixed, the ’de-facto’ game still
goes on (except in the unlikely case where INevolves to a null set). To put

in another way, the evolution ¢, of the relevant Meta Set IV only pertains
to creation of new, and/or destruction of old, institutions that preserve the
specific values of a; and ay in the payoff matrix.?> Other values would
describe payoffs obtained from upholding/rejecting another set ]ItH N I,
and any subsequent additions to, and/or deductions from, that set.?*

By the use of game G, we propose that the coordination game can
accommodate de facto evolution of any and/or all sets of institutions. The
coordination game is the most appropriate since it is flexible in the sense
that it allows multiple equilibria and, in a way, can capture the develop-
ment of all kinds of institutions, i.e. ’'good’ or 'bad’. In other words, the
coordination game does not make any ex ante judgments as to which types
of institutions could and should prevail. The only requirement for insti-
tutions to persist is that society coordinates on their behavior to uphold
them.?®

21 Assuming, say, that the number of non-redundant elements is always a finite set, or
countably infinite, measure ¢; is then the cardinality of this set at t.
22For more on risk-dominance, see Harsanyi and Selten (1988).

23Gtrictly, then, we may use notation qiN for g; and g, for g;.

24We still maintain, however, that the game of upholding/rejecting any set of institu-
tions has the coordination-game structure, albeit the risk-dominant strategy may be to
uphold for some sets, and to reject for others.

25Peyton Young (1998) also uses the coordination game to illustrate the evolution of
conventions.
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At the very least, we only need to capture two general components to
help define institutional change: (a) all institutions represent (collective)
reaction of individuals to some stimulus, which get (b) affirmed or become
‘stronger’ as more and more individuals adopt the same reaction. The
idea is that individuals commit themselves to some kind of collective way
of doing things - a social technology. Component (b) might then be eas-
ily captured by a 2 x 2 coordination game with strategies "Uphold’ and
'Reject’.  Of course, while de-facto evolution can be captured by game
G; (and equation 4), we still have to define the appropriate ’stimuli’ that
give rise to institutions or induce evolution in the Meta Set. Nevertheless,
given these stimuli, a coordination game can generalize reactions to two
kinds of strategies that rule individuals’ decision-making with regard to
the formation of institutions.

One obvious stimulus is the ’environment’. However, the notion of
the environment is complex in that it can be 'context specific’. For one,
the environment can change as specific institutions are formed inasmuch as
the latter help define the new environment that individuals face for future
plays of the game. Precisely to abstract from such endogeneity, we let the
Meta Set already include all past institutions from which newer institutions
build on. This helps to define our notion of the ’environment’ as the truly
exogenous component of institutional change.

Perhaps the only component of the environment that can be taken as
truly exogenous by any individual (and hence, in the formation of any kind
of institution) is that which existed before the first individual was born,
i.e. the ’physical’ environment. If the first institution was a reaction to
this initial environment, then in effect all succeeding institutions will also
be reactions to this inasmuch as future institutions build up on previous
ones. Thus, solving the problem of infinite institutional regress boils down
to assuming a first/initial environment beyond which no individual was
in existence, since this initial environment cannot have been a ’created’
institution.

Given this initial environment, we can then identify the appropriate
kinds of reactions. To be applicable to all institutions, we start from
assuming a single basic instinct that all individuals (living during any time
period) share - survival or self-preservation. The competing 'reactions’ to
the environment should then reflect the options available to any individual
that will foster self-preservation. We posit only two general options that
can do this: use existing conventions/norms in society, or ’deviate’ by
establishing other ways of living in society. The former option can then
be tantamount to 'upholding’ current institutions, whatever they may be,
while the latter corresponds to rejection of the current set. Note, however,
that the ultimate aim of both options is to increase the chances for, or
extent of, self-preservation. Note also that there is no a priori reason why
upholding current norms might be more effective than deviating from them,
so we cannot readily assume that the latter strategy is always dominated.
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Remark 2. On the applicability of equation (4). In using equation (4)
to describe the dynamic of institutional change, we not only model the
growth of de-facto institutions, but explicitly tie this with the evolution of
the Meta Set through ¢ and g. While ¢ and ¢ are exogenous to the agents,
they are ’allowed’ to react to these by playing game Gj. Also, inasmuch
as ¢ and ¢ are random elements, the endogenous reaction of agents are
underlined by uncertainty. Thus, evolution of both the Meta Set and de
facto institutions are stochastic. Note by definition 1 that positive ¢ or an
increase in ¢ induces ’drift’ out of v, (while decreases in g induces drift into
v1). The intuition is that agents are more hesitant to "trust’ and uphold an
increasing number of institutions (while they find it easier to trust a smaller
Meta Set). On the other hand, the specification in definition 2 - that the
mutation rate is larger when ¢ is bigger - captures the notion that a larger
Meta Set induces more (directionless) mutation. That is, more agents will
want to switch from upholding to rejecting, and vice-versa. In this sense,
they put less trust on the correctness of upholding and/or rejecting the
Meta Set when the latter is large (while it is easier to decide when the
Meta Set is small). Lastly, note that by Lemma 1, the evolution of the
Meta Set generally causes larger random outflows from v; in the form of
(big) drifts than the size of the Meta Set per se which only affects (small)
mutation. Hence, de facto survival of the Meta Set is harder to achieve
when the Meta Set evolves, i.e. when ¢ (and hence g(q)) is not equal to
Z€ero.

4.2. Institutional Change

Using dynamic given by equation (4), and its specific cases given in
subsections 3.1, 3.2, and 3.3, we analyze the survivability of an evolving
Meta Set through three time horizons - the medium, the long, and the ultra-
long, run.  We define such horizons in the following manner.? Generally,
let the medium run approximate some (arbitrary) time period in which the
system is almost stable if not for some small mutations or ’experimental’
behavior undertaken by agents. (The appropriate dynamic is thus given in
3.1.) Over a longer period of time, we allow bigger sources of uncertainty
in including drift into and out of strategies. The long-run dynamic thus
explicitly accounts for both drift and (time-varying) mutation (which is
given in 3.2). In the ultra-long run, after sufficiently many drift and
mutation ’experiences’, agents can form expectations about the nature of
drifts and mutation, and aggregate behavior is as expected. (The dynamic

26The manner in which the terms ’medium, long and ultra-long run’ are used here
are not conventional in the (evolutionary game) literature where 'medium run’ typically
refers to analyses of a sample path starting from an initial proportion, while long and/or
ultra-long run are usually achieved by letting ’the dust clouds settle’, as mutation van-
ishes, i.e. A — 0. Thus, long and/or ultra-long run equilibria correspond to stochastic
stability and the stationary distribution as obtained in KMR, etc.
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thus takes the forms given in 3.3).

More specifically, we can interpret these horizons according to the evo-
lution of the Meta Set. In the medium run, the Meta Set is approximately
stable in that it is not evolving, i.e. ¢ = 0, and its measure ¢ is thus fixed.
There may be some small uncertainty in the form of mutations, but there
is no large uncertainty in the form of drift. In the long run, the Meta Set
starts to evolve, which now generates drift (and time-varying mutation).
In the ultra-long run, the Meta Set has evolved sufficiently many times
such that ¢ and ¢ become centered on their expected values. In this case,
either the evolution of the Meta Set settles down to zero (and its measure
becomes fixed), or its growth (and/or destruction) does not taper off, but
the point is that agents can already form expectations about the pattern
of this evolution and behave accordingly.

4.2.1.  The Medium Run

When the Meta Set is not (yet) evolving, we can approximate the dy-

namic by setting ¢ = 0 and fixing ¢. As in 3.1, the general dynamic of
institutional change given by equation (4) reduces to equation (1). Propo-
sition 1 implies that:

PROPOSITION 6. In the medium run, the latter tends to (de facto) sur-
vive if it is risk-dominant to uphold it.

Proof. See proof of Proposition 1.

Risk-dominance of the strategy to uphold the Meta Set implies, roughly,
that using available institutions is a ’safer bet’ for increasing an agent’s util-
ity or for fostering self-preservation. Deviating or establishing new de facto
institutions might be the 'pareto dominant’ strategy - doing so is rewarding
only when encountering other ’deviants’ as well, while the punishment is
bigger when one encounters 'conformants’. In contrast, conforming to cur-
rent norms might be better ’on average’. Of course, whether conforming
to, or upholding, the Meta Set is a risk-dominant strategy is an empirical
question.

It is unlikely, however, that ¢ and g remain fixed as t — oo. The medium
run dynamic then becomes a poor approximation as the Meta Set starts
to evolve. Nevertheless, we can use equation (1) to describe institutional
change that is solely due to the evolution of de facto survival of a fized
Meta Set of institutions.

4.2.2. The Long Run

Consider a longer time period during which the Meta Set starts evolving.
In this case, ¢ # 0. Suppose, as in 3.2, that ¢,is drawn from a uniform
distribution over some interval. We simplify the drift function to be equal
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to g(q:) = qi, and let ¢; = q;_1 + 4,50 that the (time-varying) mutation
rate is Ay = e(q;) = e(g—1 + ¢¢). The appropriate dynamic to capture
institutional change in the long run is then given by equation (5). By
Proposition 2:

PROPOSITION 7. The Meta Set may or may not survive through the
long run. One the one hand, even when the Meta Set of institutions is
in continuous flux, agents will not necessarily reject it. On the other, the
instability of institutions might lead to de-facto rejection. Whether or not
conformity to the Meta Set is a risk-dominant strategy is irrelevant.

Proof. See proof of Proposition 2, particularly noting that for high
enough initial value v¢, the dynamic evolves towards v; = 1, while for
low enough v9, v; — 0.

Proposition 7 can explain how agents can still hold on to past institu-
tions and readily accept new ones even when the nature of such institutions
keep changing. That is, they can still end up conforming to the Meta Set
even as it changes (whether or not conforming is a risk-dominant strategy).
Of course, the above is not a general result - for some low enough initial
value for v), the long run dynamic evolves instead towards v; — 0 and the
Meta Set de facto weakens (or alternatively, de facto institutions become
increasingly different from the Meta Set). However, this outcome might
be less likely the longer the medium run - the time period during which the
Meta Set is still fixed. This is because by Proposition 1, it is always the
case that v; — 1 as long as ¢ = 0 and ¢ is fixed. Thus, the initial value
v{ in the long run dynamic, which roughly corresponds to the "final’ value
in the medium-run dynamic, might be large enough such that v; — 1 all
throughout the long run. To put it in another way, we could define a set
L of all possible minimum values of initial v that ensure that the long-run
dynamic approaches v; = 1, and show that whenever the stable value of v,
obtained in the medium-run dynamic (equation 1) is contained within L,
then the Meta Set would survive all throughout the long run. This would
require, however, that the stability of the medium-run dynamic first has to
be attained before the long-run dynamic begins, that is, before the Meta
Set starts evolving. Otherwise, if the Meta Set starts evolving too quickly,
the (long-run) dynamic would likely evolve towards v; — 0 and the Meta
Set would de facto weaken (or, equivalently, would be replaced by de facto
institutions that are different from the Meta Set). In this sense, rapid
complexity in the Meta Set tends to inhibit the latter’s (long-run) de facto
survival.

At this point, however, we cannot readily define set L since the par-
ticular long-run dynamic we obtained as equation (5) assumes a uniform

distribution for ¢. It is not altogether clear to what extent other types of
distributions can allow long-run evolution of v; towards one. But what
is important to note from Propositions 2 and 7 is that the survival of the
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Meta Set through the long run is not guaranteed, even if conformity to
the Meta Set is a risk-dominant strategy. To generalize to all types of
distributions, we propose instead to look at the 'ultra-long’ run horizon, in
which the expected value of ¢ is revealed.

4.2.8.  The Ultra-long Run

The "ultra-long’ run begins when the Meta Set has evolved sufficiently
many times, such that the pattern/trend of its evolution becomes ’clear’.
By using dynamic 3.3 to model the growth of v; in the ultra-long run,
we approximate such pattern/trend by its ’expected’ value. Thus, the
equilibrium outcome of the ultra-long run dynamic is seen as some ’average’
result after considering very many experiences of changes in the Meta Set,
that is, many draws for ¢ and hence values for q. We use equation (6b) to
generally describe institutional change in the ultra-long run, which reduces
to equation (6¢) for the following specific case:

DEFINITION 5. When the expected change in the measure of the Meta
Set of institutions is zero, we say that institutional change is neutral. In
this case, either there are no ’creation’ and ’destruction’ of institutions
in the ultra-long run, or whatever is created just exactly replaces what is
destroyed.

Note that by Proposition 3, we can derive the following result:

PROPOSITION 8. When institutional change is neutral, the Meta Set
survives through the ultra-long run (or, equivalently, the Meta Set and de
facto institutions converge) if it is a risk-dominant strategy to conform to
the Meta Set. Otherwise, if it is risk-dominant to deviate from the Meta
Set, then the Meta Set does not survive (or, equivalently, the Meta Set and
de facto institutions diverge).

Proof. See proof of Proposition 3.

If institutional change is non-neutral, two cases are possible: when

E(q;) < 0, the Meta Set tends to become simpler over time; when E(q;) >
0, it tends to become more complex. By Proposition 4,

PROPOSITION 9. If the Meta Set tends to become simpler over time,
the Meta set survives through the ultra-long run if it is a risk-dominant
strategy to conform to the Meta Set. (Otherwise, the Meta Set does not
survive.)

Proof. See proof of Proposition 4.

Note that the above Propositions 8 and 9 imply that when complexity
of the Meta Set is bounded from above, ultra-long run survival of the Meta
Set depends on whether or not it is risk-dominant to keep conforming to
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the Meta Set. The following Proposition, which follows from Proposition
5, makes risk-dominance irrelevant and instead points to the size of the
drift, or the rate at which the Meta Set becomes more and more complex,
as the crucial factor determining ultra-long run survivability of the Meta
Set:

PrOPOSITION 10. If there is no upper bound for the extent of complex-
ity of the Meta Set, the Meta Set survives through the ultra-long run only
when it does not become too complex too fast, (that is, only for small enough

oE(qt))-
Proof. See proof of Proposition 5.

Taken together, the results in Propositions 6 to 10 all seem to substan-
tiate the intuition that too much instability in the Meta Set can lead to
its deterioration or, equivalently, to the establishment of de facto institu-
tions that are different from the Meta Set. Note that the medium-run
result favoring de facto survival of the Meta Set assumes that the Meta Set
is fixed (and hence, stable) while survival through the long run requires
enough stability to begin with, i.e. initial v{ is large enough. Lastly, the
ultra-long run dynamic allows survival of the Meta Set only when the Meta
Set does not become too complex too fast. While the results rely on what
happens to the Meta Set (and the amount of drift/uncertainty it causes),
we have not fully motivated or explained its evolution. The next sub-
section proposes an interpretation that could be consistent with the NIE
literature.

What Drives the Evolution of the Meta Set? We have assumed that the
evolution of the Meta Set is exogenous to the game of de-facto upholding
institutions.  This, however, is not the same as saying that the same
agents are not responsible for creating new, or destroying old, institutions.
It is only that whenever they create or destroy, it is assumed to be a
random’ occurrence in that the timing is unpredictable. (An alternative
’endogenous’ model would perhaps time an occurrence or disappearance
upon reaching a particular 'threshold’ state v¢.)

Nevertheless, we can let ¢ be tied with the motion governing an un-
derlying stochastic process & with mean zero, even if in the ultra-long
run E(q;) is not zero. Specifically, we can define ¢ to be a linear func-
tion f: E—Q, f =20, f/ =0, ie. ¢ = a& + b, where a = 0 and
b % 0. Since f is linear in &, we can then obtain the expected value
E[f(£)] = fIE(&)] = £(0) = E(q:) Z 0.

We can interpret the process & as the (stochastic) process governing in-

cremental changes to the ’environment’. Thus, changes in the environment
are random occurrences that are captured by a random variable that is dis-
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tributed with mean 0.27 On expectation, the environment stays the same,
i.e.E(&) = 0, which implies that ’additions’ to the original environment
are, 'on average’, offset by ’destruction’.

The ’environment’, in turn, can include not only geography but also
other constructs that are exogenous to agents as they play game Gj, and
which affect the evolution of the Meta Set (that is, the creation of new
and/or destruction of old, institutions by the same agents). Interpreting
&: as changes in the environment adds two final features that make the
model a comprehensive tool for analyzing institutional change: first, we
capture the notion that institutions are formed in order to adapt to the
environment; and, second, we solve the problem of infinite institutional
regress by assuming some given initial environment that is exogenous to
agents and from which the first Meta Set was developed.

4.3. A New Approach

The literature on institutional analysis has by now grown quite large.
However, there is still some disagreement as to the best way to define and
model institutions. The canonical approach derives from North’s view of
institutions as “the rules of the game.” However, as Greif has noted (Greif,
2005) the institutional arrangements that emerge in stable equilibria are
themselves an endogenous response to existing conditions. While some in-
stitutions can be thought of as formal rules or laws that condition behavior,
they are only viable if the enforcement characteristics lead to compliance.
In some cases, the institutional rules may not even be directly relevant
to the norms and behaviors that emerge. In others, seemingly “inconsis-
tent” rules (when judged by their match with informal norms of behavior)
can become established if the state or society pays a high enough price in
terms of forcing compliance to the point where people learn to consider the
binding rules as part of the background environment. Obviously, a truly
satisfactory model of institutions will capture the differences between the
initial choices and conditions faced by the economic actors and the equilib-
rium behaviors that will emerge when we take into consideration how the
initial rules are enforced and what choices the actors make when respond-
ing to both general socio-economic incentives and the specific enforcement
mechanisms used to establish the variety of formal laws and norms. As
Greif has noted, “If prescriptive rules of behavior are to have an impact,
individuals must be motivated to follow them.”

Our particular focus has been on reconciling the views of North and
Greif. In particular, we are interested in studying how institutions evolve
when we distinguish between the Meta Set of all existing and potential
institutional arrangements faced by individuals and the de facto set of in-
stitutional arrangements that actually persist when taking into account the

27The initial environment is itself may be exogenous and given, but the subsequent
changes to this are random.
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rules and norms that the agents actually choose to uphold in equilibrium.
Individuals decide at each point in time whether to conform to pre-existing
rules and institutions, thereby de facto enforcing them, or whether to adopt
an individualistic set of behaviors that abandon the conformity to the col-
lective rules and behaviors.

Greif and his followers have worked hard to demonstrate the usefulness
of classical game theory in modeling individual responses to institutional
rules, even using results from dynamic (i.e. repeated) games to capture
the notion of path dependence in institutional change. Path dependent
stories typically give greater weight than static analyses to the possibility
that chance initial events lead to divergent outcomes. However, Greif’s
framework is still incomplete because the arrival of chance events is not
clearly modeled and their effect on the behavior of agents is not shown in
an explicit dynamic context. Furthermore, the very uncertainty induced
by chance casts serious doubt as to the aptness of classical game theory
which assumes perfect rationality of agents. Since the appearance and dis-
appearance of institutions, and whether the latter end up being effectively
enforced or not, can seldom be predicted (ex ante), there is a possibility
that experimention/mutation might lead to the ’correct’ strategy (ex post).

A persuasive argument can be made that a more limited, bounded ra-
tionality model of human behavior might better capture the observed em-
pirical regularities regarding the emergence and persistence of historical
institutions. Evolutionary game theory thus seems like a more appropriate
framework. Indeed, H. Peyton Young (1998) argues for evolutionary mod-
els as more closely following the spirit of classical economics with its notion
of individuals and societies adapting to changed circumstances in coherent
fashion without imposing a full calculative, all knowing, hyper-rationality
on the part of all players involved.

In this sense, Aoki is probably more encompassing than Greif in that he
does not eschew the role of mutations or bounded rationality and, hence,
uncertainty, in the evolution of the ‘rules of the game’. Aoki distinguishes
between institutions that are deemed exogenous, and those that evolve
within a particular game (in a manner akin to our distinction between
the Meta set and de facto institutions). Aoki’s proposed methodology is
comprehensive - it covers all kinds of institutions; recognises the ‘embed-
dedness’ and linkages in the evolution of institutions across domains (i.e.
organizational, economic, social and political spheres) and the strategic
complementarities across these domains that are necessary for institutions
to be enforceable. It allows for possible multi-directional endogeneities in
the evolution of such institutions. However, the comprehensivenss of the
framework makes it difficult to obtain specific results.

The difficulty stems from the fact that while Aoki outlines the players,
payoffs, and forms of games for each kind of domain, the treatment of
strategies is somewhat loose and confusing. That is, what, exactly, are the
strategies and how are they defined? It seems that they are not specifically
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institutions, yet adopting them gives rise to institutions.

In other words, it is not clear how a particular action can produce a
specific institution - is it that a strategy is literally an ‘arrangement’ which,
as more and more players adopt it, becomes an institution? In this case,
then, a strategy is, literally, a ‘potential’ institution which only “de facto”
becomes so as it becomes an equilibrium. (This interpretation would be
closer to our model.) Or does creation of an institution follow a more
indirect route, i.e. is it a by-product of playing the game? Players choose
strategies recursively and the evolving state of play embodies information
from which players can deduce the ‘rules’ governing the game. That is, it
is the collective information, or the reinforced belief of how the game ought
to be played, that defines an institution, and not the strategies per se. This
latter interpretation seems to be a more plausible and consistent reading
of Aoki. For if Aoki meant the former ‘direct’ route where strategies are
literally institutions, then another, more problematic issue is apparent:

Are the games, i.e. the number of strategies, finite or infinite? With the
‘indirect’ route, it is easy to restrict strategies to a finite set and still allow
possibly infinite by-products or institutions. However, with the direct
route, one might need to allow for infinite strategies, for it seems hard to
limit ex ante the set of institutions to a finite set. And even if we did, it
seems difficult to define (ex ante) the finite set of strategies. How would
anyone know which particular institutions can possibly come out of a game?
It is arguably more realistic to allow the emergence/occurrence of at least
some institutions to be unpredictable and which, cannot be defined ex ante.
Furthermore, it is difficult to justify restricting the timing of occurrences
only to the period before the game is played. One can easily envision new
institutions emerging as the game is played repeatedly. The point is that if
strategies were literally institutions, as in the ’direct’ route, one would need
to devise a technical framework where new strategies emerge (and possibly
stochastically) as the game is repeated.

Thus, within Aoki, it is difficult to formulate any testable hypothe-
ses/predictions on either the particular equilibria attained in a game or the
path and speed by which they are attained.

In a way, Young offers a good compromise between Greif and Aoki.
He models uncertainty, and proposes exact (evolutionary) games and (sto-
chastic) dynamics by which institutions (conventions, norms, contracts) are
formed. While our model is perhaps closest to Young, there are two major
limitations in Young that we overcome. First, as he himself admits, there
are higher level institutions in which lower level institutions are ‘embed-
ded’, but whose evolution can all be combined in one game. “Bargaining
over contract forms takes place within the shadow of the law, and the law
operates within the penumbra of morality, morality is colored by religious
belief. . . .Doubtless all of these interactions could be written down as one
large game.” (Young 1998). Our model addresses this simultaneous notion
of hierarchy and comprehensiveness through our Meta Set, which is defined

22



as a combination of all available institutions which could have been built
from previous ones, and our singular 'de facto’ game of players choosing to
uphold these Meta institutions or not, whatever these institutions are, and
as they change over time.

The other limitation is that the bounded rationality in Young is ar-
bitrary. In our model, bounded rationality is manifested not only in the
’small’ mutation/experimental behavior of agents but also in the ’large’
'drift’ that ensues from having the Meta Set evolving as well. This spec-
ification is far from innocuous. In fact, it can generate equilibrium pre-
dictions that are different from those implied by the standard notion of
stochastic stability in current evolutionary-game models including Young.
By defining the evolution of the Meta Set as an explicit source of uncer-
tainty, the extent of bounded rationality in our model becomes intuitively
time-varying. Thus, unlike most evolutionary-game models, we do not just
assume some fixed mutation rate and obtain the (stochastic) equilibrium
by examining what happens when we let this mutation rate disappear (at
an arbitrary rate). We offer a simple yet intuitive technique for solving for
(ultra-long run) equilibria when bounded rationality is time-varying and
when they may or may not disappear — we take the expectation of the
dynamic over the distribution of the source of the uncertainty. A general
result is that depending on this distribution, equilibrium in a 2x2 coordi-
nation game may not necessarily correspond to the risk-dominant strategy,
unlike in Young and most other evolutionary-game models.

5. CONCLUSIONS

Our proposed stochastic dynamics are based on Foster and Young and
Cabrales, but we do not specify a Wiener process to model drift, and we
relate drift and mutation through a common variable driving "uncertainty’.
While there exist many other stochastic dynamics which capture muta-
tion (and/or drift)*®, our models of mutation and drift are adaptive and
time-varying. To our best knowledge, apart from Robles and Houba and
Tieman, results from evolution with time-varying mutation rates (and/or
time-varying drift) are still not clearly generalizable.

Using a (evolutionary) coordination game and our proposed stochastic
dynamics to derive equilibria relating to institutional change, our bounded
rationality framework and methodology are closer to Young than Aoki or
Greif. Greif captures the notion of self-reinforcing equilibria, but still in the
classic game-theoretic framework. Aoki does allow for bounded rationality,
but he models institutional change as a ’by-product’, rules governing any
game, that is, any type of strategic interaction, which also evolve as the

28Gee KMR, Young, Samuelson, Binmore, Samuelson and Vaughan, Blume (2003),
Amir and Berninghaus (1996), Fudenberg and Harris (1992), Robson and Vega-Redondo,
and Vega-Redondo (1996, 2003) for a survey.
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game is played. In contrast, our ’institution game’ is literally the game of
choosing to uphold or reject institutions.

Intuitively, however, we draw more heavily from the NIE literature
(North and Greif) than Young in order to formalize concepts. Thus,
our model is more exact and specific to institutional change. At the same
time, results pertaining to institutional change are obtained as applications
of the more general results we derive for 2 x 2 evolutionary coordination
games whose outcome can be described by the stochastic dynamics we have
proposed.

The paper’s contributions are thus both methodological and conceptual.
While we provide generic results for evolutionary games, our model is also
specific enough to the phenemenon of institutional change. We believe that
the framework serves as an effective formalization of the critical intuitive
observation in the NIE literature that the problems inherent in reforming
instutions emerges when there is a serious disjunction between formal rules
and informal norms of behavior. Our model allows us to examine cases
when there is a disjunction between formal rules and informal norms by
considering the problem of how agents choose to comply or ignore existing
rules. Even while the two might initially match in equilibrium, random
shocks (in the form of drift and mutation) can drive a wedge between the
two, which might or might not lead back to convergence of formal and
informal norms. This not only serves as a model of how unanticipated
shocks change institutions but also of how important purposeful changes
(such as "shock therapy" or new enforcement mechanisms) have to be to
create sustainable reform. Above all, it provides an intuitively plausible
formal model of the various notions of path dependence and non-ergodicity
that are an important but unmodeled subset of the ideas of the New Insti-
tutional Economics.
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